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ABSTRACT

In dynamic real-world settings, models must adapt to changing data distributions,
a challenge known as Test Time Adaptation (TTA). This becomes even more
challenging in scenarios where test samples arrive sequentially, and the model
must handle open-set conditions by distinguishing between known and unknown
classes. Towards this goal, we propose ROSITA, a novel framework for Open set
Single Image Test Time Adaptation using Vision-Language Models (VLMs). To
enable the separation of known and unknown classes, ROSITA employs a specific
contrastive loss, termed ReDUCe loss, which leverages feature banks storing
reliable test samples. This approach facilitates efficient adaptation of known class
samples to domain shifts while equipping the model to accurately reject unfamiliar
samples. Our method sets a new benchmark for this problem, validated through
extensive experiments across diverse real-world test environments.

1 INTRODUCTION

Over the past decade, computer vision has made remarkable progress Deng et al. (2009); Ren et al.
(2015); He et al. (2017); Everingham et al. (2010), primarily under the assumption that training and
test data come from the same distribution. However, real-world applications are dynamic, where
distribution gaps between training and test data arise due to domain shifts (e.g., lighting, weather, or
camera variations Hendrycks & Dietterich (2019)) and semantic shifts (e.g., encountering unseen
classes). This necessitates adapting deep learning models to dynamic test environments.

Test Time Adaptation (TTA)Wang et al. (2021); Schneider et al. (2020); Niu et al. (2022) addresses
this challenge by adapting models without source data or ground truth labels, where test samples
are seen only once. A more challenging scenario is Continuous TTA (CTTA)Döbler et al. (2023),
where test domains change over time. However, these approaches predominantly operate in closed-set
settings, assuming test data belong to known categories. In real-world scenarios, semantic shifts
frequently occur, requiring models to identify and handle unknown classes. A classic example is that
of autonomous driving Wang et al. (2022), where models trained for specific geographical locations
are deployed elsewhere. For instance, a model trained to recognize only vehicles commonly seen
in urban areas—such as car, truck, motorcycle—may incorrectly classify a bicycle as a motorcycle
when deployed in rural settings. Open Set Adaptation aims to address this, but existing methods Li
et al. (2023) often rely on batch-based updates, limiting their applicability to single-image streams.

Parallel to the recent advances in TTA, there has been tremendous progress in the development of
large scale Vision Language Models (VLM) like CLIP Radford et al. (2021). Having trained on large
scale web scrapped image-text pairs, these VLMs Radford et al. (2021) have demonstrated impressive
zero shot generalization capabilities, making it a natural candidate for TTA. Recent works Shu et al.
(2022); Samadh et al. (2023); Karmanov et al. (2024) adapt VLMs for single-image TTA in closed-set
scenarios, but their utility in open-set scenarios remains underexplored. Addressing this gap, we
propose a benchmark for Open set Single Image Test Time Adaptation using VLMs.

We define classes relevant to the downstream task as desired, and others as undesired. To prevent un-
desired samples from corrupting adaptation, we employ a Linear Discriminant Analysis (LDA) Fisher
(1936); Li et al. (2023)-based identifier to filter undesired samples and classify desired ones accu-
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rately. To tackle open-set single-image TTA, we introduce the ReDUCe loss, which leverages reliable
samples to dynamically contrast desired and undesired classes. This forms the foundation of our
proposed framework, ROSITA for Open set Single Image Test time Adaptation.

Our contributions are as follows:

• To the best of our knowledge, we are the first to tackle the challenging and realistic problem
of Open set Single Image Test Time Adaptation using VLMs, setting a new benchmark.

• Our framework, ROSITA, adapts a VLM to recognize desired class samples with domain
shifts while enabling it to effectively differentiate unfamiliar samples by saying “I don’t
know.” This distinction between desired and undesired class samples is achieved using our
ReDUCe loss, which dynamically contrasts these classes to enhance separability.

• We demonstrate the effectiveness of our method through extensive experiments across a
diverse array of domain adaptation benchmarks, simulating various real-world test environ-
ments, with samples from single domain, continuous and frequently changing domains. We
also experiment varying the ratio of desired and undesired class samples in the test stream.

2 OPEN SET SINGLE IMAGE TEST TIME ADAPTATION

2.1 PROBLEM SETUP

Test stream. The model encounters a single test sample xt at time t, sampled from Dt = Dd ∪ Du

comprising of: (i) Desired class samples: Dd = {xt; yt ∈ Cd}, with domain shift and belonging to
one of the Cd desired classes, for example, Cd = {car, bus, ...,motorcycle}; (ii) Undesired class
samples: Du = {xt; yt ∈ Cu}, which have semantic shift (irrelevant classes) such that Cd ∩Cu = ϕ.

Goal. Given a test sample xt arriving at time t, the goal is to be first recognize if it belongs to a
desired class or not, constituting a binary classification task. If xt is identified as a desired class
sample, a subsequent |Cd|-way classification is performed, else the prediction is “I don’t know”. In
essence, the overall process can be viewed as a |Cd|+ 1 way classification problem.

Open set Single Image TTA scenarios. We simulate several test scenarios inspired from the real
world to evaluate the effectiveness of our method. (1) Single domain: We extend the standard TTA
scenario where the test samples come from an unseen domain Dd (say snow corruption of CIFAR-
10C) by incorporating undesired samples Du (say MNIST). (2) Continuously changing domains:
Here, Dt changes with time as (D1

d ∪Du) → (D2
d ∪Du) . . . → (Dn

d ∪Du), where Di
d is the ith

domain encountered. (3) Frequently changing domains: Here, we significantly reduce the number of
samples per domain in continuous open set TTA. Lesser the samples per domain, more frequently the
domain of the test stream changes, simulating very dynamic open set test scenarios. (4) Vary the ratio
of samples from Cd to Cu in the test stream.

2.2 BASELINES

We perform experiments using CLIP Radford et al. (2021) and MaPLe Khattak et al. (2023) backbones.
CLIP consists of a Vision (FV ) and Text (FT ) encoder, trained using contrastive learning on image-
text pairs. MaPLe backbone uses multimodal prompts to adapt CLIP for downstream tasks.

Classification using VLMs. Given a test image xt and a set of desired classes Cd = {c1, c2, . . . cN},
we construct the text-based classifier by first prepending each class name with a predefined text
prompt pT = “A photo of a”. This forms class-specific text inputs {pT , ci}, which are then passed
through the text encoder to obtain text embeddings ti = FT ({pT ; ci}) for each ci ∈ Cd. As a result,
we get the text-based classifier {t1, t2, . . . t2}. Finally, the class prediction is made by identifying
the text embedding ti that has the highest similarity to the image feature ft.

Desired vs Undesired Class Identifier. In real-world, a deployed model may encounter instances
from both desired and undesired classes. We equip all methods Shu et al. (2022); Karmanov et al.
(2024); Zhang et al. (2024) with an LDA based parameter-free class identifier Fisher (1936); Li et al.
(2023) to reject undesired class samples. Subsequently, the model is adapted during test time.

Benchmark for Open-set Single Image TTA. We adapt the methods proposed for single image
closed-set TTA such as ZSEval Radford et al. (2021), TPT Shu et al. (2022), PAlign Samadh et al.
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(2023), TDA Karmanov et al. (2024) for our problem setting. We also adapt TPT and PAlign for
continuous model update by adapting prompts, which we refer as TPT-C and PAlign-C respectively.
We adapt the recent CNN based open-set TTA works (K+1)PC Li et al. (2023) for VLMs. These
methods are described in detail in Appendix A.2.

2.3 DESIRED VS UNDESIRED CLASS IDENTIFIER

Contrary to closed-set TTA setting, updating the model using all the test samples is not desirable in
the open-set scenario, where test samples can come from either Cd or Cu. It is hence imperative to
equip the model with the ability to say I don’t know by rejecting samples which do not belong to Cd.
In the context of VLMs, we define a score (st) of a test sample to be the maximum cosine similarity
with the text embeddings as given below:

st = max
k

sim(ft, tk); k ∈ {1, . . . C} (1)

This problem can be viewed as a binary classification problem between desired and undesired samples
based on the score st. Defining a threshold to discriminate between the two can be particularly
challenging in the TTA scenario as the samples are only accessible in an online manner. To circumvent
this issue, following Li et al. (2023), we store the scores in a score bank S, which is continuously
updated in an online manner to store the latest |S| scores, approximating the latest distribution
of scores of the test data. Given this, the optimal threshold can be estimated by performing 1D
LDA Fisher (1936). A simple linear search over a range of thresholds is done to identify the best
threshold that minimizes the variance of scores of samples from Cd and Cu. For a threshold τ , let
Sd = {si|si > τ, si ∈ S} and Su = {si|si < τ, si ∈ S} denote the scores of samples identified to
belong to Cd and Cu respectively. The optimal threshold τ∗t at time t is identified as the one that
minimizes the intra class variance as follows

τ∗t = argminτ
1

|Sd|
∑
s∈Sd

(s− µd)
2 +

1

|Su|
∑
s∈Su

(s− µu)
2 (2)

where µd and µu are the means estimated from Sd and Su respectively. The test sample xt is classified
as desired if st ≥ τ∗t and undesired otherwise.s We establish a strong benchmark for Open set Single
Image TTA by equipping all the baseline methods (Section 2.2) with this simple and efficient LDA
based class identifier. We now describe the proposed framework ROSITA.

3 PROPOSED ROSITA FRAMEWORK

Given a single test sample xt at time t, it is first identified as a desired or undesired class sample as
described above. This is important, since, using undesired class samples can have a negative impact
on model adaptation. In this work, we propose a test time objective that can leverage both desired
and undesired class samples through feature banks to enhance the discriminability between them.

Reliable samples for TTA. We first identify a test sample xt as a reliable desired or undesired class
sample based on its score st. As we have access to an approximate distribution of the scores as
described in Section 2.3, we leverage the statistics µd and µu estimated through LDA to identify
reliable samples. A test sample xt is said to be a reliable sample belonging to desired classes Cd if
its score st > µd and a reliable sample from any of the other classes Cu if its score st < µu. We
leverage Reliable samples to differentiate Desired vs Undesired class samples through a Contrastive
(ReDUCe) Loss for Open-set Single Image Test time Adaptation, illustrated in Figure 1.

ReDUCe Loss. A contrastive objective typically needs positive and negative features, the goal
being to maximize the similarity between a sample and its positive (could be augmentation Chen
et al. (2020) or nearest neighbours Dwibedi et al. (2021)), while minimizing its similarity with the
negatives. Such objectives (Chen et al., 2020; He et al., 2020; Khosla et al., 2020; Dwibedi et al.,
2021) have been extensively used to learn good image representations in a self-supervised way. While
self-supervised learning assumes access to abundant data in an offline manner giving the freedom
to carefully choose positives and negatives, this problem is set in an online scenario, where the test
samples arrive one at a time and are accessible only at that instant. This challenging setting makes it
non trivial to use objectives by Dwibedi et al. (2021). To circumvent this issue of lack of abundant
test data, we propose to store two dynamically updated feature banks Md and Mu of sizes Nd and
Nu, to store the features of reliable samples from Cd and Cu respectively. We propose a ReDUCe
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Figure 1: ROSITA framework: The test stream with samples from Cd and Cu arrive one at a time.
The image is recognized as a sample from Cd and Cu through an LDA based class identifier. Further,
if a test sample is reliable, the respective feature banks are updated and the proposed ReDUCe loss is
optimized to update the LayerNorm parameters of the Vision Encoder.

objective to contrast a reliable sample from Cd by choosing its positives and negatives as the K
nearest neighbours from Md and Mu respectively and vice versa for a reliable sample from Cu.
The buffer size for Md is set as |Cd| ×K, where |Cd| is the number of desired classes and K is the
number of neighbours retrieved. The feature banks Md or Mu are updated with a feature ft if it is
detected as a reliable sample from Cd and Cu respectively.

We fetch the K nearest neighbours of a reliable test sample xt from each feature bank as follows.
Qd = kNN(ft;Md); Qu = kNN(ft;Mu) (3)

Case 1: Reliable sample from Cd. If a test sample is identified as a reliable sample from Cd, we use
a reliable pseudo-label loss on the sample xt and its augmentation x̃t as follows:

LRe = LCE(xt, ŷt) + LCE(x̃t, ŷt); ŷt = argmaxi sim(ft, ti) (4)
where sim represents cosine similarity. Further, we also propose to use a contrastive objective to

enhance the clustering of desired class samples while pushing them apart from the undesired class
samples.

As we aim to correctly classify the desired class samples, we select positives z+ from Qd if its
prediction y+ matches with ŷt. The features Qu consisting of its kNN from Mu act as its negatives.
The following is the ReDUCe loss for a reliable sample from Cd:

LD = − 1

K+

∑
z+∈Qd

1(y+ = ŷt) log
exp (sim (ft, z

+) /τ)∑
z−∈Qu

exp(sim(ft, z−)/τ) (5)

where K+ =
∑

z+∈Qd 1(y+ = ŷt), is the number of neighbours positively matched with ŷt.

Case 2: Reliable sample from Cu. If a test sample is identified as a reliable sample from Cu, we
use the following contrastive objective by selecting positives z+ from Qu and negatives z− from Qd:

LU = − 1

K

∑
z+∈Qu

log
exp (sim (ft, z

+) /τ)∑
z−∈Qd

exp(sim(ft, z−)/τ)
(6)

The LayerNorm parameters of the Vision Encoder are updated to minimize the following test time
objective to adapt the model one sample at a time in an online manner:

LReDUCe =

{
LRe + LD if st > µd

LU if st < µu
(7)

This objective improves the proximity between the test sample and its positives, suitably chosen
based on its score st, while also pushing apart the test sample and its negatives. This collectively
encourages the model to adapt such that each of the desired classes and undesired classes are clustered
and farther apart from each other, improving the overall classification performance of Cd and Cu.
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4 EXPERIMENTS

Table 1: Results with ImageNet-C/R as desired class data Dd, MNIST and SVHN for Du.

Method IN-C/MNIST IN-C/SVHN IN-R/MNIST IN-R/SVHN

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

C
L

IP

ZS-Eval 93.39 55.52 41.43 85.89 72.91 40.83 91.27 91.09 71.50 90.43 75.04 71.66
TPT 93.12 58.01 42.21 85.43 74.47 40.95 91.25 91.23 71.98 90.43 74.98 72.36

TPT-C 56.57 99.12 6.19 11.38 100.00 7.24 82.81 85.79 68.25 80.94 80.03 69.18
(K+1) PC 95.76 10.43 42.95 87.75 26.23 38.50 97.46 11.78 81.51 97.55 11.17 80.39

TDA 90.54 76.23 43.66 86.76 75.45 43.07 91.79 87.83 71.56 90.67 75.41 71.48

ROSITA 99.52 4.06 48.53 98.34 10.21 46.32 99.44 4.29 83.53 98.62 9.08 80.75
+6.13 +51.46 +7.10 +12.45 +62.70 +5.49 +8.17 +86.80 +12.03 +8.19 +65.96 +9.09

Implementation Details. We experiment with a diverse set of datasets to choose desired class
data Dd and undesired class data Du. For Dd, we use ImageNet-C Hendrycks & Dietterich (2019),
ImageNet-R Hendrycks et al. (2021), VisDA Peng et al. (2017) and the Clipart, Painting, Sketch
domains from DomainNet as style transfer datasets. We introduce samples from MNIST LeCun et al.
(1998), SVHN Netzer et al. (2011) datasets as Du in the test stream. We describe these, additional
datasets, baseline methods and experimental details in the Appendix A.2.1 in a detailed manner.

Table 2: AccHM on VisDA and Clipart,
Painting, Sketch from DomainNet as
Weak OOD and MNIST as strong OOD.

Method VisDA Clipart Painting Sketch

ZSEval 78.28 50.22 47.81 48.59
TPT 78.42 57.71 49.73 54.67

TPT-C 75.35 57.57 49.31 54.41
(K+1)PC 90.35 71.21 70.61 67.21

TDA 76.85 61.04 51.20 55.26

ROSITA 90.64 71.40 70.89 67.35
+12.36 +21.18 +23.08 +18.76

Comparison with prior methods. We observe, from
Table 1, 2 that TPT and PAlign perform similar to ZSE-
val in most datasets, as the prompts are reset after every
single image update. On continuously updating prompts
in TPT-C and PAlign-C, we observe a reduction in HM
compared to ZS-Eval. The effect is more severe with CLIP
when compared to MaPLe, as only the text prompts are
updated keeping the vision encoder fixed. ROSITA, be-
ing equipped with a carefully designed objective to better
discriminate between samples from Cd and Cu samples
(Figure 3), results in overall better metrics in general. We
report the results for different open-set scenarios in B.1.
Further, we study the need for reliable samples in B.5, analyse the sensitivity of ROSITA’s perfor-
mance for different random seeds in B.2, choice of parameter K in B.3.

Table 3: Ablation study on loss compo-
nents.

LRe LD LU
IN-R/MNIST

AUC ↑ FPR ↓ HM ↑
✗ ✗ ✗ 91.27 91.09 71.5
✓ ✗ ✗ 81.07 99.02 64.32
✗ ✓ ✗ 87.73 94.67 67.28
✗ ✗ ✓ 99.39 4.81 80.82
✗ ✓ ✓ 99.48 4.40 81.92
✓ ✓ ✓ 99.44 4.29 83.53

Loss Ablation. We observe that only using LRe or
LD improves the metrics for CIFAR-10C dataset. For
ImageNet-R (IN-R) as Dd, using LRe or LD is observed
to increase FPR and decrease HM. IN-R has 200 classes
making it a more challenging and confusing task compared
to CIFAR-10C. This decrease in performance for IN-R
can be attributed to the misclassification of some samples
from Cu as reliable desired class samples, increasing the
confusion between Cd and Cu classes. Using LU signif-
icantly reduces the confusion between samples from Cd

and Cu, shown by the significant drop in FPR compared to
ZSEval. The contrastive objectives LD and LU to separate
the two types of samples, in conjunction with reliable pseudo label loss LRe which aids to improve
the |Cd|-way classification of desired class samples, gives the overall best results.

Table 4: Memory overhead in ROSITA due to fea-
ture banks.

Dataset C No. of features Memory (in MB)

CIFAR-10C 10 5x10+64 0.758
VisDA 12 5x12+64 0.778

CIFAR-100C 100 5x100+64 1.679
ImageNet-R 200 5x200+64 2.703
ImageNet-C 1000 5x1000+64 10.89

Memory buffer. Prior prompt tuning methods
like TPT Shu et al. (2022), Samadh et al. (2023)
do not require any memory buffer. TDA Kar-
manov et al. (2024) requires a memory buffer
of size (|Cd| × (3 + 2))× F to store 3 features
per desired class in the positive cache and 2 fea-
tures per class in the negative cache. DPE Zhang
et al. (2024) requires a memory buffer of size
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(|Cd| × 3)× F to store 3 features per desired class. ROSITA requires a small memory buffer of size
512 for the score bank S and (|Cd| ×K + |Mu|)×F for the feature banks. For a ViT-B16 (F = 512)
model with ImageNet-C (|Cd| = 1000), the required memory buffer size is 5×1000×512+64×512
(10.89MB). The memory to store them and computation required to compute feature similarity is as
lightweight as performing a forward pass through a simple linear layer, demonstrating the memory
and computational efficiency of ROSITA for real time applications.

0 10 20 30

C-10C

VisDA

C-100C

IN-R

IN-C

GPU Memory
0 0.2 0.4 0.6 0.8 1

C-10C

VisDA

C-100C

IN-R

IN-C

time(secs/img)

Figure 2: Complexity Analysis of different meth-
ods using CLIP backbone.

GPU Memory. For prompt tuning methods
TPT/-C and PAlign/-C, the GPU memory and
time taken (secs/image) scales with the num-
ber of classes, as it requires more memory to
store the intermediate activations and gradients.
The time taken to perform forward and back-
ward pass through the text encoder also depends
on the number of classes. On the other hand,
ROSITA requires two forward passes and one
backward pass through the vision encoder for
reliable test samples. For e.g., for ImageNet-C
dataset with 1000 classes, ZSEval, TPT, TDA
and ROSITA require 5.71 GB, 23.24 GB, 5.71
GB and 5.73 GB GPU memory to perform a sin-
gle image based model update. Hence, ROSITA
is computationally very efficient.

5 CONCLUSION

In this work, we propose ROSITA, a novel framework to address the challenging problem Open
set Test Time Adaptation (TTA) on a single image basis. ROSITA effectively distinguishes between
samples from desired classes vs others by leveraging two dynamically updated feature banks. The
proposed ReDUCe loss facilitates effective model adaptation by using reliable, while mitigating
any negative impact of undesirable samples in the test stream. Through extensive experimentation
on diverse domain adaptation benchmarks, we demonstrate the effectiveness of ROSITA in several
scenarios inspired by the dynamic real world environment.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 VISION LANGUAGE MODELS

CLIP Radford et al. (2021) is a multimodal VLM consisting of two modules: Vision encoder and
Text encoder denoted as FV and FT respectively. During pre-training, the two modules are jointly
trained in a contrastive self-supervised fashion to align massive amounts of web-scrapped image-text
pairs. CLIP has demonstrated impressive zero-shot generalization ability across a wide variety of
datasets.

MaPLe Khattak et al. (2023) is a multimodal prompt learner model that simultaneously adapts
both the vision and text encoders while finetuning CLIP for downstream tasks. They use learnable
text prompts pT and bridge the two modalities using visual prompts obtained as pV = Proj(pT ).
Learnable tokens are also introduced in the deeper layers of both image and text encoders, to enable
progressive adaptation of the features. As in Samadh et al. (2023), we use MaPLe as an additional
VLM backbone to test our approach.

A.2 BASELINE METHODS

ZSEval: Given a test image xt, the image feature is extracted from the vision encoder as ft = FV (xt).
For a C-class classification problem, the classifier is obtained by prepending a predefined text prompt
pT =”A photo of a”, with the class names {c1, c2, . . . cC} to form class specific text inputs {pT , ci}
for i ∈ {1, . . . C}. These texts are then embedded through the text encoder as ti = FT ({pT ; ci}) to
get the text classifiers {t1, t2, . . . tC}. The class prediction is made by identifying the text feature ti
which has the highest similarity with the image feature ft.

TPT Shu et al. (2022) aims to improve the zero shot generalization ability of CLIP by providing
custom adaptable context for each image. This is done by prepending learnable text prompts pT

to the class names instead of a predefined text prompt. The text classifiers ti = FT ({pT ; ci}), i ∈
{1, 2, . . . C} are now a function of these learnable prompts, which are specially adapted for each test
image using an entropy minimization objective as argminpT

Lent . The entropy is obtained using the
average score vector of the filtered augmented views.

PromptAlign Samadh et al. (2023) (PAlign) leverages multimodal prompt learner model
MaPLe Khattak et al. (2023) to facilitate the adaptation of both vision and language encoders
for each test sample. Inspired by earlier TTA works Schneider et al. (2020); Wang et al. (2021), they
propose to align the token distributions of source and target domains, considering ImageNet as a
proxy for the source dataset of CLIP. The vision and language prompts of MaPLe are optimized with
the objective argmin{pV ,pT } Lent + Lalign for each sample xt.

TPT-C/PAlign-C: We adapt TPT and PAlign for continuous model update, which we refer as TPT-C
and PAlign-C respectively. The prompts {pT } and {pV ,pT } in TPT and PAlign are continuously
updated with the test stream with their respective test objectives for this purpose.

(K+1)PC (Li et al., 2023): This was the first work exploring open world TTA, however it was done
in the context of CNNs and not VLMs. Also, the test samples come in batches, while we perform
single image TTA. We adapt this method for our problem setting as follows: As we use VLMs, we
use the text prototypes (instead of the source prototypes). The prototype pool is dynamically updated
by adding features of reliable test samples recognized to belong to undesired classes. The vision
encoder is updated using a (K+1) way prototypical cross entropy loss.

TDA (Karmanov et al., 2024): TDA is a training-free dynamic adapter for test-time adaptation in
vision-language models, utilizing a lightweight key-value cache for efficient pseudo label refinement
without backpropagation.
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Table 5: Results with CIFAR-10C and CIFAR-100C for desired classes Dd and four other datasets
(MNIST, SVHN, Tiny-ImageNet, CIFAR-100C/10-C respectively) for DU . All methods use the same
OOD detector described in Section 2.3

Method MNIST SVHN Tiny-ImageNet CIFAR-100C/10-C

AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑ AUC ↑ FPR ↓ HM ↑

C
IF

A
R

-1
0C

C
L

IP

ZS-Eval 91.91 85.04 75.57 89.93 64.20 74.08 91.33 27.07 74.63 82.57 67.92 68.89
TPT 91.89 85.55 75.81 89.93 64.41 74.36 91.31 27.23 75.17 82.57 68.06 69.17

TPT-C 81.64 67.53 74.86 58.48 71.72 48.26 74.08 61.45 49.88 61.45 94.30 46.10
(K+1)PC 98.05 12.50 83.27 80.74 50.33 70.10 87.09 52.29 73.98 62.55 91.68 56.46

TDA 92.94 71.11 77.06 92.02 52.68 76.64 91.68 25.37 75.94 83.54 66.06 70.13

ROSITA 99.10 7.63 84.17 94.79 32.59 78.80 96.43 12.10 80.06 82.99 62.89 69.56
+7.19 +77.41 +8.60 +4.86 +31.61 +4.72 +5.10 +14.97 +5.43 +0.42 +5.03 +0.6

M
A

PL
E

ZS-Eval 98.48 3.77 83.63 98.34 7.86 83.57 90.86 27.54 76.04 86.14 52.08 71.76
TPT 98.15 5.67 81.56 98.34 7.89 82.73 90.86 27.61 75.46 86.15 52.14 70.94

TPT-C 98.56 3.74 83.51 98.32 8.18 83.47 91.18 26.93 76.31 86.50 50.56 71.07
PAlign 98.15 5.67 82.24 98.34 7.90 83.51 90.86 27.60 75.98 86.15 52.18 71.52

PAlign-C 98.56 3.74 83.49 98.32 8.13 83.46 91.18 26.90 76.30 86.50 50.58 71.04

ROSITA 99.34 5.22 87.63 97.80 13.15 84.17 91.67 25.31 77.67 86.82 50.33 73.15
+0.86 +1.45 +4.00 +0.54 +5.29 +0.60 +0.81 +2.23 +1.63 +0.68 +1.75 +1.39

C
IF

A
R

-1
00

C C
L

IP

ZS-Eval 77.78 99.93 48.39 64.70 98.68 45.85 67.31 73.89 45.80 63.28 93.25 44.04
TPT 77.76 99.94 48.33 64.71 98.63 45.85 67.28 73.82 45.93 63.26 93.20 44.02

TPT-C 51.57 100.00 27.04 9.40 99.98 5.74 59.74 79.76 18.41 55.86 86.35 13.64
(K+1)PC 96.89 12.15 59.72 75.24 51.64 43.73 41.84 99.61 31.83 54.02 93.93 32.00

TDA 80.33 99.57 46.52 71.77 96.11 46.01 70.70 69.63 47.52 66.07 91.90 45.79

ROSITA 96.07 19.28 57.34 82.09 64.64 48.17 83.55 50.76 55.88 68.54 89.71 47.98
+18.29 +80.65 +8.95 +17.39 +34.04 +2.32 +16.24 +23.13 +10.08 +5.26 +3.54 +3.94

M
A

PL
E

ZS-Eval 87.43 64.19 54.97 92.98 40.51 56.42 68.80 74.35 48.24 66.93 87.94 46.06
TPT 87.42 64.09 53.09 92.97 40.44 54.37 68.80 74.20 46.97 66.93 87.95 44.38

TPT-C 87.65 63.08 55.14 93.09 40.30 56.31 68.85 74.71 48.53 66.97 87.94 46.30
PAlign 87.42 64.11 53.98 92.97 40.48 55.37 68.80 74.23 47.69 66.93 87.93 45.16

PAlign-C 88.25 57.31 55.69 93.45 39.39 57.39 68.76 78.12 48.15 66.82 87.80 47.01

ROSITA 97.04 11.01 62.06 96.26 20.99 59.25 70.37 77.00 48.68 69.57 83.61 48.80
+9.61 +53.18 +7.09 +3.28 +19.52 +2.83 +1.57 +2.65 +0.44 +2.64 +4.33 +2.74

A.2.1 DATASETS

We experiment with a diverse set of datasets, encompassing corruption datasets, style transfer datasets,
and other common datasets.

CIFAR10-C Hendrycks & Dietterich (2019) is a small-scale corruption dataset of 10 classes with 15
common corruption types. It consists of 10,000 images for each corruption.

CIFAR-100C Hendrycks & Dietterich (2019) is also a corruption dataset with 100 classes and 15
corruption types. It also consists of 10,000 images for each corruption.

ImageNet-C Hendrycks & Dietterich (2019) is a large-scale corruption dataset spanning 1000
categories with a total of 50,000 images. 15 types of corruption images are synthesized from these
50,000 images.

ImageNet-R Hendrycks et al. (2021) is a realistic style transfer dataset encompassing interpretations
of 200 ImageNet classes, amounting to a total of 30,000 images.

VisDA Peng et al. (2017) is a synthetic-to-real large-scale dataset, comprising of 152,397 synthetic
training images and 55,388 real testing images across 12 categories.

MNIST LeCun et al. (1998) is a dataset of handwritten images consisting of 60,000 training and
10,000 testing images.

SVHN Netzer et al. (2011) is also a digits dataset with house numbers captured from real streets. It
consists of 50,000 training images and 10,000 testing images.

We perform experiments on five weak OOD datasets. The corresponding strong OOD datasets are
chosen such that there is no overlap between weak and strong OOD datasets and is described in
Table 6. The 15 corruptions fall into four categories: synthetic weather effects, per-pixel noise,
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blurring, and digital transforms. snow corruption is a synthesized weather effect on which all the
main experiments of CIFAR-10C, CIFAR-100C and ImageNet-C are done.

Table 6: Details of Weak and strong OOD dataset combinations

Datasets # images

Weak OOD Strong OOD weak strong total

CIFAR-10C MNIST, SVHN, Tiny ImageNet, CIFAR-100C 10000 10000 20000
CIFAR-100C MNIST, SVHN, Tiny ImageNet, CIFAR-10C 10000 10000 20000
ImageNet-C MNIST, SVHN 50000 50000 100000
ImageNet-R MNIST, SVHN 30000 30000 60000
VisDA MNIST, SVHN 50000 50000 100000

B ADDITIONAL ANALYSIS

Here, we study the robustness of the proposed method ROSITA more extensively, in the terms of (1)
Performance in different Open set TTA scenarios. (2) Error bars on different test data streams, (2)
Role of the parameter K, the number of neighbours, (4) Analysis of OOD scores on using different
combinations of the proposed loss components, (5) Effectiveness of LDA based OOD detector in
comparison with simple thresholding, (6) Complexity Analysis.

B.1 PERFORMANCE IN DIFFERENT OPEN SET TTA SCENARIOS.

(a) Continuously changing domains: We sequentially present 15 corruptions from CIFAR-10C,
which form the domain Dd, alongside samples from four other datasets Du. (b) Frequently changing
domains: To further simulate more dynamic test environments, for CIFAR-10C/MNIST, we reduce
the number of samples per corruption to 100, 250, 500, and 1000 in the continuously changing
domain open-set TTA scenario. Reducing the sample count per corruption causes more frequent
domain changes, increasing the challenge for adaptation. (c) Varying ratio of samples belonging
to classes Cd vs Cu: We simulate real-world scenarios using the CIFAR-10C/MNIST dataset by
varying the ratio of samples from the known classes Cd versus unknown classes Cu in the test stream
by varying this ratio as 0.2, 0.4, 0.6, and 0.8. From results in Table 7,we observe that ROSITA
demonstrates consistent superiority across all three open-set TTA scenarios, showcasing its capability
to adapt effectively to both continuously and frequently changing domains, as well as varying class
distributions.

Table 7: Performance in different Open set TTA scenarios.
(a) Continuously changing domains (b) Frequently changing domains (c) Varying ratio of Cd/Cu

Method CIFAR-10C No. of samples per corruption Ratio

SVHN MNIST Tiny C-100C 100 200 500 1000 0.2 0.4 0.6 0.8

ZSEval 64.33 64.04 66.50 58.49 61.41 61.87 61.42 63.30 75.56 75.59 75.57 75.56
TPT 64.26 64.03 66.50 58.47 61.33 62.32 61.59 63.24 75.67 75.75 75.81 75.83

TPT-C 33.05 46.44 59.38 37.24 60.62 61.30 57.16 34.88 72.70 74.31 74.79 75.16
(K+1)PC 65.13 62.52 66.93 57.46 60.90 60.76 61.40 63.26 62.31 68.85 81.70 82.90

TDA 66.02 66.44 67.64 59.44 60.17 61.43 63.22 64.82 72.45 75.04 77.54 77.91

ROSITA 66.86 65.26 68.89 59.16 61.64 66.82 67.97 73.24 82.96 83.97 84.51 84.37

B.2 ANALYSIS ON ERROR BARS

To study the robustness of our method for differently ordered test streams, we run ROSITA with
five random seeds and report the Mean and Standard deviation of the AccHM in Table 8 for CIFAR-
10C/100C as weak OOD data and MNIST, SVHN, Tiny ImageNet, CIFAR-100C/10C as strong OOD
data (corresponding to our results in Table 5 in the main paper). We observe that the variance in the
performance of ROSITA is very low, reinforcing the robustness of the proposed method for different
shuffled datasets and augmentations created.
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Table 8: Performance (Mean and Standard deviation of AccHM ) of ROSITA across
5 random seeds for CIFAR-10/100C as weak OOD data with 4 strong OOD datasets.

Dataset MNIST SVHN Tiny CIFAR-100/10C

CIFAR-10C 84.07 ± 0.023 78.90 ± 0.038 80.10 ± 0.014 69.44 ± 0.018
CIFAR-100C 57.09 ± 0.041 47.90 ± 0.047 55.95 ± 0.051 48.10 ± 0.024

Table 9: Performance (AccHM ) on varying K with MNIST as strong OOD.

Weak OOD Dataset # Classes K
0 1 3 5 7 9

CIFAR-10C 10 80.97 83.9 84.32 84.17 84.10 84.02
ImageNet-R 200 64.32 83.65 83.87 83.53 83.39 83.42
ImageNet-C 1000 42.05 48.35 47.17 48.53 48.37 47.73

B.3 ANALYSIS ON PARAMETER K

We vary the hyperparameter K which represents the number of positives and negatives chosen in
Equation 5 and 6 and report the results (AccHM ) in Table 9. The size of the weak OOD feature
bank Mw is set as Nw = K × C. Ns increases with the number of classes as well as the number
of neighbours K. We set K to be 5 in all main results reported, which corresponds to feature bank
size Ns of 50, 1000, 5000 respectively for the datasets CIFAR-10C, ImageNet-R and ImageNet-C
respectively. In Table 9, we abuse the notion K = 0 to correspond to the case where only LPL is used
and no contrastive OOD loss is used. The results show that even with K = 1, there is a significant
improvement in AccHM when compared to the case where Lw

OOD,Ls
OOD is not used (K = 0). On

further increasing K, we observe improvement only for the CIFAR-10C weak OOD dataset, but the
performance is similar for ImageNet-R and ImageNet-C for higher values of K as well. Further, we
investigate this observation that the performance of ROSITA is similar on significantly varying K or
the feature bank size. For K = 5, we check the average number of positives actually selected for
Lw
OOD in Equation 5 for each of these datasets. We find this to be 4.1, 2.5 and 1.5 for CIFAR-10C,

ImageNet-R and ImageNet-C respectively. This agrees with the results in Table 9 where K of 3, 5
works better compared to 1 as more neighbours have common pseudo label, aiding the clustering
of classes of interest. For CIFAR-10C and ImageNet-R, using K < 5 suffices and for ImageNet-C
as only 1-2 neighbours are matched for majority of reliable OOD samples, setting K = 1 suffices.
For practical purposes, this observation suggests that the weak OOD feature buffer size can indeed
be reduced based on storage budget available depending on the application and device the model is
deployed on. For e.g., if the memory budget available can store only upto 1000 features, K can be
set flexibly depending on the number of classes of interest. For ImageNet-C with 1000 classes, K
can be set to 1.

B.4 LOSS ABLATION

We provide detailed results of Table 3 in Table 10. Additionally, we visualise the histograms of OOD
scores on using different combinations of the proposed loss components in the Figures 3, 4, justifying
their role in better discrimination of weak and strong OOD sample.

From Figure 3 and 4, we observe that, on using just LPL, the weak and strong OOD scores still
sufficiently overlap, similar to the case of ZSEval. The performance purely depends on the quality
of pseudo labels of the detected reliable weak OOD samples. In CIFAR-10C, as there are only 10
classes and given that ZSEval performance in CIFAR-10C is fairly good, it ensures good quality
pseudo labels, hence resulting in overall better metrics on even using LPL as shown in Table 10.
ImageNet-R dataset inherently has more confusion as it is a 200-way classification problem. This
naturally could result in low quality pseudo labels, in turn degrading the performance compared
to ZSEval. Alongside, using LPL for weak OOD samples which are misclassified as strong OOD
samples increases the FPR and results in a decrease in metrics overall compared to ZSEval. On the
other hand, using Lw

OOD + Ls
OOD separates the OOD scores of weak and strong samples, resulting
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Figure 3: Histograms of Weak and Strong OOD scores for ZS-Eval and on using different loss
components of ROSITA on CIFAR-10C/MNIST dataset using CLIP.

Figure 4: Histograms of Weak and Strong OOD scores for ZS-Eval and on using different loss
components of ROSITA on ImageNet-R/MNIST dataset using CLIP.

in two distinct peaks as seen in Figure 3 and 4, which in turn results in a significantly low FPR
as reported in Table 10. The best results are obtained using all the three proposed loss components
LPL + Lw

OOD + Ls
OOD, which better discriminates weak and strong OOD samples and also helps in

selecting weak OOD samples with more accurate pseudo labels. Hence, using pseudo label loss and
OOD contrastive losses aid each other, resulting in the best overall metrics as shown in Table 10.

Table 10: Detailed results on Loss Ablation.

LRe LD LU
CIFAR-10C/MNIST ImageNet-R/MNIST

AUC FPR AccD AccU AccHM AUC FPR AccD AccU AccHM

✗ ✗ ✗ 91.91 85.04 60.82 99.77 75.57 91.27 91.09 55.67 99.90 71.50
✓ ✗ ✗ 95.29 30.82 68.36 99.30 80.97 81.07 99.02 48.42 95.76 64.32
✗ ✓ ✗ 95.23 28.91 66.93 98.52 79.71 87.73 94.67 51.13 98.34 67.28
✗ ✗ ✓ 98.61 12.73 66.60 99.68 79.84 99.39 4.81 67.81 99.99 80.82
✗ ✓ ✓ 99.27 4.15 67.76 99.73 80.69 99.48 4.40 69.38 99.98 81.92
✓ ✓ ✓ 99.10 7.63 72.81 99.74 84.17 99.44 4.29 71.73 99.98 83.53

B.5 ANALYSIS ON OOD CLASSIFIER AND RELIABLE SAMPLES

Here, we study the role of OOD classifier in the Open World Single Image Test Time Adaptation
setting. We compare the LDA based OOD classifier described in Section 2.3 in comparison with
simple confidence thresholding with TTA algorithm of ROSITA described in 3. A test sample
is classified as weak OOD if soodt > τt and strong OOD if soodt < τt. Further, in ROSITA, TTA
is performed on reliable weak and strong OOD samples based on LDA statistics as described in
Section 3. We generalize this and call a test sample as reliable weak OOD sample if soodt > τw and
strong OOD if soodt > τs. Here, we perform experiments to understand the role of OOD classifier,
reliable samples and the performance of ROSITA with time.

Effectiveness of the LDA based OOD classifier: To study the role of the OOD classifier in
ROSITA, we perform the following experiments (1) Simple thresholding: We set fixed thresholds
τw, τs to identify reliable weak and strong OOD samples respectively and τt to classify a sample into
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Table 11: Comparison of Simple threshold (row 1-3) vs LDA based OOD detector (row 5).
Comparison of ROSITA using all samples (row 4) vs only reliable samples (row 5) for TTA.

Thresholds strong OOD dataset: MNIST
τs/τt/τw C-10C C-100C IN-C IN-R VisDA

0.4/0.6/0.8 43.44 34.42 1.20 77.12 88.49
0.3/0.5/0.7 33.70 32.60 1.74 80.29 50.87
0.5/0.5/0.5 22.82 37.41 1.91 30.90 32.31
τt/τt/τt 84.99 55.16 44.05 83.28 91.24
µs/τt/µw 84.17 57.34 48.53 83.53 90.64

weak or strong OOD . (2) LDA based: As described in Section 2.3, we set τw to µw and τs to µs to
identify reliable weak and strong OOD samples to perform TTA. We report the results(AccHM ) of all
five weak OOD datasets with MNIST as strong OOD dataset using CLIP backbone. Observations:
The first three rows in Table 11 correspond to simple thresholding cases where the thresholds are
manually set and kept fixed throughout TTA using ROSITA. We observe that the performance
significantly varies for different choice of thresholds, especially in the case of ImageNet-R (IN-R)
and VisDA here. This shows that it is not feasible to choose these thresholds apriori in a TTA task as
the softmax confidence scores depends on unknown factors like the type, severity of domain shift,
confusion of classes etc. Hence, using fixed threshold to discriminate between weak and strong OOD
samples is undesirable. In the OOD classifier we use (Section 2.3), a score bank S is used to track
how the OOD scores of the test samples change with time. The statistics µw, µs are continuously
estimated to identify reliable weak and strong OOD samples. From Table 11, we observe that the
best results (last row) are obtained on using the thresholds estimated in an online manner.

Need for reliable samples: To understand the role of selecting reliable samples for TTA, we do a
simple experiment where we only use the threshold τt to distinguish between a weak and strong OOD
samples. For all weak OOD samples classified, we perform TTA using the loss defined in Equation 5.
Similarly, we use the objective in Equation 6 for all strong OOD samples. The results are reported in
the fourth row in Table 11. We see that, for CIFAR-10C and VisDA, this case performs slightly better
than our case(last row in Table 11) where TTA is performed only on reliable samples. CIFAR-10C
and VisDA dataset have 10 and 12 classes of interest respectively. The zero shot performance of
these datasets being good, as the class confusion is less, using all samples for TTA can be helpful.
On the other hand, the classification in CIFAR-100C, ImageNet-C and ImageNet-R is harder, due the
confusion arising due to the large number of classes. Using non reliable test samples, with scores in
the range µs < soodt < µw can adversely affect the adaptation process. Hence, using only reliable
samples for TTA performs better for these datasets as seen from the last two rows in Table 11). In a
general test time adaptation scenario, where we have no prior information about the difficulty of the
classification task, in terms of severity of domain shift and class confusion, it is desirable to only use
reliable samples for model updates.
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