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Abstract001

As LLMS advance, evaluating generated text002
reliably becomes more challenging due to the003
high costs of human evaluation. To make004
progress toward better LLM autoraters, we005
introduce FLAME, a family of Foundational006
Large Autorater ModEls. FLAME is trained on007
our large and diverse collection of nearly 100008
quality assessment tasks comprising 5M+ hu-009
man judgments, curated and standardized us-010
ing publicly released human evaluations from011
previous research. FLAME significantly im-012
proves generalization to a wide variety of held-013
out tasks, outperforming proprietary LLMS014
like GPT-4 and CLAUDE on many tasks. Ad-015
ditionally, we show that our FLAME multitask016
mixture can be further optimized for specific017
downstream applications, e.g., reward model-018
ing evaluation, through a novel tail-patch fine-019
tuning technique. Notably, on REWARDBENCH,020
our model (86.7) is the top-performing gener-021
ative model trained solely on permissively li-022
censed data, outperforming both GPT-4-0125023
(85.9) and GPT-4O (84.7). Our analysis re-024
veals that FLAME is significantly less biased025
than popular LLM-AS-A-JUDGE models on the026
COBBLER cognitive bias benchmark, while027
effectively identifying high-quality responses028
for code generation. We release our FLAME029
data collection at this http URL.030

1 Introduction031

The increasing power and versatility of large lan-032

guage models (LLMS) bring with them a grow-033

ing challenge: How can we reliably assess their034

long-form outputs? Recent research suggests a035

promising solution: these models themselves, after036

undergoing large-scale multitask instruction tun-037

ing, can generalize to follow new human instruc-038

tions (Mishra et al., 2022; Wei et al., 2022; Sanh039

et al., 2022; Chung et al., 2024), making them suit-040

able for use as autoraters of model outputs. This is041

particularly appealing because human evaluation,042

though crucial for assessing model performance, 043

is limited by subjectivity (Krishna et al., 2023a), 044

variability among raters (Karpinska et al., 2021), 045

and the high costs of extensive evaluations (Min 046

et al., 2023; Vu et al., 2023; Wei et al., 2024). 047

To align LLM autoraters with human preferences, 048

training on human judgments is crucial (Ouyang 049

et al., 2022). However, obtaining these judgments 050

is costly and time-consuming. Collecting existing 051

human evaluations from previous research seems 052

promising but faces challenges like lack of stan- 053

dardization, diverse evaluation criteria, inadequate 054

documentation, and data privacy or proprietary con- 055

cerns. Using model outputs for autorater training 056

offers consistency (Jiang et al., 2023; Kim et al., 057

2024) but comes with risks, such as reinforcing 058

biases and hallucinations (Gudibande et al., 2023; 059

Muennighoff et al., 2024). Additionally, it may 060

violate terms of use for proprietary LLM services, 061

which prohibit using their models’ outputs to de- 062

velop competing models.1 063

To address these limitations, we curated and stan- 064

dardized human evaluations from prior research to 065

create FLAME, a collection of approximately 100 066

quality assessment tasks comprising 5M+ total hu- 067

man judgments (§3). FLAME spans a wide variety 068

of task types, from assessing machine translation 069

quality to evaluating how well AI assistants follow 070

user instructions. We hypothesized that training on 071

this large and diverse data collection would enable 072

LLM autoraters to learn robust, generalized pat- 073

terns of human judgment, minimizing the impact 074

of noisy or low-quality human judgments. 075

To ensure transparency and reproducibility, we 076

use only publicly available human evaluation data 077

with permissive licenses from previous studies 078

(§3.1). To overcome challenges in collecting such 079

data, which rarely adhere to a particular standard 080

1https://openai.com/policies/terms-of-use,
https://policies.google.com/terms/generative-ai
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and often lack documentation, we thoroughly exam-081

ined the associated research (§3.3) and consulted082

with the original authors to address ambiguities or083

inconsistencies (spending 3+ hours per dataset).084

We train LLM autoraters using supervised, mul-085

titask fine-tuning on our data collection. All tasks086

are formulated into a unified text-to-text format087

with manually crafted task definitions and evalu-088

ation instructions. We format examples as input-089

target pairs, where the input includes task-specific090

context and the target contains human evaluations091

(Figure 1). This approach facilitates effective trans-092

fer learning across tasks, allowing our models to093

interpret and respond uniformly. Additionally, our094

task format is simple, intuitive, and easily accom-095

modates new tasks.096

We demonstrate that training an instruction-097

tuned LLM, i.e., PALM-2 24B (Anil et al., 2023),098

on our FLAME collection significantly improves its099

performance on various quality assessment tasks,100

outperforming models such as GPT-4, CLAUDE, and101

LLAMA-3 on many held-out tasks. Additionally, we102

show that our FLAME multitask mixture can be103

further optimized for specific downstream applica-104

tions, using reward modeling evaluation as a case105

study. Specifically, we employ a novel tail-patch106

fine-tuning technique to analyze how each dataset107

impacts performance on targeted distributions, i.e.,108

REWARDBENCH (Lambert et al., 2024), allowing us109

to determine the optimal proportions of individ-110

ual datasets in our multitask training mixture. No-111

tably, our targeted variant FLAME-RM achieves an112

average accuracy of 86.7 on REWARDBENCH, sur-113

passing both GPT-4-0125 (85.9) and GPT-4O (84.7),114

and achieving the highest performance among gen-115

erative models trained on permissively licensed116

datasets. Overall, our models outperform popular117

LLM-AS-A-JUDGE models on 6 out of 12 autorater118

evaluation benchmarks, covering 53 tasks (§4.3).119

Motivated by these results, we further explore120

whether biases exist in our autoraters, a common121

criticism of LLM-AS-A-JUDGE autoraters (§5.1), and122

their potential utility for AI development, particu-123

larly in identifying high-quality model responses124

(§5.2). Our analysis reveals that our models are sig-125

nificantly less biased than popular LLM-AS-A-JUDGE126

models on the COBBLER cognitive bias bench-127

mark (Koo et al., 2023), while effectively iden-128

tifying high-quality responses for code generation.129

In summary, our main contributions are: (1) A130

curated collection of approximately 100 diverse131

quality assessment tasks with 5M+ human judg-132

ments, available at this http URL; (2) Our LLM 133

autoraters, which outperform all proprietary LLM- 134

AS-A-JUDGE models like GPT-4 and CLAUDE on 6 135

out of 12 benchmarks, including REWARDBENCH 136

and LLM-AGGREFACT; and (3) A novel tail-patch 137

fine-tuning strategy for optimizing task mixtures to 138

specific objectives. 139

Our work demonstrates the potential of acces- 140

sible AI solutions, which we hope will spur more 141

fundamental research into reusable human evalua- 142

tions and the development of effective and efficient 143

LLM autoraters. 144

2 Related work 145

Below, we discuss existing literature in the space 146

of autoraters, drawing connections to FLAME. 147

Task-specific autoraters: In the pre-LLM era, 148

several works relied on token embedding similari- 149

ties (Zhang et al., 2020) or log probabilities (Yuan 150

et al., 2021) from pretrained models like BERT (De- 151

vlin et al., 2019) for automatic text evaluation. 152

Other work fine-tuned models on human ratings to 153

create autoraters for specific tasks, including ma- 154

chine translation (Sellam et al., 2020; Thompson 155

and Post, 2020; Rei et al., 2020; Fernandes et al., 156

2023; Qin et al., 2023), text summarization (Gao 157

et al., 2019; Durmus et al., 2020; Deutsch et al., 158

2021), and question answering (Chen et al., 2020; 159

Lin et al., 2022). FLAME, unlike these task-specific 160

autoraters, is trained on various quality assessment 161

tasks and can be prompted at inference time to 162

perform new tasks. 163

LLM-AS-A-JUDGE autoraters: With the ad- 164

vent of instruction tuned LLMS like GPT-4, recent 165

work has used these models as judges (Fu et al., 166

2023; Gong and Mao, 2023; Bai et al., 2023) to 167

evaluate LLM capabilities on various benchmarks, 168

including ALPACAEVAL (Li et al., 2023c; Dubois 169

et al., 2024), MT-BENCH (Zheng et al., 2023a), and 170

WILDBENCH (Lin et al., 2024). However, LLM-AS- 171

A-JUDGE autoraters tend to favor their own gener- 172

ated responses (Panickssery et al., 2024; Liu et al., 173

2023a; Bai et al., 2023), exhibiting “cognitive” bi- 174

ases toward aspects like length, order, and entity 175

preference (Koo et al., 2023). In contrast, our mod- 176

els are trained on a large, diverse collection of hu- 177

man evaluations, allowing them to learn unbiased, 178

generalized patterns of human judgment (§5.1). 179

Unlike LLM-AS-A-JUDGE autoraters, our models are 180

not tasked with evaluating their own responses, pre- 181

venting self-preference bias. 182
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INSTRUCTIONS:
"""Task definition and evaluation 
instructions."""

CONTEXT:
"""Input fields for context, each 
starting with a label indicating its 
type or purpose and is separated by 
a newline. E.g.,
'article': <article>
'summary': <summary>
"""
EVALUATION:
"""Target fields. Each field starts with 
a label indicating its type or purpose 
and is separated by a newline. E.g.,
'choice': <choice>
'explanation': <explanation>
"""

INSTRUCTIONS:
title: Is all of the information in the summary fully attributable to the source article?
description: In this task, you will be shown a summary and a source news article on which 
the summary is based. Your task is to evaluate whether the summary is attributable to the 
source article. Answer 'Yes' if all the information in the summary is fully supported by the 
source article, or 'No' if any information in the summary is not supported by the source 
article. Provide an explanation for your answer.
output_fields: answer, explanation
CONTEXT:
article: Tower Hamlets Council said it would sell Draped Seated Woman after 
"unprecedented" budget cuts. The work has not yet been valued but a Moore sold for £17m 
earlier this year. The council said the rising threat of metal theft and vandalism made 
it too expensive to insure if it was on show. The sculpture was bought by the former 
London County Council for £6,000 in 1960. The bronze sculpture, nicknamed Old Flo, was 
installed on the Stifford council estate in 1962 but was vandalised and moved to the 
Yorkshire Sculpture Park in 1997. A council spokesperson said: "With unprecedented cuts 
to council budgets, the council finds itself in a difficult situation and being forced to 
make hard decisions."
summary: A Moore sculpture of a woman sitting on a concrete plinth is to be sold.
-----
EVALUATION:
answer: No
explanation: The detail that the woman is "sitting on a concrete plinth" is not in the 
article.

Figure 1: All of our quality assessment tasks are formulated into a unified text-to-text format with manually crafted
task definitions and evaluation instructions. We format examples as input-target pairs, where the input includes
task-specific context and the target contains human evaluations.

General-purpose LLM autoraters: Recent183

work has explored training general-purpose LLM184

autoraters. Jiang et al. (2023) introduced TIGER-185

SCORE, a LLAMA-2 model trained on GPT-4 gener-186

ated error analysis data across various tasks, in-187

cluding summarization and long-form QA. Similar188

approaches include PROMETHEUS (Kim et al., 2023),189

INSTRUCTSCORE (Xu et al., 2023b), and PROMETHEUS-190

2 (Kim et al., 2024). Unlike these efforts, our ap-191

proach relies solely on open-source human eval-192

uations instead of model outputs. We show that193

FLAME significantly outperforms PROMETHEUS-2 on194

REWARDBENCH (Table 2).195

Reward models: Our work relates to reward196

models (RMS) used for aligning LLMS to human197

preferences via reinforcement learning with hu-198

man feedback (RLHF, Ouyang et al., 2022; Kor-199

bak et al., 2023). In RLHF, human preference data200

is either used to train stand-alone discriminative201

RMS, or directly fed into LLMS via algorithms like202

DPO (Rafailov et al., 2023) or SLIC-HF (Zhao et al.,203

2023). While we evaluate our models as RMS in204

our REWARDBENCH experiments (§4), there are key205

distinctions: (1) RMS primarily train on pairwise206

preference data, whereas our models utilize diverse207

task types in a unified format; (2) RMS optimize208

for overall preference, while our models can be209

prompted to judge specific aspects (e.g., safety).210

3 The FLAME collection211

At a high level, we fine-tune instruction-tuned212

LLMS on our multitask mixture of standardized213

human evaluations. This large and diverse data col-214

lection is carefully selected to cover a wide range of215

Classify
37.1%

Free-form
13.9%

Pointwise
10.9%

Pairwise
38.1%

Figure 2: A breakdown of our FLAME collection by
task type, with each slice representing the % of data-
points (out of 5M+) for that specific task type.

LLM capabilities (§3.1-3.2). We manually crafted 216

task definitions and evaluation instructions, refor- 217

mulating all tasks into a unified text-to-text for- 218

mat (§3.3). We train two LLM autorater variants: 219

one with example-proportional mixture weights 220

(FLAME), and the other with reward modeling opti- 221

mized mixture weights (FLAME-RM), determined 222

using a tail-patch fine-tuning strategy (§3.4). 223

3.1 Principles for training data selection 224

We adhere to the following principles while choos- 225

ing our datasets: 226

Public, open-source datasets: To ensure re- 227

producibility, we use only permissively licensed 228

datasets available on HUGGING FACE (Lhoest et al., 229

2021) or the original authors’ GITHUB repositories. 230

Human-labeled annotations: We exclusively 231

use datasets with human-labeled annotations, avoid- 232

ing those generated by models like GPT-4 due to 233

potential inaccuracies and legal concerns raised 234

in recent research (Gudibande et al., 2023; Muen- 235

nighoff et al., 2024). 236
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Various task types: We gather datasets across237

various task types to train FLAME to generalize to238

new quality assessment tasks. These include point-239

wise evaluations (e.g., “Rate coherence on a Likert240

scale of 1-5.”), pairwise evaluations (e.g., “Which241

response is better, A or B?”), classification tasks242

(e.g., “Is the claim supported by the document?”),243

and free-form explanation tasks (e.g., “Which re-244

sponse is better? Explain your judgment.”). See245

Figure 2 for a breakdown.246

Various LLM capabilities: We choose datasets247

from literature that assess diverse capabilities in248

modern LLMS, such as factuality, instruction fol-249

lowing, long-form generation quality, math, coding,250

safety, etc. See §3.2.251

3.2 Capabilities covered by FLAME mixture252

Following the principles outlined in §3.1, we cu-253

rated a large collection of 5M+ datapoints, com-254

posed of 972 training tasks (see our list of datasets255

in Appendix A.1). Our data collection assesses256

key modern LLM capabilities, detailed below (see257

breakdown in Figure 3):258

General response quality: To evaluate LLM re-259

sponse quality, we use a variety of datasets that260

measure helpfulness, coherence, creativity, and flu-261

ency. These include pairwise comparison datasets262

like STANFORD SHP (Ethayarajh et al., 2022) and263

LMSYS (Zheng et al., 2023b), and pointwise rat-264

ing datasets such as SUMMAEVAL (Fabbri et al.,265

2021). Additionally, to measure LLM instruction-266

following capabilities, we include datasets like GE-267

NIE (Khashabi et al., 2021), INSTRUSUM (Liu et al.,268

2023b), and RISUM (Skopek et al., 2023).269

Attribution / Factuality: To address the increas-270

ing importance of measuring hallucinations in271

generated LLM responses, we incorporate several272

datasets that assess attribution or grounding, mea-273

suring whether claims or responses are supported274

by source documents. These include summariza-275

tion evaluation (Pagnoni et al., 2021), LLM re-276

sponse hallucination (Li et al., 2023a), fact ver-277

ification (Schuster et al., 2021), dialog faithful-278

ness (Dziri et al., 2022a), and natural language279

inference (NLI) (Williams et al., 2018).3280

Mathematical reasoning: We construct datasets281

to help FLAME differentiate between correct and282

incorrect solutions to mathematical problems. We283

leverage PRM800K (Lightman et al., 2024) and284

2An additional 53 tasks were kept for evaluation, see §4.1.
3We include NLI since its setup naturally fits attribution.

Quality
36.8%

Safety
11.0%

Math
3.4%

Coding
10.4%

IF
7.1%

Factuality
31.3%

Figure 3: A breakdown of our FLAME collection by
capability, with each slice representing the % of data-
points (out of 5M+) for that specific capability.

extract human vs incorrect LLM-generated solu- 285

tions, as well as pairs of (correct, incorrect) LLM- 286

generated solutions. 287

Coding: In addition to natural language evalua- 288

tion, we also train FLAME to perform code evalua- 289

tion. We utilize COMMITPACK (Muennighoff et al., 290

2024), CODE CONTESTS (Li et al., 2022a), and COF- 291

FEE (Moon et al., 2023) to construct pairs of (cor- 292

rect, buggy) programs in popular programming lan- 293

guages in response to a coding prompt or GITHUB 294

issue. The model is trained to select the correct 295

program in each pair. 296

Safety: Developing safe and harmless AI assis- 297

tants for broad public use is increasingly important. 298

To facilitate safety evaluation, we train FLAME to 299

identify unsafe LLM responses. Our training data 300

includes both pairwise and classification tasks from 301

sources like BEAVERTAILS (Ji et al., 2023) and HELP- 302

FUL HARMLESS RLHF (Bai et al., 2022). 303

3.3 Unified FLAME prompt format 304

Having carefully selected our training datasets 305

(§3.1-3.2), we then convert them into a unified text- 306

to-text format. This involves preprocessing each 307

dataset, which usually requires about 3-4 hours of 308

manual work per dataset. First, we gather all rel- 309

evant data files from the associated HUGGING FACE 310

or GITHUB repository. Then, we pinpoint and ex- 311

tract the specific data columns containing the qual- 312

ity assessments conducted by human annotators. 313

Next, we meticulously craft detailed task defini- 314

tions and evaluation instructions for each quality 315

assessment task, ensuring consistency and stan- 316

dardization. We leverage any available instructions 317

provided to the original human annotators to main- 318

tain alignment with their evaluation criteria. These 319

instructions guide the model in identifying the in- 320

put and output format, as well as understanding 321

the specific aspects it should assess. Finally, all 322

4



20000 40000 60000 80000
Training steps (FLAME)

65.0
67.5
70.0
72.5
75.0
77.5
80.0
82.5
85.0

Re
wa

rd
Be

nc
h 

Sa
fe

ty
 p

er
fo

rm
an

ce

FLAME
FLAME-RM

400 800 1200 1600 2000 2400 2800
Training steps (FLAME-RM)

Figure 4: FLAME-RM significantly outperforms FLAME
in REWARDBENCH safety performance, using 20x less
compute, with improved stability, and a 2.5% perfor-
mance gain.

tasks are formulated as text-to-text tasks (Figure 1).323

Task definitions and evaluation instructions and the324

list of desired output fields are placed under the325

INSTRUCTIONS block, while the input field values326

are placed under CONTEXT. This flexible text-to-text327

format can be easily adapted to various quality as-328

sessment tasks.329

3.4 Optimizing FLAME for reward modeling330

evaluation (FLAME-RM)331

While our vanilla FLAME mixture is effective across332

many tasks (§4.3), it struggles with specialized333

tasks like reward modeling evaluation, showing334

suboptimal and unstable performance across check-335

points. We attribute this instability to suboptimal336

mixture weights that undersample useful tasks. To337

address this, we introduce a novel tail-patch abla-338

tion strategy, enabling us to efficiently optimize339

nearly 100 hyperparameters. Using REWARDBENCH340

as a case study, our reward-modeling optimized341

mixture (FLAME-RM) achieves a 2.1% performance342

increase with 20× less compute and significantly343

improved stability across checkpoints (Figure 4).344

Vanilla mixture weights (“FLAME”): Our345

vanilla FLAME mixture assigns weights based on346

the number of examples per task, capped at a347

maximum of 216 to avoid oversampling large tasks.348

However, as shown in Figure 4, this approach349

results in unstable performance for REWARDBENCH.350

Tail-patch ablations to determine task useful-351

ness: Setting the right proportion of each indi-352

vidual task in our mixture is non-trivial due to the353

nearly 100 hyperparameters. Instead, we examine354

the usefulness of each individual training task, and355

use this information for weight assignment. First,356

we select a checkpoint partially4 trained on our 357

vanilla mixture which has fair (but not optimal) per- 358

formance across REWARDBENCH categories. Next, 359

we fine-tune it exclusively on an individual task for 360

only 3K steps (“tail patch”). We posit that training 361

on a useful task would bridge the gap between fair 362

and optimal performance. 363

A re-weighted mixture based on tail-patch abla- 364

tions (“FLAME-RM”): After training a tail-patch 365

on each task, we rate how helpful each training 366

task is to each category of REWARDBENCH using one 367

of four ratings: Helpful (+2, performance signif- 368

icantly improves and remains stable), Somewhat 369

helpful (+1, performance slightly improves), No 370

clear effect (0, performance is nearly unchanged), 371

Harmful (-1, performance is significantly worse). 372

We then organize tasks into seven bundles: Gener- 373

ally helpful (tasks with total highest ratings >= 5), 374

Category-specific, one for each of the five REWARD- 375

BENCH categories (most beneficial tasks for a spe- 376

cific category where performance crosses a thresh- 377

old τ ),5 Others with a fixed mixing weights for 378

each bundles: wgeneral = 100K, wspecific = 379

30K, wothers = 3K, respectively.6 The final 380

weight of each task equals the total of mixing 381

weights from the groups it belongs to. For in- 382

stance, if a task is generally helpful and is help- 383

ful for CHATHARD and SAFETY, then it contributes 384

wt = wgeneral+2∗wspecific to our mixture. Since 385

SAFETY is the most unstable category (Figure 4), we 386

set wt = 250K for the top 3 SAFETY tasks. FLAME- 387

RM is built on top of the initial instruction-tuned 388

checkpoint and fine-tuned with the re-weighted 389

mixture for only 3K steps. 390

3.5 Training Details 391

We initialize our model with the PALM-2 24B 392

model (Anil et al., 2023), instruction tuned on the 393

FLAN collection (Chung et al., 2024; Longpre et al., 394

2023). We optimize our FLAME for a total of 60K 395

steps, while our FLAME-RM requires just 3K steps 396

to achieve strong performance. All our models are 397

trained using the T5X library (Roberts et al., 2023), 398

with a learning rate of 0.0001 using the Adam opti- 399

mizer (Kingma and Ba, 2015), batch size of 8, and 400

4We hypothesize that starting from a partially trained
checkpoint rather than the initial checkpoint is better for tail-
patch ablations, since the model has already seen some multi-
task data and is familiar with its general distribution.

5τ = 95%, 66%, 84%, 99.8%, 85% for CHAT, CHATHARD,
CODE, MATH, and SAFETY, respectively.

6We note that we did not tune these weight values, all
numbers were set once based primarily on our intuition.
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dropout rate on 0.05. We use an input length of401

2048 tokens, and target length of 1024 tokens. All402

models are trained on 128 CLOUD TPU V5E chips.7403

4 Experimental Results404

Having discussed the procedure used to build405

FLAME and FLAME-RM in §3, we now present our406

main experiments. We compare FLAME to several407

popular baseline LLM-as-judge models (§4.2) on408

an evaluation suite composed of 12 benchmarks409

and 53 tasks (§4.1). Overall, we find that FLAME410

outperforms proprietary LLMS like GPT-4, CLAUDE411

on several tasks (§4.3), despite being trained only412

on permissively licensed publicly available data.413

4.1 Evaluation Datasets414

We evaluate FLAME on a total of 12 benchmarks415

(composed of 53 tasks) to measure its performance416

as a pairwise and pointwise autorater:417

RewardBench (Lambert et al., 2024) is a popu-418

lar leaderboard for evaluating reward models used419

for RLHF. REWARDBENCH contains a suite of pair-420

wise preference tasks, where reward models need to421

choose the better response among two responses to422

a prompt. REWARDBENCH is composed of four cate-423

gories spanning many desired capabilities in LLMS424

(Chat, Chat-Hard, Reasoning - Math + Coding,425

Safety), and is built using 23 individual datasets.8426

LLM-AggreFact (Tang et al., 2024) is a bench-427

mark measure the attribution / grounding capabili-428

ties of autoraters. Given a reference document and429

a claim, the AutoRater must determine whether the430

claim is fully supported in the reference document.431

Tang et al. (2024) combine ten attribution datasets432

from recent works in LLM factuality, building a433

holistic benchmark for attribution evaluation.434

Other pairwise evaluation tasks: Besides Re-435

wardBench, we use several pairwise preference436

tasks to evaluate FLAME. None of these datasets437

were used while training FLAME, so these tasks438

represent a true held-out setting. Our preference439

tasks consist of: (1) AlpacaFarm (Dubois et al.,440

2023); (2) RankGen (Krishna et al., 2022); (3)441

Contrastive Search (Su and Xu, 2022); (4) Machine442

Translation in literary settings, or LitMT (Karpin-443

ska and Iyyer, 2023); (5) Helpful, Honest and444

Harmless Alignment, or HHH-Align (Askell et al.,445

7cloud.google.com/tpu/docs/v5e-training
8We exclude the “Prior sets” of REWARDBENCH in our

evaluation, since we used 3 of the 4 datasets in training FLAME.

2021); (6) CoPoem (Chakrabarty et al., 2022); (7) 446

Expert-LFQA (Xu et al., 2023a). 447

Other pointwise evaluation tasks: Additionally, 448

we evaluate FLAME on several tasks needing Likert- 449

scale evaluations. These include pointwise human 450

ratings from: (1) HelpSteer (Wang et al., 2023);9 451

(2) Dipper paraphrase pointwise quality evalua- 452

tion (Krishna et al., 2023b); (3) Pointwise Sum- 453

marization Feedback (Stiennon et al., 2020).10 454

4.2 Evaluated Models 455

As baselines we evaluate several popular LLM- 456

as-a-judge models from prior work, including 457

LLAMA-3-70B-INSTRUCT (Meta, 2024), MIXTRAL 458

8X7B (Jiang et al., 2024), CLAUDE 3 OPUS (Anthropic, 459

2024), GPT-3.5-TURBO-0125 (OpenAI, 2024a), GPT- 460

4-0125, and OpenAI’s current flagship model GPT- 461

4O (OpenAI, 2024b).11 We also compare against 462

a few additional models reported on the REWARD- 463

BENCH leaderboard (Lambert et al., 2024), notably 464

GEMINI-1.5 (Reid et al., 2024), and PROMETHEUS-2- 465

8X7B (Kim et al., 2024). Among our models, we 466

evaluate PALM-2 24B models finetuned on FLAME 467

and FLAME-RM (§3.4-3.5). To disentangle the ef- 468

fect of pretraining and FLAME training, we evaluate 469

our initialization checkpoint (PALM-2-24B) from 470

§3.5 which has not seen FLAME data. 471

4.3 Main Results 472

We present results across all tasks in Table 1, and 473

REWARDBENCH in Table 2. Overall, we find that: 474

FLAME variants outperform all baseline on 6 475

out of 12 benchmarks. In Table 1 we find that 476

despite being trained only on public data, FLAME 477

shows strong performance in a wide variety of pair- 478

wise and pointwise tasks. Notably, it outperforms 479

all proprietary state-of-the-art LLMS on six out 480

of twelve tasks. This includes the LLM-Aggfact 481

benchmark (81.2 vs next best 80.6, GPT-4-0125), 482

confirming its utility as a cheap and effective at- 483

tribution evaluator. However, FLAME notably lags 484

behind GPT-4-0125 on ExpertQA (73.4 vs 77.0). We 485

hypothesize this is due to the lack of expert tech- 486

nical knowledge in the much smaller FLAME’s pa- 487

9We leverage the five tasks in the validation split during
this evaluation, and use the train split in our FLAME mixture.

10We leveraged only the pairwise ratings from this dataset
during training, and left pointwise for evaluation.

11For comparable experiments with FLAME, we use the
same unified prompt instructions (§3.3) while evaluating each
LLM-as-a-judge baseline model. We use the default decoding
hyperparameters for each API suggested by the API provider.
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Model LLM Reward Pointwise Tasks Pairwise Tasks

Aggfact Bench H-Steer Dipper SumFB Alpaca RankG ContS LitMT HHH Copoem EQA

LLAMA-3-70b-Inst 76.1 76.0 39.7 42.8 50.8 53.9 65.6 53.1 60.5 91.9 53.6 71.1
Mixtral-8x7b 73.8 77.8 34.0 42.2 43.8 55.1 63.3 56.6 61.7 90.0 52.9 71.5
GPT-3.5-turbo 70.0 64.5 32.0 45.0 15.6 55.5 58.2 57.5 54.3 85.5 49.0 69.9
Claude Opus 79.2 80.7 41.3 50.6 31.6 49.6 55.1 45.1 71.1 94.6 49.0 71.1
GPT-4-0125 80.6 85.9 40.8 45.0 46.5 49.6 62.5 55.8 67.6 94.6 56.9 77.0
GPT-4o 80.2 84.7 40.1 45.6 30.9 50.4 66.3 57.5 72.7 92.3 55.6 75.0

(our 24b models)

PaLM-2-24b 54.8 62.9 20.0 48.3 13.3 52.3 58.2 46.0 62.5 85.5 54.2 70.3
FLAME-24b 80.4 84.6 52.2 42.8 42.2 56.3 65.6 58.4 64.1 88.2 54.2 68.4
FLAME-RM-24b 81.2 86.7 24.2 50.6 50.4 54.7 61.7 48.7 69.9 90.0 53.6 73.4

Table 1: Performance of FLAME compared to LLM-AS-A-JUDGE baselines on a wide variety of quality assess-
ment tasks. Overall, we find that FLAME outperforms all proprietary LLM-AS-A-JUDGE baselines in 6 out of 12
benchmarks, including LLM-AGGREFACT and REWARDBENCH. See §4.1 for the source of each evaluation dataset.

Model Avg Chat Hard Safe Reason

(generative baselines on RewardBench leaderboard)

GPT-3.5-turbo 64.5 92.2 44.5 62.3 59.1
Prometheus-2 75.3 93.0 47.1 83.5 77.4
Llama3-70B 76.0 97.6 58.9 69.2 78.5
Mixtral-8x7b 77.8 95.0 64.0 73.4 78.7
Claude-Opus 80.7 94.7 60.3 89.1 78.7
Gem1.5-Flash 82.1 92.2 63.5 87.7 85.1
GPT-4o 84.7 96.6 70.4 86.7 84.9
GPT-4-0125 85.9 95.3 74.3 87.2 86.9
Gem1.5-Pro 88.1 92.3 80.6 87.5 92.0

(our 24b models)

PALM-2-24B 62.9 89.9 61.2 55.3 45.2
FLAME 84.6 94.4 69.1 80.7 94.1
FLAME-RM 86.7 94.7 71.7 85.7 94.8

Table 2: A comparison of FLAME with other genera-
tive reward models (“LLM-as-judges”) on the REWARD-
BENCH benchmark. FLAME outperforms all generative
models on REWARDBENCH except proprietary Gemini
1.5 Pro, despite being trained only on public data.

rameters, which is necessary to evaluate ExpertQA488

answers. Surprisingly, we also find GPT-4-0125 gen-489

erally outperforms GPT-4O on quality assessment490

tasks.12 Finally, we note that FLAME variants out-491

perform our initialization checkpoint (PALM-2 24B)492

on both tasks, showcasing the utility of FLAME493

fine-tuning.494

Our FLAME-RM variant outperforms GPT-4 on495

RewardBench. In Table 2, we find that on average496

FLAME-RM outperforms several proprietary LLM-497

as-judge generative baselines on REWARDBENCH, in-498

cluding GPT-4-0125 (86.7 vs 85.9). This is due499

to a notable performance increase in the “Reason-500

ing” split of the REWARDBENCH benchmark, with501

12This comes as a surprise as GPT-4O is ranked higher than
GPT-4-0125 on the LMSys leaderboard (Chiang et al., 2024).
Our results corroborate to the REWARDBENCH leaderboard,
where GPT-4O is ranked behind GPT-4-0125.

competitive performance in other splits. Moreover, 502

FLAME-RM outperforms the much larger and open- 503

source LLAMA-3-70B on every split of REWARD- 504

BENCH (86.7 vs 76.0) on average. Even our vanilla 505

FLAME variant, without tail-patch optimization 506

(§3.4), shows strong REWARDBENCH performance 507

(84.6), outperforming models like Claude-Opus 508

(80.7) and Gemini 1.5 Flash (82.1).13 509

5 Further analysis of FLAME 510

In this section, we provide an analysis to elucidate 511

some interesting aspects of our models. We depart 512

from the traditional focus on analyzing the effect of 513

factors like model size, data size, and data quality 514

within multitask learning, which have been exten- 515

sively studied in recent work on multitask/instruc- 516

tion learning (Raffel et al., 2020; Longpre et al., 517

2023). Instead, we explore the biases inherent in 518

these autoraters, and demonstrate their potential 519

utility for AI development, such as sampling high- 520

quality responses. 521

5.1 Autorater Bias Analysis 522

A common criticism of LLM-AS-A-JUDGE autoraters 523

is bias towards certain judgments (Liu et al., 2023a; 524

Panickssery et al., 2024). In this section, we evalu- 525

ate FLAME on the CoBBLEr benchmark (Koo et al., 526

2023), and find that FLAME is significantly less bi- 527

ased than alternatives. This benchmark measures 528

six kinds of biases in autorater models: (1) OR- 529

DER: does the autorater have a preference towards 530

the response position? (2) COMPASSION: does 531

the autorater’s judgment change if the response- 532

13We present some additional analysis of length bias and
hill-climbing issues in REWARDBENCH in Appendix B. We
encourage readers and future work to not over-index on RE-
WARDBENCH performance, and instead consider holistic im-
provements across a variety of evaluation tasks (§4.1).
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Autorater Avg (↓) Order (↓) Compass. (↓) Length (↓) Egocentric (↓) Bandwagon (↓) Attention (↓)

Random 0.30 0.50 0.50 0.00 0.25 0.25 0.25

(baselines as reported in Koo et al., 2023)
Falcon 0.31 0.77 0.27 0.09 0.05 0.28 0.40
Cohere 0.41 0.50 0.65 0.10 0.27 0.82 0.14
LLAMA2-70B 0.19 0.61 0.26 0.12 0.06 0.04 0.03
InstructGPT 0.45 0.38 0.48 0.16 0.28 0.85 0.54
ChatGPT 0.45 0.41 0.66 0.13 0.58 0.86 0.06
GPT-4 0.31 0.23 0.79 0.06 0.78 0.00 0.00

(our models)
FLAME-RM 0.15 0.14 0.20 0.03 0.35 0.20 0.00
FLAME 0.11 0.08 0.12 0.00 0.35 0.10 0.00

Table 3: Autorater bias analysis on the CoBBLEr benchmark from Koo et al. (2023). For all columns, lower
is better / less biased. Overall, we find that FLAME is significantly less biased than popular LLM-as-a-judge
models like GPT-4 and ChatGPT. Compared to Table 2 in Koo et al. (2023), we combine first/last numbers for
Order/Compassion, report |bias− 0.5| for Length, and only report the order variant in Egocentric.
.

Ranker CodeGen16B davinci002 InCoder6B

(10 samples reranked in round-robin fashion)

None 21.2 17.6 14.6
FLAME 31.7 22.0 18.9
FLAME-RM 32.9 25.0 18.9

Oracle 46.9 63.4 29.3

Table 4: Pass@1 performance on the HumanEval
coding benchmark. Across models, ranking 10 sam-
ples with FLAME improves pass@1 performance, with
FLAME-RM outperforming FLAME.

generating LLM’s name is used instead of aliases?533

(3) LENGTH: does the autorater have a preference534

for longer or shorter outputs? (4) EGOCENTRIC:535

does the autorater have a preference for outputs536

generated by itself? (5) BANDWAGON: does the537

autorater get swayed by sentences like “90% peo-538

ple prefer response A”? (6) ATTENTION: does539

the autorater get distracted by irrelevant sentences540

about responses, such as “Response A is about541

cats.”? We leverage the original prompt/response542

pairs from Koo et al. (2023), adapting them to use543

the unified FLAME format (Figure 1). We com-544

pare FLAME’s bias to other LLM-as-judges reported545

in Koo et al. (2023), including GPT-4.546

In Table 3, we find that FLAME is significantly547

less biased than GPT-4 and other autoraters re-548

ported in Koo et al. (2023), with an average bias549

of just 0.12 compared to 0.31 in GPT-4 (lower is550

better). FLAME outperforms GPT-4 in 5 out of 6551

bias categories, further supporting its utility as a552

robust and unbiased autorater.553

5.2 Using FLAME to re-rank decoded outputs554

A possible application of autoraters is selecting the555

best output among a pool of responses (Nakano556

et al., 2021; Krishna et al., 2022), a technique pop-557

ularly known as “Best-of-N” sampling. In this sec- 558

tion, we show that ranking LLM-generated code 559

samples with FLAME leads to performance im- 560

provements. We utilize the popular HumanEval 561

Python programming benchmark (Chen et al., 562

2021) for our experiments. We re-rank 10 sam- 563

ples generated by OpenAI davinci-002, InCoder- 564

6B (Fried et al., 2023), and CodeGen-16B (Ni- 565

jkamp et al., 2023) using a round-robin compe- 566

tition, and measure the performance of the top- 567

ranked sample.14 In Table 4, we find that, we 568

can significantly improve pass@1 accuracy by 569

ranking 10 output samples for all three code- 570

generation models. On CodeGen16B, FLAME- 571

RM improves pass@1 from 21.2 to 32.9, bridging 572

nearly half the gap to the Oracle ranker (46.9). 573

6 Conclusion 574

We introduce FLAME, a family of foundational au- 575

torater models that can perform various quality as- 576

sessment tasks. FLAME is trained on a large and di- 577

verse collection of curated and standardized human 578

evaluations derived exclusively from permissively 579

licensed datasets. We demonstrate FLAME’s strong 580

zero-shot generalization abilities, outperforming 581

proprietary models like GPT-4, CLAUDE on many 582

held-out tasks. Additionally, we present a novel 583

mixture weight tuning approach that dramatically 584

improves effectiveness and efficiency on reward 585

modeling. FLAME is the highest performing gen- 586

erative reward model trained only on permissively 587

licensed data, and exhibits significantly less bias 588

than popular LLM-AS-A-JUDGE models. 589

14We use relatively weak LLMS from Chen et al. (2023)
since: (1) we want to study whether weaker LLMS can benefit
from FLAME re-ranking; (2) HumanEval benchmark has been
extensively hill-climbed on to develop newer 2024 LLMS.
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Limitations and Future work590

Our data collection faces challenges due to evolv-591

ing model evaluation standards and the need for592

new evaluation types for emerging applications. Ex-593

panding our collection with open-source contribu-594

tions could address this issue. Our models, trained595

primarily on English data with a context length of596

2048 tokens, might not perform well on multilin-597

gual or long-context quality assessment tasks, such598

as book-length summarization evaluation. In fu-599

ture releases, we plan to include training on more600

multilingual datasets with longer context lengths.601

Finally, in this work, we train our models using a602

supervised multitask fashion. Exploring alterna-603

tive training approaches like RLHF and DPO is a604

promising direction for future work.605

Ethical Considerations and Risks606

All considerations and risks outlined by prior work607

for pretrained and instruction-tuned LLMS (Chowd-608

hery et al., 2022; Anil et al., 2023) apply to LLM609

autoraters. We recommend following standard610

practice for responsible development of these mod-611

els (Achiam et al., 2023; Gemini-Team et al., 2023;612

Reid et al., 2024). Additionally, LLM autoraters613

raise new risks due to increased quality assessment614

capabilities. First, our models can inherit and am-615

plify biases from human evaluations, leading to un-616

fair or discriminatory outcomes. For instance, the617

model may replicate biases related to race, gender,618

or other sensitive attributes from the training data,619

potentially harming certain groups. Second, over-620

reliance on LLM autoraters risks automating deci-621

sions that need human understanding and empathy.622

To mitigate these risks, transparency in model de-623

velopment and use, along with robust measures like624

bias audits, data anonymization, and incorporating625

diverse perspectives, is essential for promoting fair-626

ness, accountability, and trustworthiness.627
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Appendix 1291

A Appendix Tables 1292

A.1 List of Training Datasets in FLAME 1293

Please see Table 6. 1294

B Further analysis on the 1295

REWARDBENCH benchmark 1296

In this section, we provide some analysis of issues 1297

we found in the REWARDBENCH benchmark, includ- 1298

ing issues of length bias (Appendix B.1) and diffi- 1299

culty in hill-climbing (Appendix B.2). Given these 1300

issues, we encourage readers and future efforts to 1301

not solely rely on REWARDBENCH for autorater task 1302

performance, but instead use a wide variety of eval- 1303

uation tasks to compare models (such as our evalu- 1304

ation suite in §4). 1305

B.1 Analysis of length and token bias in 1306

REWARDBENCH 1307

In Table 5, we present an analysis of length bias in 1308

REWARDBENCH. Overall, we find that REWARDBENCH 1309

is far from length-balanced in its composition. The 1310

Chat-Hard, Coding and Math categories strongly 1311

prefer shorter length outputs, while the Chat cat- 1312

egory has a strong preference towards longer out- 1313

puts. An adversarial submission which can iden- 1314

tify prompt categories may simply choose to pre- 1315

fer the longer or shorter output in REWARDBENCH, 1316

and achieve high scores without being an actually 1317

strong preference model. 1318

RewardBench Split % longer preferred

Chat 79.1%
Chat-Hard 29.6%
Math 6.5%
Coding 35.7%
Safety 41.9%

Table 5: A summary of length bias in REWARDBENCH.
Overall, we find that four out of five categories in RE-
WARDBENCH have a strong preference towards longer
or shorter outputs.

Besides length bias, we also found some issues 1319

of token bias in the Math and Safety splits of RE- 1320

WARDBENCH. In Safety, the preferred side had a 1321

strong preference for phrases like “I’m sorry”, 1322

which are indicative of hedged responses. In 28% 1323

pairs, only the preferred response contained the 1324

word “sorry”. We found similar issues in the Math 1325

split, with tokens “i”, “can”, “need”, “to”, “find” 1326

largely only appearing in the rejected response. 1327
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Given these findings, our recommendation for1328

future autorater / reward model development is1329

not just rely on REWARDBENCH performance, but1330

instead to evaluate a wide variety of autorater1331

tasks (such as our evaluation suite in §4).1332

B.2 Discussion on hill-climbing on1333

REWARDBENCH1334

In early experiments, we found it very difficult to1335

hill-climb on REWARDBENCH due to the absence of a1336

development set in Lambert et al. (2024). It was not1337

possible to construct a “proxy” development set for1338

many categories of REWARDBENCH, since Lambert1339

et al. (2024) had fully utilized the original set while1340

constructing them (such as LLMBAR in CHATHARD).1341

In early experiments, we saw poor correlation be-1342

tween REWARDBENCH performance and performance1343

on other held-out tasks between our model variants.1344

This prompted us to hill-climb directly on REWARD-1345

BENCH as a proxy, as described in §3.4. To confirm1346

we have not overfit on REWARDBENCH, we evalu-1347

ate both FLAME and FLAME-RM on several other1348

held-out tasks besides REWARDBENCH, to confirm1349

the general purpose utility of our models across a1350

variety of tasks.1351
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Capability Dataset Source Output Format

Attribution / Factuality ESNLI Camburu et al. (2018) Classification, Generative
MNLI Williams et al. (2018) Classification
VitaminC Schuster et al. (2021) Classification
Sentence Similarity - CxC Parekh et al. (2021) Pointwise
Sentence Similarity - STSB Cer et al. (2017) Pointwise
MultiPIT Dou et al. (2022b) Classification
QQP Iyer et al. (2017) Classification
PAWS Paraphrasing Zhang et al. (2019) Classification
FaithDial Dziri et al. (2022a) Classification
MOCHA Chen et al. (2020) Pointwise
DialFact Gupta et al. (2022) Classification
RAGTruth Wu et al. (2023a) Classification
FActScore Min et al. (2023) Classification
FRANK Pagnoni et al. (2021) Classification
BEGIN Dziri et al. (2022b) Classification
XSUM-Faithful Maynez et al. (2020) Generative
HaluEval Li et al. (2023a) Classification
QAGS Wang et al. (2020) Classification
WikiBio Hallucinations Manakul et al. (2023) Pointwise
Q2 Honovich et al. (2021) Classification

General Text Quality GENIE Khashabi et al. (2021) Pointwise, Pairwise, Gen.
InstruSum Liu et al. (2023b) Pairwise, Classification
RiSum Skopek et al. (2023) Pointwise, Classification
Stanford SHP Ethayarajh et al. (2022) Pairwise
BeaverTails Helpful Ji et al. (2023) Pairwise
HH RLHF Helpful Bai et al. (2022) Pairwise
Summary Feedback Comparisons Stiennon et al. (2020) Pairwise, Pointwise
SEAHORSE Clark et al. (2023) Classification
Scarecrow Dou et al. (2022a) Classification, Generative
SummaEval Fabbri et al. (2021) Pointwise
LMSys Chatbot Arena (english) Zheng et al. (2023a) Pairwise
FeedbackQA Li et al. (2022b) Pointwise, Generative
WebGPT Nakano et al. (2021) Pairwise, Generative
Fine-grained RLHF Wu et al. (2023b) Pairwise, Classification
LENS Maddela et al. (2023) Pointwise
MAUVE - Human Eval Pillutla et al. (2021) Pairwise
CoLA Warstadt et al. (2019) Classification
CREPE Yu et al. (2023) Classification, Generative
PRD-Vicuna Li et al. (2023b) Pairwise
Hurdles LFQA Krishna et al. (2021) Pairwise
Validity LFQA Xu et al. (2022) Classification, Generative
News Summarization Evaluation Goyal et al. (2022) Pairwise
Helpful Steer (training split) (Wang et al., 2023) Pointwise

Safety BeaverTails Classify Ji et al. (2023) Classification
BeaverTails Harmless Ji et al. (2023) Pairwise
HH RLHF Harmless Bai et al. (2022) Pairwise
HH RLHF Red Teaming Bai et al. (2022) Pointwise

Coding Code Contests Li et al. (2022a) Pairwise
COFFEE Moon et al. (2023) Pairwise
CommitPack Muennighoff et al. (2024) Pairwise
CommitPack - Bugs Muennighoff et al. (2024) Pairwise

Math Reasoning PRM800K preference Lightman et al. (2024) Pairwise

Instruction Tuning TULU V2 Ivison et al. (2023) Generative
PRM800K-IF Lightman et al. (2024) Generative
LIMA Zhou et al. (2023) Generative

Table 6: A complete list of datasets which were used to train FLAME, along with their output format and capability
categorization. From many source datasets, we derived multiple training dataset tasks (for example, by splitting
the pointwise and pairwise ratings for the the same set of responses).
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