
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

COMMONKV: COMPRESSING KV CACHE WITH
CROSS-LAYER PARAMETER SHARING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) confront significant memory challenges due to
the escalating KV cache with increasing sequence length. As a crucial technique,
existing cross-layer KV cache sharing methods either necessitate modified model
architectures with subsequent pre-training or incur significant performance degra-
dation at high compression rates. To mitigate these challenges, we propose Com-
monKV, a training-free method for cross-layer KV cache compression through
adjacent parameters sharing. Inspired by the high similarity observed in cross-
layer hidden states, we utilize Singular Value Decomposition (SVD) to achieve
weight sharing across adjacent parameters, resulting in a more easily mergeable
latent KV cache. Furthermore, we also introduce an adaptive budget allocation
strategy. It dynamically assigns compression budgets based on cosine similarity,
ensuring that dissimilar caches are not over-compressed. Experiments across mul-
tiple backbone models and benchmarks including LongBench and Ruler demon-
strate that the proposed method consistently outperforms existing low-rank and
cross-layer approaches at various compression ratios. Moreover, we find that the
benefits of CommonKV are orthogonal to other quantization and eviction meth-
ods. By integrating these approaches, we can ultimately achieve a 98% compres-
sion ratio without significant performance loss.

1 INTRODUCTION

Large Language Models (Achiam et al., 2023; Yang et al., 2025) have demonstrated significant
achievements in long-text understanding and generation tasks (Liu et al., 2025b). They are widely
applied in scenarios such as repository-level code generation (Zhang et al., 2024) and complex
mathematical reasoning (Chen et al., 2025). As a crucial technique, KV cache stores the keys and
values tensor of past contexts in attention module, ensuring the speed of autoregressive generation
for LLMs. However, the size of the KV cache is directly proportional to the text length, which
imposes a significant memory burden on GPUs (Shi et al., 2024).

To mitigate the issues caused by KV cache during the inference phase, many studies (Zhang et al.,
2023; Li et al., 2024a;b) have focused on developing KV cache compression techniques. Leverag-
ing the similarity of information between layers, cross-layer KV cache sharing emerges as a highly
promising direction. Existing work (Wu & Tu, 2024; Zuhri et al., 2024; Brandon et al., 2024)
primarily focuses on optimizing the attention module structure (Wu et al., 2024) to enable guar-
anteed cross-layer sharing. YOCO (Sun et al., 2024b) innovatively introduces self-decoder and
cross-decoder structures, which significantly accelerate prefilling phase and reduce GPU memory
demands by only caching once. In addition to structural enhancements, several studies focus on
methods for directly compressing the cross-layer cache of existing LLMs. MiniCache (Liu et al.,
2024c) effectively mitigates reconstruction error during cross-layer sharing by disentangling state
vectors into magnitude and direction components.

While the above methods considerably alleviate the memory pressure of LLM deployment through
cross-layer sharing, several issues remain to be addressed. (1) Excessive implementation costs.
Most existing methods involve redesigning the Transformer (Vaswani et al., 2017) architecture,
which necessitates expensive pre-training to achieve the desired performance from scratch. This
makes migrating these techniques to the latest LLMs nearly impossible for reducing KV cache
memory. (2) Performance degradation at high compression rates. While some methods directly

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0.2 0.3 0.4 0.5 0.6
Compression Ratio

20

25

30

35
Av

er
ag

e 
S

co
re

Average Score at Various Compression Ratio

MiniCache
ThinK
Palu
CommonKV (Ours)
fullkv

(a)

0 5 10 15 20 25 30
Layer ID

0.0

0.2

0.4

0.6

0.8

1.0

C
os

 S
im

ila
rit

y

significant gap!

Cos Similarity on Adjacent Layers

Key Cache
Value Cache
Hidden State
Latent Cache

(b)

Figure 1: (a) Performance of KV cache compression methods under various compression ratios.
Proposed CommonKV maintains performance at 0.6 compression ratio, significantly outperforming
existing cross-layer sharing and low-rank compression methods. (b) Cross-layer cosine similarity
of key cache, value cache, hidden state and the proposed latent cache. A significant difference can
be observed between the hidden state and the KV cache. This issue can be improved by sharing
parameters across layers.

share key-value pairs of existing LLMs, the inherent dissimilarity of KV cache makes it challenging
to achieve high compression rates without significant performance degradation. As shown in Figure
1a, the direct sharing method (e.g., MiniCache) suffers from a significant performance drop when
the compression ratio exceeds 20%. This suggests the need for a more consistent representation of
cross-layer KV cache for compression.

In this paper, we propose CommonKV1, a training-free method that alleviates the aforementioned
challenges by merging the cross-layer KV cache through weight parameter sharing. Inspired by the
significantly higher similarity of hidden states between adjacent layers compared to the KV cache,
we aim to improve the consistency of the KV cache by sharing KV parameter matrices across these
layers. Specifically, we obtained partially shared cross-layer weights by concatenating and applying
Singular Value Decomposition (SVD) to the KV parameter matrices of adjacent layers. Compared
to the original KV cache, the latent cache derived from these shared matrices is more easily merged
due to the consistent hidden state input. Furthermore, we propose an adaptive budget allocation
strategy to achieve cache sharing with lower performance loss. It dynamically allocates compres-
sion budgets across layers based on cosine similarity, preventing performance degradation caused by
over-compressing dissimilar caches. Unlike other methods that require training from scratch, Com-
monKV achieves model conversion with only lightweight, offline SVD, while maintaining LLM
performance at high compression rates.

Experiments conducted across various models and benchmarks demonstrate that the proposed
method exhibits significant advantages over other sharing and low-rank techniques, particularly at
high compression rates. Leveraging latent cache construction and cross-layer sharing, CommonKV
maintains over 95% performance on mainstream long-text benchmarks at a 50% compression rate.
Specifically, our proposed cross-layer sharing method is orthogonal to existing eviction and quan-
tization techniques. By integrating various compression methods, we can achieve 98% KVCache
compression without significant performance loss.

Our Contribution can be summarized as follows:

• We propose CommonKV, a training-free method for KV cache compression. It leverages shared
parameters to obtain similar latent cache, boosting performance with cross-layer compression.

• We propose an adaptive budget allocation algorithm that dynamically assigns varying compres-
sion rates to regions of differing similarity, mitigating performance degradation from KV cache
sharing.

• Extensive experiments validate the effectiveness of the proposed method. Besides, it is orthogo-
nal to other compression algorithms, enabling integration for even higher compression rates.

1Our code is available at supplementary material.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 OBSERVATIONS

To identify the main challenges in current KV cache sharing methods, we start by statistically an-
alyzing the inter-layer information similarity. We measure the cross-layer cosine similarity of key
cache, value cache, and the hidden state input to each layers for Llama3.1-8B-Instruct on the Long-
Bench (Bai et al., 2023) benchmark. As shown in Figure 1b, we observe two distinct phenomena:

(1) Dissimilarity of the adjacent KV cache. Despite recent efforts (Liu et al., 2024c; Yang et al.,
2024b) to compress the KV cache via cross-layer sharing, it is evident from the Figure 1b that the
key and value caches in adjacent layers exhibit dissimilarity with respect to cosine similarity. This
apparent dissimilarity also explains why such direct merging methods suffer significant performance
loss at high compression rates. To enable lower-loss inter-layer sharing, we need to achieve a more
consistent representation of key and value information.

(2) Similarity of the adjacent hidden state. Additionally, we also compute the similarity between
the hidden states input to each layer, which are subsequently transformed into the KV cache through
parameter matrices WK and WV . In contrast to the KV cache, the hidden states across layers
exhibit a high degree of consistency in terms of cosine similarity, which aligns with observations
of Lee et al. (2024). We hypothesize that this is attributed to the residual connections within the
transformer blocks, which also potentially indicates the feasibility of cross-layer cache sharing.

Motivation. Given the above observations, we can conclude that the inconsistency of inter-layer
KV cache primarily stems from the dissimilarity of the Wk and Wv matrices across different layers.
This insight encourages us to explore parameter sharing for key and value matrices across different
layers. When similar hidden states are multiplied by the same weight matrices, the resulting latent
KV cache would be more consistent, facilitating better cross-layer merging. We first simply validate
this idea by sharing matrices across all layers. As shown in Figure 1b, the similarity of the latent
cache is significantly improved compared to the KV cache. Moreover, we observe that the cosine
similarity of hidden states also varies across layers: lower in shallow layers and higher in deeper
ones. This observation motivates the design of an adaptive budget allocation strategy to mitigate the
loss introduced by merging.

3 METHODOLOGY

In this section, we introduce CommonKV, a cross-layer KV cache sharing approach inspired by
the observations discussed above. For an existing large language model, we first perform an offline
transformation (§3.1) to enable partial parameter sharing across its layers. Subsequently, we dynam-
ically allocate the compression budget online (§3.2) based on the similarity of the latent KV cache.
Some implementation details will be elaborated in §3.3.

3.1 CROSS-LAYER PARAMETER SHARING

Problem Statement. Existing LLMs primarily employ Multi-Head Attention (MHA) (Vaswani
et al., 2017) or Grouped-Query Attention (GQA) (Ainslie et al., 2023) as the main structures for
their attention modules. The acquisition of the KV cache can be formalized as:

kli = xl
iW

l
k, vli = xl

iW
l
v (1)

Where W l
k and W l

v are the weight matrices corresponding to the l-th layer, xl
i is the hidden state of

tokeni at the l-th layer, and kli, v
l
i denotes the corresponding cache.

As discussed in Section 2, given the inherent similarity between xl
i and xl+1

i across layers, the
dissimilarity in cross-layer KV pairs primarily stems from the differences in their respective weight
matrices. Therefore, a straightforward approach is to share the KV matrices across layers, aiming to
achieve more similar projected caches.

Cross-layer parameter sharing. Inspired by related work (Wang et al., 2024) in model compres-
sion, we employ a cross-layer concatenated SVD method for decomposing the weight matrices. As

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

... ...

(a) Cross-layer Concatenation & SVD (b) Cross-layer Parameter Sharing

sh
ar

ed
 m

at
rix

...

... ...

Figure 2: An Illustration of Cross-Layer Weight SVD Decomposition. Through parameter sharing,
we obtain a shared matrix Agi and layer-specific matrices Bl

k/v for each layer.

shown in Figure 2, we first concatenate the KV matrices of adjacent layer groups gi, which can be
defined as:

Wgi =
[
W l

k;W
l
v; ...;W

l+|gi|
k ;W l+|gi|

v

]
(2)

Subsequently, SVD decomposition is applied to the concatenated matrix Wgi to derive the corre-
sponding shared and layer-specific parameters:

Wgi ≈ UrΣrV
T
r =

[
Ur

√
Σr

] [√
ΣrV

T
r

]
= [Agi ]

[
Bl

k;B
l
v; ...;B

l+|gi|
k ;Bl+|gi|

v

] (3)

Where r denotes the chosen SVD rank, Agi represents the shared parameters for Group i, and Bl
k/v

refers to the right part matrix of SVD sliced according to the order in Equation 2. Finally, we can
obtain an approximate representation of the original parameter matrix, consisting of the product of
a shared matrix and a specific matrix:

W
l+|gi|
k ≈ AgiB

l+|gi|
k , W l+|gi|

v ≈ AgiBl+|gi|
v (4)

Consistent latent KV Cache. By leveraging the shared parameter matrix, the original KV cache
construction can be expressed as:

kli = xl
iA

giBl
k, vli = xl

iA
giBl

v (5)
Instead of caching the original key and value vectors, we choose to cache the more consistent latent
KV representations:

hl
i = xl

iA
gi (6)

After pre-filling, we perform cross-layer merging on the obtained latent cache hl
i through averaging,

achieving KV cache capacity compression. During the inference phase, we restore the latent KV
cache to the original cache for attention computation with RoPE (Su et al., 2024) position embed-
dings, which is somewhat similar to the process of Multi-head Latent Attention (MLA) (Liu et al.,
2024b).

3.2 ADAPTIVE BUDGET ALLOCATION

Group score calculation. While parameter sharing yields a more consistent latent KV cache, we
still observe that different groups exhibit varying sensitivities to merging during inference. Com-
pared to deeper layers, shallower layers of the cache typically show greater inter-layer differences,
which can lead to significant performance degradation upon merging. This led us to allocate differ-
ent budgets across groups to ensure the effectiveness of CommonKV.

In practice, we use the cosine similarity between latent cache layers as an evaluation metric to guide
dynamic budget allocation during the inference phase. The score for group gi can be formulated as:

score(gi) =

∑
t∈gi

sim(hl
t, h

l+|gi|
t )

|gi|
(7)

where t represents tokens in group gi across layers. To reduce computational overhead, we only use
the cosine similarity between the first and last layers within each group as its score. After calculating
the score of each group, we selectively merge groups based on the current compression ratio. For
instance, given a group size of 4 and a desired compression ratio of 0.5, we merge and share the top
50% most similar groups to meet the global compression target.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

RoPE
Softmax(QK)

Score@H

RoPE
Softmax(QK)

Score@H

...

Attention module of layer l Attention module of layer l+1

cached cached

consistent latent caches

without
matrix fusion

with
matrix fusion

Figure 3: The main architectural diagram of the proposed CommonKV. Through cross-layer pa-
rameter sharing, we can use shared matrices Agi to obtain the latent KV cache hl

i for each layer.
Additionally, we further reduce inference computation by fusing matrices Bl

v and W l
o.

Fisher information-based merging. After obtaining the indices of the layers to be merged based
on the budget, we perform latent sharing through a weighted merge. Assuming the cache derived
from more informative weights is more sensitive, we propose using the Fisher information (Ly et al.,
2017; Liu et al., 2021) of the corresponding layers as the merging weights. This can be formulated
as:

hgi =
1

C

∑
l∈gi

(F(W l
k) + F(W l

v))h
l
i (8)

where C is a normalization constant, and F(·) denotes the Fisher information of the corresponding
weight parameters. Given that the key and value for each layer share a common latent cache, we use
the sum of their Fisher information as weights.

3.3 MERGING AND RESTORATION DETAILS

After performing offline parameter sharing on an existing LLM, we leverage the similarity of the
latent KV cache during inference to achieve inter-layer compression. To balance performance and
speed during the inference phase, we implement some specific designs for merging and restoration.

Position embeddings. Compared to original key cache, the latent cache hl
t employing by Com-

monKV does not contain any positional information. This necessitates recalculating the correspond-
ing position embeddings based on the position ids during each decoding step. To further reduce
computation time, we pre-calculate the position embeddings shared across all layers before the first
layer’s computation.

Cache merging strategies. To ensure generation quality, we follow (Chang et al., 2025)’s setting
and only compress the KV cache conducted during prefilling phase. Although the KV cache for the
output segment typically accounts for a small proportion, for a fair comparison, we calculate the
average compression ratio of both the compressed and uncompressed parts as the final compression
rate.

Matrix fusion. As illustrated in Figure 3, while compressing KV cache memory, the proposed
CommonKV introduces some computational overhead. During the reconstruction phase, an addi-
tional two reconstruction KV matrices need to be computed, which impacts inference performance.
To alleviate this issue, we offline-merged the B matrix with the normally computed Wo matrix.

O = softmax(
QKT

√
dk

)VWo

= softmax(
QKT

√
dk

)XAgi
[
Bl+|gi|

v Wo

] (9)

This matrix fusion operation can effectively reduce the computational cost of reconstructing the KV
cache. Moreover, we provide a detailed discussion of inference latency for different methods in
Section 5.2.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation Datasets. We evaluate CommonKV using two widely adopted long-context datasets:
LongBench (Bai et al., 2023) and Ruler (Hsieh et al., 2024). These datasets represent real-world and
synthetic data, respectively. The context window for all models was set to 8k. For Ruler, we follow
the setup from Chang et al. (2025) and report the average performance across the corresponding
multiple tasks. The compression ratio is defined as 1− Compressed KV

Original KV . A higher ratio indicates greater
memory savings.

Selected Baselines. The proposed CommonKV method, which incorporates SVD, can be consid-
ered a hybrid of low-rank and cross-layer sharing methods. Therefore, we primarily select several
mainstream low-rank and cross-layer methods as baselines for comparison:

• MiniCache (Liu et al., 2024c) employs a disentangled representation of the KV cache to achieve
training-free cross-layer sharing.

• ThinK (Xu et al., 2024) achieves key cache compression and efficient QK computation by prun-
ing the unnecessary dimensions of the key vectors.

• Palu (Chang et al., 2024) decomposes the weight matrices of each layer, thereby caching a
lower-rank hidden KV cache.

Additionally, xKV (Chang et al., 2025) achieves good compression by extracting the common in-
formation from the inter-layer cache via online SVD decomposition. However, its significant time
overhead compared to other methods warrants a separate discussion in Section 5.2. We compare
all methods at compression rates ranging from 0.3 to 0.6. Beyond a compression rate of 0.6, all
methods experience a significant performance degradation.

Implementation details. We conduct main experiments on two mainstream LLMs: Llama3.1-8B-
Instruct (Dubey et al., 2024) and Mistral-v0.2-7B-Instruct (Jiang et al., 2023). For these GQA-based
models, we choose a group size of 4 for KV cache sharing. To achieve various compression ratios
while optimally preserving performance, the SVD rank is set to 0.7 · dhidden for compression ratios
of 0.3 and 0.5, and to 0.6 ·dhidden for a ratio of 0.6. Following setup of Chang et al. (2024), we utilize
2048 samples with a sequence length of 1024 from Wikitext-2 (Merity et al., 2016) to compute the
Fisher Information during the merging phase.

Challenges of GQA. For traditional MHA architectures, sharing the KV cache every N layers can
theoretically achieve a compression ratio of 1/N. Unfortunately, for GQA models, dkv is usually
smaller than dhidden. This means that after cross-layer SVD, latent cache of a single layer must
be slightly larger than the original cache to maintain performance. To alleviate this issue, we first
concatenate and share the Key and Value matrices, which increases the rank of the parameters for
each layer. Additionally, during the SVD process, we reduce the rank of the concatenated matrix to
further compress the storage of its latent cache. Ultimately, we achieved a 0.5 compression ratio on
mainstream GQA models by merging every 4 layers, with the flexibility to adjust the SVD rank.

4.2 MAIN RESULTS

Overall performance. We benchmark the performance of CommonKV against other comparable
strong baselines on the mainstream long-context tasks. As shown in Table 1, the proposed method
demonstrates significant advantages across multiple models and various compression ratios. Specifi-
cally, CommonKV can maintain 95% end-to-end performance at a 0.5 compression ratio, effectively
alleviating the memory pressure caused by KV cache in long-context scenarios. This is primarily
attributable to the more consistent latent KV cache resulting from cross-layer parameter sharing,
which further elevates the ceiling of training-free cross-layer sharing methods.

Compared with cross-layer methods. As discussed in Section 2, the dissimilarity of the KV
cache across layers is the main challenge for existing cross-layer sharing methods. Despite em-
ploying magnitude and direction vector extraction for the KV cache of adjacent layers, MiniCache

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Ratio Method LongBench (Bai et al., 2023) Ruler (Hsieh et al., 2024) Avg.
QA Sum. FShot Synth. Code NS NMK NMQ NMV QA VT FWE

Llama3.1-8B-Instruct
0.0 Full KV 17.20 27.85 68.31 39.87 61.15 100.00 100.00 100.00 95.80 76.76 99.90 95.90 73.55

0.3

MiniCache 7.60 18.19 51.17 15.01 36.64 11.50 1.10 0.60 0.60 43.75 23.80 28.50 18.90
ThinK 16.52 27.13 67.00 39.34 58.28 100.00 99.90 99.70 87.75 74.39 99.88 96.60 72.34
Palu 18.76 27.55 67.40 36.21 54.97 99.10 99.90 99.60 91.75 72.96 99.96 95.40 72.14

CommonKV 17.12 25.38 66.54 41.48 58.58 99.80 99.00 99.90 96.65 71.59 98.88 94.90 72.31

0.5
ThinK∗ 7.97 17.34 50.19 37.84 46.58 1.90 1.90 0.55 1.10 51.14 1.52 16.13 18.57

Palu 17.87 26.27 65.97 25.45 38.43 98.80 98.60 98.60 94.20 65.07 98.00 93.07 68.79
CommonKV 16.74 24.59 64.62 41.40 57.86 98.70 97.20 99.40 95.20 71.66 99.20 94.60 71.59

0.6 Palu 9.20 16.31 46.95 2.62 23.32 99.60 86.50 55.25 45.15 39.16 84.88 69.00 50.59
CommonKV 15.74 23.90 61.77 41.30 53.54 98.90 94.40 98.50 93.05 58.34 95.40 88.80 68.19

Mistral-v0.2-7B-Instruct
0.0 Full KV 32.30 27.56 64.77 37.13 55.17 99.90 98.70 99.00 96.50 68.04 99.32 91.73 73.07

0.3

MiniCache 14.80 19.86 45.14 2.46 34.79 31.80 10.90 5.50 5.50 35.97 25.21 39.93 22.83
ThinK 31.59 26.93 63.30 27.55 51.39 100.00 97.80 95.80 84.75 65.59 99.30 91.60 70.72
Palu 31.10 27.04 64.40 35.30 50.50 99.90 95.50 95.05 93.50 66.41 99.20 91.40 71.39

CommonKV 31.74 25.81 63.26 35.04 55.15 99.70 97.40 97.65 95.35 65.01 98.28 91.20 71.84

0.5
ThinK∗ 26.79 20.26 52.92 23.44 42.59 58.50 41.30 29.10 27.85 54.63 21.90 22.80 37.71

Palu 30.70 26.31 63.25 22.01 45.42 99.80 89.30 94.00 92.60 65.46 95.70 81.50 68.21
CommonKV 30.41 24.36 59.62 33.45 53.35 99.60 95.60 94.65 94.20 64.79 97.88 90.83 70.57

0.6 Palu 27.46 25.19 61.49 12.81 31.94 99.80 81.75 94.85 83.75 59.81 88.30 73.17 63.07
CommonKV 28.56 23.84 59.91 28.85 54.28 99.50 94.30 92.65 93.00 61.29 93.20 84.80 68.61

Table 1: Compression performance comparison on long-context datasets. Bold indicates the best
performance at an equivalent compression ratio. Due to significant performance loss, some meth-
ods do not report results for all compression ratios. Since Think only compresses the key cache,
we calculate the final compression ratio as the average of the key-vale pairs. ∗ denotes an actual
compression ratio of 0.4.

suffers significantly from this inherent dissimilarity, leading to substantial performance degradation
even at a mere 0.2 compression ratio. In contrast, the proposed method fundamentally mitigates the
dissimilarity issue by sharing parameters across layers, naturally reducing the loss from merging.
Under Fisher information-based weighted merging, the CommonKV achieves dynamic four-layer
merging, exhibiting no significant performance degradation even at a 0.6 compression ratio.

Compared with low-rank methods. Additionally, considering CommonKV leverages the con-
cept of SVD decomposition for compression, we also compare it with several low-rank KV cache
compression methods. Compared to traditional cross-layer merging methods, low-rank methods
perform better at lower compression ratios, indicating that existing KV cache indeed has some re-
dundancy in their dimensions. However, low-rank methods have a clear upper limit on their com-
pression ratio, with a noticeable decline observable after exceeding 0.5 compression. Halving the
dimensionality while maintaining performance is far more challenging than merging two KV cache
layers, due to the inherent inter-layer connections. The proposed CommonKV greatly extends the
upper bound of low-rank methods through cross-layer merging, demonstrating a clear advantage
over the powerful baseline method ThinK and Palu at most compression ratios.

5 ANALYSIS

5.1 EFFECT OF MERGING MECHANISM

Method Adapt. QA Sum. FShot Synth. Code Avg.

Full KV - 17.20 27.85 68.31 39.87 61.15 38.60
MCache 12.74 23.06 60.33 41.00 55.08 34.16
Mean 13.52 23.36 60.63 40.66 52.96 34.11
Fisher 12.82 23.52 63.48 40.30 52.20 34.19
Shallow 16.00 25.02 68.44 35.50 57.72 36.45
Deep 14.56 23.80 65.57 35.50 57.39 35.23
Mean 16.20 24.54 66.84 38.50 57.03 36.55
Fisher 16.74 24.59 64.62 41.40 57.86 36.99

Table 2: Performance of different merging mech-
anisms on LongBench at a compression ratio of
0.5. Adapt. indicates whether dynamic budget al-
location is used.

To validate the effectiveness of our proposed
Adaptive budget allocation strategy, we con-
duct an experimental analysis of the merging
mechanism on LongBench, using Llama3.1-
8B-Instruct. All merging strategies are built
upon the proposed CommonKV method, tai-
lored for a more consistent latent KV cache,
with a selected compression ratio of 0.5. We
compared two allocation strategies: static bud-
geting and dynamic budgeting, encompassing

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

xKV Full KV Palu CommonKV
0

5

10

15

20

25

La
te

nc
y 

(s
)

(a) Prefilling Latency
Prefilling
SVD Cost
Sort Cost

xKV Full KV Palu CommonKV
0

20

40

60

80

100

La
te

nc
y 

(m
s/

st
ep

)

(b) Decoding Latency

Performance
w.o. Matrix Fusion
w. Matrix Fusion

Full KV Ours +KVQuant +SnapKV +Both
0

20

40

60

80

100

K
V

 C
ac

he
 M

em
or

y

100%

50%

12%
6%

2%

(c) Integrated Effects on LongBench

0

20

40

60

80

100

P
er

fo
rm

an
ce

0

20

40

60

80

100

P
er

fo
rm

an
ce

Figure 4: Inference Latency and Integration Analysis of CommonKV on Llama3.1-8B-Instruct. (a)
Average latency of different methods during the prefilling stage. SVD Cost refers to the online SVD
decomposition latency of xKV, while Sort Cost denotes the adaptive budget allocation overhead
of CommonKV. (b) Average latency of different methods during the decoding stage. (c) Memory
footprint of the KV cache integrated with different methods and performance on downstream tasks.

several distinct merging methods: Mean serves as the most straightforward baseline, representing
a simple average. MCache represents the application of MiniCache (Liu et al., 2024c) to the latent
KV cache. Shallow and Deep represent two extreme cases where only the latent cache of the first
or last layer, respectively, is retained as a representative. Fisher is the proposed Fisher information
based merging method, which merges the KV cache of adjacent layers based on the Fisher informa-
tion of the parameters of corresponding layers. For consistent compression ratios, we use the full
rank for static methods to achieve global compression, while dynamic methods employ a lower rank
for group-adaptive compression.

The experimental results, as shown in Table 2, indicate that dynamic methods still possess a sig-
nificant advantage over static methods, even when employing a lower-rank compression. Using a
weighted averaging approach can better preserve the performance on downstream tasks compared to
sharing the cache of specific layers. We can also see that the proposed method does not conflict with
existing merging methods like MiniCache. The consistent latent cache can further raise the upper
bound of current algorithms.

5.2 INFERENCE LATENCY ANALYSIS

Additionally, due to the introduction of an extra restoration operation, we also analyze the inference
latency of the proposed method. Specifically, we compared the prefill and decoding latency of our
method against the similar methods Palu (Chang et al., 2024) and xKV (Chang et al., 2025) at an
8K context length. The latency test is conducted on a single RTX A6000 GPU.

As shown in Figure 4(a), the online SVD of the cache introduces non-negligible latency at an 8K
context length. The SVD construction time alone accounts for more than six times the entire prefill-
ing latency, whereas our cost for constructing the dynamic budget is only 5%. In terms of decoding
latency, as shown in Figure 4(b), the proposed method exhibits no significant disadvantage com-
pared to normal auto-regressive decoding after optimization of the matrix merging. Additionally,
with nearly a 6x reduction in latency, CommonKV achieves comparable performance to both the
online method xKV and the original baseline at a 0.5 compression ratio on Ruler benchmark.

5.3 INTEGRATION WITH OTHER METHODS

As a relatively independent compression method, cross-layer merging has the potential to integrate
with other KV cache compression techniques to further enhance compression ratios. We validate the
orthogonality of CommonKV with other methods on LongBench. Specifically, we select SnapKV
(Li et al., 2024b) to represent eviction methods and KVQuant (Hooper et al., 2024) to represent
quantization methods. For quantization, we directly apply K4V4 quantization to the shared latent
KV cache. Regarding the eviction strategy, we opt to share eviction indices across merged layers,
applying them to the sharing latent KV cache.

The experimental results are shown in Figure 4(c). The cross-layer sharing method shows strong
orthogonality with the other two categories of methods. By integrating these approaches, we can
achieve 98% KV cache compression. Additionally, we observe a phenomenon similar to Yang et al.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(2024a), where using a single set of eviction indices across adjacent layers resulted in a much smaller
performance loss than anticipated. This further validates the inherent similarity between layers.

6 RELATED WORK

In long-context tasks, the memory footprint of the KV cache has reached the same order of mag-
nitude as the model itself. Consequently, a growing number of studies (Liu et al., 2024d; Li et al.,
2024b; Hooper et al., 2024) are dedicated to KV cache compression. The proposed CommonKV
combines the principles of low-rank approximation and cross-layer merging. Recently, many efforts
have also focused on KV cache compression from these two perspectives.

6.1 CROSS-LAYER COMPRESSION

Architecture. To mitigate the KV cache problem in traditional Transformer (Vaswani et al., 2017)
architectures, some studies (Wu & Tu, 2024) have focused on optimizing the model architecture to
enable cross-layer cache sharing. YOCO (Sun et al., 2024b) partitions all blocks into two parts:
the self-decoder and the cross-decoder. which retains the KV cache only from the self-decoder
portion. Similarly, both MLKV (Zuhri et al., 2024) and CLA (Brandon et al., 2024) employ a Cross-
Attention design to enable cross-layer KV cache sharing, thereby reducing deployment overhead.
CMLA (Yang et al., 2024c) applies a sharing technique to the MLA model (Liu et al., 2024b). When
combined with continuous training, it compresses the KV cache to 2% through full-layer sharing.

Algorithm. Several plug-and-play algorithms have also been proposed to merge the inter-layer
KV cache. MiniCache (Liu et al., 2024c) leverages spherical interpolation to achieve efficient inter-
layer cache merging and reconstruction. While xKV (Chang et al., 2025) explores the inherent
similarity of inter-layer caches from the perspective of Centered Kernel Alignment (CKA). In addi-
tion to similarity, KVSharer (Yang et al., 2024b) proposes a counterintuitive strategy for cross-layer
sharing, demonstrating that sharing dissimilar KV caches better preserves model performance than
similarity-based approaches.

6.2 LOW-RANK COMPRESSION

Architecture. Traditional MHA (Vaswani et al., 2017) is designed with a one-to-one correspon-
dence between each query and its key-value pair, which results in dimensional redundancy. Multi-
Query Attention (MQA) (Shazeer, 2019) and Grouped-Query Attention (GQA) (Ainslie et al., 2023)
have demonstrated that a single group of queries can still perform well with a single KV pair, which
significantly reduces the dimension of the KV cache. Multi-head Latent Attention (MLA) (Liu et al.,
2024a;b) restores a richer KV cache representation during inference by storing a low-rank KV cache.

Algorithm. Shadow KV (Sun et al., 2024a) uses landmarks to reconstruct the SVD-compressed
KV cache. It significantly improves system throughput combined with offloading operations. Fur-
thermore, xKV (Chang et al., 2025) explores the potential for cross-layer SVD compression. By
leveraging the inherent similarity between layers, it achieves a higher compression ratio. By operat-
ing on position-related head dimensions, FourierAttention (Liu et al., 2025a) performs fixed-length
compression on context-insensitive dimensions, leading to a notable reduction in memory usage.

7 CONCLUSION

In this paper, we introduce CommonKV, a training-free KV cache cross-layer compression method.
By exploiting the similarity of hidden states across layers, it achieves effective cross-layer latent
cache merging through inter-layer parameter sharing. Extensive experiments demonstrate that our
proposed method significantly outperforms existing sharing and low-rank approaches. Furthermore,
our method is orthogonal to various existing KV cache compression techniques, which highlights
its broad applicability.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan-
Kelley. Reducing transformer key-value cache size with cross-layer attention. Advances in Neural
Information Processing Systems, 37:86927–86957, 2024.

Chi-Chih Chang, Wei-Cheng Lin, Chien-Yu Lin, Chong-Yan Chen, Yu-Fang Hu, Pei-Shuo Wang,
Ning-Chi Huang, Luis Ceze, Mohamed S Abdelfattah, and Kai-Chiang Wu. Palu: Compressing
kv-cache with low-rank projection. arXiv preprint arXiv:2407.21118, 2024.

Chi-Chih Chang, Chien-Yu Lin, Yash Akhauri, Wei-Cheng Lin, Kai-Chiang Wu, Luis Ceze, and
Mohamed S Abdelfattah. xkv: Cross-layer svd for kv-cache compression. arXiv preprint
arXiv:2503.18893, 2025.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng, Jiannan Guan, Peng Wang, Mengkang Hu,
Yuhang Zhou, Te Gao, and Wanxiang Che. Towards reasoning era: A survey of long chain-of-
thought for reasoning large language models. arXiv preprint arXiv:2503.09567, 2025.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun S Shao, Kurt
Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with kv
cache quantization. Advances in Neural Information Processing Systems, 37:1270–1303, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lu-
cile Saulnier, L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. ArXiv,
abs/2310.06825, 2023. URL https://api.semanticscholar.org/CorpusID:
263830494.

Wonbeom Lee, Jungi Lee, Junghwan Seo, and Jaewoong Sim. {InfiniGen}: Efficient generative
inference of large language models with dynamic {KV} cache management. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pp. 155–172, 2024.

Haoyang Li, Yiming Li, Anxin Tian, Tianhao Tang, Zhanchao Xu, Xuejia Chen, Nicole Hu, Wei
Dong, Qing Li, and Lei Chen. A survey on large language model acceleration based on kv cache
management. arXiv preprint arXiv:2412.19442, 2024a.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. Advances in Neural Information Processing Systems, 37:22947–22970, 2024b.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024a.

10

https://api.semanticscholar.org/CorpusID:263830494
https://api.semanticscholar.org/CorpusID:263830494


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024b.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache:
Kv cache compression in depth dimension for large language models. Advances in Neural Infor-
mation Processing Systems, 37:139997–140031, 2024c.

Liyang Liu, Shilong Zhang, Zhanghui Kuang, Aojun Zhou, Jing-Hao Xue, Xinjiang Wang, Yimin
Chen, Wenming Yang, Qingmin Liao, and Wayne Zhang. Group fisher pruning for practical
network compression. In International Conference on Machine Learning, pp. 7021–7032. PMLR,
2021.

Xiaoran Liu, Ruixiao Li, Qipeng Guo, Zhigeng Liu, Yuerong Song, Kai Lv, Hang Yan, Linlin Li,
Qun Liu, and Xipeng Qiu. Reattention: Training-free infinite context with finite attention scope.
arXiv preprint arXiv:2407.15176, 2024d.

Xiaoran Liu, Siyang He, Qiqi Wang, Ruixiao Li, Yuerong Song, Zhigeng Liu, Linlin Li, Qun Liu,
Zengfeng Huang, Qipeng Guo, et al. Beyond homogeneous attention: Memory-efficient llms via
fourier-approximated kv cache. arXiv preprint arXiv:2506.11886, 2025a.

Yijun Liu, Jinzheng Yu, Yang Xu, Zhongyang Li, and Qingfu Zhu. A survey on transformer context
extension: Approaches and evaluation. arXiv preprint arXiv:2503.13299, 2025b.

Alexander Ly, Maarten Marsman, Josine Verhagen, Raoul PPP Grasman, and Eric-Jan Wagenmak-
ers. A tutorial on fisher information. Journal of Mathematical Psychology, 80:40–55, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Luohe Shi, Hongyi Zhang, Yao Yao, Zuchao Li, and Hai Zhao. Keep the cost down: A review on
methods to optimize llm’s kv-cache consumption. arXiv preprint arXiv:2407.18003, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie
Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context llm
inference. arXiv preprint arXiv:2410.21465, 2024a.

Yutao Sun, Li Dong, Yi Zhu, Shaohan Huang, Wenhui Wang, Shuming Ma, Quanlu Zhang, Jianyong
Wang, and Furu Wei. You only cache once: Decoder-decoder architectures for language models.
Advances in Neural Information Processing Systems, 37:7339–7361, 2024b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Jingcun Wang, Yu-Guang Chen, Ing-Chao Lin, Bing Li, and Grace Li Zhang. Basis sharing: Cross-
layer parameter sharing for large language model compression. arXiv preprint arXiv:2410.03765,
2024.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637, 2024.

You Wu, Haoyi Wu, and Kewei Tu. A systematic study of cross-layer kv sharing for efficient llm
inference. arXiv preprint arXiv:2410.14442, 2024.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Lijie Yang, Zhihao Zhang, Zhuofu Chen, Zikun Li, and Zhihao Jia. Tidaldecode: Fast and accurate
llm decoding with position persistent sparse attention. arXiv preprint arXiv:2410.05076, 2024a.

Yifei Yang, Zouying Cao, Qiguang Chen, Libo Qin, Dongjie Yang, Hai Zhao, and Zhi Chen.
Kvsharer: Efficient inference via layer-wise dissimilar kv cache sharing. arXiv preprint
arXiv:2410.18517, 2024b.

Zhen Yang, JN Han, Kan Wu, Ruobing Xie, An Wang, Xingwu Sun, and Zhanhui Kang. Lossless
kv cache compression to 2%. arXiv preprint arXiv:2410.15252, 2024c.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. Codeagent: Enhancing code generation
with tool-integrated agent systems for real-world repo-level coding challenges. arXiv preprint
arXiv:2401.07339, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36:34661–34710, 2023.

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid Adilazuarda, Ayu Purwarianti, and Al-
ham Fikri Aji. Mlkv: Multi-layer key-value heads for memory efficient transformer decoding.
arXiv preprint arXiv:2406.09297, 2024.

A AI TOOLS

In this manuscript, AI tools, including ChatGPT, were employed only to improve the wording and
clarity of the text, without influencing the content or ideas presented.

12


	Introduction
	Observations
	Methodology
	Cross-layer Parameter Sharing
	Adaptive Budget Allocation
	Merging and Restoration Details

	Experiments
	Experimental Setup
	Main Results

	Analysis
	Effect of Merging Mechanism
	Inference Latency Analysis
	Integration with Other Methods

	Related Work
	Cross-layer Compression
	Low-rank Compression

	Conclusion
	AI Tools

