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a b s t r a c t

In recent years, salient object detection via robust principal component analysis (RPCA) has received
a significant amount of attention. Existing methods generally replace the rank function by the nuclear
norm to obtain low-rank and sparse matrices, ignores the heavy-tailed distributions of singular values
and over-penalizes large singular values of low rank matrices. In addition, although the manifold
regularization is introduced into RPCA to obtain satisfactory low-rank representation of an original
image, the graph hyperparameters selection lacks the ability to approximate the optimal solution for
intrinsic manifold estimation. To solve these issues, we propose a novel low-rank matrix recovery
model for salient object detection, which integrates double nuclear norm maximization with ensemble
manifold regularization and can be formulated as a tractable optimization problem. By virtue of the
alternating direction method (ADM), we develop an efficient algorithm to optimize the proposed
model, which not only effectively fits the heavy-tailed distribution of singular values of low-rank
matrices, but automatically learns the optimal linear combination of a set of predefined graph
Laplacians. Experimental results on five challenging datasets show that our model achieves better
performance than state-of-the-art unsupervised methods.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Salient object detection aims to accurately segment the objects
of interest from a single scene, or perform co-saliency detection
from multiple images [1,2]. In recent years, it has become a
hot topic in computer vision due to its high potential for use
in multimedia applications, such as image segmentation [3,4],
content-based image retrieval [5], image compression [6], image
cropping [7], etc. According to whether labeled information is
used or not, salient object detection algorithms can be roughly
divided into supervised and unsupervised methods. Although
supervised methods, especially those based on deep learning [8–
10], can generally achieve satisfactory performance, they heavily
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rely on a large amount of labeled training images. By contrast, un-
supervised methods have the advantage of the greater flexibility
based on high-level prior knowledge or low-level saliency [11–
15]. In this paper, we mainly discuss unsupervised methods.

Recently, a lot of salient object detection algorithms have
been developed by integrating bottom-up low-level saliency cues
(color, gradient, boundaries, etc.) with top-down high-level prior
knowledge [16–30]. Achanta et al. [11] constructed a frequency-
tuned model that computes the saliency map based on color
contrast prior. The methods, proposed in [31,32], effectively com-
bined the center prior with low-level features to localize saliency
objects. Besides the center and color priors, the background prior
has also been incorporated into saliency detection models. For in-
stance, Wei et al. [26] measured saliency by virtue of the geodesic
distance to the boundary regions. Shen et al. [28] introduced low-
level features and top-down priors into a unified model based
on robust principal component analysis (RPCA). Lang et al. [29]
integrated multiple priors into region-level saliency generation.
Tang et al. [31] made use of the color, location and boundary con-
nectivity to infer the likelihood that each image region belongs to
the background. Huo et al. [13] built a specialized linear feedback
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control system model, in which a saliency map is generated by
inputting multiple saliency cues and image features. Liu et al. [2]
proposed a nonparametric saliency detection model based on
kernel density estimation (KDE), where likelihood measures of
pixels and saliency measures are used to compute the pixel-wise
saliency map. Goferman et al. [12] developed a context-aware
salient region extraction method based on local and global con-
trast. Then, the multi-scale contrast, center–surround histogram
and color spatial distribution were introduced into the condi-
tional random field model to improve the quality of the saliency
map [33]. In addition, the global contrast of the features extracted
from the transform domain, such as the wavelet and Fourier
transform [34,35], has also been applied in saliency detection.

Among the salient object detection approaches mentioned
above, the low-rank matrix recovery based methods have at-
tracted considerable attention owing to its efficiency and robust-
ness. Motivated by the recent efforts in both robust principal
component analysis (RPCA) and manifold learning, this paper
proposes a novel salient object detection model based on the
Schatten-1/2 quasi-norm and ensemble manifold regularization.
It fuses multiple graph Laplacians to select the optimal intrinsic
manifold for the proposed model. Furthermore, to enhance the
performance of salient object detection, the Schatten-1/2 norm,
instead of the nuclear norm, is introduced to fit the heavy-
tailed distribution of singular values of low-rank matrices. The
low-rank and structured sparse matrix decomposition model for
salient object detection (SMD) is closely relevant to our proposed
method [36]. However, it has two disadvantages: (1) it still re-
laxes the rank function by the nuclear norm, which has negative
effects on the performance of salient object detection; (2) it lacks
the ability to approximate the optimal solution for intrinsic man-
ifold estimation. The proposed method can avoid overpenalizing
large singular values of low-rank matrices via the Schatten-1/2
quasi-norm. Thus, the first disadvantage of SMD is addressed. On
the other hand, our method incorporates ensemble manifold reg-
ularization to automatically learn the optimal intrinsic manifold.
Therefore, the second disadvantage is addressed.

The main contributions of this work are listed below:
(1) By introducing the hyper-Laplacian prior and ensemble

manifold regularization, we propose a novel low-rank recovery
model for salient object detection, which is formulated as the
tractable and scalable optimization problem.

(2) We derive an efficient optimization algorithm by virtue
of the alternating direction method (ADM). The proposed algo-
rithm only requires SVDs on two much smaller factor matrices
and learns both the low-rank matrix and the optimal intrinsic
manifold jointly.

(3) We apply the proposed model to salient object detection,
and the experimental results validate that our algorithm outper-
forms the state-of-the-art methods on the benchmark datasets.

The remainder of this paper is organized as follows. We briefly
review some related works in Section 2. The framework of salient
object detection and the ADM-based algorithm for low-rank ma-
trix recovery are proposed in Section 3. Section 4 shows the
experimental results, including a thorough comparison with re-
cently proposed unsupervised salient object detection algorithms.
Finally, Section 5 concludes this paper.

2. Related work

Salient object detection based on unsupervised low-rank ma-
trix recovery has been an active research topic in the recent
years [37–47]. Compared with supervised approaches, they do
not require a large amount of training beforehand and have
advantages of flexibility and scalability. In this paper, we mainly
discuss the salient object detection methods based on low-rank
matrix recovery.

2.1. Salient object detection via convex nuclear norm minimization

In the low-rank matrix recovery theory, given the feature
matrix F ∈ Rm×n (m ≥ n) of an input image, it can be decomposed
into two parts: a low-rank matrix L ∈ Rm×n (corresponding
to background regions) and a sparse matrix S ∈ Rm×n (cor-
responding to foreground object regions). The low-rank matrix
recovery model for salient object detection can be formulated as
a non-convex optimization problem [28]:

min
L,S

rank(L) + λ ∥S∥1 s.t. F = L + S, (1)

where rank(·) denotes the matrix rank function, ∥·∥1 is the ℓ1-
norm which promotes sparsity and λ > 0 is the parameter
tradeoff. Since solving (1) is NP-hard, rank(L) is usually replaced
by the nuclear norm. Thus, the problem (1) is reformulated as
follows [29]:

min
L,S

∥L∥∗ + λ ∥S∥1 s.t. F = L + S, (2)

where ∥·∥∗ represents the nuclear norm of a matrix, defined as
the sum of the singular values of a matrix, which is a convex
relaxation of the matrix rank function rank(·). Finally, a saliency
score is evaluated for each patch of the input image, and the
patch corresponding to the large score has a high probability to
be salient.

Subsequently, the unified low-rank matrix recovery model
(ULR) was proposed in [28], which utilized a linear transforma-
tion on the original feature space and high-level priors to improve
the performance of salient object detect. In addition, the seg-
mentation priors were introduced in [30] to guide the low-rank
matrix recovery. Different from traditional LR models, low-rank
representation (LRR) was originally developed to reconstruct a
low rank matrix by self-representation and the ℓ2,1-norm [38].
Lang et al. [29] extended low-rank representation (LRR) to the
multi-task learning model, which incorporates multiple features
into the generation of saliency maps. However, these models do
not consider the inter-correlation between elements in the sparse
matrix S. To address this issue, a structured matrix decomposition
model was proposed to boost the quality of saliency maps [32].
But, this model still substituted the nuclear norm minimization
for the matrix rank function, which inevitably performs itera-
tive singular value decomposition (SVD) and results in a biased
solution.

2.2. Non-convex models for RPCA

Nie et al. [39] reformulated RPCA as the joint ℓp-norm and
Schatten-q norm minimization problem, which can be solved by
an efficient augmented Lagrange multiplier method. Lai et al. [40]
and Lu et al. [37] replaced the rank functions by the non-convex
Schatten quasi-norms and developed iteratively reweighted least
squares methods to solve optimization problems. However, these
algorithms have to perform SVDs iteratively, which is time-
consuming. Although some partial SVD methods were proposed
to reduce time cost, it was validated that they cannot achieve
satisfactory performance in many real applications [41,42].

To address this issue, Shen et al. [43] and Jiang et al. [44]
factorized the low-rank matrixL of RPCA into two smaller factor
matrices, i.e., L = UVT , where U ∈ Rm×d, V ∈ Rn×d, and usually
d ≪ min (m, n). In [45,46], Problem (2) was transformed into a
smaller matrix nuclear norm minimization problem by further
imposing the column-orthonormal constraints on U. In [47], the
matrix tri-factorization model was designed to solve RPCA, which
factorizes the low-rank matrixL into three smaller factor matrices,
i.e., L = UWVT , where U ∈ Rm×d, W ∈ Rd×d and V ∈ Rn×d.
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Fig. 1. The proposed salient object detection framework.

3. Saliency detection via low-rank matrix recovery and top-
down visual features

In this section, we integrate the low-rank matrix recovery
model and top-down visual features to construct the framework
for salient object detection. Our method not only makes a closer
approximation by fitting the heavy-tailed distribution of singular
values of low-rank matrices, but more effectively segments the
object regions from background by ensemble manifold regular-
ization. In addition, our algorithm adopts the top-down technique
to exploit high-level prior knowledge. Fig. 1 shows the proposed
salient object detection framework.

As can be seen from Fig. 1, the proposed framework includes
five steps: feature matrix generation, index tree construction,
high-level prior knowledge integration, low-rank matrix recovery
and saliency map generation. Details are given in Fig. 1.

3.1. Feature matrix generation and index tree construction

For fair comparison, following [28,32], we transform an orig-
inal image into a feature matrix. Firstly, a 53-dimension feature
vector is generated by extracting the low-level features based on
RGB color, Gabor filter and steerable pyramids [32]. Secondly, the
simple linear iterative clustering (SLIC) algorithm [48] is carried
out to over-segment the input image into N nonoverlapping
superpixels P = {P1, P2, . . . , PN}. Thirdly, each patch Pi is repre-
sented as a D-dimension feature vector xi by the low-level feature
representation. Finally, the feature matrix X = {x1, x2, . . . , xN} ∈

RD×N is composed of extracted N feature vectors, and its affinity
matrix W ∈ RN×N is defined as [32]

Wi,j =

{
exp

(
−

∥xi−xj∥2

2σ2

)
, if

(
Pi, Pj

)
∈ Ω,

0, otherwise,
(3)

where Ω represents the set of adjacent superpixel pairs.
The non-structural sparsity-inducing norms used in RPCA,

such as the ℓ1-norm, ℓ2-norm and ℓ2,1-norm, induce the sparsity
of the columns of the sparse matrix S independently, which
ignore the spatial contiguity among the superpixels [49]. To solve
this problem, we construct an index tree T to induce the struc-
tural sparsity of the matrix S. Specifically, based on the affinity
matrix W, a graph-based image segmentation algorithm [50] is
used to partition superpixels into different groups. By adjusting
an affinity threshold T, we can obtain hierarchically fine-to-coarse
segmentation results of the input image, and assign the segment
of each granularity to the node at the corresponding layer in the
index tree.

As shown in Fig. 2, an index tree T with depth 3 over indices
{1, 2, . . . , 7} consists of hierarchical nodes, where each node con-
tains a set of the indices of the superpixels, and Gi

j denotes

Fig. 2. The construction of an index tree based on superpixels. (a) The hier-
archical segmentation of an input image. (b) An index tree corresponding to
(a).

the jth node at the ith level. According to [32], the index tree-
structured sparsity-inducing norm can more precisely represent
hierarchical structure of image patches, which contributes to the
completeness of saliency maps. In our model, we introduce a
weighted variant defined as follows [32]:

T (S) =

d∑
i=1

ni∑
j=1

wi
j ∥ SGij ∥∞, (4)

where ni is the number of nodes at the ith level and wi
j ≥ 0

represents the weight corresponding to the node Gi
j, SGij ∈ RD×|Gij|

( |·| denotes set cardinality) is the sub-matrix of S corresponding
to the node Gi

j, ∥ SGij ∥∞ represents that the saliency value

of Gi
j is calculated by the ℓ∞-norm, i.e., the maximum saliency

value of the superpixels in Gi
j. Thus, the pixels within the same

group have similar saliency values. Consequently, Eq. (4) tends to
induce structurally consistent saliency maps. In addition, wi

j can
be integrated with high-level prior knowledge to further improve
the quality of saliency maps.

3.2. High-level prior knowledge integration

To effectively improve the quality of saliency maps, we incor-
porate multiple high-level priors (location, color and boundary
connectivity priors) into our models. To begin with, we generate a
location prior map by calculating the distances of the pixels from
the image center, since salient objects are generally located near
the image center [6]. Second, we directly use the same color prior
utilized in [32]. Third, the boundary connectivity prior is also
incorporated into our framework, and the corresponding prior
map is constructed by computing the probabilities of different
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image regions connected to the borders of the image [51]. Finally,
we produce the high-level prior map by multiplying three high-
level priors together (see Fig. 1). Specifically, the high-level prior
of each patch Pi ∈ P , denoted as hi, is normalized to [0, 1],
which represents the probability of Pi belonging to a salient
object. In practice, hi can be used to assign a weight value to the
corresponding patch. Thus, it can be naturally integrated into the
tree-structured sparsity-inducing norm. Following [32], we define
wi

j as

wi
j = 1 − max

({
hm:m ∈ Gi

j

})
. (5)

If one node of the index tree is assigned a small weight wi
j ,

the corresponding saliency value would be inclined to be large.
Furthermore, the superpixels from the same node tend to have
identical saliency values via the tree-structured sparsity-inducing
norm. Thus, salient objects can be highlighted more accurately by
means of high-level priors.

3.3. Low-rank matrix recovery model based on Schatten-1/2 quasi-
norm and ensemble manifold regularization

Combined with the index tree, high-level priors and ensemble
manifold regularization, a novel low-rank matrix recovery model
is proposed to effectively decompose the input feature matrix
into the low-rank matrix L and the structured-sparse matrix S.
Compared with existing methods, the proposed model can fit the
heavy-tailed distribution of singular values much better, which
contributes to improve the performance of saliency detection.

3.3.1. Ensemble manifold regularization
The manifold regularization technique is common used to

enhance the performance of the salient object detection [52,53].
Specifically, the manifold regularization term R (S) to measure
the smoothness of vectors in the sparse matrix S is defined as
[54]

R (S) =
1
2

N∑
i,j=1

∥ si − sj ∥
2
2 wi,j = Tr

(
SLgST

)
, (6)

where si is the ithcolumn of S, Lg ∈ RN×N represents the graph
Laplacian, i.e., Lg = D − W (D denotes degree matrix) and Tr (·)
is the trace of a matrix.

According to Ref. [32], the Laplacian regularization term can
effectively smooth the columns in S, which in essence enlarges
the distance between subspaces induced by L and S. However,
the hyperparameters for creating the data adjacency graph are
empirically specified. Our framework for salient object detection
aims to automatically learn the optimal graph Laplacian. There-
fore, it is essential to introduce ensemble manifold regularization,
which assumes that the intrinsic manifold lies in the convex
hull of the predefined manifold candidates. Specifically, given a
set of pregiven graph Laplacians {L1g , L2g , . . . , LKg }, the ensemble
manifold is formulated as

LEg =

K∑
i=1

τiLig , s.t.
K∑

i=1

τi = 1, τi ≥ 0, for i = 1, . . . , K , (7)

By replacing Eq. (6) by Eq. (7), the ensemble manifold regulariza-
tion term is formulated as

R
E (S) = βTr

(
S

K∑
i=1

τiLigS
T

)
+ γ ∥τ∥

2 , (8)

where the ∥τ∥
2 term prevents the parameter τ from overfitting

to one manifold, β and γ are tradeoff parameters.
It is worth noting that ensemble manifold regularization is

a kind of ensemble learning methods. Consequently, diversified

ensemble learning schemes can be introduced into ensemble
manifold regularization in the supervised or semi-supervised
cases [55]. In this paper, we mainly discuss the unsupervised
low-rank matrix recovery model based on ensemble manifold
regularization, and the corresponding models with other cases
are left to future work.

3.3.2. The proposed low-rank matrix recovery model
Since the singular values of nonlocal matrices in natural im-

ages usually exhibit a heavy-tailed distribution [36], existing
methods, based on the nuclear norm (i.e., the Schatten-1 norm),
overpenalize large singular values of low-rank matrices, which
results in a biased solution. In addition, the nuclear norm min-
imization generally involves iterative singular value decompo-
sition (SVD), which limits the scalability for large scale feature
matrices. Consequently, it is essential to approximate the rank
function by using the Schatten-q quasi-norm i.e., imposing the ℓq-
norm (0 < q < 1) on singular values. However, the use of such
hyper-Laplacian distributions makes the optimization problems
non-convex, non-smooth and non-Lipschitz. Fortunately, in the
special case, such as q = 1/2, the Schatten-q quasi-norm min-
imization can be transformed into the equivalent, tractable and
scalable form [36].

For completeness, we introduce the double nuclear norm de-
fined as follows:

Definition 1 ([34]). For any matrix X ∈ Rm×n of rank at most
r ≤ d, we decompose it into two factor matrices U ∈ Rm×d and
V ∈ Rn×d such that X = UVT . Then the double nuclear norm
penalty of X is defined as

∥X∥D−N = minU,V:X=UVT
1
4

(∥U∥∗ + ∥V∥∗)
2 . (9)

Analogous to the well-known Schatten-q quasi-norm [39,40],
the double nuclear norm is a kind of quasi-norms, as stated in the
following theorems.

Theorem 1 ([34]). The double nuclear norm penalty ∥·∥D−N is

∥X∥D−N = ∥X∥S1/2 , (10)

where ∥·∥S1/2 denotes the Schatten-1/2 quasi-norm.

Since the singular values of nonlocal matrices in natural im-
ages and scenes usually exhibit a heavy-tailed distribution, it is
feasible to replace the nuclear norm of L by the Schatten-1/2
norm, which makes a closer approximation to the rank function.
By introducing the structured-sparsity and ensemble manifold
regularization, the Schatten-q quasi-norm based low-rank ma-
trix recovery model for salient object detection is formulated as
follows:

min
L,S

∥L∥1/2
S1/2

+α

d∑
i=1

ni∑
j=1

wi
j ∥ SGij ∥∞ +βTr

(
S

K∑
i=1

τiLigS
T

)
+γ ∥τ∥

2

(11)

s.t. L + S = X,
∑K

i=1 τi = 1, τi ≥ 0, for i = 1, . . . , K ,
where the feature matrix X = {x1, x2, . . . , xN} ∈ RD×N , ∥L∥1/2

S1/2
denotes the Schatten-1/2 quasi-norm of L, which makes the so-
lution closer to the original solution and avoids over-penalizing
large singular values.

∑d
i=1
∑ni

j=1 wi
j ∥ SGij ∥∞ is the structured

sparsity regularization term, which reflects the spatial relations of
elements in S. The ensemble manifold term, βTr

(
S
∑K

i=1 τiLigST
)

+ γ ∥τ∥
2, is used to effectively separate the sparse matrix S

from the low-rank matrix L, and α, β and γ are positive tradeoff
parameters.
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According to Eqs. (9) and (10), the optimization problem (11)
can be reformulated as the following tractable and scalable opti-
mization problem:

min
U,V,S,L

1
2

(∥U∥∗ + ∥V∥∗) + α

d∑
i=1

ni∑
j=1

wi
j ∥ SGij ∥∞

+ βTr

(
S

K∑
i=1

τiLigS
T

)
+ γ ∥τ∥

2 (12)

s.t. L + S = X,UVT
= L,

∑K
i=1 τi = 1, τi ≥ 0, for i = 1, . . . , K ,

where U ∈ RD×r and V ∈ RN×r, r ≪ min (m, n) is an upper bound
on the rank of the matrix L.

3.3.3. Alternating optimization algorithm
The optimization problem (12) can be efficiently solved by

means of the ADM method [56]. By introducing the auxiliary
variables, the optimization problem (12) can be transformed into
the following equivalent optimization problem:

min
U,V,S,̂U,̂V,E,τ

1
2

(Û
∗
+
V̂

∗

)
+ α

d∑
i=1

ni∑
j=1

wi
j ∥ SGij ∥∞

+ βTr

(
E

K∑
i=1

τiLigE
T

)
+ γ ∥τ∥

2 (13)

s.t. Û = U, V̂ = V,UVT
+ S = X, S = E,

∑K
i=1 τi = 1, τi ≥ 0,

for i = 1, . . . , K ,
which is non-convex and can be efficiently solved by the al-
ternating direction method. Specifically,

(
U,V, Û,̂V, S, E

)
and τ

are alternately optimized in each iteration. Because the proposed
method integrates double nuclear norm with ensemble manifold
regularization, we name our model DNN-EMR, which iteratively
performs matrix factorization and learns the optimal composite
manifold. The optimization procedure of DNN-EMR is described
in Algorithm 1.
(1) On Optimizing

(
U,V, Û,̂V, S, E

)
By fixing τ, the optimization problem (13) is transformed into

min
U,V,S,̂U,̂V,E,τ

1
2

(Û
∗
+
V̂

∗

)
+ α

d∑
i=1

ni∑
j=1

wi
j ∥ SGij ∥∞

+ βTr

(
E

K∑
i=1

τiLigE
T

)
(14)

s.t. Û = U, V̂ = V,UVT
+ S = X, S = E.

The corresponding augmented Lagrangian function to the prob-
lem (14) is given by

L
(
U,V, Û,̂V, S, E,Y1,Y2,Y3,Y4, µ

)
=

1
2

(Û
∗
+
V̂

∗

)
+ α

d∑
i=1

ni∑
j=1

wi
j ∥ SGij

∥∞ +βTr

(
E

K∑
i=1

τiLigE
T

)
+ Tr

(
YT
1

(
Û − U

))
+ Tr

(
YT
2

(̂
V − V

))
+ Tr

(
YT
3

(
UVT

+ S − X
))

+ Tr
(
YT
4 (S − E)

) µ

2

(
∥ Û − U ∥

2
F

+ ∥ V̂ − V ∥
2
F + ∥ UVT

+ S − X ∥
2
F + ∥ S − E ∥

2
F

)
, (15)

where Y1 ∈ RD×r , Y2 ∈ RN×r and Y3,Y4 ∈ RD×N are Lagrange
multipliers, and µ > 0 is the penalty parameter. The general ADM
method minimizes L with respect to U,V, Û,̂V, S, E,Y1,Y2,Y3
and Y4 alternately in each iteration.
(2) Updating Uk+1 and Vk+1. By keeping other variables fixed,
Uk+1 and Vk+1 can be updated by the following optimization

subproblems (16) and (17), respectively.

minU ∥ Ûk
− U + Yk

1/µ
k
∥
2
F+ ∥ U

(
Vk)T

+ Sk − X + Yk
3/µ

k
∥
2
F , (16)

minV ∥ V̂k
− V + Yk

2/µ
k
∥
2
F + ∥Uk+1VT

+ Sk − X + Yk
3/µ

k
∥
2
F . (17)

The optimal solutions of the problems (16) and (17) are derived
by solving two least squares problems as follows:

Uk+1
=
(
Ûk

+ Yk
1/µ

k
+ QkVk) (I r +

(
Vk)T Vk

)−1
, (18)

Vk+1
=

(
V̂k

+ Yk
2/µ

k
+
(
Qk)T Uk+1

)(
I r +

(
Uk+1)T Uk+1

)−1
,

(19)

where Qk
= X − Sk − Yk

3/µ
k and I r denotes an identity matrix of

size r × r .
(3) Updating Ûk+1 and V̂k+1. To update the variables Û k+1

and
V̂ k+1

, we fix the other variables and solve the following optimiza-
tion subproblem:

minÛ
1
2

∥ Û ∥∗ +
µk

2
∥ Û − Uk+1

+ Yk
1/µ

k
∥
2
F , (20)

minV̂
1
2

∥ V̂ ∥∗ +
µk

2
∥ V̂ − Vk+1

+ Yk
2/µ

k
∥
2
F . (21)

According to Ref. [56], the least squares problems (20) and (21)
based on nuclear norm regularization have closed-form solutions
by the SVT operator as follows:

Ûk+1
= SVT1/(2µk)

(
Uk+1

− Yk
1/µ

k) , (22)

V̂k+1
= SVT1/(2µk)

(
Vk+1

− Yk
2/µ

k) . (23)

(4) Updating Ek+1 and Sk+1. Fixing all other variables, Ek+1 can be
updated by solving the following subproblem:

Ek+1
= argminE βTr

(
E

K∑
i=1

τiLigE
T

)
+ Tr

((
Yk
4

)T (Sk − E
))

+
µk

2
∥ Sk − E ∥

2
F . (24)

By taking derivative of the objective function in Eq. (24), the
solution can be calculated as follows:

Ek+1
=
(
µkSk + Yk

4

)(
2β

K∑
i=1

τiLig + µkI

)−1

. (25)

After updating Ek+1, we update Sk+1 with other variables fixed
and obtain the following tree-structured sparsity optimization
subproblem:

Sk+1
= argmin

S
λ

d∑
i=1

ni∑
j=1

wi
j ∥ SGij ∥∞ +

1
2

∥ S − K1 ∥
2
F , (26)

where K1 =

(
X − Uk+1

(
Vk+1

)T
+ Ek+1

−
(
Yk
3 + Yk

4

)
/µk

)
/2 and

λ = α/
(
2µk

)
. The problem (26) can be solved by the hierarchical

proximal operator [57], as outlined in Algorithm 2.
(5) On optimizing τ. To update the variable τ , we fix the other
variables and solve the following optimization subproblem:

min
τ

Tr

(
E

K∑
i=1

τiLigE
T

)
+ γ /β ∥τ∥

2 (27)

s.t.
∑K

i=1 τi = 1, τi ≥ 0, for i = 1, . . . , K .
The optimization subproblem (27) is a constrained quadric pro-
gramming problem, which can be solved by the quadric optimiza-
tion solver in matlab toolbox.
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The estimated upper bound r of the rank of L is an important
parameter in Algorithm 1. According to Lemma 1 and Lemma 2
in [34], the globally optimal solution of the problem (13) depends
on a feasible value of r . Thus, the estimate of a good value r̂ is
crucial to generate an accurate low-rank matrix L. Fortunately,
several researchers [43,47] have proposed some effective meth-
ods to perform rank estimation. In practical applications, we only
set a relatively large estimate r so that r ≥ r̂ .

3.3.4. Complexity analysis
Given an D × N matrix with D ≤ N , existing Schatten quasi-

norm and matrix nuclear norm minimization models, such as
SMD [32] and LpSq [39], take O

(
ND2

)
to perform SVD in each

iteration. In contrast, the time complexity of performing SVD
in Algorithms 1 is only O

(
Nr2 + Dr2

)
, where r ≪ D,N . To

update U,V and L, the time cost of the matrix multiplications
takes O

(
DNr + r3

)
in each iteration. In addition, Solving the

optimization subproblem (27) takes O
(
K 1/2logKlog (K/ε)

)
. In our

experiments, K is set as 12. Thus, the overall complexity of our
Algorithm is O (tDNr), where t is the number of iterations. Con-
sequently, the computational complexity of either DNN-SMD or
FNN-SMD is the same as that of ROSL [45], factEN [58], RegL1 [59]
and Unifying [60], although our methods are based on the Schat-
ten quasi-norm.
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3.4. Saliency map generation

Similar to [29,61], we use a function Sal (·) of each superpixel
in P to estimate saliency values:

Sal (Pi) =∥ si ∥1, (28)

where si is the ith column of the matrix S and ∥ si ∥1 represents
the saliency value of the ith superpixel Pi. Thus, Sal (Pi) denotes
the possibility that Pi belongs to a salient object. After all saliency
values are estimated, all superpixels are merged to generate the
final saliency map of the original image.

4. Experiments

To validate the effectiveness and efficiency of our method for
salient object detection, we carry out our algorithm and com-
pare with recent 25 state-of-the-art methods. First, we perform
different algorithms on five benchmark datasets under various
scenarios, and evaluate their performance in terms of six metrics.
Second, we compare visual results of different methods by gen-
erating saliency maps in different scenarios. Finally, we analyze
our methods with fixed rank and compare with the best among
25 competitive methods.

4.1. Experimental setup

Specifically, MSRA10K [62] and DUTOMRON [63] are used to
validate different algorithms for cases with a single salient object,
iCoSeg [64] and SOD [65] for images with multiple salient objects,
and ECSSD [66] for cases with complex scenes. The detailed
descriptions of these benchmark datasets are listed in Table 1.

We compare our algorithms with ULR [28], LRR [29], SLR [30]
and SMD [32], which are based on the low rank matrix recovery
theory. In addition, we perform 21 recent proposed methods on
five benchmark datasets, including CA [12], RC [14], SEG [15],
SR [16], SS [17], LC [18], HCT [19], SVO [20], CB [21], TD [22],
HS [23], GC [25],GS [26], RBD [51], DSR [61], MR [63], FT [67],
SF [68], MC [69], DRFI [70] and PCA [71]. All algorithms are per-
formed on five popular benchmark datasets in different scenarios.
Specifically, we perform all algorithms on MSRA10K [62] and
DUTOMRON [63] in the case of a single salient object, iCoSeg [64]
and SOD [65] with multiple salient objects, and ECSSD [66] with
complex scenes.

The parameters of the proposed algorithm are set as follows.
To generate the feature matrix, the same features are extracted
as [32] and the number of superpixels N is set as 200 in our exper-
iments for fair comparison. We further analyze the performance
with different numbers of superpixels. In index tree construction,
the affinity thresholds are set as T = [100, 400, 2000] and the
tree depth is set to 5 by performing the initial over-segmentation.
To extract the superpixels, the parameter σ is empirically set
as the standard derivation of the superpixels. In the problem
(12), we search the optimal (α, β, γ ) over the range of {10−3,
10−2, . . . , 103}. For ensemble manifold regularization, we use
the hot kernel, dot-product and 0–1 weighting schemes and set
the number of nearest neighbors p = {5, 10, 12, 15} respectively,
which lead to the total 12 predefined graph Laplacians.

To precisely decompose the matrix L, we estimate the rank
of the low rank matrix by utilizing the rank-revealing feature
of QR factorization as proposed in [43]. In addition, we discuss
the performance of our methods with fixed rank. For comparing
competitive algorithms in different scenarios, we use the source
or binary codes provided by the authors with default parameters.
All the experiments have been performed in MATLAB R2017
running in a 3.0 GHz Intel Core i5-8500 with 16-GB RAM.

4.2. Evaluation metrics

To quantitatively evaluate different algorithms, we report the
experimental results on six metrics, including the precision–recall
(PR) curve, the F-measure curve, mean absolute error, area under
the ROC (AUC), the overlapping ratio (OR) and the weighted
F-measure (WF) score.

Specifically, as in [32], PR curves of different methods are
generated by binarizing saliency maps as the threshold ranges
from 0 to 255. F-measure is defined as [68]:

Fβ =

(
β2

+ 1
)
P · R

β2P + R
, (29)

where P and R represent precision and recall, respectively, and
β2 is set to 0.3 for fair comparison. The F-measure curves are
computed by setting different saliency thresholds.

In addition, we use the MAE metric to evaluate the dissim-
ilarity between the binary saliency map and the ground truth,
defined as [68]

MAE =
1

W × H

W∑
x=1

H∑
y=1

|S (x, y) − G (x, y)| , (30)

where W and H denote the width and height of the saliency map
S, respectively, and G is the ground truth binary saliency map.

Following [72], the OR metric is utilized to measure the over-
lapping ratio between the salient object mask SM and the ground
truth G, defined as

OR =
|SM ∩ G|

|SM ∪ G|
. (31)

Finally, we use the weighted F-measure (WF) metric [73], a
weighted version of F-measure, to test different algorithms. WF
overcomes the interpolation, dependency and equal importance
flaws of traditional measures, since it adopts weighted precision
and recall to measure exactness and completeness, respectively.

4.3. Comparison with state-of-the-arts

To evaluate the performance of our algorithms, we first com-
pare with 25 recently proposed algorithms on the five benchmark
datasets. The results of the top 12 methods are reported in Ta-
bles 2 to 6, where partial data are cited from [32] and the best 3
results are highlighted in bold. In addition, the PR and F-measure
curves of all algorithms on five datasets are illustrated in Fig. 3.

As can be seen from Tables 2 to 6, our method has better per-
formance than other algorithms in most cases. DRFI has superior
performance than SMD and DNN-EMR on DUT-OMRON. But, DRFI
is a supervised method and relies on a large amount of labeled
images, while SMD and DNN-EMR are unsupervised models inde-
pendent of extern datasets. Thus, they are more flexible than DRFI
in real applications. In different scenarios, our methods achieve
better or comparable performance compared with SMD. We will
compare the performance of our methods with SMD and DRFI in
detail.
(1) Results on Single-Object Images

First, we analyze the performance of different algorithms on
the MSRA10K and DUT-OMRON datasets. Fig. 3A and B shows
the PR and F-measure curves on two datasets, respectively. In
addition, Tables 2 and 3 list the MAE, WF, AUC and OR scores.

As shown in Table 2, although DRFI achieves the best AUC
score, SMD, DNN-EMR and FNN-SMD obtain the best or second
best performance according to WF, OR and MAE. From Fig. 3A,
we can see that the PR curves of SMD and DNN-EMR are al-
most overlapped and DNN-EMR is superior to SMD. They signif-
icantly outperform other algorithms in the PR curves. From the
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Table 1
Descriptions of benchmark datasets.
Name Size Descriptions

MSRA10K 10,000 Single object, simple background, high contrast
DUT-OMRON 5,168 Single object, relatively complex background, more challenging
iCoSeg 643 Multiple objects, various number of objects with different sizes
SOD 300 Multiple objects, various size and location of objects, complex background
ECSSD 1,000 Structurally complex natural images, various object categories

Table 2
Results on MSRA10K in terms of MAE, WF, AUC and OR.
Metric DNN-

EMR
SMD DRFI RBD DSR MC MR HS PCA ULR SLR HCT

MAE 0.105 0.105 0.114 0.108 0.121 0.145 0.125 0.149 0.185 0.224 0.141 0.143
WF 0.701 0.699 0.666 0.685 0.656 0.576 0.642 0.604 0.473 0.425 0.601 0.582
AUC 0.851 0.846 0.857 0.834 0.825 0.843 0.824 0.833 0.839 0.831 0.840 0.847
OR 0.742 0.741 0.723 0.716 0.654 0.694 0.693 0.656 0.576 0.524 0.692 0.674

Table 3
Results on DUT-OMRON in terms of MAE, WF, AUC and OR.
Metric DNN-

EMR
SMD DRFI RBD DSR MC MR HS PCA ULR SLR HCT

MAE 0.175 0.166 0.138 0.144 0.139 0.186 0.187 0.227 0.207 0.260 0.161 0.164
WF 0.416 0.423 0.424 0.427 0.419 0.347 0.381 0.350 0.287 0.254 0.392 0.353
AUC 0.817 0.812 0.839 0.814 0.803 0.820 0.779 0.801 0.827 0.805 0.822 0.815
OR 0.436 0.444 0.444 0.432 0.408 0.425 0.420 0.397 0.341 0.318 0.429 0.393

Table 4
Results on iCoSeg in terms of MAE, WF, AUC and OR.
Metric DNN-

EMR
SMD DRFI RBD DSR MC MR HS PCA ULR SLR HCT

MAE 0.136 0.138 0.139 0.138 0.153 0.179 0.162 0.176 0.201 0.222 0.179 0.179
WF 0.621 0.610 0.592 0.599 0.548 0.461 0.554 0.536 0.407 0.379 0.473 0.464
AUC 0.832 0.822 0.839 0.827 0.801 0.807 0.795 0.812 0.798 0.814 0.805 0.833
OR 0.606 0.598 0.582 0.588 0.514 0.543 0.573 0.537 0.427 0.443 0.505 0.519

Table 5
Results on SOD in terms of MAE, WF, AUC and OR.
Metric DNN-

EMR
SMD DRFI RBD DSR MC MR HS PCA ULR SLR HCT

MAE 0.234 0.233 0.217 0.229 0.260 0.260 0.261 0.283 0.274 0.308 0.248 0.243
WF 0.465 0.456 0.456 0.428 0.390 0.390 0.406 0.410 0.343 0.322 0.395 0.385
AUC 0.744 0.739 0.742 0.706 0.722 0.746 0.709 0.731 0.730 0.713 0.712 0.720
OR 0.425 0.421 0.447 0.406 0.392 0.392 0.373 0.325 0.340 0.290 0.400 0.377

Table 6
Results on ECSSD in terms of MAE, WF, AUC and OR.
Metric DNN-EMR SMD DRFI RBD DSR MC MR HS PCA ULR SLR HCT

MAE 0.175 0.173 0.217 0.225 0.227 0.251 0.235 0.269 0.291 0.312 0.252 0.249
WF 0.544 0.539 0.517 0.490 0.489 0.441 0.480 0.449 0.358 0.351 0.442 0.430
AUC 0.819 0.812 0.780 0.752 0.754 0.779 0.761 0.766 0.759 0.755 0.764 0.755
OR 0.563 0.561 0.527 0.494 0.480 0.495 0.491 0.432 0.371 0.347 0.474 0.457

F-measure curves (Fig. 3A), we can observe that DNN-EMR has
superior performance over a large range has better performance
than SMD and DRFI. In particular, DNN-EMR performs best than
other algorithms as the thresholds increase.

From Table 3, we can see that the performance of all the meth-
ods degrades obviously on DUT-OMRON owing to its relatively
complex background. According to the OR metric, SMD and DNN-
EMR achieve the best and second best results, respectively. DRFI
achieves all the best scores based on supervised information and
multi-level saliency maps. The PR curves of different algorithms
on DUT-OMRON are shown in Fig. 3B, we can see that SMD
and DNN-EMR achieve favorable performance. The PR curve of
DNN-EMR is better than that of SMD at the high recall rates.
Furthermore, as can be seen from the F-measure curves in Fig. 3B,
DNN-EMR performs better than SMD and DRFI at high thresholds.

(2) Results on Multiple-Object Images
We further discuss the performance of different algorithms

on multiple-object images. Fig. 3C and D display the PR and
F-measure curves on iCoSeg and SOD, respectively.

As can be seen from Table 4, although DRFI achieves the best
AUC score on iCoSeg, DNN-EMR achieve the best MAE, WF and
OR scores, respectively. In addition, Fig. 3C shows that DRFI has
lower precision than DNN-EMR. Moreover, the PR curve of DNN-
EMR is obviously superior to that of SMD when the recall rate is
large than 0.5. In the F-measure curves, shown in Fig. 3C, DNN-
EMR performs best among all methods. It should be noted that
the F-measure values of our methods are better and more stable
than those of other methods over a wide range.

From Table 5, we can see that DNN-EMR achieves the best WF
score and the second best AUC and OR scores on SOD. The PR
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Fig. 3. Quantitative comparison on five datasets in terms of PR and F-measure curves.

curves in Fig. 3D show that the performance of our algorithms is
slightly worse than that of DRFI. However, our methods outper-
form other algorithms in the unsupervised case. In the F-measure
curves (Fig. 3D), DRFI outperforms DNN-EMR at lower threshold
ranges, while our method performs better than SMD and DRFI
over a wider range.
(3) Results on Complex Scene Images

We further compare our methods with the others on ECSSD
and report the experimental results in Table 6. It is shown that
DNN-EMR outperforms other algorithms in terms of WF, AUC
and OR. DNN-EMR obtains the second best MAE score, with very
small margins (0.002) to the best score. According to Fig. 3E, in
the PR curves, DNN-EMR is best among all methods. Particularly,
DNN-EMR achieves much better performance at the higher recall
rates. The F-measure curves in Fig. 3E show that DNN-EMR also
performs better than other algorithms, which validates that the

proposed algorithm has strong robustness against complex scenes
in salient object detection.
(4) Visual Comparison

To compare visual results of those competitive methods, we
select some output saliency maps in different scenarios, shown
in Fig. 4. Compared with other methods on single-object images,
DNN-EMR and SMD detect the salient object more accurately
and have less scattered patches. By means of structured sparsity
regularization and index trees, they produce identical saliency
values to all superpixels within the salient objects. For images
with multiple objects, MC, DSR, RBD, DRFI, SLR, ULR, PCA and
GS incorrectly partition some background regions into salient
objects, while MR, DSR, SMD, SLR and PCA only identify parts of
the objects. By contrast, the proposed DNN-EMR method extracts
all the multiple salient objects successfully. For the images with
complex scenes, DNN-EMR and SMD detect the salient objects
with less scattered patches, while most other methods fail to
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Fig. 4. Visual comparison of saliency maps of different algorithms in different scenarios.

generate the saliency maps. At last, for the images with similar
foreground and background appearance, DNN-EMR extracts the
salient objects from the background much better than other
methods.

As can be seen from Fig. 4, the output results of our method are
close to ground truth, which further validates the effectiveness
of our method and demonstrate that DNN-EMR has stronger
robustness than those competitive methods.
(5) Analysis of the performance with ensemble manifold regulariza-
tion

Traditional low-rank matrix recovery models usually intro-
duce the manifold regularization to effectively separate the sparse
matrix from the low-rank matrix. However, the cross valida-
tion is generally utilized to choose graph hyperparameters for
intrinsic manifold estimation. By contrast, our method has the
ability to approximate the optimal solution for intrinsic manifold
estimation. To validate the effectiveness of ensemble manifold
regularization, we perform the proposed algorithm based on sin-
gle graph Laplacian and multiple predefined graph Laplacians,
respectively. The saliency detection algorithm based on double
nuclear norm maximization and standard manifold regularization
is termed as DNN-MR. For DNN-MR, the hot kernel is used to
construct the graph Laplacian and its hyperparameter is chosen
by the cross validation. The experimental results are reported

Table 7
Comparison between DNN-MR and DNN-EMR on MSRA10K and iCoSeg.
Algorithms MSRA10K iCoSeg

MAE WF AUC OR MAE WF AUC OR

DNN-MR 0.106 0.700 0.848 0.739 0.138 0.613 0.826 0.598
DNN-EMR 0.105 0.701 0.851 0.742 0.136 0.621 0.832 0.606

in Tables 7 and 8. From Tables 7 and 8, we can observe that
the results of DNN-EMR are all superior to those of DNN-MR
on 4 benchmark datasets, which demonstrates that DNN-EMR
not only learns the composite manifold, the low-rank matrix and
the sparse matrix jointly, but has the ability to automatically
approximate the optimal solution. Consequently, the proposed
method outperforms that based on single graph Laplacian and
avoids parameter selection from discrete states in the parameter
space.
(6) Analysis of the performance with fixed ranks

We further evaluate DNN-EMR with fixed ranks instead of
estimated ranks. We mainly compare our method with SMD, be-
cause the performance of SMD is closest to that of DNN-EMR and
they are unsupervised methods derived from the RPCA model.
In Fig. 5, we extract saliency maps with different fixed ranks
using DNN-EMR. We can see that the performance of DNN-EMR
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Table 8
Comparison between DNN-MR and DNN-EMR on SOD and ECSSD.
Algorithms SOD ECSSD

MAE WF AUC OR MAE WF AUC OR

DNN-MR 0.236 0.457 0.739 0.421 0.177 0.539 0.816 0.599
DNN-EMR 0.234 0.465 0.744 0.425 0.175 0.544 0.819 0.563

Fig. 5. Visual comparison of saliency maps of SMD and DNN-EMR.

tends to be stable as the rank r increases. When r is larger than
10, the saliency maps of DNN-EMR remain almost unchanged.
This is due to the fact that about 90 percent of these matrices
can be approximated by a matrix with rank no greater than 10
according to the statistics in [32]. In terms of Lemma 3 in [34],
if we use any right upper bound of the rank of the matrix L, the
low-rank matrix can be accurately generated via the Schatten-1/2
quasi-norm. Consequently, the experimental results are consis-
tent with the theoretical analysis. As can be seen from Fig. 5,
DNN-EMR still performs better than SMD if a proper r is selected.
In Tables 2 to 6, we estimate an appropriate upper bound of the
rank and achieve better performance than SMD. These experi-
mental results demonstrate that the proposed methods are more
effective in real applications.

5. Conclusion

In this paper, we have presented a novel structured matrix
decomposition model for salient object detection. The ADM based
iterative algorithm was developed, which not only exploits dou-
ble nuclear norm penalty to fit the heavy-tailed distribution of
singular values of low-rank matrices, but introduces ensemble
manifold regularization to automatically learn the optimal intrin-
sic manifold from a set of predefined graph Laplacians. In addi-
tion, structured sparsity regularization and high-level priors are
incorporated into our model to achieve favorable performance.
Experimental results on five challenging datasets validate the
efficiency and effectiveness of our method in different scenarios.

For future work, we will study how to impose high-level
priors on the feature matrix and low-rank matrix. In addition, we
will combine some probabilistic graphical models to enhance the
performance of our models further.
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