
Under review as a conference paper at ICLR 2024

PARTITIONING-GUIDED K-MEANS: EXTREME EMPTY
CLUSTER RESOLUTION FOR EXTREME LANGUAGE
MODEL COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Compactness in deep learning can be critical to a model’s viability in low-resource
applications, and a common approach to extreme model compression is quantiza-
tion. We consider Iterative Product Quantization (iPQ) with Quant-Noise (Fan et al.,
2020) to be state-of-the-art in this area, but this quantization framework suffers
from preventable inference quality degradation due to prevalent empty clusters in
language modeling tasks. In this paper, we propose several novel enhancements
aiming to improve the accuracy of iPQ with Quant-Noise by focusing on resolving
empty clusters. Our contribution, which we call Partitioning-Guided k-means (PG
k-means), is a heavily augmented k-means implementation composed of three
main components. First, we propose a partitioning-based pre-assignment strategy
that minimizes initial empty clusters and encourages an even weight-to-cluster
distribution. Second, we propose an empirically superior empty cluster resolution
heuristic executed via cautious partitioning of large clusters. Finally, we construct
an optional optimization step that consolidates intuitively dense clusters of weights
to ensure shared representation. The proposed approach consistently reduces the
number of empty clusters in iPQ with Quant-Noise by 100x on average, uses
8x fewer iterations during empty cluster resolution, and improves overall model
accuracy by up to 12%, when applied to RoBERTa on a variety of tasks in the
GLUE benchmark.

1 INTRODUCTION

There is a more critical need than ever for compact, but effective, deep learning models in an age where
even minimal models may have hundreds of millions of parameters. With the recently explosive
popularity of truly large language models (LLMs), achieved primarily through scaling compute
resources, the constraints of low-resource deployment environments must be freshly considered
and addressed. Given that, effective model compression is a research area of significant interest. A
number of simple and popular compression methodologies exist, such as weight sharing (Dehghani
et al., 2018), weight pruning (LeCun et al., 1989), or knowledge distillation via teacher-student
relationships during training (Hinton et al., 2014; Sanh et al., 2019; Jiao et al., 2019), but these are
most applicable for models that are over-parameterized.

Quantization is an alternative approach, and it reduces the memory footprint of weights for a model by
generally reducing the number of bits per weight for that weight’s representation. Various quantization
methodologies exist (Gupta et al., 2015; Courbariaux et al., 2015; Stock et al., 2020), but Iterative
Product Quantization (iPQ) with Quant-Noise (Fan et al., 2020) enabled during training and/or fine-
tuning has cemented itself as the state-of-the-art for quantization. iPQ with Quant-Noise improves
on the performance of several competitive predecessors (Stock et al., 2020; Jacob et al., 2017) for
extreme compression (referring to compression ratios of 10x or more), but issues still remain.

A notable problem for many quantization methods is empty cluster resolution, which is ultimately
a NP-hard problem for modern clustering algorithms. We posit that the presence of empty clusters
often leads to noteworthy losses in inference quality, so we consider their minimization a priority.
Generally, we find that iPQ with Quant-Noise suffers from a significant number of unresolved empty
clusters (e.g., over a hundred empty clusters for a linear layer; more details later) and that there

1



Under review as a conference paper at ICLR 2024

is considerable performance degradation associated with this (e.g., observing a 2.7% difference in
accuracy between models featuring an empty cluster resolution heuristic and models without one).
In this paper, we start with going over the empty cluster problem in detail, analyzing the number
and distribution of empty clusters across compression ratios and layers for models quantized with
iPQ with Quant-Noise, and providing a brief, intuitive explanation as to how empty clusters lead to
performance degradation.

To better address the empty cluster problem for extreme model compression, we propose Partitioning-
Guided k-means (PG k-means), which is composed of several novel and effective techniques to
improve the clustering algorithm typically employed by iPQ with Quant-Noise in extreme compres-
sion applications. The proposed scheme includes three major contributions. First, we propose a
replacement for the typically random (or influenced random) placement of initial centroids with a
pre-assignment strategy that minimizes initial empty clusters and guides k-means towards a roughly
even distribution of weight assignments to clusters. Second, we propose an empirically superior
empty cluster resolution heuristic executed via cautious partitioning of populous clusters into new
sub-clusters. Finally, we construct an optional optimization step that consolidates dense clusters
of weights to ensure that they map to a single centroid after quantization completes and are not
erroneously/unintentionally separated.

To validate the viability of this approach, we test our complete method on RoBERTa Liu et al. (2019)
fine-tuned for several tasks in the GLUE benchmark. When compared directly to the state-of-the-art in
iPQ with Quant-Noise, our method reduces the average number of empty clusters on a layer-by-layer
basis by 100x on average, reduces the number of layers with empty clusters consistently by at least
25x, and typically undergoes 8x fewer iterations for empty cluster resolution. Moreover, the proposed
PG k-means consistently supersedes the accuracy scores of iPQ with Quant-Noise by up to 2.4% for
MNLI, up to 12% for RTE, and up to 4.2% for QNLI, all on extremely compressed models.

2 BACKGROUND

We focus our brief review of existing literature on popular methods of quantization with a focus
on extreme compression. Weight-sharing (Dehghani et al., 2018), weight-pruning (LeCun et al.,
1989), and knowledge distillation (Hinton et al., 2014; Sanh et al., 2019; Jiao et al., 2019) are useful
compression methods, but are not our focus and are synergistic to our method. Fixed-point scalar
quantization (Gupta et al., 2015; Courbariaux et al., 2015) is also a popular quantization method, but
tends to be unsuitable for high compression ratios when employed alone, and as such is not covered
here.

2.1 POPULAR QUANTIZATION METHODOLOGIES

Product quantization (PQ) is a long-time solution for extreme compression applications. PQ is a
subset of the more general form of vector quantization (VQ) that, for a given set of weights in a
matrix for a layer Wl, learns a codebook filled with code-words for each column of that weight matrix.
Compression with PQ is accomplished via the division of each column of Wl into some m vectors
per column c, with m × c total vectors. All of these vectors share the same layer-wide codebook
instead of one per column. Codebooks are typically determined via several iterations of a classical
k-means algorithm (Lloyd, 1957) with a fixed number of k centroids such that the reconstruction
error is minimized, although this is customizable to any clustering algorithm.

Iterative product quantization (iPQ) was proposed by Stock et al. 2020 to minimize the significant
performance degradation that often occurs in vanilla PQ in two ways: by focusing on minimizing
the error of the reconstructed output of a given layer as opposed to the reconstructed weights and
by doing so in an iterative manner from layer to layer. Intuitively, quantizing online while training
or fine-tuning and layer-by-layer allows later layers to adjust as they examine the quantized output
of previous layers, conditioning reconstruction error robustness. iPQ remains a state-of-the-art
quantization method for generalizable extreme compression, although enhancements have been
proposed (Fan et al., 2020).

2



Under review as a conference paper at ICLR 2024

Table 1: Average number of empty clusters (lower is better) per layer type in RoBERTa quantized
with typical iPQ with Quant-Noise and fine-tuned for MNLI, RTE, and QNLI. All results are derived
from quantized models with compression ratios of 11.81 (left) and 15.9 (right). The total number of
clusters for linear layers was 3072 and for embedding layers was 768.

Compression Ratio of 11.81
Layer Type MNLI RTE QNLI
Embedding 0.0 0.0 0.0
q proj 28.5 31.5 32.3
k proj 30.6 30.5 30.3
v proj 25.8 28.8 27.5
out proj 28.6 27.7 26.4
FC1 6.4 6.2 6.0
FC2 4.8 4.2 4.9

Compression Ratio of 15.9
Layer Type MNLI RTE QNLI
Embedding 0.0 0.0 0.0
q proj 121.7 114.2 122.1
k proj 119.3 119.0 115.3
v proj 108.3 111.2 114.8
out proj 89.1 95.2 93.1
FC1 6.9 8.3 7.4
FC2 0.1 0.3 0.0

2.2 QUANTIZATION AWARE TRAINING AND QUANT-NOISE

Expanding on these previous methods, Fan et al. focus on their application during training, ensuring
that challenges such as null gradients during backward passes for quantized weights and widespread
drift in network output are met with capable solutions. Straight-through estimators (STEs) are
commonly used to deal with gradient issues for Quantization Aware Training (QAT) (Jacob et al.,
2017; Bengio et al., 2013; Courbariaux & Bengio, 2016), but significant bias can still be introduced.
In response, Quant-Noise (Fan et al., 2020) is proposed as a methodology that quantizes only a
randomly selected portion of the weights of a given layer during training and fine-tuning, mitigating
the bias introduced by STEs and still conditioning the network for reconstruction error robustness.
iPQ with Quant-Noise during training and fine-tuning forms the current state-of-the-art for highly
generalizable and extreme model compression.

3 EMPTY CLUSTERS ISSUE IN EXTREME MODEL COMPRESSION

3.1 HEURISTICS FOR EMPTY CLUSTER RESOLUTION

Empty clusters are a classical problem in k-means algorithms. Depending on the application,
unresolved empty clusters can be numerous and may cause considerable performance loss. Most
k-means implementations host some empty cluster resolution heuristics to mitigate the number of
degenerate solutions (Aloise et al., 2017; Torrente & Romo, 2020; Chun, 2021; Feiping et al., 2022).
However, there is no theoretical guarantee that all empty clusters are resolved within reasonable
run-time and these heuristics are not always widely applicable. Fairseq’s (Ott et al., 2019) iPQ with
Quant-Noise implementation hosts a computationally efficient mixture of two popular heuristics,
ϵ-greedy and ϵ-random (Aloise et al., 2017). Upon encountering an empty cluster, their mixed strategy
greedily chooses the most populous non-empty cluster, bases a new centroid off of the one of the
populous cluster, and randomly perturbs both.

3.2 INCREASED EMPTY CLUSTER OCCURRENCE IN EXTREME MODEL COMPRESSION

While efficient, we find that the popular empty cluster resolution heuristic employed by iPQ with
Quant-Noise struggles to completely resolve empty clusters for quantized RoBERTa models fine-
tuned for tasks on the GLUE benchmark, and the issue generally aggravates when the model is
compressed more. Table 1 demonstrates the average number of empty clusters per type of layer
produced by iPQ with Quant-Noise on various tasks within the GLUE benchmark for compression
ratios of 11.81 and 15.9. We note that for many layer types, deeper quantization tends to produce
more empty clusters, aligning with inference quality degradation for deeper compression ratios.
Clearly, empty clusters are prevalent and need to be addressed for extreme model compression.

3



Under review as a conference paper at ICLR 2024

3.3 QUALITY DEGRADATION FROM EMPTY CLUSTERS IN MODEL QUANTIZATION

Loss of prediction quality is often observed in the presence of empty clusters. Part of this is due to a
corresponding loss in model expressivity. For a layer in a poorly quantized model with dozens of
empty clusters, its range of outputs is artificially limited. As a trivial example, if those dozens of
empty clusters were to be filled with just a single weight each such that the centroids of those clusters
corresponded directly to each weight, the expressivity of the layer necessarily improves (assuming
non-trivial weight distributions). Given that, the presence of empty clusters is necessarily sub-optimal
and their minimization should be a priority, although heuristics that attempt to resolve empty clusters
need to be cautious to avoid drifting from locally optimal solutions. In practice, we find that for iPQ
with Quant-Noise, a significant loss in quality occurs when no empty cluster resolution heuristic is
applied for quantizing RoBERTa fine-tuned for MNLI, producing a model with an accuracy of 76.2%
versus a model with an accuracy 79.0% with the mixed heuristic this baseline natively employs.

3.4 EFFECTS OF CODEBOOK PRUNING FOR EMPTY CLUSTERS

It is worth noting that a natural counterpoint to the issues with empty clusters would be to propose
pruning of the PQ codebook for those useless centroids to improve a given quantized model’s
compression ratio. While this can be done, in practice, we found that for most applications this
would only improve the compression ratio by less than one percent (e.g. a compression ratio of 15.29
would shift to 15.31 for MNLI results for iPQ with Quant-Noise). Given that, we do not consider
this moving forward for our tests. If empty cluster pruning would have a significant effect on the
compression ratio of a model, it is likely that the model is poorly quantized to begin with and its
performance for that compression ratio would be compromised.

4 PROPOSED: PARTITIONING-GUIDED K-MEANS (PG K-MEANS)

To better address problems associated with empty clusters and improve overall prediction quality,
we propose Partitioning-Guided k-means (PG k-means), a novel k-means implementation loosely
inspired by binary-space partitioning applied towards an empirically superior pre-assignment strategy
and empty cluster resolution. Our scheme focuses on encouraging an initially even distribution of
weights to clusters and guarantees zero empty clusters for the initial state of k-means. Additionally,
our method seeks to resolve empty clusters during k-means iterations by splitting up populous
clusters into new, smaller sub-clusters. While our method does not provide theoretical guarantees
for reducing the number of empty clusters, in all target applications our tests showed a minimized
number of empty clusters when compared to the state-of-the-art iPQ with Quant-Noise, and for many
applications all empty clusters were resolved. Our proposed algorithm, PG k-means, consists of
three primary steps that heavily augment a typical k-means implementation: Partitioning-Guided
Pre-assignment, Partitioning-Guided Cluster Fine-tuning, and an optional optimization called Dense
Weights Consolidation. Detailed pseudo-code for PG k-means can be found in our supplementary
materials.

4.1 PARTITIONING-GUIDED PRE-ASSIGNMENT

The performance of k-means implementations depends heavily on the pre-assignment strategy defining
the initial placement of centroids. While random placement, or influenced random placement, is
somewhat popular and is employed for k-means in iPQ with Quant-Noise, such strategies can result in
significant variation in final cluster assignments. Moreover, such pre-assignment strategies commonly
lead to numerous empty clusters that need resolution. In response, we propose an alternative that we
call Partitioning-Guided Pre-assignment.

Our pre-assignment strategy focuses on guaranteeing that no empty clusters are present initially for
non-trivial weight distributions, without relying on an empty cluster resolution heuristic. Here, we
use the term “weight distribution” to refer to the distribution of the weights (i.e., data points) that are
being quantized in the n-dimensional space. In order to accomplish this, our method constructs initial
clusters by recursively bisecting the overall weight distribution, guiding k-means towards roughly
even assignments of weights to each cluster and minimizing initial empty clusters. Specifically,
Partitioning-Guided Pre-assignment begins by assigning a temporary centroid for the entire set of

4



Under review as a conference paper at ICLR 2024

Figure 1: Illustration of Partitioning-Guided Pre-assignment across two partitioning time-steps when
applied to a synthetic distribution. Tentative clustering is decided via n-dimensional, spherical
partitions centered on the farthest point within the cluster of a given tentative centroid. The radius of
the spherical partition targets a dynamically determined number of weights that would be assigned to
the new clusters.

weights in a layer, labelled as “Centroid 1” in Figure 1. An n-dimensional sphere is then constructed
to roughly bisect the overall weight distribution into two clusters. This sphere is centered on the
weight that has the furthest Euclidean distance from the temporary centroid (e.g., top-right point in
Figure 1), intuitively the data point with the worst representation in the temporary cluster. Upon
the temporary cluster being bisected, the temporary centroid is removed and replaced by two new
centroids that are generated for the two new clusters, corresponding to ”Centroid 2” and ”Centroid 3”
in the figure. This strategy is executed recursively on the new clusters until the desired number of
centroids have been determined.

While Partitioning-Guided Pre-assignment bisects temporary clusters at every time-step, we note that
the method for determining the radius of the partitioning sphere is customizable. Our proposed method
focuses on enforcing a roughly even distribution of assigned weights to clusters, but alternatives with
different goals could improve performance. We leave it to future work to investigate the potential of
these alternatives.

4.2 PARTITIONING-GUIDED CLUSTER FINE-TUNING

While a more even distribution of assignments via the execution of Partitioning-Guided Pre-
assignment already minimizes the initial occurrence of empty clusters, they can still arise during
k-means iterations. As k-means settles in a local optimum durings its iterations, the solution repre-
sented by that local optimum may call for fewer intuitive, or natural, clusters than prescribed at a
high level. This produces a perceived overestimation of the number of clusters, where k-means can
represent the same locally optimum solution with fewer centroids than are provided. However, as we
have already covered, the presence of empty clusters is necessarily sub-optimal and their resolution
is important to model performance. To enable extreme empty cluster resolution towards that end
and seeking to push k-means out of these erroneous local optima, we propose Partitioning-Guided
Cluster Fine-tuning.

At a high level, our method for empty cluster resolution seeks out populous clusters and attempts
to split them into multiple smaller clusters. In order to split clusters efficiently, instead of bisecting
each populous cluster until its size reaches the average cluster size of the entire weight distribution,
we propose guiding splits by providing a target post-split cluster size that scales dynamically across
iterations.

5



Under review as a conference paper at ICLR 2024

Figure 2: Illustration of Dense Weights Consolidation when applied to a synthetic distribution. Dense
clusters are identified via a Euclidean distance-based criteria. Upon dense clusters being identified,
they are replaced by a centroid representing that dense cluster and treated as a normal, singular weight
for later clustering steps.

Intuitively, we could set the target cluster size simply as the average cluster size of all clusters larger
than the layer-wide average. In practice, however, we have observed that this is too aggressive and
can potentially split large, dense clusters into too many sub-clusters. Nevertheless, explicitly avoiding
splitting dense clusters is difficult, as calculating the accurate cluster density can be computationally
expensive. We propose a more efficient solution, detailed in Equation 1, that cautiously splits
extremely large clusters by scaling the target cluster size alongside the size of the non-empty cluster.
For Equation 1, we denote nlc as the number of weights in the non-empty cluster being split, Savg as
the aforementioned adjusted average, and Sscl as the scaling target cluster size.

√
nlc/Savg is the

number of small clusters that a large cluster would be split into assuming using Savg as the target,
and the square root of that scales down the speed, preventing a large cluster from being partitioned
into too many small clusters.

Sscl = max(
√
nlc

√
Savg, Savg) (1)

4.3 DENSE WEIGHTS CONSOLIDATION

This optional optimization is propelled by the observation that typical k-means and PG k-means
without this augmentation will occasionally split up a dense cluster of weights such that those weights
are mapped to separate, sometimes far-away, centroids. To address this issue, we propose Dense
Weights Consolidation to ensure that a dense cluster, which should intuitively be represented by the
same centroid, is preserved. To achieve that, assuming a dense cluster can be identified, we first use a
single representative centroid to replace all the weights in the cluster. This representative centroid is
used throughout later k-means iterations as if the cluster just has one weight. The cluster is mapped
back to its original weights at the very end of k-means clustering.

A critical step in this optimization is to identify a dense cluster efficiently. We identify a dense cluster
as a set of weights that fulfill two criteria. First, weights are identified as being potentially within a
dense cluster, if the difference between their Euclidean distance to a randomly chosen anchor weight
(e.g., the top-left weight in Figure 2 left) is less than a fine-tunable value ε. This corresponds to the
rings of distance demonstrated in the figure. Second, the potential dense cluster is confirmed as a
dense cluster if the distance between a random weight in that cluster to every other weight is less
than ε, which corresponds to the dense weight confirmation via a centered weight observed in Figure
2 right. Perfectly determining sets of dense clusters is not feasible and is a subset of the well-studied
NP-hard MIS problem. We propose our own heuristic to tackle this problem that performs well in our

6



Under review as a conference paper at ICLR 2024

experiments, striking a balance between computational efficiency and dense cluster identification
quality.

The first step of our implementation chooses a random weight in our weight distribution as a focal
point to construct a Euclidean distance map to every other weight. That distance map is subsequently
sorted and iterated through to search for potential dense clusters, stopping whenever the difference
between the distances of a set of weights fit our first established criteria. Upon establishing a set of
weights that could form a dense cluster, that set is iterated through with an identified candidate weight
Wcand. All other weights not fitting the first criteria are independent weights (i.e., not part of a dense
cluster). For each potential dense cluster, the weights that fulfill the second identified criteria are
paired with Wcand and consolidated into a dense cluster and removed from the set of potential dense
clusters. The rest of the weights in these potential dense clusters are considered independent weights
and are not considered for other possible dense cluster sets. This process is repeated across the
original distance map until all weights have been consolidated or classified as independent weights.

While ε is a fine-tunable parameter, we found in our experiments that it was difficult to estimate
good values of ε, and we suppose that ideal values for this parameter are likely layer-specific.
Overestimation of ε, in particular, can cause degradation in quantization quality. In response, we
propose scaling ε dynamically to avoid over-identifying dense clusters. Equation 2 describes our
update criteria, with nc corresponding to the number of centroids for the layer being quantized, ncw

corresponding to the number of weights after consolidation, which is the sum of the number of
dense clusters and independent weights, csd corresponding to a scaling factor that reduces ε, cmc

corresponding to the factor of multiple of nc that serve as a threshold for the minimum number of
consolidated weights ncw. csd and cmc values of 0.8 and 2 respectively worked well in practice,
indicating that if the number of weights after consolidation is less than twice the number of centroids,
ε is scaled by 0.8.

εupd(ε, nc, ncw, csd, cmc) =

{
ε× csd if ncw < nc × cmc,

ε else
(2)

5 RESULTS

For our set of experiments, we employ Fairseq (Ott et al., 2019), a language and sequence modeling
toolkit written in PyTorch that is fast, easily extendable, and hosts a Quant-Noise implementation.
We make use of the provided Quant-Noise framework and Fairseq’s iPQ implementation to apply our
novel scheme to RoBERTa for several tasks within the GLUE benchmark. All cluster assignments
were finished within 15 iterations of both respective k-means algorithms for each layer. During each
k-means iteration, up to 100 iterations of typical iPQ with Quant-Noise’s empty cluster resolution
were allowed while up to 15 iterations of Partitioning-Guided Cluster Fine-tuning were allowed.
Fine-tuning, quantization, and evaluation were performed on four NVIDIA Tesla V100s across all
models.

5.1 PG K-MEANS FOR ROBERTA ON GLUE TASKS

All RoBERTa models were initially pre-trained checkpoints provided by Fairseq without quantization.
These checkpoints were fine-tuned for MNLI, RTE, and QNLI tasks with Quant-Noise, using
recommended noise factors between 0.05 and 0.2 and block sizes of 8. These baseline checkpoints
were subsequently quantized either with typical iPQ or with our proposed method. Out of the
available quantizable layers, we quantized the input embedding layer, all input and output projection
layers related to encoder self-attention, and all fully connected layers, totaling to 73 layers overall.
Exact quantization parameters can be found in our supplementary materials.

The results highlighted in Table 2 demonstrate a clear advantage for PG k-means compared to iPQ
with Quant-Noise for MNLI, a task that was explored and used to validate the viability of iPQ with
Quant-Noise. Concerning MNLI, our method demonstrates up to a 2.4% inference quality increase
and consistently improves upon iPQ with Quant-Noise by at least 0.8% in the worst case. The
difference between iPQ with Quant-Noise and our method grows for other tasks, with one example
for RTE exhibiting a 12% accuracy increase from its iPQ with Quant-Noise baseline and QNLI
demonstrating up to a 4.2% accuracy increase. Clearly, PG k-means consistently beats typical iPQ

7



Under review as a conference paper at ICLR 2024

Table 2: Complete validation set results of quantization implementations for RoBERTa fine-tuned
for MNLI, RTE, and QNLI. The leftmost column contains compression ratios and the right columns
contains accuracy scores in percentages. Best accuracy scores for a given compression ratio are
bolded. The right table provides mappings between compression ratios to model size as a quick
reference. All results were generated and are not reused from literature.

RoBERTa base
Compr. MNLI RTE QNLI

Original Model
1.00 87.8 76.7 92.1

iPQ with Quant-Noise
11.81 83.1 58.8 90.3
14.05 81.8 57.8 88.5
15.29 80.7 55.6 87.8
15.90 79.0 55.6 77.4

PG k-means
11.81 83.9 70.8 90.5
14.05 83.3 59.6 88.9
15.29 82.0 56.7 87.9
15.90 81.4 56.3 81.6

Compression Ratio Size (MB)
1.00 477.94

11.81 40.47
14.05 34.01
15.29 31.26
15.90 30.05

Table 3: Results for ablation study to demonstrate the isolated improvements of applying our optional
Dense Weights Consolidation step to PG k-means to RoBERTa fine-tuned for MNLI. Best accuracy
scores for a given compression ratio are bolded.

Compr. iPQ with Quant-Noise Baseline PG k-means Full PG k-means
11.81 83.1 83.5 83.9
14.05 81.8 82.6 83.3
15.29 80.7 81.7 82.0
15.90 79.0 80.6 81.4

with Quant-Noise by a notable margin for several tasks in the GLUE benchmark when applied to
RoBERTa, establishing its viability for extreme model quantization.

5.2 ABLATION STUDY OF PG K-MEANS ON MNLI

As PG k-means is composed of an optional optimization in the form of Dense Weights Consolidation,
it is critical to isolate its effect on our performance. To do so, we provide an ablation study for these
methods applied towards quantizing RoBERTa fine-tuned for MNLI in Table 3. While the Baseline
PG k-means still exhibits consistent improvements on typical iPQ with Quant-Noise, the addition
of Dense Weights Consolidation for superior initialization (Full PG k-means) noticeably improves
on our proposed baseline, nearly doubling the accuracy increase from comparable compression
configurations for IPQ with Quant-noise.

5.3 EMPTY CLUSTER RESOLUTION VIA PG K-MEANS

To demonstrate the capability of our proposed method in terms of resolving empty clusters, we
gather similar statistics to our brief analysis of typical iPQ with Quant-Noise (Section 3, Table 1)
and compile them in Table 4 and Table 5. Across all relevant metrics, empty clusters are extremely
reduced compared to typical iPQ with Quant-Noise, in the worst case boasting around a 20x reduction
in the proportion of layers with empty clusters and around a 100x reduction for the average number
of empty clusters in the most problematic layers.

5.4 EFFICIENCY OF EMPTY CLUSTER RESOLUTION

Comparing typical iPQ with Quant-Noise’s mixed heuristic and Partitioning-Guided Cluster Fine-
tuning, we find that in the best case for iPQ with Quant-Noise requires 40 or more iterations of their
heuristic to completely resolve empty clusters. In contrast, Partitioning-Guided Cluster Fine-tuning

8



Under review as a conference paper at ICLR 2024

Table 4: Percentages of layers with empty clusters (lower is better) for RoBERTa quantized with
PG k-means and fine-tuned for MNLI, RTE, and QNLI. Compression ratios are on the left and
proportions of layers with empty clusters to total layers quantized are on the right. The total number
of quantized layers for RoBERTa, including sub-layers, total to 73.

Compression Ratio iPQ with Quant-Noise PG k-means
MNLI RTE QNLI MNLI RTE QNLI

11.81 94.5 94.5 93.2 4.1 2.7 0.0
14.05 79.5 78.1 78.1 2.7 4.1 0.0
15.29 82.2 76.7 79.5 0.0 1.4 2.7
15.90 76.7 79.5 78.1 0.0 2.7 0.0

Table 5: Average number of empty clusters (lower is better) per layer type in RoBERTa quantized
with PG k-means and fine-tuned for MNLI, RTE, and QNLI. All results are derived from quantized
models with compression ratios of 11.81 (left) and 15.9 (right). The total number of clusters for linear
layers was 3072 and for embedding layers was 768. Direct comparisons can be made to iPQ with
Quant-Noise results in Table 1.

Compression Ratio of 11.81
Layer Type MNLI RTE QNLI
Embedding 0.0 0.0 0.0
q proj 0.0 0.0 0.0
k proj 0.7 0.2 0.0
v proj 0.0 0.0 0.0
out proj 0.0 0.0 0.0
FC1 0.3 0.2 0.0
FC2 0.0 0.0 0.0

Compression Ratio of 15.9
Layer Type MNLI RTE QNLI
Embedding 0.0 0.0 0.0
q proj 0.0 0.0 0.0
k proj 0.0 0.0 0.0
v proj 0.0 0.0 0.0
out proj 0.0 0.3 0.0
FC1 0.0 0.0 0.0
FC2 0.0 0.1 0.0

requires 5 to 10 iterations on average for such cases, but its iterations are more computationally
expensive. To characterize efficiency, we analyze average run-times for both methods in our evaluation
environment and find that in spite of more expensive iterations, Partitioning-Guided Cluster Fine-
tuning exhibits around a 3.8x speedup at worst for empty cluster resolution while on average requiring
8x fewer iterations.

6 CONCLUSION

In this paper, we presented partitioning-guided k-means as a competitive quantization methodology
targeting extreme model compression. We compared this methodology to iPQ with Quant-Noise, the
state-of-the-art scheme for quantizaion aware training and post-processing quantization for many
NLP tasks and demonstrated consistently superior results for several tasks on the GLUE benchmark,
producing accuracy increases of up to 2.4% for MNLI, up to 12% for RTE, and consistent increases
for QNLI. Given these results, Partitioning-Guided k-means has clearly cemented itself as a strong
competitor to other options for extreme model compression. Future work will involve expanding
the number of applications for which we compare guided k-means to its competitors, gathering
additional data to validate this approach for encoder-decoder architectures, and validating it on more
compression ratios for RoBERTa fine-tuned for tasks in the GLUE benchmark.

7 REPRODUCIBILITY

A significant effort was made to provide sufficient material to reproduce the results generated in
this paper. For a functional iPQ with Quant-Noise implementation, we refer readers to Fairseq.
Concerning our method’s implementation, our codebase will be made available after acceptance of
this paper. Should readers wish to replicate our method internally, they should refer to the pseudo-code
in this paper’s Appendix and the details provided in Section 4. Model architectures and additional
relevant details can be largely found in this paper’s Appendix or in Section 5

9



Under review as a conference paper at ICLR 2024

REFERENCES

Daniel Aloise, Nielsen Castelo Damasceno, Nenad Mladenović, and Daniel Nobre Pinheiro. On Strate-
gies to Fix Degenerate k-means Solutions. Journal of Classification, 34(2):165–190, July 2017.
doi: 10.1007/s00357-017-9231-0. URL https://ideas.repec.org/a/spr/jclass/
v34y2017i2d10.1007_s00357-017-9231-0.html.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. ArXiv, abs/1308.3432, 2013. doi: 10.
48550/ARXIV.1305.2982.

Hua Chun. A hybrid genetic xk-means++ clustering algorithm with empty cluster reassignment.
In 2021 13th International Conference on Advanced Computational Intelligence (ICACI), pp.
253–258, 2021. doi: 10.1109/ICACI52617.2021.9435879.

Matthieu Courbariaux and Yoshua Bengio. Binarynet: Training deep neural networks with weights
and activations constrained to +1 or -1. ArXiv, abs/1602.02830, 2016. doi: 10.48550/ARXIV.1602.
02830.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In NIPS, 2015. doi: 10.48550/ARXIV.1511.
00363.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. ArXiv, abs/1807.03819, 2018. doi: 10.48550/ARXIV.1807.03819.

Angela Fan, Pierre Stock, Benjamin Graham, Edouard Grave, Remi Gribonval, Herve Jegou, and
Armand Joulin. Training with quantization noise for extreme model compression. 2020.

Nie Feiping, Xue Jingjing, Wu Danyang, Wang Rong, Li Hui, and Li Xuelong. Coordinate descent
method for k-means. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(5):
2371–2385, 2022. doi: 10.1109/TPAMI.2021.3085739.

Suyog Gupta, Ankur Agrawal, K. Gopalakrishnan, and Pritish Narayanan. Deep learning with
limited numerical precision. In International Conference on Machine Learning, 2015. doi:
10.48550/ARXIV.1502.02551.

Geoffrey Hinton, Jeff Dean, and Oriol Vinyals. Distilling the knowledge in a neural network. pp.
1–9, 03 2014. doi: 10.48550/ARXIV.1503.02531.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew G. Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 2704–2713, 2017. doi: 10.48550/ARXIV.1712.05877.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351,
2019. doi: 10.48550/ARXIV.1909.10351.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky
(ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/
file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. ArXiv, 2019. doi: 10.48550/ARXIV.1907.11692.

SP Lloyd. Least square quantization in pcm. bell telephone laboratories paper. published in journal
much later: Lloyd, sp: Least squares quantization in pcm. IEEE Trans. Inform. Theor.(1957/1982),
18(11), 1957.

Xutai Ma, Juan Miguel Pino, and Philipp Koehn. Simulmt to simulst: Adapting simultaneous text
translation to end-to-end simultaneous speech translation. In AACL, 2020. doi: 10.48550/ARXIV.
2011.02048.

10

https://ideas.repec.org/a/spr/jclass/v34y2017i2d10.1007_s00357-017-9231-0.html
https://ideas.repec.org/a/spr/jclass/v34y2017i2d10.1007_s00357-017-9231-0.html
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf


Under review as a conference paper at ICLR 2024

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019. doi: 10.48550/ARXIV.1904.01038.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. In NeurIPS EMC2 Workshop, 2019. doi: 10.48550/
ARXIV.1910.01108.

Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, and Hervé Jégou. And the bit goes
down: Revisiting the quantization of neural networks. In International Conference on Learning
Representations (ICLR), 2020. doi: 10.48550/ARXIV.1907.05686.

Aurora Torrente and Juan Romo. Initializing k-means clustering by bootstrap and data depth. Journal
of Classification, 38, 07 2020. doi: 10.1007/s00357-020-09372-3.

11



Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 FINE-TUNING AND QUANTIZATION DETAILS

All models were fine-tuned with iPQ with Quant-Noise enabled with recommended settings as
provided by (Fan et al., 2020) within Fairseq’s framework, keeping in line with RoBERTa’s character-
istics as a 12-layer model with an embedding size of 768 and an FFN hidden size of 3072. These
models were fine-tuned with Adam with weight decay as an optimizer, defining β1 and β2 as 0.9 and
0.98, respectively, with an ϵ of 1e-6. A polynomial decay-based learning rate was applied. Dropouts
were specified by LayerDrop and set to a value of 0.2. Precision for these models, by default, was
16-bit floating point. All models were evaluated via the validation split for corpora MNLI, RTE, and
QNLI. All models were fine-tuned, quantized, and evaluated on four Tesla V100 SXM3s.

Compression settings were kept consistent across ratios. 768 embedding layer centroids were
allocated and 3072 linear layer centroids were allocated. The quantization block sizes for product
quantization of each compression ratio are shown in Table 6.

Table 6: Quantization block sizes for four compression ratios
Compression Ratio Block Sizes for Product Quantization

Compr. Linear.fc Linear.attn Linear.emb Embedding.emb
11.81 4 4 4 16
14.05 8 4 4 8
15.29 8 4 4 16
15.90 8 16 4 8

A.2 ANECDOTAL NOTES RELATED TO OTHER TARGET APPLICATIONS AND EFFICIENCY

Simultaneous speech-to-text translation (SimulST) (Ma et al., 2020) was briefly explored as an
application to assess the viability of iPQ with Quant-Noise. It was quickly observed that degenerate
solutions were very common, with nearly 70% of total clusters being empty in the absolute worst
case and around 48.8% in more typical cases for iPQ with Quant-Noise. We leave it to future work to
explore improvements in this area.

Regarding the efficiency of our method aside from the empty cluster resolution results that were
provided in the main body of this paper, there is no additional overhead in terms of test-time efficiency.
This is because our method is identical to iPQ with Quant-Noise during inference. Additionally,
basic k-means clustering behavior beyond pre-assignment strategies and empty cluster resolution is
likewise identical, resulting in no changes to efficiency from that perspective.

A.3 RELEVANT LICENSING INFORMATION

Fairseq (Ott et al., 2019) and any pre-trained models made available through it are MIT-licensed.

A.4 ADDITIONAL VISUAL AIDS

A handful of additional visual aids were constructed to aid readers, but were removed due to a lack
of space and redundancy with illustrations already provided within this paper. We provide them
below to enable readers to engage further with this material, should they choose to do so. Figure 3 is
an expansion upon what is demonstrated in Figure 1, showcasing some additional steps. Figure 4
provides an illustration of Partitioning Cluster Fine-tuning that we felt was unnecessary in the main
body of this paper. Figure 5 provides an expansion upon Figure 2, showing an alternate view of its
functionality and completing the demonstration of the replacement of dense clusters. As shown in
Figure 6, compared with the baseline PG k-means in Figure 4, applying the optional Partitioning-
Guided Cluster Fine-tuning step to PG k-means tends to generate the centroid distribution more
faithfully to the weight distribution.

12



Under review as a conference paper at ICLR 2024

Figure 3: Illustration of Partitioning-Guided Pre-assignment across two partitioning time-steps
when applied to a synthetic distribution. Tentative clustering is decided via n-dimensional, spherical
partitions centered on the furthest point within the cluster of a given tentative centroid. The radius of
the spherical partition targets a dynamically determined number of weights that would be assigned to
the new clusters.

Figure 4: Illustration of Partitioning-Guided Cluster Fine-tuning during empty cluster resolution. For
each k-means iteration, to resolve empty clusters after the k-means assignment step, Partitioning-
Guided Cluster Fine-tuning splits large clusters into multiple smaller clusters.

13



Under review as a conference paper at ICLR 2024

Figure 5: Illustration of Dense Weights Consolidation when applied to a synthetic distribution. Dense
clusters are identified via Euclidean distance-based criteria. Upon dense clusters being identified, they
are replaced by a centroid representing that dense cluster and treated as a normal, singular weight for
later clustering steps.

Figure 6: Illustration of complete PG k-means method during k-means iterations. With the optional
Dense Weights Consolidation step, the number of weights was reduced from 50 to 47, improving
our method’s ability to represent isolated, small clusters while decreasing the probability of empty
clusters.

14



Under review as a conference paper at ICLR 2024

A.5 PSEUDOCODE

The pseudocode for the procedures and sub-procedures of the Partitioning-Guided Pre-assignment,
Partitioning-Guided Cluster Fine-tuning, and Dense Weights Consolidation algorithms are defined
below.

Let us denote W ∈ Rn×b as the weight matrix before quantizing, where n is the number of weights,
and b is the block size of the product quantization. Alternative notation is provided in our pseudocode.

Algorithm 1 Partitioning-Guided Pre-assignment
Input: Weight Matrix W , Centoid Matrix C, Average Cluster Size for each Centroid Savg , If Reverse
Last Centroid Brl

Output: Centoid Matrix C

1: procedure CENTROIDPARTITIONING(W , C, Savg, Brl)
2: Brl decide if generate the last centroid or not
3: return when achieved the last index of C or W is empty
4: cw ← the centroid of (W )
5: nw ← the number of weights in (W )
6: C ← cw when nw ≤ Savg + 1, the index of C add 1, then return
7: Mc ← the sorted Euclidean distance map from W to C
8: Wf ← the weight with the furthest distance to C in Mc

9: Mf ← the sorted Euclidean distance map from W to Wf

10: nh ← the closest integral multiple of Savg to the half number of weights
11: CENTROIDPARTITIONING(the first nh weights in Mf , C, Savg , Brl)
12: CENTROIDPARTITIONING(the rest weights in Mf , C, Savg , Brl)
13: end procedure

15



Under review as a conference paper at ICLR 2024

Algorithm 2 Partitioning-Guided Cluster Fine-tuning
Input: Weight Matrix W , Centoid Matrix C, Average Cluster Size for each Centroid Savg

Output: Centoid Matrix C

1: procedure CLUSTERFINETUNING(W , C, Sc)
2: Ce ← centroids with empty clusters in C from the assignment
3: while Ce is not empty do
4: break early when the number of empty clusters stops decreasing in a limited number
5: Cra ← Ce ▷ Cra denotes centroids needed to be reassigned
6: Mc ← the sorted centroid map based on the cluster size
7: for centroid c in Mc do
8: if cluser size(c) ≤ Sc then break ▷ Get the number of large clusters
9: end if

10: Cra.append(c)
11: nw ← nw+ weight num(c)
12: end for
13: Savg ←Max(nw/ num(Cra) , 1) ▷ Average cluster size for reassigned weights
14: for centroid clc of large cluster in Mc do
15: Wc ← the weights for clc in the assignment
16: nlc ← weight num(clc)
17: Sscl ←Max(nlc/

√
nlc/Savg, Savg) ▷ Sscl denotes scaling sub-cluster size for

splitting the large cluster
18: CENTROIDPARTITIONING(Wc, C, Sscl, True) ▷ Reserve the last centroid clast for

the later calculation
19: end for
20: clast ← the centroid of all rest weights needed to be reassigned
21: C.append(clast)
22: Recalculate empty clusters Ce by updating the assignment.
23: end while
24: end procedure

Algorithm 3 Dense Weights Consolidation
Input: Original Weight Matrix W , Finetunable Value ε, Centroid Number nc

Output: Consolidated Weight Matrix Wc

1: while True do
2: potential dense clusters Cpd, independent weights IW ← IDENTIFYPOTEN-

TIALDENSECLUSTER(ε, W )
3: GENERATEDENSECLUSTERS(ε, 0, W , Cpd, Cdd, IW )
4: ncw ← num(determined dense clusters Cdd) + num(IW )
5: if ncw < nc × cmc then
6: ε← ε× csd
7: continue
8: else
9: Wc.append(centroid for each dense cluster in Cd)

10: Wc.append(IW )
11: end if
12: end while
13: return Wc

16



Under review as a conference paper at ICLR 2024

Algorithm 4 Recursively Generate Dense Clusters
Input: Finetunable Value ε, Anchor Weight Index Ia, Weight Matrix W , Potential Dense Clusters
Cpd, Determined Dense Clusters Cdd, Independent Weights IW
Output: Determined Dense Clusters Cdd, Independent Weights IW

1: procedure GENERATEDENSECLUSTERS(ε, Ia, W , Cpd, Cdd, IW )
2: ▷ A dense cluster is determined by if the anchor weight is in the first potential dense cluster
3: if thenIa in Cpd[0]
4: Cdd.append(Cpd[0]), skip the first potential dense cluster in the following loop
5: end if
6: for cp in Cpd do
7: Csubpd, IWsub ← IDENTIFYPOTENTIALDENSECLUSTER(ε, weights in cp)
8: IW .append(IWsub)
9: if Csubpd is not empty then

10: GENERATEDENSECLUSTERS(ε, cp[0], W , Csubpd, Cdd, IW )
11: end if
12: end for
13: end procedure

Algorithm 5 Identify Potential Dense Clusters
Input: Finetunable Value ε, Weight Matrix W
Output: Potential Dense Clusters Cpd, Independent Weights IW

1: function IDENTIFYPOTENTIALDENSECLUSTER(ε, W )
2: Mw ← the sorted Euclidean distance map from W to W [0]
3: s← 0
4: for index i of distance in Mw do
5: if Mw[i]−Mw[s] > ε then
6: if i− s > 1 then
7: Cpd.append(Mw[s : i]) ▷ Append weights in Mw between indices s and i
8: else
9: IW .append(Mw[s]) ▷ Append the weight in Mw on index s

10: end if
11: s← i
12: end if
13: end for
14: return Cpd, IW
15: end function

17


	Introduction
	Background
	Popular Quantization Methodologies
	Quantization Aware Training and Quant-Noise

	Empty Clusters Issue in Extreme Model Compression
	Heuristics for Empty Cluster Resolution
	Increased Empty Cluster Occurrence in Extreme Model Compression
	Quality Degradation from Empty Clusters in Model Quantization
	Effects of Codebook Pruning for Empty Clusters

	Proposed: Partitioning-Guided K-Means (PG k-means)
	Partitioning-Guided Pre-assignment
	Partitioning-Guided Cluster Fine-tuning
	Dense Weights Consolidation

	Results
	PG k-means for RoBERTa on GLUE Tasks
	Ablation Study of PG k-means on MNLI
	Empty Cluster Resolution via PG k-means
	Efficiency of Empty Cluster Resolution

	Conclusion
	Reproducibility
	Appendix
	Fine-tuning and Quantization Details
	Anecdotal Notes Related to Other Target Applications and Efficiency
	Relevant Licensing Information
	Additional Visual Aids
	Pseudocode


