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Abstract

Reinforcement learning (RL) promises to enable autonomous acquisition of com-
plex behaviors for diverse agents. However, the success of current reinforcement
learning algorithms is predicated on an often under-emphasised requirement – each
trial needs to start from a fixed initial state distribution. Unfortunately, resetting the
environment to its initial state after each trial requires substantial amount of human
supervision and extensive instrumentation of the environment which defeats the
goal of autonomous acquisition of complex behaviors. In this work, we propose
Value-accelerated Persistent Reinforcement Learning (VaPRL), which generates a
curriculum of initial states such that the agent can bootstrap on the success of easier
tasks to efficiently learn harder tasks. The agent also learns to reach the initial
states proposed by the curriculum, minimizing the reliance on human interventions
into the learning. We observe that VaPRL reduces the interventions required by
three orders of magnitude compared to episodic RL while outperforming prior
state-of-the art methods for reset-free RL both in terms of sample efficiency and
asymptotic performance on a variety of simulated robotics problems1.

1 Introduction
Reinforcement learning (RL) offers an appealing opportunity to enable autonomous acquisition of
complex behaviors for interactive agents. Despite recent RL successes on robots [26, 34, 25, 28,
35, 22, 32, 23, 14], several challenges exist that inhibit wider adoption of reinforcement learning
for robotics [48]. One of the major challenges to the autonomy of current reinforcement learning
algorithms, particularly in robotics, is the assumption that each trial starts from an initial state
drawn from a specific state distribution in the environment. Conventionally, reinforcement learning
algorithms assume the ability to arbitrarily sample and reset to states drawn from this distribution,
making such algorithms impractical for most real-world setups.

Many prior examples of reinforcement learning on real robots have relied on extensive instrumentation
of the robotic setup and human supervision to enable environment resets to this initial state distribution.
This is accomplished through a human providing the environment reset themselves throughout the
training [8, 12, 4], scripted behaviors for the robot to reset the environment [28, 39], an additional
robot executing scripted behavior to reset the environment [32], or engineered mechanical contraptions
[46, 23]. The additional instrumentation of the environment and creating scripted behaviors are both
time-intensive and often require additional resources such as sensors or even robots. The scripted
reset behaviors are narrow in application, often designed for just a single task or environment, and
their brittleness mandates human oversight of the learning process. Eliminating or minimizing the
algorithmic reliance on the reset mechanisms can enable more autonomous learning, and in turn it
will allow agents to scale to broader and harder set of tasks.

1Code and supplementary videos are available at https://sites.google.com/view/vaprl/home
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Figure 1: Comparison of the persistent RL setting with the episodic RL setting. Interventions (human or
otherwise orchestrated) reset the environment to the initial state distribution after every episode in episodic RL,
while the state of the environment persists through the training in persistent RL. The learned policy is tested
starting from the initial state distribution for both the settings.

To address these challenges, some recent works have developed reinforcement learning algorithms
that can effectively learn with minimal resets to the initial distribution [19, 6, 48, 43, 14]. We provide
a formal problem definition that encapsulates and sheds light on the general setting addressed by
these prior methods, which we refer to as the persistent reinforcement learning in this work. In this
problem setting, we disentangle the training and the test time settings such that the test-time objective
matches that of the conventional RL setting but the train-time setting restricts access to the initial
state distribution by giving a low frequency periodic reset. In this setting, the agent must persistently
learn and interact with the environment with minimal human interventions, as shown in Figure 1.
Conventional episodic RL algorithms often fail to solve the task entirely in this setting, as shown
by Zhu et al. [48] and Figure 2. This is because these methods rely on the ability to sample the
initial state distribution arbitrarily. One solution to this problem is to additionally learn a reset policy
that recovers the initial state distribution [19, 6] allowing the agent to repeatedly alternate between
practicing the task and practicing the reverse. Unfortunately, not only can solving the task directly
from the initial state distribution be hard from an exploration standpoint, but (attempting to) return to
the initial state repeatedly can be sample inefficient. In this paper, we propose to instead have the
agent reset itself to and attempt the task from different initial states along the path to the goal state. In
particular, the agent can learn to solve the task from easier starting states that are closer to the goal
and bootstrap on these to solve the task from harder states farther away from the goal.

Figure 2: The performance of
episodic RL algorithms substan-
tially deteriorates when environ-
ment resets are not available.

The main contribution of this work is Value-accelerated Persistent
Reinforcement Learning (VaPRL), a goal-conditioned RL method
that creates an adaptive curriculum of starting states for the agent
to efficiently improve test-time performance while substantially re-
ducing the reliance on extrinsic reset mechanisms. Additionally, we
provide a formal description of the persistent RL problem setting to
conceptualize our work and prior methods. We benchmark VaPRL
on several robotic control tasks in the persistent RL setting against
state-of-the-art methods, which either simulate the initial state dis-
tribution by learning a reset controller, or incrementally grow the
state-space from which the given task can be solved. Our experi-
ments indicate that using a tailored curriculum generated by VaPRL
can be up to 30% more sample-efficient in acquiring task behaviors
compared to these prior methods. For the most challenging dexterous manipulation problem, VaPRL
provides a 2.5× gain in performance compared to the next best performing method.

2 Related Work
Robot learning. Prior works using reinforcement learning have relied on manually design controllers
or human supervision to enable episodic environmental resets, as is required by the current algorithms.
This can be through human orchestrated resets [8, 13, 12, 4, 16], which requires high frequency
human intervention in robot training. In some cases, it is possible to execute a scripted behavior to
reset the environment [28, 32, 47, 39, 46, 1]. However, programming such behaviors is time-intensive
for the practitioner, and robot training still requires human oversight as the scripted behaviors are
often brittle. Some prior works have designed the environment [35, 7, 22] to bypass the need for
having a reset mechanism. This is not generally applicable and can require extensive environment
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design. Some recent works leverage multi-task RL to bypass the need for extrinsic reset mechanisms
[15, 14]. Typically, a task-graph uses the current state to decides the next task for the agent, such that
only minimal intervention is required during training. However, these task-graphs are specific to a
problem and require additional engineering to appropriately decide the next task.

Reset-free reinforcement learning. Constraining the access to these orchestrated reset mechanisms
severely impedes policy learning when using current RL algorithms [48]. Recent works have proposed
several algorithms to reduce reliance on extrinsic reset mechanisms by learning a reset controller to
retrieve the initial state distribution [19, 6], by learning a perturbation controller [48], or by learning
reset skills in adversarial games [43]. These works implicitly define a target state distribution for a
reset controller: Han et al. [19], Eysenbach et al. [6] target a fixed initial state distribution; Zhu et al.
[47] target a uniform distribution over the state space as a consequence of novelty-seeking behavior
of the reset controller; and Xu et al. [43] target an adversarial form of initial state distribution to
produce a more robust policy. In contrast, our proposed algorithm VaPRL generates a curriculum of
starting states tailored to the task and agent’s performance. Our experiments demonstrate that VaPRL
outperforms these prior methods in both sample efficiency and absolute performance. Other recent
work like [29] has considered combining model-based RL with unsupervised skill discovery to solve
reset-free learning problems, but largely focus on avoiding sink states rather than attempting tasks
repeatedly with a curriculum like VaPRL.

Curriculum generation for reinforcement learning. Curriculum generation is a crucial aspect of
sample-efficient learning in VaPRL. Prior works have shown that using a curriculum can enable faster
learning and improve performance [9, 10, 40, 30, 33, 27]. Task-tailored curriculum can simplify the
exploration as it is easier to solve the task from certain states [21, 9] enabling faster progress on the
downstream task. In addition to proposing a novel method for curriculum generation, we design it for
the persistent RL setting without requiring the ability to reset the environment to arbitrary states as
assumed by prior work.

Persistent vs. lifelong reinforcement learning. Prior reinforcement learning algorithms that reduce
the need for oracle resets have relied on the problem setting of lifelong or continual reinforcement
learning [41, 24], when the objective in practice is to learn episodic behaviors. Both the persistent
RL and the lifelong learning frameworks do transcend the episodic setting for training, promoting
more autonomy in reinforcement learning. However, persistent reinforcement learning distinguishes
between the training and evaluation objectives, where the evaluation objective matches that of the
episodic reinforcement learning. While the assumptions of episodic reinforcement learning are
hard to realize for real-world training, real-world deployment of policies is often episodic. This is
commonly true for robotics, where the assigned tasks are expected to be repetitive but it is hard to
orchestrate resets in the training environment. This makes persistent reinforcement learning a suitable
framework for modelling robotic learning tasks.

3 Persistent Reinforcement Learning
In this section, we formalize the persistent reinforcement learning as an optimization problem. The
key insight is to separate the evaluation and training objectives such that the evaluation objective
measures the performance of the desired behavior while the training objective enables us to acquire
those behaviors, while recognizing that frequent invocation of a reset mechanism is untenable. We
first provide a general formulation, and then adapt persistent RL to the goal-conditioned setting.

Definition. Consider a Markov decision process (MDP) ME ≡ (S,A, p, r, ρ, γ,HE) [37].
Here, S denotes the state space, A denotes the action space, p : S ×A× S 7→ R≥0 denotes the
transition dynamics, r : S ×A 7→ R denotes the reward function, ρ : S 7→ R≥0 denotes the ini-
tial state distribution, γ ∈ [0, 1] denotes the discount factor, and HE denotes the episode hori-
zon. Our objective is to learn a policy π that maximizes JE(π) = E[

∑HE

t=1 γ
tr(st, at)], where

s0 ∼ ρ(·), at ∼ π(· | st) and st+1 ∼ p(· | st, at), the episodic expected sum of discounted rewards.

However, generating samples from the initial state distribution ρ invokes a reset mechanism, which is
hard to realize in the real world. We want to construct a MDPMT corresponding to our training
environment which reduces invocations of the reset mechanism. To reduce such interventions, we
consider a training environmentMT ≡ (S,A, p, r̃t, ρ̃, γ,HT ) with episode horizon HT � HE .
Näively optimizing r can substantially deteriorate the performance of episodic RL algorithms, as
shown in Figure 2 where we compare the evaluation performance with HE = 200 when training
in environments with HT = 200 (with resets) versus HT = 200, 000 (without resets). Therefore,
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it becomes beneficial to consider a surrogate reward function r̃t rather than just optimizing for r
naively. As a motivating example, consider a forward-backward controller which alternates between
solving the task corresponding to r and recovering the initial state distribution ρ. The surrogate
reward function corresponding for this approach can be written as:

r̃t(st, at) =

{
r(st, at) t = [1, HE ], [2HE + 1, 3HE ], . . .

rρ(st, at) t = [HE + 1, 2HE ], . . .
(1)

Here, r̃ alternates between the task-reward r for HE steps and rρ (which encourages initial state
distribution recovery) for HE steps2, also illustrated in Figure 3 (right). This surrogate reward
function allows the agent to repeatedly practice the task, thus using the autonomous interaction more
judiciously as compared to the näive approach. Note, this r̃ loosely recovers the objectives used in
some prior works [19, 6]. For a general time-dependent surrogate reward function r̃t, we define the
training objective as

JT (π) = Es0∼ρ̃,at∼π(·|st),st+1∼p(·|st,at)
[ HT∑
t=1

γtr̃t(st, at)
]

(2)

where ρ̃ is the initial state distribution at training time (which does not need to match the evaluation-
time initial state distribution ρ). The persistent RL optimization objective is to maximize JT (π)
efficiently under the constraint that JE(argmaxπ JT (π)) = maxπ JE(π). Intuitively, the objec-
tive encourages construction of a training environment that can recover the optimal policy for the
evaluation environment. The primary design choice is r̃t, which as shown above leads to different
algorithms. Another design choice is ρ̃, which may or may not match ρ. Importantly, we do not
assume ρ̃ is any easier to sample compared to ρ.

Finally, we note that the formulation discussed here is suitable only for reversible environments.
Reversible environments guarantee that the agent can continue to make progress on the task and not
get “stuck” (for example, if the object goes out of reach of the robot’s arm). A large class of practical
tasks can be considered reversible (door opening, cloth folding, and so on) or the environment can be
constructed to enforce reversibility (add bounding walls so the object does not go out of reach). A
formal definition for reversible environments is provided in Appendix A. In this work, we will restrict
ourselves to reversible environments, and defer a full discussion of persistent RL for environments
with irreversible states to future work.

Goal-conditioned persistent reinforcement learning. We adapt the general formulation above to a
goal-conditioned [20, 38] instantiation of persistent RL. Consider a goal-conditioned MDPME ≡
(S,A,G, p, r, ρ, γ,HE), where G ⊆ S denotes the goal space. For a goal distribution pg : G 7→ R≥0,
the evaluation objective is JE(π) = Eg∼pg(·)Eπ(·|s,g)[

∑HE

t=1 γ
tr(s, g)] for π : S ×A× G 7→ R≥0.

The training objective is then stated as:

JT (π) = Es0∼ρ̃,at∼π(·|st,G(st,pg)),st+1∼p(·|st,at)
[ HT∑
t=1

γtr(st, G(st, pg))
]
, (3)

where we assume that r̃ = r remains as a goal reaching objective, but where algorithms instead use a
goal generator G to generate a curriculum of goals to practice throughout training3. The intuition is
that, since HT � HE , the algorithm can repeatedly practice reaching various task-goals. However,
the objective is to learn a policy that can reach task-goals from pg in the test environment, i.e.,
starting from the initial state distribution ρ. This implies the goal generator G should expand the goal
space beyond the task-goals to improve the policy π for the test environment. For example, the goal
generator could alternate task-goals (g ∼ pg) and the initial state distribution (s ∼ ρ), which again
loosely recovers prior works [19, 6]. This instantiation transforms the problem of finding the right
reward function r̃ to the right curriculum of goals using G.

4 Value-Accelerated Persistent Reinforcement Learning
To address the goal-conditioned persistent RL problem, we now describe our proposed algorithm,
VaPRL. The key idea in VaPRL is that the agent does not need to return to the initial state distribution
between every attempt at the task, and can instead choose to practice from states that facilitate
efficient learning. Section 4.1 discusses how to generate this curriculum of initial states. Using

2We assume that the state includes information indicating the reward function being optimized so that agent
can take appropriate actions, for example, one-hot task indicators as is common in multi-task RL.

3The goal generator may use additional memory which is not explicitly represented here.
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Figure 3: An overview of the VaPRL algorithm (left) compared to forward-backward RL (right). For VaPRL, the
value function gives us a set of states from where the agent can solve the task with some confidence (shaded
in green), and the VaPRL chooses the state closest to the initial state distribution among them (purple square).
In each iteration, the agent can bootstrap on the knowledge of solving the task from a future state (bold green)
which simplifies the exploration from its current state (broken green line). As the performance of the agent
improves, the states commanded by VaPRL move closer to the initial state distribution. This is in contrast to the
forward-backward controller that alternates between the test-goals and the initial state distribution.

goal-conditioned RL within VaPRL allows us to use the same policy to solve the task and reach the
initial states suggested by the curriculum, in contrast to prior work that learns a separate reset and
task policy. Section 4.2 describes how careful goal relabeling can be leveraged to efficiently learn
this unified goal-reaching policy. We also discuss how VaPRL can effectively use prior data, which
often becomes crucial for efficiently solving hard sparse-reward tasks.

4.1 Generating a Curriculum Using the Value Function

Consider the problem of reaching a goal g ∼ pg in the MDPME . Learning how to reach the goal g is
easier starting from a state s ∈ S that is close to g, especially when the rewards are sparse. Knowing
how to reach the goal g from a state s in turn makes it easier to reach the goal from states in the
neighborhood of s, enabling us to incrementally move farther away from the goal g. Bootstrapping
on the success of an easier problem to solve a harder problems motivates the use of curriculum in
reinforcement learning, also illustrated in Figure 3.

Following the intuition above, we aim to define an increasingly-difficult curriculum such that the
policy is eventually able to reach the goal g starting from the initial state distribution ρ. Our simple
scheme is to sample a task goal g ∼ pg , run the policy π with a subgoal C(g) as input, and then run
the policy with the task goal g as input. The main question now becomes: given a goal g, how do we
select the subgoal C(g) to attempt the goal g from? We propose to set up C(g) as follows:

C(g) = argmin
s

Xρ(s) s.t. V π(s, g) ≥ ε, (4)

where Xρ is a user-specified distance function between the state s and the initial state distribution ρ,
V π(s, g) = E[

∑HE

t=1 γ
tr(s, g) | s1 = s] denotes the value function of the policy π reaching the goal

g from the state s, and ε ∈ R is some fixed threshold. Here, the value function represents the ability
of the policy to reach the goal g from the state s. To see that, consider the case when discount factor
γ = 1 and r(s, g) = 1 when s ≈ g and 0 otherwise, the value function V π exactly represents the
probability of reaching a goal g from state s when following the policy π. The intuition carries over
to γ ∈ [0, 1) too, where the environment can go into a terminal state with probability 1− γ at every
transition. For general goal-reaching reward functions, a state s with a higher value under V π(s, g)
would still represent greater ability to reach the goal g for the policy π.

Revisiting Equation 4 with this understanding of the value function, the objective C(g) chooses the
state closest to the initial state distribution for which the value function V π(s, g) crosses the threshold
ε. This encourages the curriculum to be closer to the goal state in the early stages of the training as the
policy would be less effective at reaching the goal. As the policy improves, a larger number of states
satisfy the constraint and the curriculum progressively moves closer to the initial state distribution.
Eventually, the curriculum converges to the initial state distribution leading to a policy π that would
optimize the evaluation objective in the MDPME . Following this intuition, we can write the goal
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generator G(st, pg) as:

G(st, pg) = g s.t.
{
gtask ∼ pg, g ← C(gtask) if switch(st, g) = subgoal
g ← gtask elif switch(st, g) = task goal

(5)

where the switch(st, gcur) is true if the gcur has been reached or gcur has been in place for HE

steps. For every new goal gtask ∼ pg , we first attempt to reach the curriculum subgoal C(gtask) (that
is switch(st, g) = subgoal), and then we attempt to reach goal gtask (that is switch(st, g) = task
goal). This cycles repeats until the environment resets after HT steps.

Computing the Curriculum Generator C(g). Equation 4 involves a minimization over the state
space S, which is intractable in general. While it is possible to come up with general solutions by
constructing a generative model p(s) and taking a minimum over the samples generated by it, we opt
for a simpler solution: we use the data collected by the policy π during the training and minimize
C(g) over a randomly sampled subset of it by enumeration. If an offline dataset or demonstrations
are available, we can also minimize C(g) on this data exclusively. The constrained minimization
can similarly be approximated by considering the subset of the data which satisfies the constraint
V π(s, g) ≥ ε and choosing the state from this subset which minimizes Xρ. If no state satisfies the
constraint, C(g) returns the state with the maximum V π(s, g).

Measuring the Initial State Distribution Distance. An important component of curriculum gener-
ation is choosing the distance function Xρ(s), which should reflect the distance to the state from the
initial state distribution under the environment dynamics. To factor in the dynamics, we can use the
learned goal-conditioned value function as measure of shortest distance between the state and the
goal [20, 36]. In particular, we use Xρ(s) = −Es0∼ρV π(s, s0). While this choice is convenient as
we are already estimating V π(s, g), there is an even simpler choice for Xρ(s) when offline demon-
stration data is available. Assuming that the trajectories in the provided dataset start from the initial
state distribution ρ, we can use the timestep index of the state as the distance from the initial state
distribution, that is Xρ(s) = argt(s,D) where D denotes the offline demonstration set. The step
index distance function defined here encodes the intuition that states which require more steps by the
policy are farther away. The function naturally accommodates for the dynamics of the environment.
Finally, since we are minimizing Xρ(s) in Equation 4, if there are multiple trajectories to the same
state or suboptimal loops within a single trajectory, we use the shortest distance to that state.

4.2 Relabeling Goals

Curriculum 
Goals ….

Commanded goal:

….

Relabeled Tuples

...

...

Figure 4: An illustration of goal relabeling
in VaPRL. Every transition in a trajectory is
relabeled with a randomly sampled subset
of curriculum goals, yielding a large set of
relabeled tuples that are added to the replay
buffer. This ensures efficient data reuse.

Not only does our policy need to learn how to reach
g ∼ pg, but it also needs to learn how to reach all the
goals generated by C(g) over the course of training, caus-
ing the effective goal-space to grow substantially. How-
ever, there is a lot of shared structure in reaching goals,
especially those generated by the curriculum. The knowl-
edge of how to reach a goal g1 also conveys meaningful
information about how to reach a goal g2. This structure
can be leveraged by using techniques from goal relabeling
[2]. In particular, we relabel every trajectory collected in
the training environment with N goals sampled randomly
from the set of goals that may be a part of the curriculum.
If we do not have any prior data, we randomly sample
the replay buffer for relabeling goals. If we are given some prior data D, this reduces sampling to
g ∼ D ∪ {g′ ∼ pg} for relabeling.

There is a subtle difference between hindsight experience replay (HER) and the goal relabeling
strategy we employ. While HER chooses future states from within an episode as goals for relabeling,
we exclusively choose states that may be used as goal states in the curriculum, which may not
occur in the collected trajectory at all. Since our policy will only be tasked with reaching goals
generated by the goal generator G, it is advantageous to extract signal specifically for these goals.
To summarize, while the goal-space has grown, goal relabeling enables us to generate data for the
algorithm commensurately to improve sample-efficiency.

Algorithm Summary. The outline for VaPRL is given in Algorithm 1. At a high level, VaPRL
takes a set of demonstrations as input and adds it to the replay buffer R. These demonstrations
are relabelled to generate additional trajectories such that every intermediate state is used as a goal.
Next, VaPRL starts collecting data in the training MDPMT . At every step, VaPRL samples the goal
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Algorithm 1: Value-Accelerated Persistent
Reinforcement Learning (VaPRL)
Input: initial state(s) Dρ, N ; // N: number of

goals for relabeling
Optional: Demos D;
Initialize replay buffer B, π(a | s, g),Qπ(s, a, g);
// If demos, add them to replay buffer and relabel
B ← B ∪ D;
relabel_demos(B);
while not done do

s ∼ ρ̃; // sample initial state
for HT steps do

g ← G(s, pg) (Eq 5);
a ∼ π(· | s, g), s′ ∼ p(· | s, a);
B ← B ∪ {(s, a, s′, g, r(s′, g))};
for i← 1, i ≤ N do

g̃ ∼ D ∪ pg; // if D = ∅, sample
replay buffer
B ← B ∪ {(s, a, s′, g̃, r(s′, g̃)};

update π,Qπ;
s← s′;

Figure 5: Continuous control environments for goal-
conditioned persistent RL. (top left) A table-top rear-
rangement task, where a gripper is tasked with moving
the mug to four potential goal positions, (top right) a
sawyer robot learns how to close the door and (bot-
tom) a high-dimensional dexterous hand attached to
a sawyer robot is tasked to pick up a three-pronged
object.

generator G to get the current goal and collects the next transition using the current policy π. This
transition is added to replay buffer R along with N relabelled transitions, as described in Sec 4.2.
The policy π and the critic Qπ are updated every step, using any off-policy reinforcement learning
algorithm. This loop is repeated for HT steps till an extrinsic intervention resets the environment
to a state s ∼ ρ̃. Note, it isn’t necessary to initialize the agent close to the goal. Additional details
pertaining to the algorithm can be found in the Appendix B.

5 Experiments

In this section, we study the performance of VaPRL on continuous control environments for goal-
conditioned persistent RL and provide ablations and visualization to isolate the effect of the curricu-
lum. In particular, we aim to answer the following questions:

1. Does VaPRL allow efficient reinforcement learning with minimal episodic resets?
2. How does the scheme for generating a curriculum in VaPRL perform compared to other

methods for persistent reinforcement learning?
3. Does VaPRL scale to high dimensional state and action spaces?
4. What does the generated curriculum look like? Is the curriculum effective?

We next describe the specific choices of environments, evaluation metrics and comparisons in order
to answer the questions above.

Environments. For our experimental evaluation, we consider three continuous control environments,
shown in Figure 5. The table-top rearrangement is a simplified manipulation environment, where
a gripper (modelled as a point mass which can attach to the object if it is close to it) is tasked with
taking the mug to one of the 4 potential goal squares. The evaluation horizon is HE = 200 steps and
the training horizon is HT = 200, 000 steps. This task involves a challenging exploration problem in
navigating to objects, picking them up, and dropping them at the right location. The sawyer door
closing environment involves using a sawyer robot arm to close a door to a particular target angle [45].
For this environment, we set the horizon for evaluation to be HE = 400 and HT = 200, 000 steps for
training. Since environment resets are not freely available, repeatedly practicing the task implicitly
requires the agent to also learn how to open the door. The hand manipulation environment, introduced
in [14], involves a dexterous hand attached to a sawyer robot. This environment entails a 16 DoF
hand that is mounted onto a 6 DoF arm, with the goal of manipulating a 3 pronged object as seen
in Figure 5. In particular, the task involves picking up the object from random positions on a table
and lifting it to a goal position above the table. This task is particularly challenging since it involves
complex contact dynamics with high dimensional state and action spaces. Additionally, the robot has
to learn how to reconfigure the object to diverse locations to simulate the test-time conditions where
the agent is expected to pickup the object from random locations. For this environment, we set the
horizon for evaluation HE = 400 and for training HT = 400, 000 steps.
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Figure 6: Performance of each method on (left) the table-top rearrangement environment, (center) the sawyer
door closing environment, and (right) the hand manipulation environment. Plots show learning curves with
mean and standard error over 5 random seeds. VaPRL is more sample-efficient and outperforms prior methods.

Environment Setup. For table-top rearrangement and sawyer door closing, we consider a sparse
reward function r(s, g) = I(s, g), which is 1 when the state s is close to the goal position g, and 0
otherwise. Since the hand manipulation environment is a substantially more challenging problem,
we consider a dense reward function that rewards the the hand and the object to be close to the goal
position. To aid exploration in table-top rearrangement and sawyer door closing, we provide all the
algorithms with a small set of trajectories (6 per goal, 3 going from initial state to the goal and the
other 3 going in reverse) for each environment, though we do not assume that the trajectories take
the optimal path (for example, the trajectories could come from teleoperation in practice). For the
hand manipulation environment, we provide the agent with 10 trajectories demonstrating the pickup
task from random positions on the table and 20 trajectories showing how to reposition the object to
different locations on the table. For all environments, we report results by evaluating the number of
times the policy successfully reaches the goal out of 10 trials in the evaluation environmentME (by
resetting to a state from the initial state distribution ρ and sampling an appropriate goal from the goal
distribution pg), performing intermittent evaluations as the training progresses. Note, the training
agent does not receive the evaluation experience and it is only used to measure the performance on
the evaluation environment. Further details about problem setup, demonstrations, implementation,
hyperparameters and evaluation metrics can be found in the Appendix.

Comparisons. We compare VaPRL to four approaches: (a) A standard off-policy RL algorithm
that only trains to reach the goal distribution, such that a new goal g ∼ pg(s) is sampled every
HE steps (labelled naïve RL), (b) A forward-backward controller [19, 6] which alternates between
g ∼ pg(s) and g ∼ ρ(s) for HE steps each, as described in Section 3 (labelled FBRL), (c) A
perturbation controller [48] that alternates between optimizing a controller to maximize task reward
and a controller to maximally perturb the state via task agnostic exploration (labelled R3L), and (d)
RL directly on the evaluation environment, resetting to the initial state distribution after every HE

steps (labelled oracle RL). This oracle is an expected upper bound on the performance of VaPRL,
since it has access to episodic resets. We use soft actor-critic [17] as the base RL algorithm for all
methods to ensure fair comparison, although any value-based method would be equally applicable. To
emphasize, all the algorithms are provided the same set of demonstrations. Further implementation
details can be found in the Appendix.

5.1 Persistent RL Results

The performance of each of the algorithms on the three evaluation domains are shown in Figure 6. We
see that VaPRL outperforms naïve RL, FBRL and R3L, providing substantial improvements in terms
of sample efficiency. For our most challenging domain of hand manipulation, the sample efficiency
enables us a reach a much better performance within the training budget. The primary difference
between the methods is that VaPRL uses a curriculum of starting states progressing from easier to
harder states. In contrast, FBRL always attempts to reach the initial state distribution and R3L uses a
perturbation controller to reach novel states in attempt to cover the entire state space uniformly. In
the table-top rearrangement environment, the agent starts close to the goal and then gradually brings
it back to the initial state distribution, trying different intermediate states in the process (discussed
in Section 5.3). In the sawyer door closing environment, the agent learns to close the door from
intermediate angles, incrementally improving the performance. For the hand manipulation domain,
the agent focuses on picking up the object from a particular location, and then incrementally grow the
locations from which it can complete pickup. In contrast, FBRL chooses attempts the pickup from
random states from the initial state distribution ρ and R3L attempts to find new states to pickup the
object from (even though it might not be succeeding to pickup the object from previous locations).
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Figure 8: Visualization of curricula generated by VaPRL on the table-top rearrangement environment. We
plot the step index distance between the initial state and the curriculum goals generated by C(g) (blue) and the
evaluation performance (orange) as the training progresses. The distance is normalized to be on the same scale
as the success metric, such that a value of 1 corresponds to the test-goal distribution and 0 corresponds to the
initial state distribution. We visualize some of the commanded goals C(g) during the training, observing that the
curriculum gradually progresses from goal states to initial states with a correlated improvement in evaluation
performance.

Compared to oracle RL with resets, VaPRL learns to solve the task while requiring 500× fewer
environment resets in the door closing environment, 1000× fewer environment resets in the table-top
rearrangement environment and dexterous hand manipulation. This amounts to less than 20 total
interventions for VaPRL, indicating the substantial autonomy with which the algorithm can run.

Surpisingly, in the domains with a sparse reward function (that is, sawyer door closing and table-top
reaarrangement), VaPRL matches or even outperforms the oracle RL method. In the table-top
rearrangement environment, oracle RL does substantially worse than VaPRL. It has been noted
in prior work that multi-goal RL problems can converge suboptimally due to issues arising in the
optimization [44]. We hypothesize that an appropriate initial state distribution can ameliorate some
of these issues. In particular, moving beyond deterministic initial distributions may lead to better
downstream performance (also noted in [47]). For the door opening environment, VaPRL matches
the performance of oracle RL. To emphasize, oracle RL is training on the evaluation environment
directly, that is HT = HE with the environment resetting to a state s0 ∼ ρ. In contrast, VaPRL also
learns how to reverse the task it is solving and thus only spends half of its training samples collecting
the data for the evaluation task (for example, VaPRL learns how to open the door and close it).

5.2 Isolating the Role of the Initial State Distribution

Figure 7: Ablation isolating the effect
of curriculum generated by VaPRL.

We construct an experiment to isolate the effect of the starting
state distribution on learning efficiency and downstream perfor-
mance. In this experiment, the environment resets directly to
the state C(g) for VaPRL, such that the policy only has to learn
reaching the goals g ∼ pg (labelled VaPRL + reset). Analo-
gously, for FBRL, the environment resets to the state s0 ∼ ρ,
which is identical to the oracle RL method (labelled oracle RL
/ FBRL + reset). For R3L, the environment resets to a state uni-
formly sampled from the state space (labelled uniform / R3L
+ reset). We run this ablation on the table-top rearrangement
environment, where the episode horizon for all the algorithms
is HE = 200. The results in Figure 7 indicate that the starting
state distribution induced by the VaPRL curriculum improves
the performance, translating into improved performance in the persistent RL setting.

5.3 Visualizations of Generated Curricula

To better understand the curriculum generated by VaPRL, we visualize the sequence of states chosen
by Equation 4 as the training progresses on the table-top rearrangement environment, shown in
Figure 8. As we can observe, initially the curriculum chooses states which are farther away from the
initial state and closer to the goal distribution. As training progresses, the curriculum moves towards
the initial state distribution. Correspondingly, the evaluation performance starts to improve as we
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move closer to the initial state distribution. Thus, VaPRL can generates an adaptive curriculum for
the agent to efficiently improve the performance on the evaluation setting.

6 Conclusion
In this work, we propose VaPRL, an algorithm that can efficiently solve reinforcement learning
problems with minimal episodic resets by generating a curriculum of starting states. VaPRL is able to
reduce amount of human intervention required in the learning process by a factor of 1000 compared
to episodic RL, while outperforming prior methods. In the process, we also formalize the problem
setting of persistent RL to understand current algorithms and aid the development of future ones.

There are a number of interesting avenues for future work that VaPRL does not currently address. A
natural extension is to environments with irreversible states. This setting can likely be addressed by
leveraging ideas from the literature in safe reinforcement learning [11, 42, 3, 5]. Another extension is
to work with visual state spaces, allowing the algorithm to be more broadly applicable in the real
world. These two extensions would be a significant step towards enabling autonomous agents in the
real world that minimize the reliance on human interventions.
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