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Figure 1: Visualization of generated results from our proposed ContextAR framework. The
combinations of conditions are: (a) Canny + Depth + HED + Pose, (b) Canny + Depth + HED, (c)
Canny + HED, (d) HED, (e) Canny, (f) Subject + Canny, (g) Subject + Depth. Our framework is
implemented on an autoregressive model, achieving excellent controllability while offering remark-
able flexibility and versatility.

ABSTRACT

Controlling generative models with multiple, simultaneous conditions is a critical
yet challenging frontier. Mainstream diffusion models, despite their success in
single-condition synthesis, often exhibit performance degradation and condition
conflicts in this setting. We identify the root cause of this limitation as the in-
herent parallel generation process of these models. By applying all conditional
constraints globally and concurrently, they create a “tug-of-war” between com-
peting guidance signals, forcing suboptimal compromises. This paper advocates
for a paradigm shift to serial generation. We posit that autoregressive models,
by constructing images token-by-token, can resolve conflicting constraints locally
and sequentially, enabling a more harmonious and precise integration of multiple
conditions. To realize this paradigm, we introduce ContextAR, an autoregressive
framework that represents diverse conditions within a unified sequence. It em-
ploys a novel Conditional Context-aware Attention mechanism that restricts inter-
condition communication, enhancing both compositional flexibility and computa-
tional efficiency. Extensive experiments validate our hypothesis: ContextAR sig-
nificantly outperforms state-of-the-art parallel (diffusion-based) methods in con-
trollability and faithfulness to multiple conditions, without a trade-off in image
quality. Our work establishes serial generation as a more powerful and flexible
paradigm for the complex task of multi-conditional image synthesis.
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Figure 2: Comparison of parallel generation and serial generation in multi-condition tasks.

1 INTRODUCTION

The advent of diffusion models has marked a significant milestone in generative Al, enabling the
synthesis of photorealistic and diverse images from simple text prompts (Ho et al.| |2020; Song
et al [2020; Rombach et al., [2022). This breakthrough was soon followed by methods offering
fine-grained, single-condition control. Frameworks like ControlNet (Zhang et al., |2023)) and T2I-
Adapter (Mou et al., 2024) empowered users to dictate specific spatial layouts, human poses, or
object boundaries, providing a much higher degree of precision than text alone.

The natural next step for creative applications is to combine these controls, enabling users to specify
multiple constraints simultaneously—for instance, defining a subject’s appearance and the scene’s
layout at once. A growing body of research (Zhao et al.l 2023} |Hu et al., [2023; Wang et al.,|[2025a)
has explored this multi-conditional setting, proposing various strategies to merge guidance signals.
Despite their progress, these approaches often struggle with condition conflicts, where competing
instructions degrade image quality and weaken the model’s adherence to the combined user input.

We identify the root of the problem as the parallel generation process inherent to diffusion models.
At every refinement step, all guidance signals are applied globally and concurrently across the entire
image canvas. This forces the model into a “tug-of-war” when conditions provide contradictory
information for the same region—for instance, a canny map demanding a sharp outline while a
subject condition requires soft fur texture. The model is forced to average these competing signals,
leading to a suboptimal compromise.

We argue that a more effective solution requires a paradigm shift from parallel refinement to serial
generation. This perspective brings autoregressive models into focus, which have re-emerged as a
powerful paradigm for visual synthesis (Ramesh et al., 2021} |[Esser et al., 2021; [Yu et al., 2022).
These models construct an image sequentially, one token at a time. This inherent sequentiality
provides a natural mechanism for resolving conflicting constraints. Rather than forcing a global
compromise, an autoregressive model makes a series of localized decisions. As it generates the
image patch by patch, it can dynamically prioritize the most salient condition for each specific loca-
tion—attending to the edge map for a character’s outline, for instance, before shifting focus to the
subject guidance for its interior texture. This transforms the generation process from a contentious
negotiation into a coherent, step-by-step composition.

Building on this insight, we introduce ContextAR, a framework designed to unlock the full potential
of autoregressive models for multi-conditional image generation. Our contributions are:

* We analyze the core challenges of multi-condition control, clearly articulating why the
serial generation process of autoregressive models is inherently better suited to resolving
constraint conflicts than the parallel approach of diffusion models.

* We propose ContextAR, an effective and efficient multi-condition controllable generation
framework for autoregressive models. By representing all conditions within a unified joint
sequence, our method enhances the precision and flexibility of control.

* We provide strong experimental evidence showing that ContextAR surpasses leading
diffusion-based methods in complex multi-condition tasks. It demonstrates superior control
and faithfulness to user inputs, all while maintaining high image quality.
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2 RELATED WORK

Generative Diffusion Models. Generative models based on continuous-time dynamics have be-
come the de facto standard for high-fidelity image synthesis. This broad category is primarily com-
posed of two major paradigms. The first is the widely adopted denoising diffusion framework (Song
et al.,|2020; Ho et al., |2020; |Rombach et al., [2022)), which iteratively denoising a random Gaussian
noise map. The second, more recent paradigm is flow matching (Lipman et al.,2022)), which learns a
direct mapping from noise to data. This approach has also demonstrated remarkable success (Labs,
2024; |[Esser et al.l 2024). Despite their different mathematical foundations, both denoising- and
flow-based approaches share a fundamental characteristic: they operate via a parallel refinement
process, where the entire image representation is updated at each step. This shared parallel nature is
central to our analysis of their limitations in multi-conditional settings.

Autoregressive Image Generation. Autoregressive models, long dominant in natural language
processing (Vaswanil [2017; Brown et al. |2020), have also demonstrated strong performance in
visual synthesis (Esser et al., 2021} |Yu et al.| [2022; [Ramesh et al.,|2021;|Sun et al.;,2024])). They treat
an image as a 1D sequence of discrete tokens (typically from a VQ-VAE tokenizer (Van Den Oord
et al, |2017)) and generate it one token at a time based on previously generated tokens. This serial,
token-by-token generation process is fundamentally different from diffusion models. Recent work
has significantly improved the quality and efficiency of autoregressive models (Tian et al., 2024} |L1
et al.| 2024b; |Yu et al.l 2025, Wang et al.,|2025b)), making them competitive with diffusion models.

Controllable Image Generation. Providing users with fine-grained control over generation is a
critical area of research. For diffusion models, this has been extensively studied. ControlNet (Zhang
et al., 2023)) and T2I-Adapter (Mou et al.,|2024) enabled precise spatial control using conditions like
canny or depth maps. Other methods like IP-Adapter (Ye et al.| [2023) focused on subject-driven
control. The challenge of combining these has led to multi-conditional frameworks like UniCom-
bine (Wang et al., |2025a), which attempt to merge multiple parallel guidance signals. In contrast,
controllable autoregressive generation is less explored. Early methods focused on single conditions,
either by simple token concatenation (Mu et al., [2025) or through external feature fusion (Li et al.,
2024c; |Cao et al., [2024). The problem of multi-conditional control in autoregressive models, and
the potential benefits of their serial nature in resolving condition conflicts, has remained largely
unaddressed. Our work fills this gap by proposing the first dedicated framework for this task.

3  CONDITION CONFLICTS IN MULTI-CONDITION CONTROL

The primary challenge in multi-conditional image generation lies in satisfying multiple, often con-
flicting, constraints simultaneously. The architectural paradigm of the generative model plays a
crucial role in how these constraints are integrated. We categorize current approaches into two
paradigms: parallel generation, exemplified by diffusion models, and serial generation, embodied
by autoregressive models. Figure ] schematically illustrates the difference between these two gen-
eration methods under a similar model architecture.

Parallel Generation: Global Conflict. Diffusion models operate in a parallel manner, where
the entire image representation is iteratively refined at each denoising step. When conditions are
introduced, their corresponding guidance signals are injected globally and concurrently. As shown
in Figure [3(a), under a single condition, there are high attention values between the denoised image
and the condition, enabling effective conditional control. However, in multi-condition tasks, this
simultaneous application can lead to a “tug-of-war” between conditions. Figures 3|c) illustrate that
at each timestep, the model must attend to multiple conditions simultaneously, causing the attention
values between the denoised image and the multiple conditions in Figure[3(b) to be dispersed. This
results in suboptimal control for each condition, leading to a loss of detail.

Serial Generation: Local Resolution of Constraints. In contrast, autoregressive models gener-
ate images serially, predicting one token at a time in a predefined order (e.g., raster scan). Under
a single condition, the serial method also allows the token to be generated to focus well on the
condition image, resulting in effective control. Moreover, this sequential process offers a natural
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Figure 3: Comparison of performance under single-condition and multi-condition tasks.

mechanism for resolving conflicts in multi-condition tasks. As shown in Figure[3{c), when generat-
ing a specific token ¢, the model can selectively prioritize the most relevant condition. For example,
when generating a part of the image corresponding to the mouse’s body, it can prioritize the subject
condition to render fine fur details. As it moves to generate the background (the window), it can
shift its focus to weigh the canny map more heavily. The information from previously generated
tokens (g<) provides context that helps the model make coherent decisions and smoothly transition
between regions dominated by different conditions. As shown in Figure 3(b), the model’s priori-
tized attention to different conditions when generating different tokens can avoid the dispersion of
attention, leading to more precise control.

4 METHOD

Leveraging the theoretical advantages of serial generation, we introduce our framework, Contex-
tAR. It enhances a standard autoregressive image generation pipeline by representing diverse con-
ditions within a unified sequence.

4.1 AUTOREGRESSIVE GENERATION WITH SPATIALLY OVERLAPPED UNIFIED SEQUENCES

Autoregressive Image Generation. Autoregressive models for image generation typically first
use a VQ-VAE (Van Den Oord et al.|[2017)) to encode an image Z into a sequence of discrete tokens
g = (q¢1,.-.,9n). A Transformer-based model is then trained to predict the next token in the
sequence, conditioned on the preceding tokens and any other context c. The probability is factorized

as p(q | ¢) = [T-, p(¢: | get,¢). We use LlamaGen l, 2024) as our base model, which
prepends text tokens to the image token sequence, allowing for text-to-image synthesis.

Unified Sequence. To handle multiple conditions, we extend this unified sequence paradigm. As
illustrated in Figure [d[a), we represent text, multiple visual conditions, and the target image as a
single, concatenated sequence: S = [c1,..., ¢, €T, q], where each ¢y, is the token sequence for
a visual condition and ¢y is for the text prompt. Each condition type has its own embedding layer,
initialized from the image embedding layer weights, to capture condition-specific features while
sharing a common semantic space.

Hybrid Positional Embeddings. Precise spatial control requires careful handling of positional
information. Naively applying the same 2D Rotary Position Embedding (RoPE) 2024) to
all visual tokens (conditions and image) ensures spatial alignment, which is especially effective for
spatially-aligned conditions. However, this makes it difficult for the model to distinguish between
different condition types at the same location. To resolve this, we propose a hybrid approach. As
shown in Figure f{b), we first apply the same 2D RoPE to all visual tokens. Then, we add a unique,
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Figure 4: Overview of our proposed ContextAR. (a) The overall process of training and inference.
Visual conditions, text, and images are incorporated into unified sequence processing. (b) Positional
embedding before attention operations.
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Figure 5: Visualization of attention computation. (a) Normal attention with causal mask, (b) Cross-
Condition Perception Restriction, (¢) Intra-Condition Bidirectional Perception.

condition-specific Learnable Positional Embedding (LPE) Py to the query and key of each condition
token sequence ci. This provides a distinct positional signature for each condition type, allowing
the model to differentiate them while maintaining spatial correspondence with the target image.

4.2 CONDITIONAL CONTEXT-AWARE ATTENTION

Cross-Condition Perception Restriction (CCPR). To ensure that conditions can be flexibly com-
bined at inference time, we prevent direct attention between different condition types. As shown in
Figure[5{b), we mask the attention scores between queries of one condition type and keys of another.
A significant benefit is the reduction in computational complexity of the train and prefill stage from
quadratic to linear with respect to the number of conditions.

Intra-Condition Bidirectional Perception (ICBP). While image tokens must be generated au-
toregressively, the condition tokens are fully available at the start of the process. Standard causal
attention is therefore unnecessary for processing conditional inputs. Inspired by vision transform-
ers (Xie et al., [2024), we allow bidirectional attention within each condition sequence (Figure Ekc)).
This enables each condition token to see all other tokens of the same type, improving the model’s
spatial understanding of each condition independently before using it to guide image generation.

4.3 TRAINING AND INFERENCE

Training. We train the model using a standard next-token prediction loss on the image tokens
q. To improve robustness and enable classifier-free guidance, we randomly drop the text condition
(with probability 0.1) and each visual condition (with probability 0.25) during training by masking
them out from the attention computation.



Under review as a conference paper at ICLR 2026

Inference. Generation is a two-stage process. In the prefill stage, all condition sequences are pro-
cessed in parallel to compute their KV caches. In the decode stage, image tokens are generated
one by one autoregressively, attending to the cached conditions. Thanks to CCPR and our train-
ing strategy, any subset of the trained conditions can be used during inference without fine-tuning.
Moreover, we can use classifier-free guidance to enhance controllability.

Implementation for Acceleration. To realize the computational benefits of CCPR, our practical
implementation for both training and inference differs from a literal attention mask. Instead, we
partition the unified sequence into blocks according to condition type and compute self-attention
only within each block. This approach directly avoids the expensive cross-condition computations,
thereby achieving the intended acceleration.

5 EXPERIMENTS

We conduct a series of experiments to validate our central hypothesis: that a serial, autoregressive ap-
proach offers superior controllability and flexibility in multi-conditional image generation compared
to parallel, diffusion-based methods. We evaluate our proposed ContextAR against state-of-the-art
multi-condition diffusion models and other autoregressive baselines.

5.1 SETUP

Datasets and Baselines. We conduct experiments on MultiGen-20M (Qin et al.},[2023)) for compo-
sitional space-aligned conditions (canny, depth, hed, pose) and compare with several state-of-the-art
diffusion-based multi-conditional frameworks (Zhao et al., [2023; |Qin et al., [2023; [Hu et al., [2023;
Pan et al., 2025). We also compare our method with the autoregressive-based conditional control
approach ControlAR (Li et al} [2024c), despite its single-condition limitation. To further validate
our method, following UniCombine (Wang et al., 2025a), we perform experiments on SubjectSpa-
tial200K combining subject-driven and spatially-aligned conditions (subject-canny, subject-depth).

Metrics. We compute FID (Heusel et al., 2017) and MUSIQ (Ke et al., 2021)) metrics to evaluate
the quality of the generated images. Additionally, we employ SSIM (Wang et al., | 2004) to measure
the similarity between the generated images and real images, which serves to validate the control-
lability. For specific condition types, we further utilize dedicated metrics to assess the conditional
control capability. In particular, we extract features from the generated images and compute the
F1 score for canny, MSE for depth and SSIM for hed, against their respective condition images.
For subject conditions, we calculate the CLIP-I (Radford et al.l [2021)) score between the generated
images and the reference subject images to evaluate their alignment.

Implementation Details. We use LlamaGen-XL (Sun et al., 2024) as our base autoregressive
model. All training is done on NVIDIA A100 40GB GPUs. For MultiGen-20M, we use 3 GPUs
with a batch size of 1 each and set gradient accumulation to 16 steps, yielding an effective batch
size of 48. For SubjectSpatial200K, we use 2 GPUs with a batch size of 2 each and set gradient
accumulation to 8 steps, giving a total batch size of 32. We use the AdamW optimizer with a
learning rate of 5e-5. Training consists of 30,000 iterations on MultiGen-20M and 25,000 iterations
on SubjectSpatial200K. All images are 512x512 pixels. The CFG scale is set to 3.0.

5.2 MAIN RESULTS

Multi-Spatial Conditions Table [I] presents the primary results on the MultiGen-20M dataset,
comparing our method against several leading diffusion-based frameworks. The results strongly
support our claims. ContextAR achieves the highest SSIM score by a significant margin (a 21.55%
improvement over the next best), directly validating its superior ability to adhere to multiple spatial
conditions simultaneously. This suggests that the serial generation process is indeed more effec-
tive at avoiding the condition conflicts that can plague parallel models. Furthermore, our method
attains the best FID score, indicating that this enhanced controllability comes without a trade-off in
image quality. Notably, when compared to PixelPonder, which is based on the advanced diffusion
model FLUX.1-dev (Labs, [2024)), our method achieves comparable generation quality despite the
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Figure 6: Visualization comparison on MultiGen-20M.

underlying autoregressive model having significantly fewer parameters than FLUX.1-dev (775M vs
12B). Figure|I[a) and Figure[f] visualize the generated results under multiple spatial conditions. Im-
ages generated by our method faithfully adhere to various conditional information simultaneously,
resulting in high similarity to the referenced original images.

Table 1: Comparison of generation quality and controllability on the MultiGen-20M dataset. The
best results are bolded, and the second-best results are underlined. “all” indicates that all conditions
(canny, depth, hed, pose) are used.

Methods Base Model Conditions Metrics

FID, SSIMt MUSIQ T
Uni-ControlNet  SD1.5(860M) all 32.58 29.37 65.85
UniControl SD1.5(860M) all 25.15 35.58 72.05
Cocktail SD2.1(860M) pose+hed  24.67 24.14 67.13
PixelPonder FLUX.1-dev(12B) all 11.85 43.99 69.54
Ours LlamaGen-XL(775M) all 10.42 53.47 70.35

Comparision with ControlAR. Our method differs from another autoregressive-based control
method ControlAR (Li et al., 2024c)), which is a single-condition method, meaning that only one
condition type can be used at a time. In Table 2] we directly compare our model trained in a multi-
conditional setting with ControlAR by using only a single condition type as input. As shown, even
without specific training for individual conditions, our method still outperforms ControlAR. Further-
more, we demonstrate that combining multiple condition types maintains high control capabilities
across condition-specific metrics while achieving consistent FID reductions as more conditions are
added. This confirms the flexibility of our approach and the effectiveness of our joint conditional
control mechanism. Figure [T(b)(c)(d)(e) and Figure [6] shows the generation results of our method
under various condition combinations.
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Table 2: Comparison of generation quality and controllability on the MultiGen-20M dataset. Our
method and ControlAR are both based on the same LlamaGen-XL model. Note that our model is
jointly trained on four conditions (canny, depth, hed, pose) on MultiGen-20M, and can directly select
a subset of conditions during inference without fine-tuning for specific condition combinations.

Metrics
FID| F171 SSIM(hed)t
ControlAR canny 3044 0.31 -

Methods Conditions

Ours canny 18.53 0.34 -
ControlAR hed 12.62 - 83.48
Ours hed 11.86 - 83.52
Ours canny+hed 11.09 0.33 83.45
Ours all 1042 033 83.53
Subject Canny Ours  UniCombine Subject Ours UniCombine

Figure 7: Visualization comparison on SubjectSpatial200K.

Subject-Spatial Conditions. Subject-driven conditions differ from spatially-aligned conditions
in that they do not require precise point-to-point spatial control, but rather semantic alignment. In
Table[3] we compare our method with UniCombine under the combined subject-canny and subject-
depth conditions. The F1, MSE, and CLIP-I scores demonstrate that our method can simultaneously
maintain high semantic consistency and spatial alignment. Figure[T[f)(g) and Figure[7]showcase our
method’s generation results for this task. Our approach is effective for both spatial-type conditions
and subject-type conditions, demonstrating high generality.

Table 3: Comparison of generation quality and controllability on the SubjectSpatial200K dataset.

Methods Base Model Conditions Metrics

FID|{ F11t MSE| CLIP-I?
UniCombine FLUX.I-schnell subject+canny  6.01  0.24 - 78.92
Ours LlamaGen-XL subject+canny  6.62  0.30 - 79.27
UniCombine FLUX.1-schnell  subject+depth  6.66 - 196.65 79.01
Ours LlamaGen-XL subject+depth  6.55 - 165.56 79.22

5.3 ABLATION STUDY

CFG Scale. We evaluated the impact of different CFG scale values on controllability and genera-
tion quality. As shown in Table[d} the SSIM increases with larger CFG scales, indicating improved
conditional control. This validates the effectiveness of our condition drop strategy during training.
However, excessively large CFG values lead to degraded generation quality. Therefore, we select
CFG = 3.0 to balance controllability and image fidelity.
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Table 4: Comparison of differnet CFG scale
on the MultiGen-20M dataset. Here all condi-
tions (canny, depth, hed, pose) are used.

Table 5: Ablation of positional embedding on
the SubjectSpatial200K dataset. Here the con-
ditions used are subject and depth.

CEG Metrics Methods Metrics
FID| SSIMtT MUSIQ 1 FID| MSE| CLIP-I11
1.0 9.29 50.02 69.61 RoPE 6.67 167.09 79.11
2.0 9.79 52.94 70.28 RoPE+LPE  6.55 165.56 79.22
3.0 10.42 53.47 70.35
4.0 10.85 53.65 70.32
7.5 11.46 53.66 70.33

Positional Embedding. To validate the effectiveness of our RoPE+LPE approach for condition
images, we compared this strategy with simply applying the same RoPE to both the condition se-
quence ¢, and the image sequence g. The results are shown in Table[5} As observed, the RoOPE+LPE
strategy achieves more precise control.

Attention Design. We evaluated three attention mechanisms (standard causal attention, CCPR,
and CCPR+ICBP) in terms of per-step computation speed during the training phase. As shown in
Figure[8] as the number of conditions increases, the computational cost with the CCPR mechanism is
significantly lower than that of standard attention, demonstrating the effectiveness of our approach.
Moreover, the bidirectional attention introduced in ICBP adds almost no additional computational
overhead. Furthermore, we examined the impact of ICBP on conditional control capability. The
results in Figure[Q]show that incorporating the ICBP mechanism improves controllability, confirming
that bidirectional attention is beneficial for understanding visual modality conditional information.

FID SSIM
12,5 st
600 Normal Attention
CCPR 12.0 11.91 52 51.60
2 CCPR+ICBP 11.69 oS00t
5500 115
§ 48
@ 400 wio ICBP W/ ICBP wio ICBP w/ ICBP
E F1 SSIM(hed)
) 86
E 34
£ 300 “
32.87
B 560 — 8231 82.52
82
200 »
80
1 2 3 4

1
w/o ICBP w/ ICBP w/o ICBP w/ 1ICBP

Number of Conditions

Figure 9: Ablation of ICBP on the
MultiGen-20M dataset. Here all conditions
are used. Both methods are trained for 10k
iterations.

Figure 8: Comparison of different attention
mechanisms on the training time cost. Here
the batch size is 1.

6 CONCLUSION

In this paper, we arguing that the parallel processing of diffusion models leads to inherent condition
conflicts in multi-conditional image generation. We proposed a paradigm shift towards serial, au-
toregressive generation, which can resolve conflicting constraints locally. Our proposed framework,
ContextAR, operationalizes this idea by integrating multiple conditions into a unified sequence
processed by an efficient, context-aware attention mechanism. Experimental results confirm our
hypothesis, demonstrating that ContextAR outperforms state-of-the-art diffusion-based methods in
controllability and faithfulness to combined conditions, without compromising image quality. This
work highlights the promise of autoregressive models as a powerful and flexible foundation for
future research in complex, multi-conditional generative tasks.
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A DATASET DETAILS

For experiments on MultiGen-20M, we randomly sampled approximately 700,000 images from the
full dataset to construct our training set. To ensure a fair comparison with PixelPonder [Pan et al.
(2025)), we followed the same evaluation protocol by merging the original validation set (5,000 im-
ages) and test set (500 images) of MultiGen-20M, resulting in a test set comprising 5,500 samples.
The following standard algorithms were applied to each image to generate various control condi-
tions: Canny edge maps using |(Canny| (1986)), depth maps using [Ranftl et al.| (2020), HED edge
maps using Xie & Tu(2015), and pose maps using|Yang et al.| (2023)).

For experiments on SubjectSpatial200K, we adopted the official train/test split as recommended
by UniCombine [Wang et al.| (2025a)), which consists of 139,403 training samples and 5,827 test
samples.

B COMPUTATIONAL RESOURCES

All experiments were conducted on NVIDIA A100 40GB GPUs. For training on the MultiGen-20M
dataset, we used 3 GPUs in parallel for 30,000 iterations, with the total wall-clock time being 54
hours, resulting in 162 GPU-hours. For the SubjectSpatial200K dataset, we carried out two separate
runs (subject+depth and subject+canny), each using 2 GPUs for 25,000 iterations and approximately
24 hours per run, totaling 48 GPU-hours per run and 96 GPU-hours overall. All inference exper-
iments were performed on a single A100 GPU. Specifically, inference on the validation set for
4-condition combinations required 5 hours (5 GPU-hours), while inference for 2-condition combi-
nations required 3 hours (3 GPU-hours).

C MORE EXPERIMENTS

C.1 EVALUATION ON SINGLE-CONDITION TASKS

We benchmarked our model and several baselines across multiple single-condition tasks. Notably,
EditAR (Mu et al., 2025) and ControlAR (L1 et al., 2024c) are autoregressive methods that share
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the same base model architecture (LlamaGen-XL) as our approach. As illustrated in Table [6] our
approach also achieves strong controllability across diverse single-condition settings.

Both EditAR and our method use pre-filled condition sequences for controllable autoregressive gen-
eration. However, our approach demonstrates superior controllability with the same backbone and
comparable training steps. The key differences are: (1) Positional Encoding: EditAR uses non-
overlapping positional offsets for conditions and target images, while we employ spatially overlap-
ping RoPE. (2) Embedding Layers: EditAR shares a single embedding layer across all token types,
while we use dedicated embeddings for each condition type and target images.

Table 6: Evaluation on single-condition tasks. We use COCO-Stuff dataset (Caesar et al., 2018)) for
seg and MultiGen-20M dataset for canny, depth and HED.

Method Canny Depth HED Segmentation
F11) RMSE]) (SSIM(hed) 1) (mloU 1)
Uni-ControlNet (Zhao et al.,[2023)  0.27 40.65 69.10 31.60
ControlNet++ (L1 et al., 2024a) 0.37 28.32 80.97 34.56
EditAR (Mu et al., [2025)) 0.25 34.93 - 22.62
ControlAR (L1 et al., [2024c) 0.31 29.01 83.48 37.49
Ours 0.34 26.73 83.52 36.36

C.2 COMPARISON WITH SOTA DIFFUSION-BASED CONTROL MODELS
Furthermore, we conducted comparisons with several state-of-the-art diffusion-based control mod-

els, including FLUX.1-dev-ControlNet-Union-Pro-2.0 (Shakker-Labs,2025), FLUX.1-canny (Labs}
2024])), UNO (Wu et al., |20235)), and Bagel (Deng et al., [2025)).

Table 7: Comparison with SOTA diffusion models on MultiGen-20M under the canny condition.

Method Base Model FID| FI17¢
FLUX.1-dev-ControlNet-Union-Pro-2.0 FLUX.1-dev(12B) 16.83 0.27
FLUX.1 canny FLUX.1-dev(12B) 21.16 0.21
Ours LlamaGen-XL(775M) 18.53 0.34

Table 8: Comparison with SOTA diffusion models on SubjectSpatial200K under the subject condi-
tion.

Method Base Model FID | CLIP-It
UNO FLUX.1-dev(12B) 10.59 81.64
Bagel Bagel(7B) 10.78 81.23

Ours LlamaGen-XL(775M)  8.96 78.55

Notably, our base model (LlamaGen-XL, 775M parameters) is substantially smaller than FLUX.1
(12B) and Bagel (7B). This demonstrates that the controllability and performance of our method do
not merely stem from a larger backbone, but from the proposed approach itself.

C.3 MORE ABLATION STUDIES

We designed and trained two new variants to further analyze our approach. In Variant A, we re-
moved the Cross-Condition Perception Restriction (CCPR), allowing conditions to attend to each
other. In Variant B, we introduced a sparser training regimen by randomly dropping conditions.
Specifically, we used a uniform distribution over the number of conditions from zero to three (i.e.,
25% probability for each case of using 0, 1, 2, or 3 conditions).

We trained the original method, Variant A, and Variant B for the same number of steps and evaluated
them on MultiGen20M. The 4-condition generation results in Table [9] show that Variant A provides
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minimal performance gains despite adding inter-condition attention, validating our design choice to
remove this attention for computational efficiency. Variant B shows reduced SSIM in the 4-condition
scenario due to its sparse-condition training.

Table 9: Ablation study on MultiGen20M with 4 conditions.

Variant FID| SSIM{ MUSIQ*
Original 11.96  49.52 70.18
A (w/o CCPR) 1202 49.64 70.25

B (Sparse Training) 11.84  48.47 69.79

Further evaluation of Variant B under single canny conditions (Table shows it underperforms
in F1 and SSIM metrics, with only FID showing slight improvement. This confirms our original
training method effectively handles both multi-condition and sparse-condition scenarios.

Table 10: Evaluation of Variant B on single canny condition.
Variant FID| FI11+ SSIMt MUSIQT

Original 2348 32.88  38.60 68.19
B (Sparse Training) 20.15 32.51  37.25 68.47

D STATISTICAL SIGNIFICANCE

To assess the robustness of our experimental results, we evaluate metrics across 5 different random
seeds, reporting the 95% confidence intervals in Table|l 1|and Table The consistently low vari-
ances observed indicate that our method achieves stable and reliable performance across multiple
runs. This demonstrates that the improvements reported are statistically significant and not due to
random chance.

Table 11: The 95% confidence intervals of FID, SSIM, and MUSIQ metrics on the MultiGen-20M
dataset, tested on 5 different random seeds. All conditions are used.

FID SSIM MUSIQ
10.45 £0.046  53.51 £0.052 70.33 +0.014

E LLM USAGE

To enhance the quality of this manuscript, we utilized a Large Language Model (LLM) for assistance
with writing and editing. The primary role of the LLM was to improve the clarity, readability, and
overall linguistic style of the text. This involved tasks such as refining sentence structures, correcting
grammatical errors, and ensuring a coherent narrative throughout the paper.

We must emphasize that the scope of the LLM’s contribution was strictly limited to language en-
hancement. The conceptualization of the research, including the core ideas, experimental proce-
dures, and data interpretation, was carried out exclusively by the authors. The LLM had no part in
the scientific aspects of this work.

The authors retain full accountability for all content within this paper, including any text that was
revised or improved with the assistance of the LLM. We confirm that its use complies with all ethical
standards regarding academic integrity and originality.

F LIMITATIONS

While ContextAR demonstrates strong flexibility and controllability for multi-conditional image
generation, several aspects remain open for future exploration.
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Table 12: The 95% confidence intervals of FID, MSE, and CLIP-I metrics on the SubjectSpa-
tial200K dataset(subject+depth condition), tested on 5 different random seeds.

FID MSE CLIP-1
6.57 £0.03 164.56 £3.50 79.19 £ 0.03

First, while our framework is built upon a representative autoregressive backbone, recent progress
has led to even more advanced autoregressive architectures. Evaluating and extending ContextAR
on top of stronger or larger-scale autoregressive models remains a promising avenue for future work.

Second, while ContextAR has been validated on diverse spatially-aligned and subject-driven con-
ditions, its performance on other complex or highly abstract modalities—such as 3D structure or
video sequences—remains to be systematically studied. Incorporating more heterogeneous modali-
ties would be a promising direction for broadening the framework’s applicability.

Finally, despite significant improvements in computational efficiency introduced by our attention
design, the overall inference speed of large autoregressive models can still be a limiting factor in
latency-sensitive applications. Further research on model acceleration, compression, or more effi-
cient architectures could help to address this challenge.

We believe addressing these directions will further enhance the versatility and impact of autoregres-
sive multi-conditional generation models.

G SoCIAL IMPACT

Our work aims to advance the field of controllable image generation by improving the flexibility and
generality of autoregressive models for multi-conditional scenarios. This technological progress has
the potential to benefit a wide range of creative, educational, and scientific applications, such as
computer-aided design, digital art creation, virtual reality, and assistive technologies for content
generation.

Nevertheless, as with many generative models, there is a possibility that the proposed framework
could be misused for generating synthetic images that are misleading or violate privacy, intellec-
tual property, or ethical guidelines. To mitigate such risks, we recommend responsible deployment
practices, including proper content filters, usage restrictions, and clear disclosure of synthetic con-
tent. We encourage the research community and downstream users to carefully consider ethical
implications and abide by relevant laws and standards when applying such models.

Overall, we believe that the positive impacts of flexible, controllable image generation frameworks
can be maximized through responsible research and deployment, while proactively addressing po-
tential negative consequences.

H MORE VISUAL RESULTS
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Figure 10: More visual results on the MultiGen-20M dataset.
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