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Abstract
Adversarial Training (AT) impacts different archi-
tectures in distinct ways: vision models gain ro-
bustness but face reduced generalization, encoder-
based models exhibit limited robustness improve-
ments with minimal generalization loss, and re-
cent work in latent-space adversarial training
(LAT) demonstrates that decoder-based models
achieve improved robustness by applying AT
across multiple layers. We provide the first ex-
planation for these trends by leveraging the man-
ifold conjecture: off-manifold adversarial exam-
ples (AEs) enhance robustness, while on-manifold
AEs improve generalization. We show that vi-
sion and decoder-based models exhibit low intrin-
sic dimensionality in earlier layers (favoring off-
manifold AEs), whereas encoder-based models
do so in later layers (favoring on-manifold AEs).
Exploiting this property, we introduce SMAAT,
which improves the scalability of AT for encoder-
based models by perturbing the layer with the
lowest intrinsic dimensionality. This reduces the
projected gradient descent (PGD) chain length
required for AE generation, cutting GPU time
by 25–33% while significantly boosting robust-
ness. We validate SMAAT across multiple tasks,
including text generation, sentiment classification,
safety filtering, and retrieval augmented gener-
ation setups, demonstrating superior robustness
with comparable generalization to standard train-
ing.

1. Introduction
Adversarial Training (AT) is the most effective approach for
improving the robustness of deep neural networks against
small input perturbations (Bai et al., 2021; Kurakin et al.,
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Figure 1. Impact of applying LAT at different layers of the LLaMA-
2 model, illustrating the relationship between Intrinsic Dimen-
sionality (background color), Generalization (blue), Robustness
(orange), and Off-Manifold Ratio (green, based on reconstruc-
tion error). Markers show the average of measured values across
multiple training configurations; lines depict overall trends. The
off-manifold ratio measures the percentage of adversarial examples
that fall outside the data manifold using reconstruction error. As
we move to deeper layers, the Intrinsic Dimensionality increases,
resulting in a decrease in the off-manifold ratio. According to the
manifold conjecture, this leads to an increase in generalization
(more on-manifold samples) and a decrease in robustness.

2017). It is formulated as a min-max optimization problem,
where the outer minimization optimizes model parameters,
and the inner maximization seeks worst-case input perturba-
tions. In deep networks, the inner maximization is typically
solved approximately using multiple iterations of projected
gradient descent (PGD, Madry et al. (2018)). However, the
trade-off between robustness and generalization remains
poorly understood. For instance, AT reduces generaliza-
tion in vision models, leading to an 8% drop on CIFAR-
10 (Shafahi et al., 2019), whereas encoder-based language
models often retain or even improve generalization, achiev-
ing a 1% gain on AGNEWS (Zhu et al., 2020). Moreover, ro-
bustness gains are significantly higher in vision models (e.g.,
40% on CIFAR-10) compared to encoder-based models (e.g.,
10% on AGNEWS). Recent work on Latent Adversarial
Training (LAT) suggests that applying AT across multiple
layers yields better robustness and generalization than fo-
cusing on a single layer (Sheshadri et al., 2024). While prior
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Figure 2. Comparison of SMAAT robustness (x-axis), generaliza-
tion (y-axis), and run time (marker size) against baselines for
robustifying (a) topic classifiers, (b) retriever models in the Re-
trieval Augmented Generation (RAG) setup and (c) safety filters
for decoder-based LLMs. SMAAT significantly enhances model ro-
bustness compared to seven different baselines, while maintaining
nearly the same clean accuracy. Besides, it is significantly more
scalable than AT (marker size).

research has investigated generalization loss in vision mod-
els (Madry et al., 2018; Wang et al., 2019b; Altinisik et al.,
2023a; Zhang et al., 2019b; Cheng et al., 2022), no study
has systematically explored the robustness-generalization
dynamics across vision models (CNNs and Vision Trans-
formers), decoder-based (dec-LLMs), and encoder-based
(enc-LLMs) language models. Additionally, the high com-
putational cost of AT limits its practical deployment. Recent
efforts to reduce the number of PGD steps—by reusing or
accumulating gradients during updates (Shafahi et al., 2019;
Zhang et al., 2019a; Zhu et al., 2020)—have improved ef-
ficiency but still require full network passes, making AT
computationally expensive.

In this work, we investigate how differences in robustness
and generalization trends across foundational models relate
to the intrinsic dimensionality (ID) of the data manifold. The
data manifold is a potentially non-linear subspace spanned
by the dataset, and its dimensionality influences whether ad-
versarial examples (AEs) lie on the manifold (on-manifold
AEs) or fall outside it (off-manifold AEs) during training.
We show that the ID of the data manifold in the first layer is
much higher in enc-LLMs compared to vision models and
dec-LLMs which results in AEs being more on-manifold
(ONM-AEs) in enc-LLMs and more off-manifold (OFM-
AEs) in vision models and dec-LLMs. In accordance with
the manifold conjecture (Ethayarajh, 2019; Shamir et al.,
2021; Gilmer et al., 2018), we find that OFM-AEs lead to
better robustness, while more ONM-AEs lead to better gen-
eralization (Fig. 1, with details provided in Section 4). To
the best of our knowledge, this is the first explanation for

the difference in the robustness magnitudes across vision
models and enc-LLMs. Our findings are also consistent
with YOPO (Zhang et al., 2019a) and TMD (Minh & Luu,
2022). Specifically, YOPO highlights the critical role of the
first layer in vision models for AT, while TMD uses the last
layer to detect AEs in enc-LLMs.

We further leverage our insights on the impact of the mani-
fold ID on robustness and generalization and hypothesize
that perturbing the intermediate layer l with the highest off-
manifold AE ratio (equivalently lowest ID) should achieve
high robustness at low computational cost. Intuitively, a
lower ID corresponds to a higher proportion of OFM-AEs
generation and a greater improvement in robustness by the
manifold conjecture. Additionally, layers closer to the out-
put result in shorter PGD chains, leading to efficient AT. To
this end, we propose SMAAT1, a Scalable Manifold Aware
AT approach that applies AT at the layer with the highest
proportion of OFM-AEs. We found that this critical layer
is consistently the last layer across enc-LLMs on several
applications. Hence, for enc-LLMs, SMAAT leads to a sig-
nificant speed-up of AT by avoiding a full backward pass as
it calculates the gradients only until the last layer rather than
the entire network. Moreover, we empirically show that this
results in higher robustness. Yet, this ID trend is different
for vision or dec-LLMs, where we find that the first layer is
always the one with the lowest ID. In these cases, SMAAT
effectively reduces to standard AT.

Given enc-LLMs continue to play a crucial role in machine
learning pipelines, there is significant value in effectively en-
hancing their robustness. To this end, we evaluated SMAAT
in improving the robustness of (1) classifiers, (2) safety
filters, and (3) retrievers within Retrieval-Augmented Gen-
eration (RAG). SMAAT achieved state-of-the-art (SOTA)
runtime and robustness results on all tasks, while maintain-
ing clean accuracy (generalization) comparable to standard
training. Specifically, in sentiment and content classification
tasks, SMAAT improved the robustness of enc-LLMs on AG-
NEWS (Zhang et al., 2015), IMDB (Maas et al., 2011), and
YELP (Zhang et al., 2015) datasets by 8.6%, 15.7%, and
28.8% for BERT (Devlin et al., 2019) and by 6.0%, 5.8%,
and 19.0% for RoBERTa (Liu et al., 2019), respectively.
For safety filtering, SMAAT accurately identified harmful
prompts generated by GCG (Zou et al., 2023), achieving
97-100% accuracy. In RAG experiments, SMAAT signif-
icantly enhanced the robustness of the Contrevier model
(Izacard et al., 2022) on the RAG setup, achieving over 80%
robustness against poisoning attacks (Zhong et al., 2023).
Besides, SMAAT required only about 25-33% of the GPU
time compared to the standard AT. A summary of all results
is presented in Fig. 2.

1The code is publicly available at: https://github.com/
EnesAltinisik/SMAAT-25/tree/main
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Figure 3. Left: In classical AT, adversarial examples (AEs) are created in the data layer. For encoder LLMs, the intrinsic dimensionality
tends to be high in the initial layers and therefore the AEs created tend to be on-manifold which results in better generalization. In Vision
and decoder LLMs, we observe the opposite behavior and AEs tend to be off-manifold resulting in better robustness. Right: The key idea
of SMAAT is to create AEs in intermediate layers where the intrinsic dimensionality is low and AEs will tend to be off-manifold. This
results in better robustness while (surprisingly) maintaining generalization. The speed-up in SMAAT is due to the fact we need shorter
backprop chains to create AEs in intermediate layers.

In summary, the major contributions of our work are:

1. An explanation for the discrepancy in the robustness
and generalization trends in foundation models.

2. SMAAT, a novel AT algorithm that leverages the intrin-
sic dimensionality across layers of foundational models
to control robustness, generalization and scalability.

3. Comprehensive experiments demonstrating enhance-
ments in robustness and scalability while keeping ac-
curacy in classification and retrieval tasks compared to
standard AT.

2. Related Work
Adversarial Training (AT) aims at robustifying a model
against AEs which are imperceptibly perturbed inputs that
can lead to incorrect predictions. Formally, AT seeks opti-
mal parameters θ∗ for a classifier fθ(x) that remains robust
to perturbations δ within a norm ball:

min
θ

E(x,y)∼D
[
max
∥δ∥≤ϵ

ℓ(fθ(x+ δ), y)
]
, (1)

where ℓ is the loss function and D = {(x, y)}|D|
i=1 represents

the training data. The outer minimization is typically solved
using stochastic gradient descent (SGD), while the inner
maximization is addressed via projected gradient descent
(PGD) (Madry et al., 2018). LAT extends AT by applying
adversarial perturbations to the model’s latent representa-
tions instead of its inputs (Casper et al., 2024; Sheshadri
et al., 2024). Given a model with parameters θ = (θ1, θ2),
it computes hθ2 ◦ gθ1 , where gθ1 is a feature extractor that
maps inputs to latent representations ℓi = gθ1(xi), and hθ2

maps these latents to predictions ŷi = hθ2(ℓi). The standard
AT objective under an Lp-norm constraint of ϵ is:

min
θ

∑
i

max
δi
L(hθ2(gθ1(xi + δi)), yi)

Similar to input-space AT, the inner maximization finds the
worst-case perturbation δi, while the outer minimization
updates θ, both solved via gradient-based methods. How-
ever, AT with P -step PGD is significantly more computa-
tionally expensive than standard training, as it requires P
forward-backward passes per update, compared to just one
in standard SGD.

Adversarial Attacks on LLMs. Adversarial attacks on
LLMs are more challenging than on vision models due to
the discrete nature of text and tokenization. Early attacks on
enc-LLMs used word substitutions guided by embedding
similarity (Jin et al., 2020b), synonymity (Zang et al., 2020),
or masked language models (Li et al., 2020), primarily to
flip classifier outputs. In contrast, recent attacks on dec-
LLMs focus on alignment breaking objectives by appending
adversarial prefixes or suffixes. For example, AutoDAN
(Liu et al., 2024) and PAIR (Wei et al., 2023) craft prompts
that encourage harmful completions, while Greedy Coor-
dinate Gradient (GCG) attack (Zou et al., 2023) appends a
gradient based generated adversarial suffix to user inputs.
GCG combines affirmative prompting (Wei et al., 2023; Car-
lini et al., 2023) with greedy and gradient-based discrete
optimization (Shin et al., 2020), and is notable for its strong
transferability across prompts and models.

Manifold-Based Defenses. The manifold conjecture stands
as one of the most compelling explanations for the suscep-
tibility of deep neural networks to AEs (Tanay & Griffin,
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2016; Gilmer et al., 2018; Shamir et al., 2021). The conjec-
ture posits that data resides on a low-dimensional manifold
within a high-dimensional representation space and that the
deepnet learns to approximate this manifold. Consequently,
an off-manifold sample, deviating from this foundational
manifold, leads to undefined behavior of the model. This
conjecture has inspired a novel line of defenses against ad-
versarial attacks on images (Samangouei et al., 2018; Meng
& Chen, 2017; Song et al., 2018; Schott et al., 2019) and
text (Minh & Luu, 2022). These methods approximate the
data manifold and, during testing, project samples onto this
manifold to either detect or correctly classify AEs. Differ-
ently, we leverage the manifold conjecture during training
to improve both robustness and scalability of AT.

Robustness and Generalization Trends in AT. AT is rec-
ognized for enhancing model robustness in both vision and
enc-LLMs (Zhang et al., 2019b; Altinisik et al., 2023b).
While this improvement in robustness comes at the cost of
increased generalization error in vision models (Zhang et al.,
2019b), AT enhances generalization in enc-LLMs (Altinisik
et al., 2023b; Gan et al., 2020). There has been recently
efforts relating robustness to OFM-AEs and generalization
to ONM-AEs (Stutz et al., 2019b; Xiao et al., 2025). We
extend this line of research by connecting these trends to the
intrinsic dimensionality of intermediate layers of a network.

Scalable AT. Different optimizations have been proposed to
mitigate the cost of the PGD additional forward-backward
passes, including (i) replacing multi-step PGD with a single-
step FGSM (Shafahi et al., 2019); (ii) omitting redundant
computations during PGD (Zhang et al., 2019a); (iii) com-
bining FGSM with random initialization (Wong et al., 2020).
While these approaches alleviate the PGD overhead, they
also come with limitations. As a solution, FreeLB (Zhu
et al., 2020) proposes accumulating model parameter gradi-
ents over multiple batches. We achieve scalability through
an alternative method, i.e., by leveraging the manifold con-
jecture to perturb intermediate layers and thus reduce the
length of backward-forward PGD chains.

ID Estimation. It is well known that most real world data
lives in a low-dimensional space relative to the ambient
space where it is defined. The ID of data is the minimum
number of variables necessary to characterize important
properties of the data. Singular Value Decomposition (SVD)
is a well known method to estimate the ID assuming the data
lives on a linear manifold (Stewart, 1993). While there have
been many proposals to estimate the ID in non-linear set-
tings, we will use the relatively recent twoNN ID-estimator
based on the observation that for every data point x, the ratio
µ of distance of x to it’s second and first nearest neighbor
follows a Pareto distribution f(µ|I) = Iµ−(I+1), where I

is the ID. It can be estimated as I = log(1−F (µ))
log(µ) , where

F (µ) is the empirical CDF (Facco et al., 2017).

3. Notation
Consider a deep neural network classifier fθ with n layers
and parameters θ = {θ(i)}ni=1. We define the transforma-
tion spanning layers li to lj as fθ[i,j] = fθ(j)◦· · ·◦fθ(i) , with
f̄θ[i,j] denoting its standardized version across the dataset D.
The input matrix X ∈ Rd×|D| stacks all samples {xi}|D|

i=1,
while fθ[1,l](X ) ∈ Rdl×|D| stacks their transformed rep-
resentations. The data manifold is defined by the high-
density region of the sample distribution, distinguishing on-
manifold (high-density) from off-manifold (low-density)
points. Similarly, the lth layer manifold is characterized by
the density of standardized representations {f̄θ[1,l](xi)}|D|

i=1,
approximated via the eigenspace of the covariance matrix
f̄θ[1,l](X )f̄θ[1,l](X )T . We denote its eigenvectors and eigen-
values as (Ul,Σl), where Ul ∈ Rdl×dl and Σl ∈ Rdl×dl .

The projection error on the top k eigenvectors is:

ekl (x) = f̄θ[1,l](x)− Uk
l U

k
l

T
f̄θ[1,l](x), ∀x ∈ X . (2)

The eigen-based manifold dimension kl is the minimum k
required for a reconstruction error γ:

kl = min
k

{
k ∈ [1, dl]

∣∣∣ ∑
x∈D
∥ekl (x)∥2 ≤ γ

}
. (3)

We classify adversarial examples (AEs) based on projection
error:

• A (γ, l)-off-manifold AE (OFM-AE) has ekl > γ.

• A (γ, l)-on-manifold AE (ONM-AE) has ekl ≤ γ.

Finally, we denote the Intrinsic Dimension (ID) of layer
l, estimated via TwoNN, as Il, and its normalized ID as
Idl = Il/dl.

4. Exploring Layerwise ID and Its Effects
Our study is motivated by the not-well understood difference
in the generalization and robustness trends between adver-
sarially trained vision models and LLMs. Specifically, (1)
robustness improvements are consistently more pronounced
in vision models (Madry et al., 2018; Altinisik et al., 2023b),
(2) generalization either remains stable or improves in enc-
LLMs (Tsipras et al., 2019; Zhu et al., 2020), whereas it
deteriorates in vision models, and (3) dec-LLMs achieve
the optimal trade-off when AT is applied across multiple
network layers (Casper et al., 2024; Sheshadri et al., 2024).

We demonstrate that the varying trends observed across dif-
ferent network architectures are closely linked to the layer-
wise distribution of OFM-AEs. Notably, we find that in the
first layer, where conventional AT is applied, adversarial
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Figure 4. The ID (row 1) trend follows the inverse OFM-/ONM-AEs ratio (row 2) trend. The average projection error (ekl ) is used as a
proxy for estimating the OFM-/ONM- AEs ratio. The ID is computed using the twoNN approach. Enc-LLMs (BERT, RoBERTa) have
decreasing ID and OFM-AEs proportions trends unlike vision models and dec-LLMs that have increasing ID and ONM-AEs trends.

examples for enc-LLMs tend to be more on-manifold, while
vision models and dec-LLMs show a higher proportion of
off-manifold examples (see Fig. 3, left). This explains the
generalization and robustness trends as, by the manifold
conjecture, higher proportions of ONM and OFM AEs lead,
respectively, to better generalization and robustness (Ma
et al., 2018; Stutz et al., 2019a; Alemany & Pissinou, 2020;
Li et al., 2021a).

ID & ONM/OFM Relationship We hypothesize that lower
intrinsic dimensionality (Idl ) leads to a higher proportion of
OFM-AEs, whereas higher Idl yields more ONM-AEs. For-
mally, letM⊂ Rn be a smooth, compact, low-dimensional
manifold with intrinsic dimension Idl ≪ n, embedded in Rn.
Let f : Rn → Rk be a classifier trained on data sampled
from M. Since the classifier learns p(y | x) without ac-
cess to the true generative distribution p(x), it lacks explicit
knowledge of the underlying data manifold M. Conse-
quently, the loss gradient ∇δL often contains components
that are orthogonal to the tangent space ofM. As a result,
the perturbation δ is unlikely to remain entirely within the
manifold and typically includes a non-zero component in the
orthogonal direction. Moreover, when Idl is small relative
to n, the proportion of δ that lies off the manifold increases.
Thus, adversarial examples generated via gradient-based
methods are more likely to fall outside the data manifold,
i.e., to be off-manifold adversarial examples.

We base this conclusion on an empirical investigation into
the relationship between the ID and the proportion of
ONM/OFM AEs across different layers of various deep neu-
ral network models, including two enc-LLMs (BERT and
RoBERTa), three vision models (ViT (Dosovitskiy et al.,
2021), DeiT (Touvron et al., 2021), VGG-13 (Simonyan
& Zisserman, 2014)), and three dec-LLMs (LLaMA-2-7b-
chat (Touvron et al., 2023), Vicuna (Zheng et al., 2024),

Mistral-7b-instruct (Jiang et al., 2023)) on several datasets
(refer to Appendix B for details). Results are reported in
Figure 4. The ID (Idl ) in row 1, is computed using twoNN
estimation (Facco et al., 2017) and follows the OFM-AEs
trend (row 2). To assess the proportion of OFM/ONM AEs
across different layers, we use the reconstruction error ekl
at layer l (row 2) as a metric, i.e., higher projection error
corresponds to higher proportion of OFM-AEs.

ID & Robustness/Generalization Relationship

We extend our evaluation of the relationship between in-
trinsic dimensionality (ID), robustness, and generalization
by applying adversarial training (AT) to different layers of
dec-LLMs (LLaMA-2-7B-chat), enc-LLMs (BERT), and
vision models (VGG). For the dec-LLM, we train LLaMA-
2-7B-chat on the LAT dataset (Sheshadri et al., 2024) using
various hyperparameter configurations (see Appendix C for
details), applying LAT at every even-numbered layer. To
evaluate generalization, we use MT-Bench (Zheng et al.,
2024), while robustness is assessed via failure rates against
the GCG attack , which generates adversarial suffixes that
bypass language model safety alignment. Additional results
using the PAIR (Chao et al., 2023) attack are provided in
Appendix C. As shown in Fig. 5(a), applying LAT to lower
layers (light blue markers) enhances robustness but reduces
generalization (bottom-right), while applying it to upper
layers (dark blue markers) improves generalization at the
cost of robustness (top-left). This trend aligns with the in-
trinsic dimension (ID), which decreases in higher layers,
as well as with the distribution of ONM/OFM adversarial
examples. These results also explain the superiority of the
LAT approach of Sheshadri et al., 2024 which applies AT to
four evenly spaced layers across the network.

We conducted a similar experiment on the BERT model us-
ing the YELP dataset (see Sec. 6.1 for details). Our results
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Figure 5. Layer-wise effects of adversarial training on robustness and generalization across model types. Each subplot shows the impact
of applying AT at different layers of (a) LLaMA-2 (dec-LLM), (b) BERT (enc-LLM), and (c) VGG (vision model). Marker colors
transition from light blue (lower layers) to dark blue (higher layers). Observed trends align with changes in intrinsic dimensionality and
the distribution of on- vs. off-manifold adversarial examples, as shown in Figure 4.

empirically show that, following the decreasing ID trend,
applying AT at higher layers leads to increased robustness
as the layer index i increases. Figure 5(b) presents the re-
sults of AT on BERT for the YELP dataset. As expected,
robustness (measured under the TextFooler attack) improves
with higher layer indices while generalization remains unaf-
fected.

We also extend this analysis to vision models. We selected
VGG-13 and trained it on CIFAR-10 (Krizhevsky, 2009)
using AT applied to every ReLU layer over 20 epochs. We
varied the attack strength (ϵ = 0.031–0.2) and learning
rate (lr = 0.01–0.001), evaluating robustness via Robust-
Bench (). As shown in Fig. 5(c), adversarial training on
lower layers (light blue) improves robustness but reduces
generalization, whereas training on higher layers (dark blue)
yields the opposite pattern. These results suggest that vision
models resemble dec-LLMs in terms of their generaliza-
tion–robustness tradeoff. Finally, our findings are consistent
with those shown in Fig. 4, where a higher ratio of OFM-
AEs in deeper layers correlates with improved robustness in
both enc-LLMs and vision models.

Beyond providing an explanation for the difference in robust-
ness and generalization trends in vision models, enc- and
dec-LLMs, results of Fig. 4 shed light on an interesting trend
for the ID across layers. While the ID is increasing in vision
and dec-LLMs, it is monotonically decreasing in enc-LLMs
(Bert and RoBERTa). This motivated the design of a new al-
gorithm that controls the gains in robustness and generaliza-
tion via controlling the proportions of ONM- and OFM-AEs.
This can be achieved by generating AEs in the intermediate
layers of the deepnet based on their IDs. To this end, we pro-
pose SMAAT (See Fig. 3, right), an AT algorithm that aims
at achieving high robustness by perturbing the layer l∗ with
the lowest ID to generate a high proportion of OFM-AEs.
A side effect of perturbing an intermediate layer as opposed

to the input one is significantly improving scalability by a
factorO

(
P (n− l∗)

(
max

(
{dli |li ∈ [1, l∗− 1]}

)
− dl∗

))
as it results in shorter P -step PGD chains.

5. SMAAT: Scalable Manifold Aware
Adversarial Training

We propose SMAAT an AT algorithm that aims at improving
the robustness and scalability of standard AT by generating
AEs in the layer leading to the highest proportion of OFM
instead of from the input layer as classically. Specifically,
given a pretrained model fθ, SMAAT intentionally generates
a higher proportion of OFM-AEs to enhance robustness.
Formally, SMAAT solves the augmented AT objective:

min
θ

E(x,y)∼D

[
max
∥δ∥≤ϵ

ℓ(fθ(x+ δ), y)

]
s.t. (x+ δ) is (γ, 1)-OFM.

(4)

While the manifold conjecture refers to input space AEs, we
relax it to encompass intermediate layers as well, i.e., we
chose the perturbation δ that results in an OFM-AE at any
layer across the deepnet. Intuitively, AEs that are off- or
on- the transformed data manifold in any layer also affect
robustness. The relaxed objective becomes:

min
θ

E(x,y)∼D
[
max
∥δ∥≤ϵ

ℓ(fθ(x+ δ), y)
]

s.t. ∃l∈ [1, L] : (x+ δ) is (γ, l)-OFM.
(5)

Note that solving the above objective using the method of
Lagrangian Multipliers is possible, but it would require an
approximation of the manifold to characterize OFM-AEs.
Such approximations are either computationally expensive
(e.g., GAN (Xiao et al., 2018)) or overly simplistic (e.g.,
eigenbasis (Xiao et al., 2025)). SMAAT uses an alternative
approach to find OFM-AEs by perturbing the layer with the
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Table 1. Robustifying sentiment classifiers on AGNEWS, IMDB, and YELP datasets. We report the clean accuracy (CA) and the robust
accuracy under attack (AUA) with PWWS (PW), TextFooler (TF), and Bert-Attack (BA), along with the average robust accuracy (AR)
across these three attacks. The best performance is bolded. Across all data sets, SMAAT achieves high robustness (AR) while maintaining
high generalization (CA).

Model Defense
AGNEWS IMDB YELP

CA
AUA

CA
AUA

CA
AUA

PW TF BA AR PW TF BA AR PW TF BA AR

B
E

R
T

Standard 94.5 36.9 28.1 37.5 34.2 92.2 15.0 5.8 5.4 8.7 97.0 12.2 6.5 5.3 8.0

ASCC 91.6 32.8 31.4 32.1 32.1 88.5 15.1 12.4 11.2 12.9 91.5 19.4 15.7 12.2 15.8
FreeLB++ 95.1 47.9 51.5 41.8 47.1 93.2 12.5 45.3 39.9 32.6 95.6 19.3 8.8 3.7 10.6

SAFER 94.4 39.3 35.5 42.3 39.0 92.3 41.4 39.1 30.7 37.1 95.4 29.8 25.8 23.7 26.4
TMD 94.3 70.0 50.0 55.2 58.4 92.2 38.7 44.2 33.7 38.9 95.2 36.8 40.9 28.6 35.4
RSMI 92.7 76.1 63.2 NA2 NA 92.2 58.7 56.4 NA2 NA 95.4 45.3 52.3 NA2 NA

SMAAT (Ours) 94.6 73.5 72.2 74.7 73.5 92.2 63.6 77.9 60.8 67.4 97.0 77.1 77.9 72.8 75.9

R
oB

E
R

Ta

Standard 94.7 30.6 23.9 37.1 30.5 94.0 8.7 2.1 0.6 3.8 97.9 23.1 14.9 9.0 15.7

ASCC 92.6 48.1 41.0 49.1 46.1 92.6 23.1 13.5 11.8 16.1 95.4 15.0 8.6 4.5 9.4
FreeLB++ 95.6 61.0 49.8 56.6 55.8 94.3 33.6 14.6 6.1 18.1 97.0 38.6 46.0 35.2 39.9

SAFER 94.6 68.9 49.3 46.1 54.8 93.9 52.8 47.1 40.6 46.8 96.6 65.6 67.9 48.3 60.6
TMD 95.0 68.3 54.0 56.7 59.7 93.3 60.5 66.8 51.6 59.6 96.6 68.9 70.9 51.0 63.6
RSMI 94.3 81.9 74.1 NA2 NA 93.0 76.2 73.4 NA2 NA 96.3 68.9 65.9 NA2 NA

SMAAT (Ours) 94.6 75.6 75.1 79.9 76.9 93.5 77.1 78.5 63.2 72.9 98.0 85.4 86.4 76.0 82.6

lowest ID without the need for manifold approximations.
Particularly, SMAAT applies AT at l∗-th layer where the
layer with more OFM-AEs composition (lowest ID):

min
θ

E(x,y)∼D

[
max

∥δl∗∥≤ϵl∗
ℓ
(
fθ[l∗,n]

(
fθ[1,l∗](x) + δl∗

)
, y
)]

.

(6)
We additionally choose l∗ to correspond to the layer with
the highest index as this would lead to better scalability
(shorter PGD chains). as well as to potentially the highest
proportion of off-manifold AEs at any intermediate layer,
i.e.,

l∗ = max
l

{
l ∈ [1, n]

∣∣∣I∗l ≤ Ii∀i < l
}
. (7)

Complexity. Computing the layers IDs and searching for
the optimal layer l∗ to perturb are done once per model and
per task. Thus, they incur marginal overhead. For the AT
part, when a P -step PGD attack is used, this results in P
forward-backward passes with length (n− l∗+1) instead of
n. The run-time of every forward/backward pass depends on
the layer dimensionality, i.e., O(dl−1 × dl) for the lth layer.
Overall, the complexity of one SMAAT forward-backward
is O((n − l∗ + 1)maxl∈[l∗,n](dl)

2)). As a result, SMAAT
is more efficient than standard AT by a factor of O(P ×
l∗ ·(maxi∈[1,n] (di)

2−maxj∈[l∗,n] (dj)
2)). In the case Enc-

LLMs (e.g., BERT and RoBERTa), l∗ is equal to n. The total
run-time can be simplified to O(P · (dn)2) where dn is the
number of classes. Typical enc-LLMs tasks consist of less
than five classes (Wang et al., 2019a) which makes the factor

of classes small enough to be negligible. Hence, SMAAT
enhances the efficiency of the AEs generation process by
a factor of l · O(max(dl)). This improvement practically
eliminates the cost of the AE generation process.

6. Experiments
We assess robustbness, generalization and scalability of
three types of models trained with SMAAT: (i) classifiers;
(ii) retrievers in RAG settings and (iii) safeguarding models
employed for moderating content produced by generative
models. We consider four different attacks: (i) word substi-
tution (Ren et al., 2019; Jin et al., 2020a; Li et al., 2021b),
(ii) adaptive (Tramèr et al., 2018), (iii) Greedy Coordinate
Gradient (GCG) (Zou et al., 2023), and (iv) corpus poison-
ing (Zhong et al., 2023) attacks. We include a run-time
analysis to demonstrate scalability of SMAAT.

6.1. Sentiment and Topic Classifiers.

We adversarially trained two base models, BERT-base-
cased and RoBERTa-base-cased on the tasks of sentiment
classification (IMDB (Maas et al., 2011) and YELP (Zhang
et al., 2015)) and topic classification (AGNEWS (Zhang
et al., 2015)) under three input space attacks including
PWWS (Ren et al., 2019) (synonym based), TextFooler
(Jin et al., 2020a) (neighbor based), and BERT-Attack (Li
et al., 2021b) (masked-LM based). Attacks are conducted
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Table 2. Run-time results on IMDB dataset. Mean and standard deviation are computed over ten runs. Compared to FreeLB++, training
time of SMAAT is lower by a factor of nearly three.

Standard ASCC FreeLB++ SAFER RSMI SMAAT

Training (min/epoch) 5.1 ±0.1 25.7 ±0.3 15.6 ±0.5 8.2 ±0.6 15.4 ±0.3 5.2 ±0.2
Inference (msec/sample) 2.4 ±0.1 41.4 ±0.2 2.4 ±0.0 2.4 ±0.0 5.6 ±0.4 2.4 ±0.1

Table 3. Robustifying dec-LLMs with encoder-based (BERT etc.)
safety filters on AdvBench and HH RLHF datasets. We report
clean accuracy (CA), and robust accuracy under attack (AUA)
which indicates the percentage of harmful prompts augmented
with adversarial suffices accurately classified as harmful. Notice
that SMAAT achieves very high robustness while other models
sometimes completely fail.

Dataset Model
BERT RoBERTa DistilBERT

CA AUA CA AUA CA AUA

AdvBench
Standard 100 0 100 0 99.6 0

FreeLB++ 99.6 0 100 0 99.6 0
SMAAT 100 100 100 99.2 99.2 97.5

HH-RLHF
Standard 95.4 26.4 94.8 0.3 98.7 6.5

FreeLB++ 98.6 48.5 98.6 34.0 98.5 34.1
SMAAT 95.4 51.6 94.8 96.8 98.5 39.5

using the TextAttack framework (Morris et al., 2020) and
following the settings introduced by (Li et al., 2021b). We
compare SMAAT to standard (non-adversarial) training, and
six baselines from three families of defenses: (1) Input
space AT (ASCC (Dong et al., 2021)), (2) Embedding space
AT (FreeLB++ (Li et al., 2021b)), and (3) Certified defenses
(SAFER (Ye et al., 2020), TMD (Minh & Luu, 2022), RSMI
(Minh & Luu, 2022)). FreeLB++ focuses on scalability and
robustness by minimizing the number of PGD steps and
applying AT in the initial layer. TMD leverages manifold
features by projecting samples back to the manifold in the
last layer. Implementation details: In both base models,
l∗ = n, i.e., we generate AEs in the last layer. Specifically,
we perturb the [CLS] embeddings before the classifier layer
by freezing all layers before l∗. Further details are presented
in Appendix D.

Robustness and generalization: In Table 1, we report re-
sults on robustness and generalization. On average, SMAAT
demonstrates superior robustness over all datasets, with an
improvement of 8.6%, 15.7%, and 28.8% over the best
score for the BERT model, and 6.0%, 5.8%, and 19.0% for
the RoBERTa model on the AGNEWS, IMDB, and YELP
datasets, respectively. Note that FreeLB++, which perturbs
the first layer, showed the best generalization in four out
of six cases, as it produces mostly on-manifold examples
(the first layer has a high dimension, as illustrated in Fig. 4)
which is in line with the manifold conjecture. SMAAT main-
tains generalization in five out of six cases and only shows

0.5 drop in performance in the case of RoBERTa with the
IMDB dataset. Besides, SMAAT consistently outperforms
TMD, even though it is a manifold-based method differently
from SMAAT, TMD estimates the manifold and projects the
input samples onto it before classification witch could lead
to inaccuracies in the manifold estimation. SMAAT on the
other hand is more robust to such inaccuracies as it only
leverages the ID for selecting the layer to perturb. RSMI
shows strong robustness against PWWS, as its masked in-
ference mechanism inherently mimics synonym-based de-
fenses without needing an explicit synonym set (Minh &
Luu, 2022).

Runtime efficiency: In Table 2, we provide details on the
training time per epoch and inference time per instance for
the IMDB dataset using BERT (RoBERTa has the same
architecture). SMAAT has comparable efficiency to standard
training and is on average 3 times faster than standard AT
during training. This is attributed to shorter backpropagation
chains as AT in SMAAT is performed in the last layer (l∗ =
n). Note that FreeLB++, which injects noise in the first
layer, remains inefficient even when PGD is replaced with
FGSM (Zhu et al., 2020; Li et al., 2021b), as a full-depth
backpropagation chain is still required. Certified defense
baselines (SAFER, RSMI) and input space attack (ASCC)
are also time-consuming as they either require mapping
samples into the manifold or performing an extensive search
over word substitutes. Additional evaluation of SMAAT on
language understanding benchmarks, including GLUE
and advGLUE are reported in Appendix E.

6.2. Safety Filters

The broad attack surface of LLMs has compelled model
owners to implement solutions that extend beyond the safety
alignment of a model. Notably, this includes content moder-
ation filters that verify the harmlessness of a model’s inputs
and outputs (Kumar et al., 2023; Cao et al., 2024; Fatehkia
et al., 2025). These filters are essentially text classifiers,
often based on lightweight enc-LLMs to minimize overhead
and preserve the high responsiveness of dec-LLMs (Kumar
et al., 2023). The robustness of safety filters is also a con-
cern, as they too can be vulnerable to attacks. Base models:
We evaluate SMAAT’s effectiveness on BERT, RoBERTa,

2RSMI takes about 2k times longer than TextFooler to generate
a AE with BERT-Attack, making it unfeasible to test.
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Table 4. Robustifying retriever models of RAG on the Natural
Questions dataset. We report Recall@10 (R@10) and Recall@100
(R@100) on the clean corpus for generalization. Robust recall
(RR) is measured by how many samples are selected without ad-
versarial passages in the top-k passages, with R@10 and R@100
corresponding to the top-10 and top-100 passages, respectively.
During attacks, 10 and 50 adversarial passages are created, de-
noted as (N=10) and (N=50), respectively. SMAAT makes RAG
substantially more robust against selecting adversarial passages.

Model
Generalization RR (N=10) RR (N=50)
R@10 R@100 R@10 R@100 R@10 R@100

Standard 36.4 79.7 46.0 22.2 26.1 7.2
FreeLB++ 39.6 81.8 75.2 60.7 51.7 32.2
SMAAT 34.9 79.5 99.5 97.1 85.7 73.5

and DistilBERT when used as safety filters. Datasets: The
AdvBench dataset (Zou et al., 2023) and the Helpfulness-
Harmfulness dataset (HH-RLHF) (Bai et al., 2022). Adver-
sarial attack:, we use GCG attack. Metrics: we assess gen-
eralization accuracy (ACC) for safe and harmful prompts,
and robust accuracy under attack (AUA) by measuring the
detection rate of harmful prompts augmented with adver-
sarial suffixes. Further details are presented in Appendix F.
Robustness and generalization: Results in Table 3 show
that SMAAT significantly enhances the robustness of safety
filters against the GCG attack across all models, while main-
taining generalization compared to standard training. Also,
FreeLB++ improves generalization as it applies AT in the
first layer.

6.3. Retriever Models of RAG

RAG combines a retriever model, which identifies relevant
passages from a large corpus, with a generator model that
constructs answers based on the retrieved information. Base
model: We use the Contriever model (Izacard et al., 2022),
fine-tuned on the Natural Questions (NQ) (Kwiatkowski
et al., 2019) dataset, as our retriever. Baselines: We eval-
uate the robustness of retriever models within the RAG
framework under standard, FreeLB++ and SMAAT. Adver-
sarial attacks:, we use poisoning attacks (Zhong et al.,
2023), which manipulate the retrieval corpus by generat-
ing adversarial passages. As metrics, we use robust recall
(RR) measured by how many samples are selected with-
out adversarial passages in the top-k passages, with R@10
and R@100 corresponding to the top-10 and top-100 pas-
sages, respectively. Robustness and generalization: Table
4 shows that the standard model offers limited robustness
against the attack, with a significant number of adversar-
ial passages being retrieved. FreeLB++ shows some im-
provement, reducing the number of adversarial passages
retrieved. However, SMAAT significantly enhances robust-
ness, demonstrating a dramatic reduction in the retrieval of

adversarial passages compared to the others. In terms of gen-
eralization, FreeLB++ yields the best results as it applies AT
in the first layer (resulting in more ONM-AEs), while both
SMAAT and standard training exhibit similar performance.

7. Conclusion
In this paper, we explain the varying effects of AT across
architectures using the manifold conjecture, showing that
ID influences robustness and generalization. Vision and
decoder-based models favor off-manifold AEs in early lay-
ers, enhancing robustness but harming generalization, while
encoder-based LLMs favor on-manifold AEs, preserving
generalization with limited robustness gains. Leveraging
this insight, we introduce SMAAT, which improves AT scal-
ability by perturbing the layer with the lowest ID. This
reduces training overhead by 25–33% while boosting ro-
bustness across sentiment classification, safety filtering, and
retrieval tasks, maintaining generalization. We plan to ex-
plore joint optimization of generalization and robustness by
controlling the on/off-manifold AE ratio through perturba-
tions in intermediate layers.
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A. Supplementary Material
In this paper, we propose SMAAT, an AT algorithm that not only optimizes for better robustness and generalization but also
enhances scalability. Specifically, SMAAT leverages the manifold conjecture, which posits that OFM-AEs lead to better
robustness while ONM-AEs enhance generalization. To achieve this, SMAAT perturbs the layer with the lowest intrinsic
dimension (ID). Intuitively, perturbing this layer would yield the highest proportion of OFM-AEs across layers. Formally,
SMAAT solves the following program:

min
θ

E(x,y)∼D

[
max

∥δl∗∥≤ϵl∗
ℓ
(
fθ[l∗,n]

(
fθ[1,l∗](x) + δl∗

)
, y
)]

.

We show that l∗ corresponds to the last layer in enc-LLMs and the first layer in dec-LLMs. This explains the difference
in robustness and generalization trends between vision models and enc-LLMs (Stutz et al., 2019a; Shafahi et al., 2019;
Zhu et al., 2020). Specifically, in vision models, improvements in robustness are often accompanied by a decrease in
generalization. In contrast, in enc-LLMs, improvements in generalization are achieved with lesser gains in robustness. The
algorithm for SMAAT is provided in Alg. 1.

Algorithm 1 SMAAT
1: Input: D = {X ,Y}: input data, fθ: a deepnet model, ϵ: attack strength, E: the number of epochs, α: PGD learning

rate, and Π: the projection operator into the ϵ-ball.
2: Output fθ: a deepnet model
3: % Determine the ID behaviour of the model with twoNN
4: % Identify the optimal layer l∗ to perturb (Eq. (7))
5: for e = 1, .., E do
6: for (xi, yi) ∈ D do
7: δl∗ ∼ N (0, σ2I) % sample an initial perturbation
8: % store forward pass for scalability
9: mid rep← fθ[0,l∗](xi)

10: for s = 1, .., S do
11: loss← ℓ (fθ[l∗,n](mid rep+ δl∗), yi)))
12: δl∗ ← Πϵl∗ (δl∗ + α · sign (∇δl∗ (loss)))
13: end for
14: % update the model parameters
15: loss← ℓ (fθ[l∗,n](mid rep+ δl∗), yi))
16: θ[l

∗,n] ← θ[l
∗,n] − lr∇θ[l∗,n](loss)

17: end for
18: end for

SMAAT has the advantage of being significantly more runtime-efficient than classical adversarial training. The gain is of the
order of O

(
P (n− l∗)

(
max

(
{dli |li ∈ [1, l∗ − 1]}

)
− dl∗

))
, for an n-layered deepnet under a P -step PGD attack. dl is

the dimensionality of the layer l.

Empirical results demonstrate that SMAAT leads to better robustness while maintaining comparable accuracy to standard
training. We achieve compelling results on robustifying (1) sentiment classifiers, (2) safety filters in decoder-based models,
and (3) retriever models in the Retrieval Augmented Generation (RAG) setup.

The remaining of the supplementary material is organized as follows:

• Appendix B: Intrinsic Dimension Estimation

• Appendix C: Additional Results of ID & Robustness/Generalization Relationship

• Appendix D: Additional Results of Robustifying Sentiment Classifiers
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• Appendix E: Additional Results of Language Understanding Benchmarks

• Appendix F: Additional Results of Robustifying Safety Filters In Decoder Based LLMs

B. Intrinsic Dimension Estimation
In the following, we provide additional details on the experimental setup on OFM-/ONM- AEs ratio calculation and the ID
estimation in Fig. 4.
Experimental setup. We conduct experiments on two enc-LLMs (BERT and RoBERTa), across three different datasets
(AGNEWS, IMDB, YELP). Additionally, we evaluated three vision models (ViT (Dosovitskiy et al., 2021), DeiT (Touvron
et al., 2021), VGG-13 (Simonyan & Zisserman, 2014)) on the CIFAR-10 (Krizhevsky, 2009) dataset and three LLMs
(LLaMA-2-7b (Touvron et al., 2023), Vicuna (Zheng et al., 2024), Mistral-7b (Jiang et al., 2023)) on the HelpSteer dataset
(Wang et al., 2023). We utilize the train split of the datasets to estimate the ID and eigenspace of the layers. We extract
token representations from various layers of the models similar to the implementation in NeuroX (Dalvi et al., 2023). AEs
are generated using TextFooler for LMs and PGD for vision models on the respective test splits of the datasets. For LLMs,
AEs are generated using the Greedy Coordinate Gradient (GCG) attack (Zou et al., 2023) on the harmful prompt datasets
released in the same paper. In our calculation, we use CLS embedding for BERT, RoBERTa, ViT, and DeiT models; last
token embedding for LLMs; and conventional layer output for VGG-13.

Discussion of results. We present the average projection error, ekl , of each layer on the first row of Fig. 4. Results in
Fig. 4(a,b) indicate that for LMs, the average ekl monotonically increases, suggesting that examples become more off-
manifold at the latest layers, consistent with our hypothesis. Conversely, for vision models and dec-LLMs in Fig. 4(c,d), we
observe the opposite characteristic with a lower average ekl at the latest layers as expected. The only unexpected behavior
observed in vision models and dec-LLMs, except for VGG-13 and Mistral, is that they exhibit the highest off-manifold ratio
(ekl ) in the initial layers rather than the first layers. For transformer models, the CLS/last token embedding starts with a
specific value and gradually evolves to represent the sentence. This means it takes time for the effect of AEs to manifest in
the CLS/last token embedding. In contrast, since the VGG model’s representation is directly calculated from the input, the
highest off-manifold ratio is obtained at the first layer.

We hypothesize that this phenomenon can be explained by the ID of the layers. Specifically, if Il ≪ dl, AEs tend to be
off-manifold. To validate this hypothesis for the same models and dataset, we measure Il using the twoNN method and
normalize it with dl. The normalized Il can be seen in the second row of Fig. 4. In line with our hypothesis, while it
decreases for the LMs (Fig. 4(a,b)), it increases for vision models and dec-LLMs(Fig. 4(c,d)).

C. Additional Results of ID & Robustness/Generalization Relationship
We further examine the relationship between intrinsic dimensionality (ID), robustness, and generalization by applying Latent
Adversarial Training (LAT) to different layers of the LLaMA-2-7B model. Unlike untargeted LAT, which disrupts model
behavior, we employ targeted LAT to induce specific adversarial responses, following Casper et al. (2024). This is achieved
by perturbing the residual stream with L2-norm-bounded noise using PGD.

To stabilize training and mitigate unintended effects, we interleave LAT with supervised fine-tuning on the UltraChat dataset
(Ding et al., 2023). We evaluate generalization using MT-Bench (Zheng et al., 2024) and robustness using GCG-based and
PAIR attacks from HarmBench (Mazeika et al., 2024). The model is trained with a learning rate of 2e− 4, applying LAT at
every even-numbered layer with norm bounds ranging from 1 to 5.

The results are presented in Figure 6. Attacking lower layers (light blue markers) improves robustness but reduces
generalization, as indicated by points concentrated in the bottom-right region. In contrast, attacking upper layers (dark blue
markers) enhances generalization at the cost of robustness, shifting results toward the top-left. Additionally, while model
robustness drops to as low as 30% under the GCG attack, it remains consistently above 75% across all configurations under
the PAIR attack.

D. Additional Results of Robustifying Sentiment Classifiers
In the following, we provide more details about the experiments on robustifying sentiment classifiers.
Datasets. We evaluate SMAATon three datasets: AG-News Corpus (AGNEWS) (Zhang et al., 2015), Internet Movie
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Figure 6. Layer-wise effects of adversarial training on generalization and robustness against GCG and PAIR attacks on the LLaMA-2
model. Marker colors represent layer depth, transitioning from light blue (lower layers) to dark blue (higher layers). The results show that
robustness drops to as low as 30% under the GCG attack, while remaining above 75% under the PAIR attack across all configurations.

Database (IMDB) (Maas et al., 2011), and Yelp Review Polarity (YELP) (Zhang et al., 2015). The AGNEWS dataset
contains over 120000 samples, each belonging to one of the four labels: World, Sports, Business, Sci/Tech. The IMDB
dataset contains 50000 data samples of movie reviews with binary labels for negative and positive sentiments. The YELP
dataset contains nearly 600000 samples of highly polar Yelp reviews with binary labels. However, due to limitations in
computing resources, we only use a subset of 63000 samples of the YELP dataset. In addition, we randomly sample 10% of
the training set for validation in all datasets. For testing, we use a subset of 1000 test samples from each dataset, following
previous work practices. The AGNEWS dataset contains over 120k samples, categorized into four classes: World, Sports,
Business, and Sci/Tech. The IMDB dataset consists of 50k movie reviews, each labeled with binary sentiments (positive or
negative).
Base model. We employed the BERTbase-cased (Devlin et al., 2019) and RoBERTabase-cased (Liu et al., 2019) models in our
experiments. To conduct the evaluations, we utilize the fine-tuned models provided by TextAttack from HuggingFace for all
datasets, except for the RoBERTa base model fine-tuned on YELP dataset. For the YELP dataset, we created a fine-tuned
RoBERTa model for 2 epochs with a learning rate of 1e− 05 and a batch size of 32.
Adversarial Attacks. which include the following constraints: (1) The maximum percentage of modified words is set to 0.3
for AGNEWS, 0.1 for IMDB and YELP datasets, respectively. (2) For word replacement, a maximum of 50 candidates
are considered for each word. (3) The semantic similarity, measured using the Universal Sentence Encoder (Cer et al.,
2018), between the original input and the generated adversarial example must exceed 0.84. PWWS uses word synonyms,
TextFooler applies nearest neighbor search in counter-fitting embeddings (Mrkšić et al., 2016), and BERT-Attack utilizes
BERT masked language model to generate candidate words.
Baselines. For input space adversarial training, we consider Adversarial Sparse Convex Combination (ASCC) (Dong et al.,
2021) which model the perturbation space as the convex hull of word synonyms. ASCC incorporates an entropy-based
sparsity regularizer to capture word substitution geometry more effectively. In our investigation of embedding space
adversarial training which recognized as the most impactful technique for enhancing generalization (Li et al., 2021b), we
conduct a thorough analysis of FreeLB++ (Li et al., 2021b) (employs gradient-guided perturbations centered around the
most susceptible data points). For certified defenses, we evaluate SAFER (Ye et al., 2020), TMD (Minh & Luu, 2022), and
RSMI (Minh & Luu, 2022). SAFER constructs a set of randomized inputs by performing random synonym substitutions
and using the statistical properties of predicted labels to certify robustness. TMD employs infoGAN (Chen et al., 2016) to
project adversarial examples to the data manifold in the last layer to address the manifold issue. RMSI combines these ideas
by applying importance-based masking to tokens and leveraging randomized smoothing in each layer.

Implementation details. To train the last layer of fθ with adversarial samples, we create adversarial samples using 5-step
PGD attacks. During training, we use epsilon values of 0.1, 0.1, and 0.8 for the YELP, AGNEWS, and IMDB datasets,
respectively, for the BERT models. For the RoBERTa models, we employ epsilon values of 0.1, 0.6, and 0.03. All models
are trained 10 epochs with a learning rate of 0.1. In our evaluation, we use a V100 GPU with 32 GB memory and 64 CPUs.
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Table 5. Average accuracy from the standard training, FreeLB++ and SMAAT on GLUE and AdvGLUE datasets. Results clearly
demonstrate that SMAAT enhances model generalization (GLUE results) and robustness (AdvGLUE results).

Dataset BERT RoBERTa
Standard FreeLB++ SMAAT (Ours) Standard FreeLB++ SMAAT (Ours)

GLUE 85.9 86.3 86.3 89.3 89.6 89.7
AdvGLUE 39.5 42.5 45.1 27.5 37.1 39.6

Table 6. Hyperparameters in experiments on robustifying the safety filters on decoding LLMs experiments. Learning rate (lr) and ϵ values
for SMAAT and FreeLB++ methods.

Dataset
FreeLB++ SMAAT

BERT RoBERTa DistilBERT BERT RoBERTa DistilBERT
lr ϵ lr ϵ lr ϵ lr ϵ lr ϵ lr ϵ

AdvBench 5e-3 0.05 5e-3 0.05 1e-2 0.01 1e-4 1e-3 1e-4 1e-3 1e-4 1e-4
HH-RLHF 5e-3 0.5 53-3 0.05 5e-4 0.05 1e-4 5e-4 1e-4 1e-3 1e-4 5e-4

E. Additional Results of Language Understanding Benchmarks
To comprehensively evaluate SMAAT’s performance against a broader spectrum of textual adversarial attacks, we employ
the GLUE and AdvGLUE benchmarks. The GLUE benchmark (Wang et al., 2019a) is a comprehensive evaluation suite
featuring seven diverse NLP tasks to assess model performance. The AdvGLUE benchmark (Wang et al., 2021) is an
extension of GLUE, incorporating 17 distinct textual adversarial attacks, covering word-level transformations, sentence-level
manipulations, and human-written AEs. This extension ensures a thorough evaluation encompassing various adversarial
linguistic phenomena. For our assessment, we employ the evaluation sets of four datasets across three different tasks:
Sentiment Analysis (SST-2), Duplicate Question Detection (QQP), and Natural Language Inference (QNLI, RTE).

In our evaluation, we compare SMAAT against standard BERT and RoBERTa models3, as well as their FreeLB++
incorporated versions. In the case of SMAAT, we conducted a grid search for the learning rate, ranging from 0.1 to 0.001,
and the ϵ value, ranging from 0.8 to 0.01, using 3-PGD steps As shown in Table 5, SMAAT demonstrates a robustness
improvement of 5.6% and 2.6% for BERT, and 12.1% and 2.5% for RoBERTa, compared to the standard and FreeLB++
models, respectively, while maintaining similar generalization performance.

F. Additional Results of Robustifying Safety Filters In Decoder Based LLMs
The GCG attack is deliberately designed to bypass the safety alignment of LLMs by generating a response to a potentially
harmful prompt through appending an adversarial suffix to the user’s input. This strategy leverages previous methodologies
by using (1) an affirmative response tactic (Wei et al., 2023; Carlini et al., 2023) to direct the model’s output towards the
attacker’s intended outcome (used for loss calculation) and (2) a mix of greedy and gradient-based discrete optimization (Shin
et al., 2020) to pinpoint the most susceptible tokens. A key attribute of the GCG attack is its transferability, demonstrating
that adversarial suffix designed for a specific prompt on one model can successfully affect a broad range of other models.

A suggested defense against the GCG attack involves incorporating a lightweight binary classifier model designed to identify
harmful prompts (Kumar et al., 2023). It is important to note, however, that these classifiers can still be vulnerable to such
attacks. To assess the effectiveness of SMAAT against the GCG attack, we conduct the attack by setting the suffix length
to 20 tokens. The attack is generated over 50 iterations, with 100 trials per iteration. Rather than leveraging the attack’s
transferability, we tailor an adversarial suffix for every individual prompt and model to enhance the attack’s impact. Our
assessment is conducted using two datasets, AdvBench (Zou et al., 2023) and HH-RLHF (Bai et al., 2022), and involves
three models: BERT, RoBERTa, and DistilBERT. AdvBench features 640 training prompts (320 harmful, 320 safe) and 240
test prompts (120 harmful, 120 safe), whereas HH-RLHF includes approximately 44K harmful and 44K helpful training
prompts, with 2.3K test samples for each prompt category. In all cases, standard models are trained over 5 epochs with a
learning rate of 1e−5. Table 6 details the training hyperparameters for SMAAT.

3We use the fine-tuned models available from https://huggingface.co/JeremiahZ
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