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Abstract

Conventional approaches for integer optimization show little benefit from GPU
acceleration. On the other hand, the main computational problem in quantum
many-body physics is the computation of eigenvectors of exponentially large, but
structured, matrices. To address such problems, small dense matrix operations
are employed, which are amenable to parallel computing. Thus, efficient meth-
ods that run in parallel on both CPUs and GPUs have been devised, such as the
Density Matrix Renormalization Group (DMRG) algorithm. Embedding binary
optimization programs into quantum systems reformulates minimization as an
eigenvalue problem for which scalable, parallelizable algorithms exist. Hence,
we represent these systems using matrix product operators (MPO), a tensor net-
work. MPOs exactly represent QUBO problems in O(N?3) space, avoiding the
exponential cost of a direct tensor representation. Our algorithm constructs the
MPO for a QUBO problem and applies DMRG, which approximates the smallest
eigenvalue within a certain truncation tolerance in polynomial time. We provide a
methodological description of the algorithm and numerical results from our Julia
library TenSolver. jl1.

1 Introduction

In recent years, numerical linear algebra has seen a surge in scalable algorithms that exploit multi-
core and GPU computation for matrix decompositions and eigenvalue problems [22} 43| [12]. These
advances enable efficient solution of continuous optimization problems on GPUs, accelerating
applications such as machine learning model training [24]. In contrast, classical methods for integer
optimization, including Quadratic Unconstrained Binary Optimization (QUBO), have struggled to
exploit these accelerations due to a mismatch between standard algorithms and GPU architectures [35}
6.

QUBO is a class of mathematical programming problems with applications in logistics, physics,
finance, biology, and engineering [36]. QUBO is NP-hard [36] and closely related to the Ising
model [30]]. Because of this relation, QUBO has been a central target for quantum computing (QC),
both on current devices running quantum annealing [21]] and hybrid classical-quantum algorithms
such as the quantum approximate optimization algorithm [13], and on future fault-tolerant quantum
computers [38]. Despite promising results [9,[13]], quantum computers still lack the scalability needed
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for large real-world problems [1]]. However, using QC concepts to design algorithms for classical
hardware yields quantum-inspired algorithms with strong practical performance.

Tensor networks (TN) [S]] are a computational tool for representing large-scale linear algebra systems
and are well suited to parallel hardware such as multicore clusters or GPUs. They have been successful
in computational chemistry [46], fluid dynamics [[L8]], and machine learning [40]]. Tensor networks
are also widely used to simulate quantum systems on classical hardware, including in challenges to
quantum supremacy claims [42]. Variational algorithms based on Matrix Product States (MPS) and
Operators (MPO) [45] 146, 51,139] efficiently simulate many quantum many-body systems.

There is growing interest in using TNs for combinatorial optimization. The solver in [3] constructs
tensor networks whose topology mirrors the original problem and that, when contracted, produce the
optimal solution. To encode linear constraints, [2} 28] uses U (1)-symmetric MPS as part of generative
models for binary optimization, while [20] represents constraints via projection operators acting as
linking nodes in the network. For QUBO, [4]] adapts these methods to build a polynomial-time solver
for tridiagonal QUBO, and [27]] uses contractions of tropical tensor networks to find ground states of
the Ising model, which is equivalent to QUBO [30].

Contracting tensor networks with complex topologies is NP-hard [44]. Here, we instead convert
QUBO into an eigenvalue problem for Matrix Product Operators (MPO), a class of tensor networks
with linear topology and efficient contraction [33]]. For these networks, powerful algorithms from
computational physics [45,46] find approximate eigenvectors in polynomial time. One such algorithm,
the Density Matrix Renormalization Group (DMRG), relies on repeated applications of small dense
matrices and is suitable for parallelization. Our implementation, TenSolver. j1, builds upon the
Julia ecosystem [7]], using ITensors. j1 [16,[15] for tensor network manipulation and QUBO. j1 [49]
for integration with the JuMP [29] modeling language.

2 Problem description

A Quadratic Unconstrained Binary Optimization (QUBO) problem consists of solving
mingegy ' Qr = Mingepy ., QiTit; )]
where Q € RV*¥ is a real matrix, x is the binary decision variables vector, and we write B = {0, 1}.

Notice that the inner product " Qz is symmetric, hence we assume (Q upper-triangular w.l.0.g. Also,
since the decision variables are binary, x; = xf, and linear terms, i.e., quL = x;q; appear on the
diagonal of ). Despite its simple formulation, QUBO is a known NP-hard problem [36]] and is
equivalent to the Ising spin Model in condensed matter physics [30].

2.1 Tensor reformulation

In this section, we show how to reformulate a QUBO as an eigenvector problem, making it more
suitable for parallelization. We convert a QUBO as in (I)) from a discrete problem in N binary
variables into a N particles quantum system, with 2-dimensional state spaces each. For this, consider
the complex space C? with orthonormal basis {|0) , |1)}. Its elements are called qubits. The tensor

product of N qubit spaces, i.e., ®fV:1 C2, has dimension 2% and an orthonormal basis indexed by all
length N binary strings, |z) == |21) ® ... ® |zy) where x € BY.

We then build an operator H : ®f\;1 C? — ®iV:1 C? whose least eigenvalue is the solution of (TJ).

Start by defining the 2 x 2 Hermitian matrix D = 8 ﬂ For a multivariable system, it is useful

to create a shorthand D, for the operator that applies D to the ¢-th qubit while keeping all others
untouched, called a single-site operator,

Di(t1®...94;,®...0zN) =21 Q... (Dz;) ®... xN.
These are diagonal operators who recover the i-th component of a basis vector, i.e., (x| D;|z) = z;
and (z|D;|y) = 0 for x # y.

Now consider a QUBO as in () with matrix (). We form an operator H from it by substituting each
variable x; with the respective operator D,

H= Zizj Qi;D;D;. 2)



Since these operators affect only one element of a tensor product, they commute with each other, i.e.,
D;D; = D;D;, and there is no ambiguity about the order of multiplication.

The operator H defined in Eq. () is a gigantic 2 x 2V complex matrix encoding all possible
feasible solutions to the QUBO. To see this, consider a binary vector x € BY, and notice that

(z|H|z) = Zizj Qij (x| D;Dj|z) = Zizj Qijrix; = xTQ:z:.

The solution to the QUBO corresponds to this operator’s least eigenvalue, and the associated
eigenspace is spanned by its optimal solutions. To show this, note that H is Hermitian; thus, its small-
est eigenvalue equals the minimum of its Rayleigh-Ritz quotient [25]]. Writing [¢/) = > g~ U2 |2),

A (H) = min (¢|H[¢p) = min ¥ (@] H|z) = min ¢l (2 Qu).

llll=1 l[4l|l=1 ~~=€BY lpl|l=1 ~~=eBY
Since all weights |1/, |? are non-negative and must add up to 1, the minimum is achieved by choosing

only those 2 that minimize " Qz. Thus, we turn the discrete optimization problem in (T)) into the
continuous linear algebra problem (2), for which parallel solvers can be employed.

For now, it may be hard to see the benefit of converting a discrete problem into an exponentially
larger continuous one. Nevertheless, in Section [3.2] we perform a decomposition of H requiring only
O(N?) complex coefficients — a representation only a factor of N larger than the ) matrix itself.

2.2 Quantum system interpretation

We can also interpret the operator H defined in Eq. (2) as the Hamiltonian of an /V- particle quantum
system with measurable states |0) and |1). In this view, H encodes all possible energies for this system,
and finding its ground state recovers the minimum energy for its classical counterpart. Furthermore,
the probabilistic interpretation of quantum mechanics lets us use a normalized eigenvector |z*)
associated with the ground state of H as a probability distribution over optimal binary vectors in the
QUBO. In this way, sampling from it yields optimal solutions to the original problem.

3 Classical representation of quantum systems as tensor networks

A general state in an N-qubit system requires 2V degrees of freedom. For any reasonably large IV,
this is too large, even for the best available hardware. In many cases, however, these states are sparse
and do not actually require all such information. To take advantage of this, we can rewrite these
sparse tensors in a more amenable representation.
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Figure 1: Graphical representation of tensor network operations and their equivalent in Einstein
summation notation. We add the wire indexes for legibility, but they may be omitted when there is no
ambiguity. (a) Contraction amounts to connecting two wires. (b) The tensor product is juxtaposition
without connecting any wires. (c) Complicated tensor contractions require more complex network
topologies. (d) Partial traces amount to closing wires into loops. (e) A tensor can be decomposed into
a network by reshaping it into a matrix and applying a decomposition, such as the SVD.

A tensor network is an unevaluated tensor contraction. It consists of a graph in which each degree-k
node is a rank-k tensor, and each edge has an associated dimension that represents a contraction
between the respective indices. It is beyond the scope of this article to explain the algebra of tensor
networks, but we direct the interested reader to [518]]. See Figureﬂ]for examples of tensor contractions
and the graphical representation as tensor networks. Usually, a network representation of a tensor



allows for better taking advantage of hidden topological properties that might not be straightforward
when looking at it as a single tensor. As an example, large but sparse tensors can often be written
as contractions of small tensors, enabling significant reductions in their storage requirements and
related computational costs [26].

Even when a tensor is not sparse, it can be approximated by a contraction through its Singular Value
Decomposition (SVD). See Figure[Ie|for a graphical representation of the process. The tensor 7" is
factored into a contraction where the middle matrix X contains its singular values. By neglecting all
singular values below a specific cutoff, this factorization approximates a tensor into a contraction
with an arbitrarily small linking dimension.

3.1 Matrix product states and operators

In general, for a vector space of d dimensions, a rank k tensor contains d* degrees of freedom. Using
the SVD factorization, it is possible to approximate it by a network containing O(kd) degrees of
freedom. In a quantum setting, this means going from exponential to linear complexity with respect
to the number of particles.

A Matrix Product State (MPS) is a sequential tensor network, consisting of a linear contraction of rank
3 tensors. Their open indices, called sites, are identical to the tensor they represent, but their linking
indices are virtual and can have any dimension. Across the edges of an MPS, the maximum dimension
for a linking contraction is called bond dimension and is an important measure of complexity for
MPS algorithms [32]. They are of particular interest because, due to their absence of loops, these
tensor networks support algorithms for tensor addition and contraction that are polynomial in the
number of sites and bond dimension. Additionally, when viewed as probability distributions, there
are efficient algorithms for perfectly sampling from MPS [[14], an essential step in Section 4]

Although MPS represent vectors, their analogues for operators are the Matrix Product Operators
(MPOs). These are sequential tensor networks composed of rank-4 tensors. Besides the MPS
operations, this class of tensor networks also has fast polynomial eigensolvers [46]. See Figure [2|for
the tensor network representation of such operators.

(a) Matrix Product State. (b) Matrix Product Operator.

Figure 2: Matrix Product States and Operators are tensors represented by linear graphs. When the
dimensions of the contractions are bounded, their degrees of freedom are polynomial in the number
of open wires.

Our particular interest in MPS comes from the Density Matrix Renormalization Group (DMRG)
algorithm, first introduced in [45, 46]. It is a variational eigensolver based on the methods of
Lanczos [23] and Davidson [[11]], adapted for the MPS structure. It estimates an MPS representing
the ground state (least eigenvector) of an operator in MPO form. Its computational complexity
and memory requirements scale, respectively, as O(k3N*) and O(k%N?), where & is the MPO’s
maximum bond dimension [31]. DMRG is known to converge to the least eigenvalue when provided
with a “good” initial guess. Nevertheless, it is a local optimization method and may get stuck if
started too close to other eigenspaces. DMRG can be run on multiple CPUs or GPUs and scales
properly until the number of cores reaches the size of the MPO [50].

3.2 MPO representation of QUBO

Now we focus our attention on how to represent Eq. (Z) as an MPO. The straightforward approach is
to construct the tensor H and convert it into an MPO via a sequence of SVDs. As it stands, it is too
computationally expensive to write the full tensor. Fortunately, the polynomial nature of the problem
allows us to employ the procedures in [34} 10, 37] to convert a sum of local operators into an MPO.
With this approach, we obtain an MPO with at most bond dimension N + 1.

Theorem 1. There is an MPO representation for the Hamiltonian in Eq. @) with maximum bond
dimension N + 1.



The full proof of this theorem is beyond the scope of this paper. A proof sketch is: The procedure
in [34] constructs a finite automaton for recognizing only the terms over the alphabet {I, D} that
appear on the sum (2). It is then possible to appropriately convert this automaton’s transition matrix
into MPOs, each constituting a tensor with bond dimension equal to the number of states in the
automaton. Figure [3]shows the transitions constructing the MPO for a QUBO.

I D 0 O 0 QuD
0O 0 I O 0 Q(i,l)iD
] 0 0 0 I 0 Q(,;_Q)iD
w) = )
oo 0 . :
0O 0 0 O I Q(i,N)iD
0O 0 0 O 0 I

(b) Transition matrix for i-th site.

(a) Finite automaton.

Figure 3: (a) This system starts in the green state and accepts any string that reaches the purple
state. These are precisely the length N strings consisting of all I except for either one or two D
matrices.(b)The transition matrix for this finite automaton generates the i-th tensor for the MPO
representing Eq. (Z). We view it as a matrix whose components are 2 x 2 matrices. The constants
@ can be chosen independently from the automaton’s structure, and, in order to reproduce the
original system, we consider that transitioning from state k to the accepting state produces the term
Q(i—k)iDi—D;. These matrices can be reshaped to rank 4 tensors whose contraction equals H.

Note that, as a consequence of TheoremE], we only need O(N?) coefficients to exactly represent a
QUBO problem as a tensor network.

4 Algorithm methodology

We propose a tensor network-based algorithm for solving QUBO. It consists of converting a QUBO
problem into a quantum system represented by an MPO using the procedure from Section[3.2} and
then applying DMRG, which can be parallelized efficiently. The final output is an MPS 1) representing
its ground state. If DMRG converges, 1 will be a (quantum) probability distribution over all binary
vectors that minimizes the original problem. If the algorithm is stopped before convergence, v can
still be treated as a probability distribution over feasible solutions that approximate the true minimum.
The steps are represented in Algorithm|[I]

Algorithm 1 Tensor network-based QUBO solver.

Input: A square matrix (), an initial MPS guess |ig)
Parameters: SVD cutoff ¢, maximum bond dimension
H + MPO(Q)
1) = |¢bo)
repeat
E, |¢) «+ DMRG(H, |¢)) > Better MPS approximation
until H |[¢) ~ E|y)
x* + sample(|1)))
return F, z* > E ~ (z*) " Qa* approximates the minimum

Notice that, while the MPO representation is exact, the variational eigensolver is an approximate
method that may require truncation of the solution. Generally, there is a controllable trade-off between
accuracy and speed when deciding how much to simplify the original problem. This is expected since
QUBO is NP-hard while all steps in here are polynomial.

5 Numerical results

In this section, we evaluate the algorithm’s performance on multi-core CPUs in a series of QUBO
problems and compare it to the commercial mixed-integer solver Gurobi [[19] version 12.0. We bench-



mark the solver using QUBO instances from the QPLib dataset [[17], obtained via QUBOLIb [48]].
The results are shown in Fig.[4]

All runs were performed using the Anvil supercomputer [41]. The CPU benchmarks used 32 cores
of an AMD EPYC™ 7763 CPU, while the GPU benchmarks used a single NVIDIA A100 GPU.
The proposed algorithm is implemented as the package TenSolver. jlﬂ in Julia [[7]] and builds upon
ITensors.jl [16l[15] and QUBO. j1 [49].

The runs had no fixed iterations for convergence. All applied SVDs had a singular value cut-off
of 10~7. We start with a maximum bond dimension of 40 for the solution, but allow it to increase
linearly with the iterations. Following [47], a small amount of noise is applied to the density matrices
throughout the calculations. We choose to start with 10~° and decrease it exponentially with each
iteration. A 10~* threshold was used to assess solver convergence. As the initial state for DMRG, we
use a random MPS of bond dimension 40. [
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Figure 4: Comparison between Gurobi and TenSolver. (Left) Runtime across devices and variable
counts. (Right) MIP Gap computed with respect to the Gurobi lower bound.

From the results in Fig. ] we observe that the results were comparable to those of the commercial
solver Gurobi running on CPU.

6 Conclusions and Future Work

We present a quantum-inspired algorithm for approximately solving Quadratic Unconstrained Binary
Optimization (QUBO) problems using Tensor Networks (TNs). The method maps QUBOs to a
Matrix Product Operator (MPO) and solves them with the Density Matrix Renormalization Group
(DMRG), where the MPO bond dimension grows only polynomially with system size, ensuring
scalability. Reformulating the QUBO as a Hamiltonian enables parallelism.

We implement the approach in the open-source package TenSolver. j1 and demonstrate it on a
benchmark QUBO instances, achieving competitive performance with a commercial MIP solver on
multi-core CPUs. The physics-inspired representation naturally supports efficient parallelization in
CPU and GPU, addressing a major challenge in discrete optimization.

Future work will focus on improving the algorithm’s suitability for GPU environments and on further
exploring the solver’s parallelization potential. Additionally, pre-processing techniques are planned
to enhance convergence rates.
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