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ABSTRACT

This paper presents INPROVF, an automatic framework that combines large lan-
guage models (LLMs) and formal methods to speed up the repair process of high-
level robot controllers. Previous approaches based solely on formal methods are
computationally expensive and cannot scale to large state spaces. In contrast,
INPROVF uses LLMs to generate repair candidates, and formal methods to ver-
ify their correctness. To improve the quality of these candidates, our framework
first translates the symbolic representations of the environment and controllers
into natural language descriptions. If a candidate fails the verification, INPROVF
provides feedback on potential unsafe behaviors or unsatisfied tasks, and itera-
tively prompts LLMs to generate improved solutions. We demonstrate INPROVF
through 12 violations with various workspaces, tasks, and state space sizes.

1 INTRODUCTION

Safety-critical robotic applications, such as autonomous driving (Yurtsever et al., 2020), search and
rescue missions (Lyu et al., 2023), and assistive caregiving robots (e.g. Madan et al. (2024)), benefit
from formal guarantees to ensure safe operations and task completions, the lack of which may result
in harm to users and even loss of life in catastrophic events. One way to provide such guarantees
is the use of formal synthesis—an automatic technique that transforms temporal logic specifications
into correct-by-construction systems— to create provably correct high-level robot controllers that
compose low-level robot skills to satisfy temporally extended tasks in complex environments.

Among formal synthesis methods, Generalized Reactivity(1) (GR(1)) synthesis (Bloem et al., 2012)
is used in robotics applications due to its relatively low polynomial-time complexity with respect
to the state space and its expressivity covering many robotic tasks (Menghi et al., 2019). A GR(1)
specification takes the form of an implication from assumptions about the environment’s behav-
iors to guarantees on the robot’s behaviors. Specifically, the guarantees depend on the validity of
the assumptions; if any assumption is violated at runtime, the synthesized controller is no longer
guaranteed to be correct, leading to potential undesirable behaviors.

To address assumption violations, our previous work (Meng & Kress-Gazit, 2024) leverages formal
methods-based approaches (Pacheck & Kress-Gazit, 2023) to repair robot behaviors by generating
new skills necessary for task satisfaction following assumption violations. However, our previous
repair approach fails to scale to real-world settings with large state spaces at runtime due to the state
explosion problem that has challenged formal methods for decades (Valmari, 1996).

Recent advances in large language models (LLMs) present a unique opportunity to overcome the
scalability problem of formal methods-based repair. Modern LLMs, trained on Internet-scale data
across diverse domains, have strong priors and can address complex reasoning tasks–ranging from
competitive mathematics and coding problems to PhD-level science questions (OpenAI, 2024).

∗The first two authors contribute equally. This paper is also submitted to 2025 IEEE 21th International
Conference on Automation Science and Engineering (CASE).
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Figure 1: Left: INPROVF overview. Right: Example 1 workspace.

Since repairing high-level robot controllers under assumption violation is itself a complex reasoning
task, we aim to leverage the reasoning capacities of LLMs to scale up repair.

In this work, we propose INPROVF, a hybrid framework that combines the strengths of LLMs and
formal methods to repair assumption violations in high-level robot controllers at runtime. We use
LLMs to generate repair candidates, and then verify them through formal methods. If the verification
fails, we employ formal analysis to provide feedback for LLMs to iteratively refine the candidates.

As illustrated in Fig. 1 (left), INPROVF consists of four key steps: Informalization, Repair Prompt,
Verification, and Feedback. In Informalization, we convert the symbolic abstractions of both the
environment and the synthesized high-level controller into natural languages (NL) descriptions that
capture their underlying semantics–specifically, the physical meaning of the abstraction and the
behavior description of the controller (Sec. 5.1). Our intuition is that LLMs, primarily trained
on natural language data and further fine-tuned through reinforcement learning from human feed-
back (Ouyang et al., 2022), are suitable for processing these informalized NL representations. Next,
in the Repair Prompt step, we assemble the NL descriptions of the abstractions, the robot’s be-
haviors, the task specifications, and the assumption violations into a prompt for LLMs to generate
repair candidates–new skills that potentially enable the robot to fulfill its tasks under the violation
(Sec. 5.2). To ensure the soundness of the candidates, the Verification step first checks their syntax
against a predefined grammar, and then check whether the specification, updated by the violation
and the new skills, is realizable (Sec. 5.3). If the verification step fails, the Feedback step automat-
ically generates NL feedback, through syntax and counterstrategy analyses, for LLMs to iteratively
generate more promising repair candidates (Sec. 5.4).

Contributions. To our knowledge, INPROVF is the first framework that leverages LLMs to acceler-
ate the repair process of assumption violations in large state spaces. By integrating LLM-based skill
generation with verification and feedback via formal methods, INPROVF enables provably-correct
robots to remain robust in complex, real-world environments with prohibitively large state spaces.

2 RELATED WORK

Synthesis for robots. Synthesis from Linear Temporal Logic (LTL) and GR(1) specifications op-
erates on a discrete abstraction of the environment and the robot’s skills (Kress-Gazit et al., 2018).
The abstraction can be automatically generated from sensor inputs using, e.g. Konidaris et al. (2018).
Synthesis takes as input a temporal logic (Clarke et al., 2000) specification encoding the safety and
task requirements for the robot. While traditionally provided by the user, specifications can also be
automatically generated from natural language task descriptions using LLMs (Chen et al., 2023).
Synthesis algorithms (e.g. Bloem et al. (2012)) automatically generate a high-level controller that
composes robot skills to satisfy the given specification, thereby providing correctness guarantees,
assuming the abstraction matches the physical world.

Assumption violations. To address temporary environment assumption violations, Wong et al.
(2018) synthesizes robust controllers that can maintain safety constraints during the violations, while
Ehlers & Topcu (2014) tolerates intermittent violations that occur only a fixed number of times con-
secutively, separated by violation-free intervals. Cooperative synthesis generates controllers that do
not attempt to violate assumptions (Ehlers et al., 2015). For long-lasting violations that make the
specifications unrealizable, Alur et al. (2013) leverages counterstrategies (Könighofer et al., 2009) to
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generate additional assumptions that restore the realizability. Similarly, Wong et al. (2018) employs
unrealizability analysis (Raman & Kress-Gazit, 2013) to guide the user in adding new liveness as-
sumptions. Our previous work (Meng & Kress-Gazit, 2024) utilizes synthesis-based repair (Pacheck
& Kress-Gazit, 2023) to create new robot skills to ensure task success given the violations.

LLMs for formal methods. The formal methods community has leveraged LLMs to enhance scala-
bility. Jiang et al. (2023); Yang et al. (2023) employ LLMs for automated theorem proving, tackling
formal mathematical problems that otherwise are computationally intractable and require human
inputs. Similarly, Wu et al. (2024); Pirzada et al. (2024); Liu et al. (2024) leverage LLMs to gener-
ate program loop invariants, which are crucial for unrolling and reasoning about loops in program
verification, and then verify the invariants using formal methods such as bounded model checking,
theorem prover, or symbolic execution. In symbolic execution, Wang et al. (2024) utilize LLMs
to translate path constraints of real-world Python programs into SMT constraints, improving the
scalability of symbolic execution for complex programs. The software engineering community pro-
poses to combine LLMs and static analysis to identify correctness and security vulnerabilities in
open-source software and operating systems (Li et al., 2024a;b).

3 PRELIMINARIES

Example 1. Consider a mobile manipulator in a factory-like workspace in Fig. 1 (right). The robot
is tasked to move the cup between the loading table t2 and the assembly table t4 depending on the
status of the cup, with the assumption that the status of the cup can only change when it is on the
tables, and the constraint that an empty cup is not allowed to appear in x0. However, when the
robot holds the cup in x2 while executing a skill yoriginal that moves the robot from x4 to x0 via x2,
the cup status changes from full to empty. The robot should create new skills, e.g., the new skill ynew
indicated by the blue arrow in Fig. 1 (right), that drives the robot back to x4. The robot then places
the cup to t2, waits for the cup to be filled up again, and continues the execution.

Abstractions. We model the physical state space with a discrete abstraction. An abstraction com-
prises a set of atomic propositions AP partitioned into environment inputs X and system outputs Y
(AP = X ∪ Y). The set of inputs X , representing the environment states, is further divided into
sets of controllable inputs Xc and uncontrollable inputs Xu (X = Xc ∪ Xu). Controllable inputs Xc
represent the part of the environment that the robot can control indirectly, e.g. the position of the
robot base. Uncontrollable inputs Xu represent the part of the environment that the robot has no
control over, e.g. the position of an obstacle. An input state σX ⊆ X and a controllable input state
σc ⊆ Xc are subsets of inputs and controllable inputs, respectively. Let the physical state space be
X ⊆ Rn. A grounding function G : X → 2X maps each input π ∈ X into a set of physical states
G(π) ⊆ X . Intuitively, the grounding function captures the physical meaning of each input.

In Example 1, the inputs are πr
o ∈ X , where o is an object and r is a region, The grounding

function maps each input πr
o to the set of physical states where the object o locates in the region

r. An uncontrollable input πempty represents that the cup is empty. The input state in Fig. 1 right is
σX := {πx2

base, π
ee
cup, πempty, π

x3
cone, π

t0
block, π

t3
stone}, meaning the robot base is in x2, the cup is in the

end-effector and is empty, the cone is in x3, the block is in t0, and the stone is in t3.

The system outputs Y represent the robot skills. Each skill has a set of preconditions, may have inter-
mediate states, and results in postconditions. Each state is a controllable input state. In Example 1,
the precondition of the new skill ynew is {πx2

base, π
ee
cup, π

t0
block} (stone and cone are uncontrollable),

the intermediate state is {πx1

base, π
ee
cup, π

t0
block}, and the postcondition is {πx4

base, π
ee
cup, π

t0
block}.

Specifications. We use the GR(1) fragment of LTL for its synthesis algorithm and expressivity. The
syntax of LTL is φ := π | ¬φ | φ ∨ φ | ⃝φ | φ Uφ where a formula φ is constructed recursively
from atomic propositions π ∈ AP , logical operators (¬,∨), and temporal operators next (⃝) and
until (U). Additional logical operators (∧,→,↔) and temporal operators eventually (♢) and always
(□) can be derived from previous operators. The semantics of LTL is defined over infinite traces
τ = (σ0, σ1, . . . ), where each σi ⊆ AP denotes the set of propositions that are true at step i. When
a trace suffix starting at position i satisfies a formula φ, we denote this as τ i |= φ. By convention,
we say that a trace τ satisfies a formula φ, denoted as τ |= φ, if the formula is satisfied from the
beginning of the trace (i.e., τ0 |= φ). The satisfaction relation is defined recursively as follows:
τ i |= π if π ∈ σi (π is true at step i); τ i |= ⃝φ if τ i+1 |= φ (φ holds at the next step); τ i |= ♢φ if
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∃j ≥ i such that τ j |= φ (φ eventually holds); and τ i |= □φ if ∀j ≥ i, τ j |= φ (φ always holds). A
more detailed introduction of LTL semantics can be found in Clarke et al. (2000).

Specifications in the GR(1) fragment of LTL take the form φ = φe → φs where φe = φi
e ∧ φt

e ∧ φg
e

represents the environment assumptions and φs = φi
s ∧ φt

s ∧ φg
s denotes the system guarantees. The

initial constraints φi
e and φi

s, defined over X and Y , specify the initial conditions of the environment
and the system, respectively. The safety constraints, φt

e and φt
s, capture conditions that must hold

at all times and take the form of φt
a =

∧
i □φt

a,i, for a ∈ {e, s}, where φt
e,i is defined over AP ∪

⃝X and φt
s,i over AP ∪⃝AP . Lastly, we have the liveness constraints φg

e and φg
s which encode

environment assumptions and system goals that must be satisfied repeatedly. For a ∈ {e, s}, φg
a =∧

i □♢φg
a,i where each φg

a,i is defined over AP .

Writing GR(1) specification can be partially automated from the abstraction (e.g., from topological
constraints, skills definitions, etc), allowing the user to provide the task specification φtask that cap-
tures the essence of the task. We define such φtask as a sub-specification of φ, denoted φtask ⪯ φ,
such that φtask only contains a subset of safety constraints of φ, In Example 1, an example constraint
not included in φtask but in φ is: one object cannot appear in two places simultaneously.

Synthesis. GR(1) synthesis (Bloem et al., 2012) first transforms the GR(1) specification into a two-
player game between the environment and the system, where the transition rules for each player are
defined by the safety constraints φt

e and φt
s, and the winning conditions are defined by the liveness

goals φg
e and φg

s , respectively. Next, synthesis computes a set of winning states from which the
system is guaranteed to win the game, a process called realizability check. Finally, synthesis extracts
a finite automaton from the winning states as the robot strategy.

Definition 1. A strategy is a deterministic finite automaton As = (Σ,Σ0,X ,Y, δ, γX , γY) where
(i) Σ is a set of states and Σ0 ⊆ Σ is the set of initial states. (ii) X and Y are sets of inputs and
outputs. (iii) δ : Σ × 2X → Σ maps a state and an input state to the next state. (iv) γX : Σ → 2X

maps a state to its labeled input state. (v) γY : Σ → 2Y maps a state to its labeled output state.

A strategy description D for the strategy As is a natural language description of how As behaves.

If the set of winning states does not overlap with all system liveness goals or does not cover the
initial states, a winning strategy for the system does not exist, i.e. the specification is unrealizable.
Conversely, a winning strategy for the environment, or a counterstrategy, exists.

Definition 2. A counterstrategy is a finite automaton Ae = (Σ,Σ0,X ,Y, δe, δs, γX , γY , γg) where
(i) Σ,Σ0,X ,Y, γX , γY are defined in Definition 1. (ii) δe : Σ → 2X maps a state to the next input
state. (iii) δs : Σ × 2X → 2Σ maps a state σ and the next input state σX to possible next states.
(iv) γg : Σ → N maps a state σ to the index of a system liveness goal the state attempts to satisfy.

When synthesis produces a strategy, we deploy the strategy on robots as the high-level controller.
During the robot execution, environment safety assumptions φt

e may be violated.

Definition 3. An assumption violation is a triplet t = (σX , σY , σ
′
X ) such that ∃i, σX ∪ σY ∪

⃝σ′
X ̸|= φt

e,i. In Example 1, σX := {πx2

base, π
ee
cup, π

x3
cone, π

t0
block, π

t3
stone}, σY := {yoriginal}, and

σ′
X := σX ∪ {πempty}.

4 PROBLEM STATEMENT

We tackle the runtime repair problem of high-level robot controllers under assumption violations.

Problem 1. Given (i) an abstraction of the environment X and skills Y , (ii) specifications consisting
of a task specification φtask and a GR(1) specification φ such that φtask ⪯ φ, (iii) an assumption vi-
olation t = (σX , σY , σ

′
X ), and (iv) a set of example strategies and their descriptions {(Ai

s,Di)}ki=1;
find a set of new skills Ynew that makes the specification φ realizable under the violation t, at runtime.

5 APPROACH

To address Problem 1 in large state spaces, we propose a hybrid framework INPROVF, as depicted in
Fig. 2, that leverages LLMs to efficiently produce new skill candidates, and formal methods to verify

4



ICLR 2025 Workshop on VerifAI: AI Verification in the Wild

Figure 2: INPROVF system details.

them. We first informalize the abstraction into the NL description of its physical meaning. We then
synthesize a strategy from the specification and use few-shot prompting to obtain the NL description
of the strategy behavior (Sec. 5.1). Next, we leverage LLMs to generate a set of new skill candidates
that potentially repair the behavior of the strategy under the violation (Sec. 5.2). We verify the
candidates through syntax and realizability checking (Sec. 5.3). If the candidates cannot repair
the violation, we provide feedback on syntax and counterstrategy analyses to the LLMs (Sec. 5.4).
Appendix C presents a case study that walks through our framework with Example 1.

5.1 INFORMALIZATION

We begin by leveraging LLMs to translate the environment abstraction and the synthesized strategy
into informal natural language descriptions. Since LLMs are primarily trained on natural language
data and optimized for a wide range of tasks on NL traces, we hypothesize that LLMs better utilize
the abstraction and strategy behaviors in natural languages than in the formal representations.

Abstraction informalization. We take in an abstraction consisting of the environment inputs X and
a grounding function G that maps each input to a set of physical states. We prompt LLMs to describe
the physical meaning of the abstraction. Appendix A.1 presents the prompt, and Appendix C shows
the informalized abstraction description for Example 1.

Strategy informalization. Next, we obtain the behavior description of the strategy As, synthe-
sized from the GR(1) specification φ. Since each state of the strategy consists of environment input
propositions, we leverage the previously generated environment abstraction description to provide
the context for LLMs to ingest the strategy behavior. Our preliminary study found that this is a rela-
tively challenging task due to the complexity of the strategy, which is a finite automaton as described
in Definition 1. So, we use one-shot prompting–including one example translation in the prompt–to
help steer LLMs towards generating accurate strategy behavior. Appendix A.2 describes the one-
shot prompt and Appendix C.2 shows the resulting strategy behavior for Example 1. Appendix A.2.1
shows the example translation for Example 1.

5.2 REPAIR

The repair process takes in the description of the abstraction X , the existing robot skills Y , the task
specification φtask ⪯ φ, provided by the user, that only contains the essential constraints of the full
GR(1) specification φ, the assumption violation t = (σX , σY , σ

′
X ), and the behavior description

D of the strategy As synthesized from φ. We form a prompt that combines the inputs and asks
LLMs to only produce a set of new skill candidates Ynew in a predefined domain-specific language
(DSL). We also require the new skills to be formatted as JSON files only, and we perform regular
expression matching to extract Ynew from the responses. Appendix A.3 presents the repair prompt,
and Appendices C.3 and C.6 show two example repair candidates for Example 1.
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Algorithm 1: Safety Analysis
Input: Counterstrategy Ae, System safety constraints φt

s =
∧

i □φt
s,i

Output: NL feedback on violated safety constraints
1 for σ, σ′ ∈ Σ such that σ′ ∈ δs(σ, δe(σ)) and δs(σ

′, δe(σ
′)) = ∅ do

2 for □φt
s,i in φt

s do
3 if γX (σ) ∪ γY(σ) ∪⃝(γX (σ′) ∪ γY(σ

′)) ̸|= φt
s,i then

4 yield to feedback: “skills in γY(σ) violate the safety constraints □φt
s,i.”

5.3 VERIFICATION

After obtaining a set of new skill candidates Ynew, we verify the correctness of Ynew through syntax
and realizability checking, ensuring that Ynew indeed repairs the violation.

Syntax check. We check the syntax of Ynew against the DSL grammar. We leverage a parser to
automatically transform Ynew into a set of abstract syntax trees (ASTs). If parsing is successful, the
new skills are in the correct syntax. We also ensure type correctness by recursively traversing each
node of the ASTs, verifying each component of Ynew against its expected type.

Realizability check. Once Ynew is in the correct syntax, we check whether Ynew can repair the
assumption violation. We use a compiler from Meng & Kress-Gazit (2024) to add Ynew to φ and
relax the assumptions in φ that are violated by the violation t = (σX , σY , σ

′
X ), resulting in an

updated specification φ′. We then check the realizability of φ′. If φ′ is realizable, then Ynew is
verified to be sufficient to solve the violation.

5.4 FEEDBACK

If the new skills Ynew do not pass the verification step, we provide three types of feedback, each
of which targets a different type of error, to ensure that we have informative and yet concise NL
feedback to LLMs for iterative prompting.

Syntax feedback. For syntax errors detected in the syntax-checking procedure, we provide feedback
based on the nodes of the ASTs that violate the grammar and the grammar rules that are violated.
For instance, for a new skill ynew ∈ Ynew that contains an uncontrollable input πu ∈ Xu in its
precondition, we automatically provide the following feedback: “πu in the precondition of ynew is
not a controllable input.”

Counterstrategy. Next, if the new skills Ynew are syntactically correct but the updated specification
φ′ remains unrealizable, meaning skills in Ynew do not repair the violation, we compute a counter-
strategy Ae to provide feedback. While the counterstrategy contains information about the cause
of the unrealizability of φ′, LLMs may not be able to utilize the formal representation of the coun-
terstrategy (as shown in Definition 2). We thus perform formal analysis on the counterstrategy to
transform it into concise NL feedback.

Safety analysis. Given the counterstrategy Ae and the system safety constraints φt
s =

∧
i □φt

s,i,
we provide feedback on if and which skill violates any safety constraint □φt

s,i. As shown in Al-
gorithm 1, We first identify any transition (σ, σ′) in Ae such that σ′ is a sink state, i.e. there are
no outgoing edges from σ′ (Line 1). We are interested in sink states because those are the states
where the system has no valid next move, indicating states that violate safety constraints. We then
iterate through all system safety constraints □φt

s,i (Line 2), and check whether the transition vi-
olates any safety constraint (Line 3). We perform this check by formulating a conjunction of the
labels of σ, the labels of σ′, and the safety constraint of interest, and then leveraging an SMT solver
Z3 De Moura & Bjørner (2008) to check the satisfiability of the conjunction, as done in Raman &
Kress-Gazit (2013). If the constraint □φt

s,i is violated, we provide the following NL feedback: “the
skills in γY(σ) violate the hard constraint □φt

s,i” (Line 4). Appendix C.5 presents an example safety
analysis feedback for Example 1.

Liveness analysis. Given the counterstrategy Ae and the system liveness goals φg
s =

∧n
i=1 □♢φg

s,i,
we provide feedback on which liveness goals are not satisfied given the new skills. Algorithm 2 de-
scribes our approach. We first leverage Tarjan’s algorithm Tarjan (1972) to identify a set of strongly
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Algorithm 2: Liveness Analysis
Input: Counterstrategy Ae, Liveness goals φg

s =
∧n

i=1 □♢φg
s,i

Output: NL feedback on unsatisfied liveness goals
1 SCCs := find strongly connected components(Ae);
2 for S ∈ SCCs do
3 if (∀σ ∈ S, ̸ ∃σ′ ̸∈ S.σ′ ∈ δs(σ, δe(σ))) ∧ (∃σ ∈ S.δs(σ, δe(σ)) ̸= ∅) then
4 L := {i | ∃σ, σ′ ∈ S.σ′ ∈ δs(σ, δe(σ)), γg(σ) ≤ i < γg(σ

′) mod n};
5 L′ := {i | ∃σ ∈ S.γg(σ) = i} \ L ;
6 return “The new skills cannot satisfy liveness goals {□♢φg

s,i | i ∈ L′} after satisfying
liveness goals {□♢φg

s,i | i ∈ L}.”

connected sets in the nodes Σ of Ae (Line 1). We then only consider the sinking ones, i.e. there
is no outgoing edge towards other components, and are not singletons without transitions (Line 3).
Thus, we identify a sinking strongly connected component that can trap the robot within it once
any state of the component is reached. We then identify the indices of a set of liveness goals L
satisfied in the component (Line 4). We note that the inequality comparisons are modulo n (where
n ∈ N is the total number of system liveness goals arranged in a cyclic order); that is, the condition
γg(σ) ≤ i < γg(σ

′) mod n in Line 4 means that γg(σ) ≤ i < γg(σ
′) if γg(σ) ≤ γg(σ

′), and
(γg(σ) ≤ i ≤ n)∨ (1 ≤ i < γg(σ

′)) if γg(σ) > γg(σ
′). Next, we obtain the indices of another set of

liveness goals L′ that the robot attempts to, but cannot, satisfy in the component (Line 5). Lastly, we
provide feedback which states that the robot cannot satisfy the liveness goals in L′ after satisfying
L (Line 6). Appendix C.8 presents an example feedback from liveness analysis for Example 1.

Both the safety and liveness analyses have computation complexity O(|Σ|2) since they only access
each state and transition of the counterstrategy at most a finite number of times. Our feedback allows
LLMs to correct their mistakes and generate more promising repair candidates.

6 EXAMPLES

Our examples aim to explore the following questions: Q1. Does INPROVF repair violations more
efficiently than the state-of-the-art formal-methods-based approach? Q2. How does each component
(informalization, feedback) contribute to the overall performance of INPROVF?

Examples. We evaluate 12 violations in four workspaces over two abstraction types (object-centric
and swarm). Detail descriptions of the examples can be found in Appendix B.

Baseline and Ablations. Our previous work Meng & Kress-Gazit (2024) provides a synthesis-based
baseline that modifies the pre and post-conditions of existing skills to suggest new skills that repair
the violations. We also consider two ablations of INPROVF: no-inform where we do not perform
informalization and instead directly include the abstraction and strategy in the repair prompt; and
no-feedback, where we perform the iterative prompting without feedback from formal analyses.

Setup. We run our experiments on a Linux machine with a 2.3GHz 8-core AMD RyzenTM-7 CPU.
We use OpenAI o1-preview-2024-09-12 as the LLM for INPROVF. We measure runtime in seconds.
We set the runtime limit to 3000 seconds. For INPROVF and its ablations, we set a maximum limit
for feedback iteration to be 5 for monetary cost control of LLMs. We run 5 trials with different
random seeds for the baseline and 3 trials for INPROVF and its ablations for each violation.

Results. Fig. 3 presents the success rates and the runtime comparison for the successful trails. For
INPROVF and its ablations, we also show the detailed runtime breakdown of each key component.
We do not include the runtime for informalization in Fig. 3 because we only perform informalization
once offline for each example; other violations under the same example can reuse the informaliza-
tion results. Table 1 shows the average runtime and standard deviation for each informalization
component over three trials per example.

Analysis. In the factory example with a small state space (37 variables), the average runtime of
formal-methods-based baseline (144.05 s) is comparable to that of INPROVF (92.36 s). However,
for the three larger examples (64-79 variables), INPROVF significantly outperforms the baseline. In
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Figure 3: Comparison of success rates (n/m) and runtime breakdowns (with std error bars for total
runtime) for baseline, INPROVF, and its ablations (no-inform, no-feedback) on successful runs.

Table 1: Informalization average runtime with standard deviation (s)
Abstraction-inform Synthesis Strategy-inform

Factory 16.32± 6.91 1.94± 0.58 65.79± 29.11
Large 16.14± 10.78 90.43± 3.48 44.46± 12.09

Laundry 17.83± 7.78 24.81± 2.83 42.99± 12.03
ER 10.17± 4.64 1.79± 0.03 27.63± 8.60

these larger cases, the baseline fails to complete within the 3000-second time limit. We also remove
the time limit for the larger-cup violation, but the baseline does not terminate after 18523.93 s, even-
tually causing a machine out-of-memory crash. In contrast, for these larger examples, within five
iterations, INPROVF successfully repairs every violation except one in a single run; the failed run
is for the laundry-fold violation. These results indicate that INPROVF is more scalable and efficient
than the baseline in large state space (Q1). Our ablation studies show that INPROVF achieves a
higher success rate (97.22%) than no-inform (55.56%) and no-feedback (72.22%). Additionally, in
the successful runs, the runtime for no-inform is on average 7.43% higher than that of INPROVF.
These results suggest both informalization and feedback are critical for INPROVF to achieve high
performance in runtime repair (Q2).

7 LIMITATIONS AND CONCLUSION

We present INPROVF, a novel hybrid framework that combines the scalability of LLMs and the
guarantees of formal methods to efficiently repair high-level robot controllers under assumption vi-
olations at runtime with prohibitively large state space. Our experiments across various state space
sizes indicate that our approach outperforms the formal methods-based approach in settings with
large state spaces. Nonetheless, our evaluation faces several limitations. First, since there is no stan-
dard benchmark for runtime repair, our evaluation instances are limited. In future work, we plan to
leverage LLMs to procedurally generate a diverse range of repair instances across various abstraction
types for a more comprehensive evaluation. Moreover, the formal-methods-based repair executes on
CPUs, and its implementation has not been optimized, while the LLM components of INPROVF run
on GPUs and benefit from extensive engineering optimizations. Thus, a direct runtime comparison
may not be fair. Future work will focus on developing evaluation metrics that better account for the
hardware disparities. Finally, we currently assess the quality of informalization indirectly through
the final repair correctness, which is neither sound nor complete. Future work will explore automatic
evaluation methods that directly measure the quality of informalization. Additionally, we will work
on further improving the scalability of formal methods components within our framework, such as
the realizability check.
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A PROMPTS

We describe the prompts used in INPROVF.

A.1 ABSTRACTION INFORMALIZATION

System prompt: You are a researcher in robotics and an expert in formal methods for
robotics.
User prompt: You are given an abstraction that contains a set of input propositions X, a
physical state space PS \subseteq Rˆn, and a grounding function G: X -> 2ˆPS that maps
each input proposition to a set of physical states. You are asked to explain the physical
meaning of the input propositions.
# Input propositions: <Inserted input propositions X >
# Grounding: <Inserted grounding function G >
Please only provide a concise, general explanation covering all input propositions’ physical
meaning. Do not provide any examples.
<Informalized abstraction to be returned here>

A.2 STRATEGY INFORMALIZATION

We leverage one-shot prompts for strategy formalization.

System prompt: You are a researcher in robotics and an expert in formal methods for
robotics.
User prompt: You are given an abstraction of the environment, a set of robot skills, a
GR(1) specification, and its corresponding synthesized strategy. You are asked to describe
the behavior of the strategy. I will first give an example of a strategy, its behavior description,
and its explanation. Then, I will ask you to describe the behavior of a different strategy.
# Example: <Inserted strategy informalization example (A1

s ,D1)>
# Problem: Now, I will ask you to describe the behavior of a different strategy. You are
given: (1) an abstraction of the physical workspace and objects in the workspace, (2) a set
of robot skills, (3) a task specification, and (4) a synthesized robot controller.
## Input propositions: <Inserted inputs X and informalized abstraction>
## Output propositions: <Inserted output propositions Y>
## Task specification: We use the GR(1) fragment of Linear Temporal Logic to encode the
task specification. The task specification is given in the following JSON file: <Inserted
task specification φtask>
## Strategy: We represent the robot strategy synthesized from the specification as a finite
state automaton. For each node, ’rank’ represents which liveness goal the node is trying
to satisfy, ’state’ represents the value of each variable in the state, in the order of the field
’variables’, and ’trans’ represents the possible successor states. The strategy is in the JSON
file: <Inserted strategy As>
Please describe the behavior of the synthesized strategy only. Do not provide any explana-
tion: <Informalized strategy behavior to be returned here>
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A.2.1 STRATEGY INFORMALIZATION EXAMPLE FOR OBJECT-CENTRIC ABSTRACTION

We use the following strategy informalization example for object-centric abstraction including the
following examples: factory, large, and laundry.

Inputs: [”p base x0”, ”p base x1”, ”p base x2”, ”p base x3”]
Outputs: [”skill0”, ”skill1”]
Task specification and strategy: <omitted for space >
Behavior: Initially, the robot’s base is in x0, and the liveness goal ‘p base x0‘ which re-
quires the base to repeatedly reach x0 is satisfied. The robot then executes skill0 to move to
x1 and then x3, satisfying the liveness goal ‘p base x3‘ which requires the base to repeatedly
reach x3. Next, the robot executes skill1 to move back to x0 via x1, satisfying the liveness
goal ‘p base x0‘ again. This behavior continues indefinitely.
Explanation: ”Initially, the robot’s base is in x0, and the liveness goal ‘p base x0‘ which
requires the base to repeatedly reach x0 is satisfied” corresponds to node 0. ”The robot then
executes skill0 to move to x1 and then x3, satisfying the liveness goal ‘p base x3‘ which
requires the base to repeatedly reach x3” corresponds to the transitions from node 0 to node
1, node 2, node 3, and then node 4. ”Next, the robot executes skill1 to move back to x0 via
x1, satisfying the goal ‘p base x0‘ again” corresponds to the transitions from node 4 to node
5, node 6, node 7, and then back to node 0.

A.2.2 STRATEGY INFORMALIZATION EXAMPLE FOR SWARM ABSTRACTION

We use the following strategy informalization example for swarm abstraction including the example
ER.

Inputs: [”p swarm x0”, ”p swarm x1”, ”p swarm x2”, ”p swarm x3”]
Outputs: [”skill0”, ”skill1”, ”skill2”, ”skill3”]
Task specification and strategy: <omitted for space >
Behavior: Initially, the robot swarm is in x0 and the liveness goal ‘p swarm x0 &
!p swarm x1 & !p swarm x2 & !p swarm x3‘ which requires the swarm to repeatedly stay
in x0 only is satisfied. The swarm then executes skill0 to reach x1 and x2, and then exe-
cutes skill1 to reach x3, satisfying the goal ‘p swarm x3 & !p swarm x0 & !p swarm x1
& !p swarm x2‘ which requires the swarm to repeatedly stay in x3 only. Next, the robot
executes skill2 to move to x1 and x2, and finally executes skill3 to reach x0, satisfying the
first goal again. This behavior continues indefinitely.
Explanation: ”Initially, the robot swarm is in x0 and the liveness goal ‘p swarm x0 &
!p swarm x1 & !p swarm x2 & !p swarm x3‘ which requires the swarm to repeatedly stay
in x0 only is satisfied” corresponds to node 0 and 1. ”The swarm then executes skill0 to
reach x1 and x2” corresponds to the transitions from node 1 to node 2, node 2 to node 3 or
node 4, and node 3 or node 4 to node 5 and then node 6. ”and then executes skill1 to reach
x3, satisfying the goal ‘p swarm x3 & !p swarm x0 & !p swarm x1 & !p swarm x2‘ which
requires the swarm to repeatedly stay in x3 only” corresponds to the transitions from node 6
to node 7, and then node 8 or node 9, and then node 10. ”Next, the robot executes skill2 to
move to x1 and x2” corresponds to the transitions from node 10 to node 11 or node 12, and
then to node 13, node 14, and node 15. ”and finally executes skill3 to reach x0, satisfying
the first goal again” corresponds to the transitions from node 15 to node 16 or node 17, and
then to node 0.
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A.3 REPAIR

System prompt: You are a researcher in robotics and an expert in formal methods for
robotics.
User prompt: You are given: (1) an abstraction of the physical workspace and objects in
the workspace, (2) a set of robot skills, (3) a task specification, (4) the original behavior of
the synthesized strategy, and (5) a violated observation during the robot execution. You are
asked to provide a set of new skills that along with the original skills can allow the robot to
recover from the violation and satisfy the task specification.
# Abstraction:
## Input propositions: <Inserted inputs and informalized abstraction description>
## Output propositions: <Inserted output propositions>
# Task specification:
We use the GR(1) fragment of Linear Temporal Logic to encode the task specification. The
task specification is given in the following JSON file: <Inserted task specification >
# Strategy behavior: <Inserted informalized strategy behavior description>
# Assumption Violation: During the robot execution, we detect that an observed transition
violates some environment safety assumptions.
The violated observation is in the following JSON file:
<Inserted assumption violation t = (σX , σY , σ

′
X )>

The violated environment safety assumptions are as follows:
<Inserted violated assumptions >
# Returns: After the assumption violation, we relax the violated assumption to include the
observed violation transition. You are asked to provide a set of new skills that, along with the
original skills, allow the robot to continue satisfying the task after the assumption violation.
Please respond with new skills only in the following format:

‘ ‘ ‘ JSON
{

” n e w s k i l l 0 ” : [
[ <PRECONDITION> ,

[<POSTCONDITION> , . . . ] ] ,
[ <PRECONDITION> ,

[<POSTCONDITION> , . . . ] ] ,
. . . ] ,

” n e w s k i l l 1 ” : [
[ <PRECONDITION> ,

[<POSTCONDITION> , . . . ] ] ,
[ <PRECONDITION> ,

[<POSTCONDITION> , . . . ] ] ,
. . . ] ,

. . .
}
‘ ‘ ‘

The response follows the grammar:
<new_skill>: [<intermediate_transition>+]
<intermediate_transition> = [<precondition>, [<postcondition>+]]
<precondition> = [<controllable_input>+]
<postcondition> = [<controllable_input>+]

Each pre or post-condition in the new skills should be a complete controllable input state.
Do not include original skills in the new skills. Do not include any comments in skills.
<New skills to be returned here>
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B EXAMPLE DESCRIPTIONS

B.1 OVERVIEW

We evaluate 12 violations in four workspaces over two abstraction types (object-centric and swarm).

• Factory. A mobile manipulator operates in a factory-like workspace (Fig. 4). During the exe-
cution, the robot encounters three violations: factory-cone where an obstacle cone moves to the
front of the robot, factory-cup where the status of a cup changes (Example 1), and factory-stone
where a static obstacle stone unexpectedly moves. This example is from Sec. VC of Meng &
Kress-Gazit (2024).

• Large. A larger version of the factory example with additional regions surrounding the
workspace in Fig. 1, increasing the number of input propositions from 29 to 71. The three
violations, large-cone, large-cup, and large-stone, are the same as those in the factory example.

• Laundry. A mobile manipulator is responsible for laundry tasks in an apartment-like workspace
(Fig. 5 left). In the violation laundry-box, an obstacle box blocks the path to a folding table. In
the violation laundry-pick, the skill that picks up a cloth fails, and the robot should attempt to
pick up another cloth instead. In the violation laundry-fold, a folding table is malfunctioning,
and the robot should use another folding table instead.

• ER. A swarm of robots is in an emergency room (ER)-like workspace (Fig. 5 right). In the
violation ER-skill, a low-level controller failure causes some robots to enter an undesired re-
gion. In the violation ER-patient, a patient enters the ER unexpectedly, requiring the swarm to
visit the ER in response. In the violation ER-operate, a patient appears in an operation room
unexpectedly, forcing the swarm to patrol other operation rooms instead.

Informalization examples. For strategy informalization (Sec. 5.1), we use an example in Ap-
pendix A.2.1 for object-centric abstraction (factory, large, and laundry) and the one in Ap-
pendix A.2.2 for swarm abstraction (ER).

B.2 FACTORY AND LARGE

Setup. As shown in Fig. 4, a mobile manipulator operates in a factory-like environment with five
objects (including the robot base) and 11 regions (including the robot’s end-effector). The resulting
abstraction contains 29 input propositions and eight output propositions (robot skills).

Abstractions. The input propositions are of the form πr
o , representing that the object o is in the

region r. Additionally, a user-controlled input πempty represents the status of the cup (whether it is
empty or not). The robot is initially given two mobile skills that allow the robot to move between
x4 and x0 via x2, and six manipulation skills. Among them, three pick-up skills include picking up
the controllable obstacle block from t1, picking up cup from t2 and t4. The other three skills place
block to t3, cup to t2, and to t4.

Tasks. We task the robot to move the object cup to a loading table t2 whenever the cup is empty,
and move it to an assembly table t4 whenever the cup is full. Formally, (□♢πempty → πt2

cup) ∧
(□♢¬πempty → πt4

cup).

Safety guarantees. The robot is asked to satisfy the following safety guarantees.

1. Collision avoidance. For any different objects o1 and o2, and for any region r, it must hold
that □(¬(πr

o1 ∧ πr
o2) ∧ ¬(⃝πr

o1 ∧⃝πr
o2)).

2. Blocking constraint. The robot cannot pick the cup if block is in front of the cup.

3. Entrance restrictions. The robot is not allowed to bring an empty cup to enter the assem-
bly region x0, or bring a full cup to the loading region x4.

Safety assumptions. The environment behaviors are assumed to obey the following constraints:

1. Static obstacles. Uncontrollable obstacles stone and cone are assumed to be static.
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Figure 4: Workspace from Meng & Kress-Gazit (2024). (A) Physical workspace of the setup. (B)
Initial position of each object in the workspace.

2. Cup status. The robot assumes that the status of cup only changes in the loading table t2
and the assembly table t4.

Violations. We consider the following violations of environment safety assumptions.

• Factory-stone. When the robot starts to pick up block from t1, the uncontrollable obstacle stone
moves from t0 to t3, violating the assumption that stone should be static.

• Factory-cup. When the robot base is about to enter x0 from x2, with cup in the robot’s end-
effector ee, the status of cup changes from full to empty, violating the assumption that the status
change should only occur in the loading or assembly table.

• Factory-cone. When the robot starts to move from x4 to x2, the uncontrollable obstacle cone
moves from x3 to x2, violating the assumption that cone should be static.

The three violations in the large example – large-cone, large-cup, and large-stone – are the same
as factory-cone, factory-, and factory-, respectively, except that the sizes of their state space are
different: we increase the number of regions from 11 to 30, and consequently the number of input
propositions is increased from 29 to 71.
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Figure 5: Example workspace. Left: An apartment-like workspace where a mobile manipulator
performs laundry tasks. Right: An emergency room-like workspace where a robot swarm performs
patrolling tasks.

B.3 LAUNDRY

Setup. As shown in Fig. 5 left, a mobile manipulator operates in an apartment-like environment
with four objects (including the robot base) and 23 regions (including the robot’s end-effector). The
resulting abstraction contains 55 input propositions and nine output propositions (robot skills).

Abstractions. We use the object-centric abstraction, where the input propositions are of the form
πr
o , representing that the object o is in the region r. We have six user-controlled inputs, π0

clean, π1
clean,

π0
dry, π1

dry, π0
fold, and π1

fold, that indicate the statuses of two clothes in the workspace. Additionally, a
user-controlled input πwear represents whether the user requests to wear a cloth or not. The robot is
initially given six mobile skills to move between HW2 and BR8, HW2 and BA7, and HW2 and
L7, and three manipulation skills to pick up and drop off the clothes.

Tasks. We task the robot to move a cloth, cloth0 or cloth1, to the bed area B0 whenever the user
requests to wear a cloth, and move them back to the closets C0 or C1 if the user does not request.
Formally, (□♢¬πwear → (πC0

cloth0 ∨ πC1
cloth0) ∧ (πC0

cloth1 ∨ πC1
cloth1)) ∧ (□♢πwear → (πB0

cloth0 ∨ πB0
cloth1)).

Safety guarantees. The robot is required to satisfy the following safety guarantees.

1. Cloth status. The robot cannot bring a dirty or wet cloth to the bed area B0; or a dirty,
wet, or unfolded cloth to the closets C0 and C1; or a dirty or wet cloth to the folding tables
Fold1 or Fold2; or a dirty cloth to the dryer.

2. Collision avoidance. Any two objects should not be in the same region (same as the
constraint in factory example in Appendix B.2).

3. Topology constraints. The robot should follow the transition relations specified by the
workspace (Fig. 5 left).

4. Pickup skill constraint. The robot cannot pick up the cloth from C0 if it does not execute
the pickup skill skill6: □πC0

cloth0 ∧ ¬skill6 → ⃝πC0
cloth0.

Safety Assumptions. The environment behaviors are assumed to obey the following constraints:

1. Static obstacles. The uncontrollable obstacle box is assumed to be static (same as the
constraint in factory example in Appendix B.2).

2. Cloth statuses. The cloth statuses can and will change in some regions. Specifically, a
cloth can only change from clean to dirty if it is in the bed area B0; from dry to wet if in
the washer; from folded to unfolded if in B0, washer, or dryer. Moreover, a cloth will be
cleaned in the next step if it is in the washer; dried in the next step if in the dryer; folded in
the next step if in a folding table.

3. Request status. The user request status πwear can only change it a cloth is in the bed area
B0 or both clothes are in the closets C0 and C1. Specifically, πwear can only change from
True to False if a cloth is in B0; from False to True if both clothes are in the closets.

Violations. We consider the following violations of environment safety assumptions.
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• Laundry-box. When the robot holds the cleaned, dried, but unfolded cloth0 in region HW2,
the uncontrollable box moves from L2 to L4, blocking the path towards the folding table Fold1.

• Laundry-pick. When the robot is in region BR8 executing skill6 to pick up cloth0, the pickup
skill is faulty, and as an unexpected postcondition of the skill, cloth0 remains in the closet C0.

• Laundry-fold. When the robot is in region L7 placing cloth0 to the folding table Fold1, the
folding table is malfunctioning and as a consequence, cloth0 remains unfolded in the next step.

B.4 ER

Setup. As shown in Fig. 5 right, a swarm of mobile robots (the exact number of robots is unknown)
is in an emergency room-like workspace in a hospital with 30 regions. The resulting abstraction
contains 60 input propositions and four output propositions (robot skills).

Abstractions. We use the swarm abstraction following Moarref & Kress-Gazit (2020). We consider
two groups of objects: swarm which represents the group of robots, and patients which represents a
group of patients in the hospital. Then for any region r, the input proposition πr

swarm represents that
there exists a robot in region r, and similarly, πr

patient represents that there exists a patient in region
r. The robot is initially given four mobile skills: skill0 moves the swarm from the corridor C to L0

and L9; skill1 moves the swarm from L0 and L9 back to C; skill2 moves the swarm from C to O0

and O9; skill3 moves the swarm from O0 and O9 back to C.

Tasks. The robot is asked to patrol between the operation rooms 00 . . . O13 and the lab L0 . . . L13.
Specifically, for room type α ∈ {L,O}, we partition the rooms into two subsets, {α0, . . . , α6} and
α7, . . . , α13. A robot in any room of the subset suffices to patrol all the rooms in the subset. For-
mally, we have □♢(

∨
i∈{0,...,6} π

Oi
swarm)∧(

∨
i∈{7,...,13} π

Oi
swarm)∧¬(

∨
i∈{0,...,13} π

Li
swarm)∧¬πER

swarm)∧
□♢(

∨
i∈{0,...,6} π

Li
swarm) ∧ (

∨
i∈{7,...,13} π

Li
swarm) ∧ ¬(

∨
i∈{0,...,13} π

Oi
swarm) ∧ ¬πER

swarm). Moreover, we
require some robots (not need to be all) to visit ER if there is a patient in ER: □♢πER

patient → πER
swarm.

Safety guarantees. The robot swarm is required to satisfy the following safety guarantees.

1. Mutual exclusion in operation rooms. The robot cannot interrupt the operation if a patient
is in the operation room: ∀i ∈ {0, . . . , 13},□(¬(πOi

swarm ∧ πOi

patient)) ∧ □(¬(⃝πOi
swarm ∧

⃝πOi

patient))

2. Topology constraints. The robot transition should follow the ER workshop as shown in
Fig. 5 right.

Safety Assumptions. The environment behaviors are assumed to obey the following constraints:

1. Static patients. We assume that the patient status for each region r does not change:
□πr

patient ↔ ⃝πr
patient.

Violations. We consider the following violations of environment safety assumptions.

• ER-skill. During the execution of skill3 when the robot swarm moves from O0 and O9 to C,
some robots accidentally enter ER due to low-level controller failure.

• ER-patient. During the execution of skill0 when the robot swarm is still in C, a patient unex-
pectedly appears in ER.

• ER-operate. During the execution of skill0 when the robot swarm is still in C, a patient unex-
pectedly appears in O0.
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C CASE STUDY

We provide a case study that walks through INPROVF for the factory-cup violation.

C.1 ABSTRACTION INFORMALIZATION

This step takes as input (i) the set of input propositions X = {πr
o | o ∈ O, r ∈ R} ∪ {πempty},

where O and R are the sets of objects and regions as described in Appendix B,
and (ii) the grounding function G(πr

o) := {x | pose(x, o) ∈ region(r)} and
G(πempty) = {x|status of cup(x) = empty}). We prompt LLMs using the prompt described
in Appendix A.1. We use p object region to represent the input πregion

object and prime (’) for the next
operator (⃝), following the syntax of GR(1) formulas in Slugs (Ehlers & Raman, 2016). We obtain
the following abstraction description.

LLM response: Each input proposition \( p_{o\_r} \) represents the condition that
object \( o \) is located within region \( r \). The grounding function \( G \)
maps each proposition \( p_{o\_r} \) to the set of physical states where the pose of
object \( o \) is in region \( r \). The proposition ”empty” signifies the status of the
cup, indicating whether it is empty.

C.2 STRATEGY INFORMALIZATION

Next, we take as inputs the informalized abstraction and a strategy (high-level controller) synthe-
sized from the GR(1) specification. We leverage LLMs to generate a NL description of the behavior
of the strategy. We use the one-shot prompt as described in Appendix A.2, where the strategy infor-
malization example is shown in Appendix A.2.1. We obtain the following informalized abstraction:

LLM response: The synthesized strategy behaves as follows:
Initially, the robot’s base is at position x4, the cup is at location k2, the block is at location
k1, the cone is at x3, the stone is at k0, and the cup is empty.
When the cup becomes **not empty**, the robot executes **skill4** to pick up the block
from k1 and then **skill7** to place the block at k3. Next, the robot uses **skill2** to pick
up the cup from k2. It then executes **skill1** to move from x4 via x2 to x0 while holding
the cup. At x0, the robot uses **skill6** to place the cup on the table.
When the cup becomes **empty** again, the robot executes **skill3** to pick up the cup
from the table. It then uses **skill0** to move from x0 via x2 to x4 while holding the cup.
At x4, the robot executes **skill5** to place the cup back at k2.
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C.3 REPAIR PROMPT

We incorporate the informalized abstraction and strategy description, along with the task specifica-
tion and the assumption violation, to form a prompt for LLMs to repair the violation. Appendix A.3
shows the prompt. We obtain the following response:

LLM response:

‘ ‘ ‘ JSON
{

” n e w s k i l l 0 ” : [
[

[ ” p b a s e x 2 ” , ” p c u p e e ” ] ,
[ [ ” p b a s e x 3 ” , ” p c u p e e ” ] ]

] ,
[

[ ” p b a s e x 3 ” , ” p c u p e e ” ] ,
[ [ ” p b a s e x 4 ” , ” p c u p e e ” ] ]

]
]

}
‘ ‘ ‘

C.4 VERIFICATION

While the repair candidate is syntactically correct, the updated specification is still unrealizable,
meaning the new skills still cannot overcome the violation.

C.5 SAFETY ANALYSIS

After verification, we compute a counterstrategy and perform our safety analysis. Note that the new
skill brings the robot base to x3, the same region as the obstacle cone, thus violating the collision
avoidance safety constraint. The analysis obtains the following feedback:

Safety analysis feedback: new skill 0 violates the hard constraints !(p base x3’ &
p cone x3’)
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C.6 REPAIR PROMPT - SECOND ITERATION

After providing the safety feedback for iterative prompting, the repair prompt successfully generates
the correct repair. The generated new skills are as follows:

LLM response:

‘ ‘ ‘ JSON
{

” n e w s k i l l 0 ” : [
[

[ ” p b a s e x 2 ” , ” p c u p e e ” ] ,
[ [ ” p b a s e x 1 ” , ” p c u p e e ” ] ]

] ,
[

[ ” p b a s e x 1 ” , ” p c u p e e ” ] ,
[ [ ” p b a s e x 4 ” , ” p c u p e e ” ] ]

]
] ,
” n e w s k i l l 1 ” : [

[
[ ” p b a s e x 4 ” , ” p c u p e e ” ] ,
[ [ ” p b a s e x 1 ” , ” p c u p e e ” ] ]

] ,
[

[ ” p b a s e x 1 ” , ” p c u p e e ” ] ,
[ [ ” p b a s e x 0 ” , ” p c u p e e ” ] ]

]
]

}
‘ ‘ ‘
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C.7 REPAIR PROMPT (A DIFFERENT RUN)

We now provide the repair result from a different run that triggers liveness analysis:

LLM response:

‘ ‘ ‘ JSON
{

” n e w s k i l l 0 ” : [
[

[ ” p b a s e x 2 ” , ” p c u p e e ” , ” p b l o c k k 3 ” ] ,
[ [ ” p b a s e x 4 ” , ” p c u p e e ” , ” p b l o c k k 3 ” ] ]

]
]

}
‘ ‘ ‘

C.8 LIVENESS ANALYSIS

While the new skill brings the robot base from x2 to x4, we note that the position of block in the new
skill is in k3, but the current position of block is in k0. Therefore, while this new skill is syntactically
correct and does not violate any safety constraint, it is not helpful for the robot to satisfy the liveness
goals under the violation. The liveness analysis provides the following feedback:

Feedback: The new skills cannot satisfy the liveness goals ( empty -> p cup t2 )
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