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Abstract

Zero-shot entity and relation classification mod-001
els leverage available external information of002
unseen classes – e.g., textual descriptions – to003
annotate input text data. Thanks to the min-004
imum data requirement, Zero-Shot Learning005
(ZSL) methods have high value in practice, es-006
pecially in applications where labeled data is007
scarce. Even though recent research in ZSL008
has demonstrated significant results, our anal-009
ysis reveals that those methods are sensitive010
to provided textual descriptions of entities (or011
relations). Even a minor modification of de-012
scriptions can lead to a change in the decision013
boundary between entity (or relation) classes.014
In this paper we formally define the problem of015
identifying effective descriptions for zero shot016
inference, we propose a strategy for generating017
variations of an initial description, a heuristic018
for ranking them and an ensemble method ca-019
pable of boosting the predictions of zero-shot020
models through description enhancement. Em-021
pirical results on four different entity and rela-022
tion classification datasets show that our pro-023
posed method outperform existing approaches024
and achieve new SOTA results on these datasets025
under the ZSL settings. The source code of the026
proposed solutions and the evaluation frame-027
work are open-sourced. 1028

1 Introduction029

Zero-shot learning (ZSL) is a classification task030

in machine learning where – at inference time –031

samples are classified into one of several classes032

which were not observed during training. Having a033

classifier that can generalize to new unseen classes034

is important for a variety of practical reasons. First,035

ZSL methods can be used to learn models that are036

more robust to labeled data shortages and distribu-037

tional shifts. Moreover, they can be used to extend038

the reach of models to new domains.039

1Anonymized for double-blind review

ZSL approaches in the Natural Language Pro- 040

cessing (NLP) domain have seen significant im- 041

provements in recent years thanks to the availability 042

of large pre-trained Language Models (LMs). For 043

example, it has been shown that models such as 044

GPT-3 (Brown et al., 2020), OPT (Zhang et al., 045

2022) and FLAN (DBL) achieve strong perfor- 046

mances on many NLP tasks, including translation, 047

question-answering, and cloze tests without any 048

gradient updates or fine-tuning. 049

For entity recognition – including classification 050

and linking – and relation classification problems, 051

recent ZSL methods (Aly et al., 2021; Ledell Wu, 052

2020; Chen and Li, 2021a) rely on textual descrip- 053

tions of entities or relations. Descriptions provide 054

the required information about the semantics of en- 055

tities (or relations), which help the models to iden- 056

tify entity mentions in texts without observing them 057

during training. Works such as (Ledell Wu, 2020; 058

De Cao et al., 2021) and (Aly et al., 2021) show 059

how effective it is to use textual descriptions to per- 060

form entity recognition tasks in the zero-shot con- 061

text. The same mechanism can also be applied in 062

other contexts such as relation classification (Chen 063

and Li, 2021b). 064

An example of named entity classification with 065

ZSL is demonstrated in Figure 1. At inference 066

time, a zero-shot model is given short textual de- 067

scriptions of new entity classes such as Company or 068

Fruits, it then identifies and annotates mentions of 069

those entity classes in an input sentence. Although 070

state-of-the-art ZSL methods such as SMXM (Aly 071

et al., 2021) have demonstrated significant results 072

in recent research works, this toy example shows 073

how the quality of the provided descriptions in- 074

fluences the accuracy of these models. For exam- 075

ple, in Figure 1 even with a small modification of 076

the Company entity class description, the SMXM 077

model changes its entity prediction. In practice, the 078

sensitivity to entity descriptions is problematic be- 079

cause, for non-expert users, it is not a trivial task to 080
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Figure 1: A small modification of the Company class description results in different entity predictions.

choose a proper description for black-box zero-shot081

models, in particular in an unfamiliar domain.082

In this paper, we study different methods for083

boosting model performance with automatic de-084

scription enhancement. Specifically, we propose085

UDEBO (for Unsupervised DEscription BOosting),086

the first unsupervised method capable of automati-087

cally modifying/generating description to improve088

entity (or relation) predictions in the zero-shot set-089

tings. We present several strategies to alter descrip-090

tions, such as using a generative model, paraphras-091

ing, and summarization combined with description092

ranking/ensemble methods to reduce model uncer-093

tainty and increase overall performance. We em-094

pirically evaluate the performance of UDEBO on 4095

existing standard zero-shot datasets, spanning two096

tasks: (i) name entity classification and (ii) relation097

classification.098

Our results show that for the zero-shot entity099

classification tasks, UDEBO improved the results100

of state-of-the-art models by 7 and 1.3 percentage101

points in terms of Macro F1 Score in the OntoNotes102

and MedMentions datasets, respectively. For what103

concerns relation classification, we achieve a per-104

formance improvement of 6 and 3 percentage105

points (Macro F1 Score) on the FewRel and Wik-106

iZS datasets over our baseline models, respectively.107

We organize the paper as follows. In Section 2108

we provide a description of the zero-shot setting109

for entity recognition and relation classification.110

We also formally define the problem we aim to111

solve in this paper, i.e. how to enhance entity or112

relation descriptions to improve the performance113

of zero-shot models. In Section 3 we describe114

the proposed approaches for description boosting115

while in Section 4 we describe our experimental116

setup and results. We provide a literature review117

and draw the conclusions of our work in Sections118

5 and 6, respectively. 119

2 Preliminaries and problem definition 120

Entity and relation classification are key steps to 121

extract or query knowledge from unstructured doc- 122

uments. Zero-shot approaches can identify which 123

tokens in a text refer to an entity (its mention) and 124

determine its type (entity typing) without the need 125

of observing other instances of the same entity dur- 126

ing training. 127

In ZSL, the sets of training and test entity (or 128

relation) classes are disjoint. Therefore, the strat- 129

egy employed by zero-shot models is to rely on 130

prior general knowledge that could be transferred 131

to unseen instances at inference time. In particu- 132

lar, novel zero-shot approaches leverage the fact 133

that textual descriptions for entity classes are ei- 134

ther available in existing datasets or can be easily 135

provided by users. 136

Given a textual description of an entity class 137

(or relation) of interest, zero-shot models recog- 138

nize mentions in a text and predict whether the 139

given mentions belong or not to the entity class 140

(or relation) with a certain probability. One classic 141

paradigm is to embed all entities with their tex- 142

tual description and the input sentence with each 143

mention into one common space and measure the 144

probability of each entity by assessing their dis- 145

tance. Descriptions for model pre-training are typi- 146

cally sourced from Wikipedia by joining an entity 147

page title or label with the first 10 sentences in the 148

respective Wikipedia page (Wu et al., 2020). How- 149

ever, the quality of the descriptions has an impact 150

on how effective the transfer of knowledge from 151

observed to unseen entities (Aly et al., 2021). 152

Given a set of entity classes E (or relations) of 153

interest with their textual descriptions D and a cor- 154

pus of sentences S to annotate as input, we describe 155
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in Section 3.1 different strategies to generate new156

entity (or relation) descriptions D′ for the input set157

E, intending to improve the accuracy of the predic-158

tions by the ZSL models over that corpus. We can159

define the problem of description enhancement as160

follows:161

Problem 1 (Description enhancement) Denote162

ϕ(D,S) as the function estimating the accuracy of163

ZSL models when using a given entity (or relation)164

description D for annotating an input text corpus165

S. Our goal is to generate a set of descriptions D∗166

such that:167

D∗ = argmax
D

ϕ(D,S) (1)168

169

As exemplified in Figure 1, if the labeled data170

is known, it is possible to select the best descrip-171

tions via a brute force search across different de-172

scription reformulations by measuring the accuracy173

as a function of D and S. However, given the174

absence of labeled data in the zero-shot context,175

an unsupervised approach is needed for ranking176

the descriptions D that yield the highest classifi-177

cation accuracy. In Section 3.2 and Section 3.3,178

we will discuss methods for ranking or combining179

predictions from different description variations to180

achieve better results.181

3 Methods182

We begin our discussion with methods for generat-183

ing description variations before providing details184

about description ranking and ensemble strategies185

in the following subsections.186

3.1 Generating description variations187

Improving the completeness or clarity of entity188

(or relation) descriptions is a complicated problem189

without a formal definition of an objective function,190

as there is a large space of candidates to explore.191

To enhance entity (or relation) descriptions, in a192

more controlled way, we propose the following193

strategies.194

Extension with pre-trained LMs. We propose195

to use large pre-trained LMs for generating text196

using the given description as context. Large LMs,197

as shown in (Petroni et al., 2019), capture linguis-198

tic and relational knowledge that can be extracted199

trough generation to extend a given description. In200

Section 4 we analyse the use of GPT-2 (Radford201

et al., 2019) for generating descriptions variations.202

Extension with a fine-tuned LM. We fine-tune 203

a LM for description generation and expansion. 204

The LM is fine-tuned on a large dataset containing 205

about 5.3 million Wikidata instances, including the 206

name and the first few sentences of the respective 207

articles. The model is fine-tuned on extending a 208

truncated sub-string of the textual description, us- 209

ing a sequence to sequence objective. In Section 210

4 we analyse the use of a T5 large (Raffel et al., 211

2020) fine-tuned model for generating descriptions 212

variations. 213

Summarization. Text summarization can be 214

used to generate a concise description with less 215

noise compared to the original one. In the exper- 216

imental results we analyse the effect of using a 217

BERT2BERT (small) (Turc et al., 2019) model fine- 218

tuned on CNN/Dailymail for text summarization to 219

enhance entities (or relations) descriptions. 220

Paraphrasing. Paraphrasing a description can 221

simplify its linguistic form, using more common 222

and general terms. In the experimental results we 223

analyse the effect of using a Pegasus (Zhang et al., 224

2019) model fine-tuned for paraphrasing. 225

3.2 Description ranking via entropy 226

To rank a description for an entity (or relation), we 227

propose to use a zero-shot model to first compute 228

the probabilities of classes for each mention (or 229

relation) in the input text with a candidate descrip- 230

tion. We then compute the information entropy H 231

from this input. In information theory, entropy is 232

the average level of "information" or "uncertainty" 233

inherent to a variable’s possible outcomes. Our as- 234

sumption is that the lower the entropy is, the higher 235

the confidence of the prediction will be, so Problem 236

1 can be reformulated as: 237

D∗ = argmin
D

H(D,S) (2) 238

Where H is the entropy of a zero-shot model for a 239

corpus S, using the description D to accomplish a 240

certain classification task. This way we can rank 241

different candidate descriptions and choose the best 242

one without requiring any labeled data, which is 243

ideal for the zero-shot setting. 244

3.3 Boosting performances with descriptions 245

variations ensembling 246

Besides description ranking via entropy, we pro- 247

pose an ensemble method that combines predic- 248

tions from multiple pipelines executed with differ- 249

ent entity (or relation) descriptions. The main idea 250
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Dataset Split Instances Entities / Relations

MedMentionsZS
train 26770 11
val 1289 5
test 1048 5

OntoNotesZS
train 41475 4
val 1358 4
test 426 3

Fewrel
train 44800 64
test 11200 16

WikiZS
train 70952 83
val 12982 15
test 9494 15

Table 1: Number of sentences and entities (or relations)
for each split of the considered datasets.

behind this approach is to leverage the complemen-251

tary information provided by the different defini-252

tions to make a more accurate prediction, reducing253

the variance and bias of an individual pipeline. Fur-254

thermore, using the methods described in section255

3.1, the descriptions variations can provide addi-256

tional information useful for correctly discriminat-257

ing between unseen classes.258

Entity description ensemble. Given a sentence,259

for each span s and an entity label e ∈ E, denote260

v(s, e) as the number of pipelines that predict s261

or a sub-sequence of s with entity label e. For in-262

stance, given a span s = London Bridge, assume263

that among ten pipelines, four pipelines predict the264

label of s as e1 = Facility, the other four pipelines265

predict the label of London as e2 = Location and266

the rest of the pipelines predict Bridge as Facil-267

ity. Therefore, the accumulated number of votes268

for the span London Bridge are v(s, e1) = 6 and269

v(s, e2) = 4. Considering the majority of the votes,270

the final predicted label for the span London Bridge271

is Facility. Once the span London Bridge has been272

assigned a label, all of its sub-spans become redun-273

dant and thus are removed from consideration.274

Relation description ensemble. For each set275

of descriptions generated using the strategies dis-276

cussed in Subsection 3.1, we run a pipeline to ob-277

tain the predicted relation for each provided pair278

of entities. The votes of all the relations are ag-279

gregated across different pipelines. We use the280

majority voting rule to select the relation with the281

highest aggregated number of votes from different282

pipelines. That relation is considered as the output283

relation for the given pair of entities.284

4 Experiments and Results 285

This section discusses experimental settings, base- 286

line methods, and empirical results for both entity 287

and relation classification tasks. 288

4.1 Datasets and experimental settings 289

We use two different settings: one for the Entity 290

Classification (EC) task and one for the Relation 291

Classification (RC) one. 292

Entity Classification setting. We use the pre- 293

trained SMXM model (Aly et al., 2021) with the 294

checkpoints available in the official GitHub repos- 295

itory. 2 We refer the reader to the original paper 296

(Aly et al., 2021) to see the details of the imple- 297

mentation, the training parameters, and the datasets 298

used for fine-tuning the model. There are two dif- 299

ferent checkpoints, one for each one of the datasets 300

used, OntoNotes (Pradhan et al., 2013) and Med- 301

Mentions (Mohan and Li, 2019). Both datasets 302

have been processed as in the respective official 303

GitHub repositories. Table 1 shows the number of 304

rows and the entities of each dataset. Note that the 305

number of rows reported in Table 1 refers to the 306

zero-shot version of the dataset, containing only 307

sentences with entities. See Appendix A for more 308

information on this process and the datasets. The 309

results reported are all based on the test split of the 310

datasets. 311

Relation Classification setting. For RC, we use 312

ZS-BERT 3 (Chen and Li, 2021b), a multitask 313

learning model, based on BERT, to directly pre- 314

dict unseen relations. We trained our checkpoint 315

using the official implementation of the model and 316

following the steps of the official repository. 3 The 317

datasets we use are FewRel (Han et al., 2018) and 318

WikiZS (Sorokin and Gurevych, 2017). The re- 319

sults reported are all based on the test split of the 320

datasets. 321

Description alteration settings. The language 322

models used for the description alteration strate- 323

gies: summarization, paraphrasing and pre-trained 324

were obtained from the checkpoints available on 325

Huggingface, while for the latter strategy we have 326

fine-tuned a pre-trained T5-large model. We report 327

detailed hyper-parameters of description alteration 328

methods in section B of the appendix. 329

2https://github.com/Raldir/
Zero-shot-NERC/

3https://github.com/dinobby/ZS-BERT
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Datasets Methods Precision Recall Micro F1 Macro F1 Accuracy

OntoNotesZS
SMXM 20.96 48.15 30.76 29.12 86.36
SMXM (Pre-trained) 24.05 51.40 32.77 32.78 87.69
SMXM (Finetuned) 17.97 42.21 25.21 23.90 85.76
SMXM (Summarization) 18.93 35.45 24.68 19.47 85.93
SMXM (Paraphrased) 18.49 40.90 25.46 23.41 85.14
SMXM (Combined) 18.86 42.58 26.15 23.74 84.83
UDEBO 31.14 46.51 36.78 36.15 88.29

MedMentionsZS
SMXM 16.79 40.55 20.38 21.70 83.05
SMXM (Pre-trained) 13.25 37.98 19.64 18.26 81.88
SMXM (Finetuned) 13.67 36.05 19.82 19.13 83.18
SMXM (Summarization) 10.96 26.68 15.37 17.92 83.02
SMXM (Paraphrased) 14.77 26.51 18.97 19.41 86.74
SMXM (Combined) 12.80 37.15 19.04 17.92 81.63
UDEBO 19.51 32.73 23.86 22.97 85.70

Table 2: UDEBO, i.e. the ensemble of predictions with description variations, compared to the SMXM baseline.

Datasets Methods Precision Recall Micro F1 Macro F1 Accuracy

Fewrel

ZS-BERT 25.08 21.59 21.59 17.89 21.59
ZS-BERT (Pre-trained) 18.25 25.29 25.29 19.10 25.29
ZS-BERT (Finetuned) 19.39 16.09 16.09 14.59 16.09
ZS-BERT (Summarization) 19.83 19.81 19.81 15.21 19.81
ZS-BERT (Paraphrased) 25.89 21.76 21.76 19.90 21.76
ZS-BERT (Combined) 17.09 16.53 16.53 16.53 16.53
UDEBO 28.38 25.68 25.68 22.12 25.68

WikiZS

ZS-BERT 34.18 33.90 37.14 30.97 37.14
ZS-BERT (Pre-trained) 14.73 15.80 14.29 11.72 14.29
ZS-BERT (Finetuned) 16.23 16.26 16.62 13.65 16.62
ZS-BERT (Summarization) 19.07 19.57 19.62 16.87 19.62
ZS-BERT (Paraphrased) 25.50 27.60 27.60 24.56 27.60
ZS-BERT (Combined) 17.34 19.62 18.43 16.27 18.43
UDEBO 34.79 37.11 40.17 34.25 40.17

Table 3: UDEBO, i.e. the ensemble of predictions with description variations, compared to the ZS-BERT baseline.

4.2 Empirical results330

This section discusses the results of entity (or rela-331

tion) classification using methods for description332

enhancement.333

4.2.1 Entity classification334

Table 2 shows the results of the ensemble method335

(UDEBO) with ten descriptions generated by each336

of the description enhancing strategies, including337

pre-trained, finetuning, summarization and para-338

phrasing. For each enhancing strategy, we report339

the results when the descriptions with the lowest340

entropy are chosen for each class. The Combined341

strategy shows the results with the lowest entropy342

among all description-enhancing strategies.343

We can see that the ensemble method (UDEBO)344

outperforms the SMXM baseline using the original 345

descriptions provided on the OntoNotesZS dataset 346

with a significant margin of 7 percentage points 347

in terms of Macro F1 Score. On the MedMen- 348

tionZS dataset, the improvement is 1.3 percentage 349

points on the same reference performance measure 350

(Macro F1 Score). Description ranking based on 351

entropy works well with the pre-trained strategy on 352

OntoNotesZS. However, the entropy does not seem 353

to be a reliable score of model uncertainty on the 354

MedMentionsZS dataset. Finding an alternative 355

uncertainty score to entropy could be considered 356

as future work. Overall, these results confirm our 357

hypothesis – discussed in Section 1 – that zero- 358

shot methods are sensitive to provided descriptions 359

and that an ensemble of description enhancement 360
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methods is needed to obtain more robust results.

Figure 2: The figure shows the distributions of Macro
F1 Score values on the test split of the OntoNotesZS
dataset for each class, using the strategies described in
Section 3.1 to generate 100 description variations for
each class.

361

Figure 3: The figure shows the distributions of Macro
F1 Score values on the test split of the MedMentions
dataset for each class, using the strategies described in
Section 3.1 to generate 100 description variations for
each class.

4.2.2 Relation classification362

In Table 3, we report our evaluation of the pro-363

posed approaches on the RC task. The results we364

observe here are similar to what we described for365

entity classification where the proposed ensembling366

method (UDEBO) achieves a higher performance367

across different measures compared to the baseline368

ZS-BERT model that does not rely on any rela-369

tion description reformulation approach. We also370

observe on the FewRel dataset a higher Macro F1371

Score associated with most of the description en- 372

hancement variants when employed independently 373

from each other. These results further validate the 374

strength of the proposed approach to enhance re- 375

lation descriptions employed by ZSL models to 376

improve their performance. 377

4.2.3 Descriptions enhancement strategies 378

comparison and limitations 379

Generating variations of descriptions is relatively 380

simple, as described in Subsection 3.1, several 381

strategies allow to generate plausible extensions 382

or variations of a text. Considering the results of 383

ranking the descriptions using entropy in Section 384

4, we analyze and discuss here the correlation be- 385

tween Macro F1 Score and entropy measures and 386

the limitations of the proposed approach. 387

Figure 2 and Figure 3 show the distributions 388

of the Macro F1 Score on the test split of the 389

OntoNotesZS and the MedmentionsZS dataset for 390

each class, using the strategies described in Sec- 391

tion 3.1 to generate 100 description variations for 392

each class. None of the strategies is a clear cham- 393

pion over all the classes. The high variance of the 394

performance explains the fact that the ensemble 395

method makes a better prediction as observed in 396

Table 2 and Table 3 thanks to successfully combin- 397

ing the strength of individual description alteration 398

strategies. Figure 4 shows the correlations between 399

Macro F1 Score and entropy for each unseen class 400

on the OntoNotesZS test split with 100 description 401

variations. Although there appears to be a signif- 402

icant statistical correlation using a sign test with 403

(p-value = 0.03) between Macro F1 Score and en- 404

tropy measures on the OntoNotesZS test set, the 405

correlation does not appear to be statistically sig- 406

nificant in the MedMentionsZS dataset. Also, as 407

evidenced by the results in Table 2 and 3, using the 408

descriptions with minimum entropy does not seem 409

like a good strategy for selecting descriptions. 410

This phenomenon may be due to several factors 411

like the change in the style of generated descrip- 412

tions compared to the ones observed during train- 413

ing. Although a new description might seem more 414

relevant, it could make the model more uncertain. 415

See an example in Appendix C.2. The importance 416

of this problem motivates the future study of alter- 417

native heuristics with more significant correlations, 418

indirectly unveiling the mechanism behind zero- 419

shot predictions. 420
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Figure 4: Analysis of the correlation between entropy and Macro F1 Score on unseen classes on the OntoNotesZS
test split. Entropy can be calculated without the need for labeled data, therefore, if a correlation exists it can be used
as an unsupervised heuristic to select descriptions that improve model performance.

5 Related work421

Zero-shot entity recognition and linking. Zero-422

shot end-to-end entity linking refers to the task423

of detecting and disambiguating entity mentions424

by linking them to an entity in a Knowledge Base425

(KB), without requiring new labeled data. KBs are426

inherently incomplete and evolve over time with427

the addition of new entities and relations. Zero-shot428

entity linking usually relies on available textual429

information, or other set of relations in the KB, to430

generalise to entity sets unseen in the training data.431

BLINK (Wu et al., 2020) is a BERT-based so-432

lution for Zero-shot linking of textual mentions –433

extracted for example using FLAIR (Akbik et al.,434

2018) – to entities in Wikipedia. It follows a bi-435

encoder architecture, each mention is encoded in436

a dense space, together with its context (left and437

right part of the input sentence). Independently,438

each entity in the KB is encoded in the same dense439

space together with its context e.g., entity descrip-440

tion. Mentions are linked to entities in the dense441

space using a nearest neighbour search. To improve442

accuracy, candidate entities are ranked by passing443

each concatenated mention, its context and entity444

description to a more expensive cross-encoder.445

GENRE (De Cao et al., 2021) is a BART based446

model fine-tuned using a sequence to sequence ob-447

jective, which claims to outperform BLINK. It is448

an autoregressive end-to-end entity linker, it detects449

and retrieves mentions and the respective entities450

in a KB by generating their unique textual name –451

left to right, token-by-token. To do so, it uses a con-452

strained decoding strategy that forces the generated453

name to be in a predefined candidate set. Com-454

pared to multi-class classification models such as455

BLINK, GENRE has a lower memory footprint to456

store dense vectors for large KBs, scaling linearly 457

with vocabulary size, not entity count, and does not 458

need to subsample negative data during training. 459

Zero-shot entity classification. Entity classifica- 460

tion consists in predicting a probability for each 461

semantic type of an entity mention, given a set of 462

types (e.g, organisation, organic compound). The 463

most straightforward feature used to generalise to 464

unseen types is the textual descriptions. For exam- 465

ple, SMXM (Aly et al., 2021) uses a cross-attention 466

encoder to generate a vector representation for each 467

type description and token in the input sentence and 468

recognizes as entity types those representations that 469

are closer to each other, including rarer classes un- 470

seen in training. It is evaluated using zero-shot 471

adaptations of OntoNotes (Pradhan et al., 2013) 472

and the domain specific biomedical dataset Med- 473

Mentions (Mohan and Li, 2019), it also considers 474

out-of-KB predictions i.e., nil predictions for men- 475

tions that do not have a valid gold entity. 476

ReFinED (Ayoola et al., 2022) is an end-to-end 477

entity linking model optimised to perform mention 478

detection, fine-grained entity typing (classification), 479

and entity disambiguation in a single pass. Similar 480

to BLINK, ReFinED uses a bi-encoder architecture 481

modified to encode all mentions in a document si- 482

multaneously, which improves efficiency relatively 483

to zero-shot models such as (Wu et al., 2020) that 484

requires a forward-pass for each mention. Men- 485

tion embeddings and entity description embeddings 486

are projected into a shared vector space to calcu- 487

late their dot product as the entity score. A fast 488

bi-encoder combined with a score for unseen enti- 489

ties, computed based on the scores for entity types 490

and description, is enough for ReFinED to obtain 491

state-of-the-art performance on entity linking and 492
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to scale the approach from Wikipedia (5.9M enti-493

ties) to Wikidata (90M entities).494

The analyses in (Aly et al., 2021) show that while495

Wikipedia descriptions work well on general entity496

types, they perform poorly on domain specific data,497

e.g. MedMentions. They also show the impact498

of using annotation guidelines for descriptions to499

improve the transfer of knowledge from observed500

to unseen entities. The adoption of this approach501

led to a better performance compared to using a502

class name itself or Wikipedia passages. In par-503

ticular, description vagueness, noise and negations504

had a negative effect, while annotation guidelines,505

including explicit examples and syntactic and mor-506

phological cues, improved the performance.507

Zero-shot relation classification. Textual de-508

scriptions have also been employed in the rela-509

tion classification task to predict new relations that510

could not be observed at training time. For exam-511

ple, ZS-BERT (Chen and Li, 2021c) learns two512

functions – one to project sentences and the other513

to project relation descriptions into an embedding514

space. The objective is first to jointly minimise515

the distance between the embedding vectors for516

an input sentence and the relation description for517

positive entity pairs and then to classify the relation518

(using a softmax layer to produce a classification519

probability). At inference time, the prediction of520

unseen relation classes can be achieved through521

nearest neighbor search. Overall, using descrip-522

tions seems to improve existent zero-shot methods523

and expand their domains of application. Still, de-524

scriptions are not always good enough to get good525

predictions. Improving the accuracy of these ap-526

proaches remains an open challenge. The better527

the separation between embedding of different re-528

lations, the more accurate the model predictions,529

however, as the number of unseen relations in-530

creases, it becomes more difficult to predict the531

right one (Chen and Li, 2021c).532

Existent ZSL methods usually rely on external533

knowledge from KGs, ranging from textual in-534

formation, class attributes, hierarchy, domain and535

range constrains and relations to logic rules. There536

are relatively few studies evaluating their perfor-537

mance for unseen relations, a comparison using dif-538

ferent external knowledge settings for zero-shot re-539

lation classification and KG completion can be seen540

in (Geng et al., 2021). To the best of our knowl-541

edge, we present the first approach to automatically542

predict and generate entity (or relation) descrip-543

tions to improve the accuracy of entity recognition 544

and relation classification models. 545

Query auto completion in information retrieval 546

systems. in relation to our work, query auto com- 547

pletion is the problem where a computer extends 548

the initial parts of user queries to a search engine 549

to save users time and enhance search performance 550

(Cai et al., 2016). Most query auto completion ap- 551

proaches are based on mining query logs (Whiting 552

and Jose, 2014). The most related approach to our 553

work is based on personalised LMs fine-tuned on 554

users’ historical data (Jaech and Ostendorf, 2018). 555

The key difference between our work and the query 556

auto completion setting is that in the context of 557

named entity recognition, we don’t have histori- 558

cal data to learn from. Moreover, the objective of 559

query extension is to maximise the retrieval doc- 560

uments accuracy while named entity recognition 561

looks at the descriptions that maximise the entity 562

annotation accuracy. 563

6 Conclusion and future work 564

In this paper, we formally defined the problem of 565

selecting descriptions to make predictions about 566

unseen classes in the ZSL context. We empiri- 567

cally evaluated the sensitivity of two ZSL methods 568

to description changes, and proposed 4 different 569

strategies to enhance them using the implicit knowl- 570

edge of pre-trained language models. We also stud- 571

ied in detail the efficacy of the proposed entropy- 572

based heuristic to rank different description formu- 573

lations, analyzing its correlation with the perfor- 574

mance (in terms of Macro F1 Score) of the model. 575

We observed a negative correlation between the 576

proposed heuristic and Macro F1 Score on two out 577

of four of the considered datasets (OntoNotesZS 578

and FewRel). The same assumption however was 579

not valid for the other datasets (MedMentionsZS 580

and WikiZS), thus motivating the need to develop 581

more effective heuristics in future. Finally, we de- 582

scribed the UDEBO method, which combines the 583

predictions obtained by the same model using dif- 584

ferent automatically generated variants of entity 585

and relation descriptions. Our experimental results, 586

on 4 different datasets, spanning across two differ- 587

ent NLP tasks (Entity Classification and Relation 588

Classification) showed how UDEBO outperforms 589

the baselines by a significant margin and achieves 590

new state-of-the-art results on these benchmarks 591

under the zero-shot setting. 592
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A Appendix727

A Datasets728

As mentioned in Section 4.1, we evaluate our ap-729

proach on four different datasets, two for EC and730

two for RC. For EC, we use OntoNotes (Pradhan731

et al., 2013) and MedMentions (Mohan and Li,732

2019). OntoNotes is a dataset that comprises vari-733

ous genres of text (news, conversational telephone734

speech, weblogs, usenet newsgroups, broadcast,735

talk shows). We use the version available in Hug-736

gingface 4 and adapt it to perform zero-shot as737

explained in (Aly et al., 2021), removing all the738

entities that are out of the split – i.e., each split has739

a unique set of entities, so all the entities labeled740

with entities out of that set are removed – removing741

sentences without any entity labelled and using the742

same train/test/dev splits, so the pre-trained model743

has not seen the entities in the test set neither. The744

entity descriptions used for OntoNotesZS (the zero-745

shot version of OntoNotes) were provided by the746

authors of (Aly et al., 2021).747

MedMentions is a corpus of Biomedical papers748

annotated with mentions of UMLS entities. We749

apply the same preprocessing steps we used for750

the MedMentions dataset, with the descriptions751

available in the official GitHub repository of (Aly752

et al., 2021). 2 The version of the MedMentionsZS753

dataset we use is also available on Huggingface.754

Both of them in their zero-shot version, as proposed755

in (Aly et al., 2021). To convert them to the zero-756

shot version, we follow the following steps:757

1. Get the train/test/dev splits of the datasets;758

2. Collect the entities in each split;759

3. Remove entities out of the split i.e., if one760

entity e belongs to the train split, all mentions761

labelled as e in the test and dev splits will be762

replaced with the O label.763

4. Remove sentences without labels. As the pre-764

vious processing step (3) may remove all the765

entities of one sentence, the result dataset will766

have a lot of empty sentences. These sen-767

tences are removed in the final dataset.768

Table 4 and Table 5 report the entities for each769

split in the dataset and the number of entities for770

MedMentionsZS and OntoNotesZS, respectively.771

4https://huggingface.co/datasets/
conll2012_ontonotesv5

Split Entity Count

Train

O 515420
T103 22360
T038 25007
T033 9824
T062 5445
T098 3574
T017 12575
T074 1165
T082 7511
T058 14779
T170 5996
T204 4922

Test

O 27433
T031 212
T097 360
T007 448
T168 321
T022 89

Validation

O 34400
T201 404
T091 196
T037 434
T005 224
T092 452

Table 4: Number of entities labelled in each split in
MedMentionsZS.

As we can observe, both datasets are highly imbal- 772

anced, with some entities appearing 25007 times 773

and some others only 89 in the case of MedMen- 774

tionsZS, and 24163 and 65 times for OntoNotesZS. 775

However, the most common entities are used only 776

for training and the ones with fewer examples are 777

used for validation and testing. As pointed in (Xian 778

et al., 2019), real-world scenarios annotated data is 779

likely to be available for the more common ones. 780

In Table 6 we report some statistics concerning 781

the length of sentences on both MedMentionsZS 782

and OntoNotesZS. In both datasets, there are sen- 783

tences containing only 1 token and 1 entity. The 784

maximum number of tokens also varies across 785

datasets and splits, with a maximum of 179 for 786

MedMentionsZS and 210 for OntoNotesZS. 787

For RC, we use the FewRel(Han et al., 2018) and 788

WikiZS (Sorokin and Gurevych, 2017) datasets. 789

FewRel is a dataset for RC compiled by collect- 790

ing entity-relation triplets with sentences from 791

Wikipedia articles, and manually filtered to ensure 792

the data quality and class balance. We use different 793
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Split Entity Count

Train

O 909142
ORG 24163
GPE 21938
DATE 18791
PERSON 22035

Test

O 11299
FAC 149
LOC 215
WORK_OF_ART 169

Validation

O 36790
NORP 1277
LAW 65
EVENT 179
PRODUCT 214

Table 5: Number of entities labelled in each split in
OntoNotesZS.

relations for the train and the test split to ensure794

the zero-shot version of the dataset. The dataset795

is available in the Huggingface hub. 5 We use the796

train_wiki split in Huggingface as training split797

for the ZS-BERT model and the wiki_val as test798

split. Table 1 shows the total number of sentences799

in FewRel, and the number of different relations800

for each split. There are 700 samples for each re-801

lation in each split, thus the number of sentences802

reported in Table 1 is equal to the number of rela-803

tions times the number of samples for each of them804

(e.g. train split: 44800 = 64 ∗ 700). Differently805

from FewRel, WikiZS was constructed using the806

Wikidata knowledge base. The dataset contains a807

total of 93431 sentences, each with an entity pair808

and a labelled relation between them. In this case,809

the number of instances per relation class is not810

balanced and we employ our own random splits811

containing different distinct sets of relations for the812

training (83 relations), validation (15 relations) and813

testing (15 relations) of the ZS-BERT model. More814

information on the dataset is contained in Table 1.815

B Additional details on the models used816

for generating description variations817

In this section, we report additional details on the818

methods used to generate description variations819

described in Section 3.1.820

5https://huggingface.co/datasets/few_
rel

Extension with pre-trained LMs. An off-the- 821

shelf GPT-2 pre-trained model was used for gen- 822

erating the variations, using the checkpoint from 823

the Huggingface Hub. 6 We used min_length = 824

80, max_length = 120, num_beams = 8, 825

temperature = 1 and no_repeat_ngram_size = 2 826

for the generation. 827

Extension with a fine-tuned LM. A model 828

based on T5 large (Raffel et al., 2020) and fine- 829

tuned on the task of description generation and ex- 830

tension was used for generating the variations. As 831

a starting point for the fine-tuning, the checkpoint 832

from Huggingface Hub 7 was used. The Wikidata 833

dataset, containing the name and the first few sen- 834

tences of included Wikipedia articles where the 835

model was fine-tuned on, was taken from Face- 836

book Research’s BLINK project. 8 After clean- 837

ing the data i.e., removing instances with no or 838

too short (less than 10 words) descriptions, about 839

5,310,000 samples were available for training the 840

model to perform a new sequence to sequence task 841

using learning_rate = 3e − 05 and epochs = 1. 842

The objective was to complete the input descrip- 843

tion, starting from a sub-string containing the first 844

ten words of it. For the generation task, just the 845

name of the description was used. In the latter 846

case, we set min_length = 80, max_length = 847

120, num_beams = 8, temperature = 1 and 848

no_repeat_ngram_size = 2. 849

Summarization. A warm-started BERT2BERT 850

(small) model fine-tuned on the CNN/Dailymail 851

for document summarization was used for gen- 852

erating the descriptions variations, using the 853

checkpoint from the Huggingface Hub. 9 We 854

used min_length = 80, max_length = 512, 855

num_beams = 8, temperature = 1 and 856

no_repeat_ngram_size = 2 for this set of exper- 857

iments. 858

Paraphrasing. A PEGASUS model fine-tuned 859

for paraphrasing was used for generating the de- 860

scription variations, using the checkpoint from 861

the Huggingface Hub. 10 We used min_length = 862

6https://huggingface.co/gpt2
7https://huggingface.co/t5-large
8http://dl.fbaipublicfiles.com/BLINK/

entity.jsonl
9https://huggingface.co/mrm8488/

bert-small2bert-small-finetuned-cnn_
daily_mail-summarization

10https://huggingface.co/tuner007/
pegasus_paraphrase
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Dataset Split
Mean

#Tokens
Max

#Tokens
Min

#Tokens
Mean

#Entities
Max

#Entities
Min

#Entities

MedMentionsZS
train 26 179 1 6 78 1
test 28 102 2 2 33 1
validation 28 119 4 2 12 1

OntoNotesZS
train 25 210 1 3 99 1
test 29 108 2 3 39 1
validation 28 186 3 1 27 1

Table 6: Entity classification datasets details.

Figure 5: Analysis of the correlation between entropy and Macro F1 Score on unseen classes on the MedmentionsZS
test split.

10, max_length = 60, num_beams = 8,863

temperature = 1 and no_repeat_ngram_size = 2864

for the generation of text.865

C Additional experiments on Entropy866

and Macro F1 Score correlations867

In this section we report additional insights on the868

correlation analysis discussed in the paper.869

C.1 Correlations analysis of Macro F1 Score870

and entropy on MedmentionsZS871

Figure 5 reports the correlations between Macro872

F1 Score and entropy on MedmentionsZS test-set.873

As discussed in the paper we did not observe any874

statistically significant correlations, with p-value =875

0.50 .876

C.2 Example of generated descriptions and877

entropy values878

Given the relation Film Director described as:879

880

"director(s) of film, TV-series, stageplay, video881

game or similar".882

883

The fine-tuned approach for generating vari-884

ations produces the alternative description:885

886

The director(s) of a film, TV-series, stage-887

play, video game or similar is the person who888

directs the production of the film or television889

series. The term "director" is also used to890

describe an individual or group of people who are 891

responsible for the creation, production, and/or 892

directing of video games, films, television shows, 893

or other forms of media.. 894

895

Although the generated description seems 896

more complete and containing relevant additional 897

information, the entropy calculated with ZS-BERT 898

is higher in this case than when using the original 899

description. This means that the model is more 900

uncertain of its prediction. 901
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