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Abstract

Many data science algorithms require complete
observations, making missing value imputation an
important step in many data processing pipelines.
Imputation is also of independent interest for ap-
plications such as recommender systems. To ad-
dress real-world big data problems, imputation
algorithms must handle mixed data, containing
ordinal, boolean, and continuous variables, and
such algorithms must be highly scalable. In this
work we develop a semi-parametric online algo-
rithm for mixed missing value imputation using a
Gaussian Copula. This online algorithm improves
on the speed of its offline counterpart by an order
of magnitude, with similar accuracy. The online
method can also improve on the offline method
by adapting to a changing data distribution.

1. Introduction
Many modern datasets are messy, containing missing values
and a mixture of ordinal, binary, and continuous data. These
datasets, such as those containing survey or rating data, may
also be massive, with many millions of data points. Many
modern machine learning algorithms require completely ob-
served data; hence imputation of the missing entries is an
important preprocessing step. A Gaussian copula imputa-
tion model has recently shown promising results on a variety
of moderately sized mixed datasets (Zhao & Udell, 2019).
This model posits that the data is generated by drawing a la-
tent vector from a multivariate Gaussian with zero mean and
unit variance that is then scaled by an elementwise mono-
tonic function to match the marginal distributions of each
observed feature. This is a natural model for mixed data, as
the model posits that ordinals are the result of thresholding a
continuous latent variable. In the case of say, product rating
data, we can imagine the actual ordinal values as being the
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result of rounding some continuous affinity for a given prod-
uct. The learned correlation matrix of the latent multivariate
Gaussian can be used for imputation or to correlate features.

Online Imputation Online data, generated by sensor net-
works, financial transactions, or ongoing surveys, present
a substantial challenge for efficient data analysis. These
datasets could also contain mixed and highly missing data,
as sensors fail intermittently, or survey respondents fail to
respond. In this setting, we make sequential observations,
with missing values, and must impute the missing values
and suffer the associated error before we can see future data.

Contribution This paper develops an online algorithm
for missing value imputation using the Gaussian copula
model that incrementally updates model parameters, imput-
ing based only on past, not future data. Hence this method
can adapt to a changing data distribution. We also develop
a mini-batch offline algorithm. Both algorithms are faster
than previous methods while maintaining accuracy.

2. Related Work
Offline One class of offline methods for data imputation
uses generalized low-rank models (Udell et al., 2016), which
include Principal Component Analysis (PCA) as well its
generalizations. Broadly speaking, this class of algorithms
minimizes the misfit of the data to a low rank parameter
matrix, together with regularizers that impose a desired
structure. XPCA by Anderson-Bergman et al. (2018) gener-
alizes the idea of PCA to account for mixed data. MissForest
(Stekhoven & Bühlmann, 2011) is a non-parametric method
that imputes missing data using random forests. It iteratively
updates estimates of missing values in each column with
random forests trained on the features in the other columns.

Gaussian Copula Most directly related to this work is
Zhao & Udell (2019), which trains a Gaussian copula using
an approximate expectation maximization (EM) algorithm
in the offline setting. Our work generalizes this algorithm to
the online setting by using an online EM algorithm to fit the
copula and an online algorithm to estimate the marginals.

Online GROUSE (Balzano et al., 2010) is a popular algo-
rithm for online low-rank matrix completion and subspace
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tracking using gradient descent on the Grassmannian. Jin
et al. (2016) give a provable online method for low-rank
matrix completion using gradient descent on a non-convex
objective function. These methods both assume the data
is low rank and real-valued. In contrast, our method han-
dles high-rank, mixed data as well. Other authors have
proposed online high-rank matrix completion methods that
exploit low-dimensional manifold structure in the data (Fan
& Udell, 2020), but these methods do not target mixed data.

Our Contribution: Online Copula Estimation The
main contribution of this work is to adapt of the approx-
imate EM algorithm of Zhao & Udell (2019) to the online
setting. We formulate this online variation by applying ideas
from Cappé & Moulines (2009) to the EM formulation of
Zhao & Udell (2019) to estimate the copula correlation
matrix online. We also develop a parallel Python imple-
mentation of the algorithm of Zhao & Udell (2019) and a
version that uses minibatches of samples. We show that our
minibatch fitting algorithm improves speed while maintain-
ing accuracy compared to Zhao & Udell (2019). We also
show empirically that our online algorithm can adapt to a
changing data distribution.

3. Methodology
Notation We use capital letters to denote matrices and
lower-case letters to denote vectors. Data matrices will have
columns representing features and rows representing exam-
ples. We use Xj to denote the jth column of matrix X . We
use xi to denote the ith row ofX , and xi to denote the ith en-
try of a vector x. We use xiOi

to denote the observed entries
(both continuous and discrete) of row i of matrix X . We
denote by E the elliptope (the set of all correlation matrices).
All proofs and many details appear in the appendix.

Fundamentals Given an elementwise monotone function
f and correlation matrix Σ, we say that a random variable
x ∈ Rd is drawn from the Gaussian copula x ∼ GC(f,Σ)
if x = f(z) with z ∼ N(0,Σ). In other words, we generate
a random variable x from the Gaussian Copula by first draw-
ing a latent vector z from a normal distribution with mean 0
and correlation Σ, and then applying the elementwise mono-
tone function f to z to produce x. It is easy to show that the
monotone function f for a given copula is unique (Zhao &
Udell, 2019): indeed, if the cumulative distribution function
(CDF) for Xj is given by Fj , then fj = Fj ◦ Φ−1 where
Φ is the standard Gaussian CDF. We note that for ordinal
values, the CDF is a step function, so f−1

j is set-valued.

Imputation It is straightforward to impute missing values
given a copula f and correlation Σ by applying the marginal
transformation f to the conditional mean of the latent z con-
ditioned on the observations. Zhao & Udell (2019) provide

an explicit formula for this conditional mean.

Marginal Estimation Given an estimate of the CDF F̂j

of the jth column, we can estimate the marginals fj as
F̂j ◦ Φ−1. In the offline setting, it is natural to use the
empirical CDF. In the online setting, we replace this with
an online estimate to the CDF over data observed so far.

3.1. Warmup: Offline Expectation Maximization

In this section we review a maximum likelihood estimation
for the correlation of our copula Σ under mixed observations
in the offline setting as developed by Zhao & Udell (2019).

Completely Observed Continuous First, if the data ma-
trixX were fully observed with continuous values, we could
compute the latent variable zi = f−1(xi) for each row i.
Maximum likelihood estimation (MLE) in this setting re-
duces to MLE of a multivariate Gaussian. The log likelihood
of the observed data matrix for a given correlation Σ is

`(Σ;X) = c− log(|Σ|)
2

− 1

2
Tr(Σ−1

n∑
i=1

1

n
zi(zi)>),

maximized by the empirical covariance 1
n

∑n
i=1 z

i(zi)>.

Mixed Partially Observed More generally, given data
matrix X with partially observed rows with mixed val-
ues, MLE maximizes the observed likelihood. Denote by
φ(·; 0,Σ) the PDF of a normal vector with 0 mean and cor-
relation Σ. We seek to maximize (over Σ) the observed
likelihood, integrating over all latent variables zi ∈ f−1(xi)
that map to the observed values xi. We note that f−1 maps
missing values to R, so f−1(xi) is fully determined by xiOi

and the observed log likelihood is:

`(Σ; {xOi
i
}ni=1) =

1

n

n∑
i=1

log

(∫
zi∈f−1(xi)

φ(zi; 0,Σ)dzi

)
.

This integral is difficult to compute and even more difficult
to optimize. Zhao & Udell (2019) propose an EM algorithm
to avoid this difficulty. At each iteration, the EM algorithm
updates the covariance estimate Σt as

Σt+1 =

n∑
i=1

1

n
E[zi(zi)>|xiOi

,Σt].

This update is easy to understand: we estimate covariance
by an “empirical covariance matrix” of latent variables zi.
The expectation weights these zi by their likelihood given
the observations xiOi

and the previous covariance estimate
Σt. We approximate these expectations as in Zhao & Udell
(2019) using the fact that zi|xiOi

,Σt is a truncated normal
variable. Finally, we ensure the covariance matrix has a unit
diagonal using a diagonal scaling; see Zhao & Udell (2019).
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3.2. Generalization to the Online Setting

The key insight of Cappé & Moulines (2009) is to replace
the expectation step of an EM algorithm with an incremen-
tal update to a previous estimate of the expectation. This
approach yields an online algorithm: we simply update our
expectation estimate as data comes in, and do not need to
retain all data to perform an expectation update. The max-
imization step in this framework is unchanged. Formally,
Cappé & Moulines (2009) propose to update the likelihood
Q with the rows S ⊆ {1, . . . , n} observed at time t as

Qt+1(Σ) = (1− γt)Qt(Σ) + γtQ(Σ; Σt, Xt
S) (1)

with a monotonically decreasing stepsize γt ∈ (0, 1].

The EM algorithm for the Gaussian copula takes a particu-
larly simple form: maximizing Eq. (1) wrt Σ, we find

Σt+1 = (1− γt)Σt + γt
1

|S|
∑
i∈S

E[zi(zi)>|xiOi
,Σt]. (2)

We then scale the correlation as in the offline setting. Each
expectation E[zi(zi)>|xiOi

,Σt] can be computed in time
O(αp3), where α is the fraction of missing entries. The
computation also parallelizes over rows i ∈ S.

4. Experimental Results
Overview and Metrics We compare the results of our al-
gorithm, with and without parallelism and batching, to those
of missForest (implemented in missingpy), a state-of-the-art
algorithm for mixed imputation using random forests, lim-
ited to 10 iterations. We use variable thresholds and maxi-
mum iterations for the EM algorithm, and report the runtime
in lieu of reporting all parameters. Code for our algorithms
and experiments is available at https://github.com/
udellgroup/online_mixed_gc_imp.

In what follows, “Standard EM” denotes the EM algorithm
of Zhao & Udell (2019); “Online EM” denotes a fully online
version of the EM algorithm, which estimates marginals
online and fits the covariance using Eq. (2) with rows S
chosen sequentially; and “Minibatch EM” denotes a version
of the EM algorithm that uses offline marginal estimates and
fits the covariance using Eq. (2) but with the rows S chosen
according to a random permutation of the dataset. Finally,
“threaded” denotes the use of 2 cores and 2 additional virtual
cores for parallelism to compute the expectations.

Our tests measure the mean absolute error (MAE), root
mean squared error (RMSE), and scaled mean absolute
error (SMAE), defined as SMAE ≡ |X̂j−Xj |/|Xmed

j −Xj |
where X̂j are the imputed values of column i and Xj are
the true values, and Xmed

j is the median value in column
j, all restricted to the masked entries in column j. Hence
median imputation has SMAE = 1, and an algorithm that
imputes better than the median has SMAE < 1.

All experiments use a 2015 macbook pro with a 2.7 GHz
Intel Core i5 processor and 8 GB RAM. All threading uses
2 cores and 2 additional virtual cores. All implementations
use python to allow for a direct comparison of runtimes.

4.1. Generated Data

Dataset We first consider a synthetic dataset consisting
of 15-dimensional vectors drawn from a Gaussian Copula,
with 5 continuous, 5 ordinal with five levels, and 5 binary
entries. We mask 30 percent of entries as a test set for eval-
uation and report mean results over ten repetitions, for a
standard, minibatch, and online variant of the Gaussian cop-
ula EM algorithm. We report runtime, RMSE, and SMAE
for continuous (cont), binary (bin), and ordinal (ord) values.

Table 1. Runtimes and Errors on Simulated Copula Dataset.
Method Threads Runtime SMAE SMAE SMAE RMSE

(s) (Cont) (Bin) (Ord)
Standard EM no 90.422 0.774 0.674 0.787 0.316
Standard EM yes 39.802 0.774 0.674 0.787 0.316
Minibatch EM no 38.849 0.773 0.673 0.785 0.316
Minibatch EM yes 19.856 0.773 0.673 0.785 0.316
Online EM yes 14.792 0.8 0.704 0.82 0.333
Missforest no 65.184 0.945 0.743 0.912 0.354

Minibatch and parallelism improve speed These re-
sults show that parallel and minibatch variants of the EM
algorithm converge substantially faster than the standard
method and provide comparable accuracy. With or without
parallelism, the minibatch algorithm is more than twice as
fast as its counterpart with similar performance. For all of
the algorithms, the imputation error of the copula methods
improves on that of missForest. This is particularly striking
for the online variant, as this algorithm sees each data point
only once, suggesting the online algorithm is able to impute
surprisingly effectively in only a single pass. Comparing
only serial implementations, notice the unthreaded mini-
batch method is substantially faster than missForest, with
substantially lower error for all variable types.

4.2. Movie Lens

Dataset We also evaluate on the same subset of the Movie-
Lens 1M dataset (Harper & Konstan, 2015), as in Zhao &
Udell (2019). This data consists of ordinal ratings on a scale
of 1 to 5, with over 75 percent of entries missing.

Table 2. Runtimes and Errors on Movie Lens Subset

Method Runtime (s) MAE RMSE
Standard EM unthreaded 2411.071 0.582 0.882

Standard EM threaded 1033.083 0.582 0.882
Minibatch EM unthreaded 446.805 0.585 0.887

Minibatch EM unthreaded (longer timeout) 893.929 0.583 0.884
Online EM threaded 249.551 0.598 0.898

https://github.com/udellgroup/online_mixed_gc_imp
https://github.com/udellgroup/online_mixed_gc_imp
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Analysis In the above we can see that the minibatch
method obtains comparable performance to the non-
minibatch method, and is about 3 times faster, even without
parallelism. Comparing to the experiments from Zhao &
Udell (2019), we see even the minibatch method has lower
MAE than any of the other state-of-the-art methods con-
sidered in that work. The error of the online algorithm is
appreciably higher than that of the offline methods, but its
error is competitive with many of the other state-of-the-art
methods (Zhao & Udell, 2019).

4.3. Generated data for online setting

Dataset Finally, we evaluate the ability of the online al-
gorithm to adapt to a changing covariance structure. To do
this we generated a simple dataset from a copula with one
continuous, one ordinal, and one binary feature. We use
three different correlation matrices in sequence with one
set of marginals for all correlations. The correlations are
chosen so that their average is approximately the identity.
We report mean MAEs over 10 trials and use a batch size
of 50 for both the online and offline algorithm. We mask 1
entry at random per row as a test set

Table 3. Runtimes and Errors on Simulated Copula Dataset.
Method SMAE SMAE SMAE SMAE

(Cont) (Bin) (Ord) (Avg)
Online EM 0.840 0.907 0.763 0.836
Offline EM 0.998 1.000 1.000 0.999

Analysis In this setting the fully online algorithm outper-
forms median imputation on average, despite the changing
data distribution, by learning to the changing correlation
structure online. The offline algorithm, on the other hand, is
only able to impute using a single correlation estimate for
all of the data; as a result it fails to outperform median im-
putation. The online algorithm has a sharp spike in error as
the covariance abruptly shifts, but the error rapidly declines
as the online algorithm learns the new correlation.

5. Conclusion and Future Work
In this work we have presented an online semi-parametric al-
gorithm using the Gaussian copula model for mixed, missing
value imputation. This model naturally models correlations
between binary, ordinal, and continuous variables to impute
missing values. We also developed a mini-batch method
that is considerably faster than its batch counterpart, with
comparable accuracy. We further improved performance
by exploiting embarrassing parallelism within minibatches,
both in our minibatch method, and directly in the original
method. These methods outperform missForest, an existing
state of the art method, on both real and synthetic datasets.
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Figure 1. Offline vs. online imputation error for ordinal (top),
binary (middle) and continuous (bottom) data.

We also provide a proof-of-concept fully-online implemen-
tation and that show it can adapt to a changing distribution.
One important direction for future work is to extend the
method to a streaming data setting by reducing the mem-
ory required for marginal estimation. Zhao & Udell (2020)
provide a highly performant method for fitting a low-rank
Gaussian Copula. Extending this method to the online and
streaming setting also constitutes important future work.
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A. Supplement for Experiments
A.1. Generated Data

To generate data from our copula we draw 15-dimension
latent vectors i.i.d from a multivariate gaussian with a ran-
domly sampled covariance matrix. We then scale the first
five columns to be drawn from an exponential distribution,
the next five columns to be binary with a threshold randomly
sampled between the 0.1 and 0.9 quantile, and the last five
columns to be 5-level ordinals with evenly spaced thresh-
olds. We drawn 2000 elements per copula in each of our
evaluations.

A.2. Movie Lens Subset

The Movie Lens 1M dataset provides one million movie
ratings by 6000 users on 4000 movies. We use the subset of
207 movies with at least 1000 ratings and those users who
have rated at least 1 of these movies. The resulting set of
ratings is over 75% missing.

A.3. Generated Data for Online Setting

In the online setting we generated data from a copula with 3
features. The first column contains continuous data directly
from the latent multivariate Gaussian without scaling. The
second column contains ordinal data with 5 levels that are
evenly spaces. The final column contains binary data with a
random threshold between the 0.1 and 0.9 quantile of the
latent values. For each run, we sample 10000 points from
each of 3 multivariate gaussians with correlations

Σ1 =

 1.0 0.339135 0.326585
0.339135 1.0 −0.778398
0.326585 −0.778398 1.0


Σ2 =

 1.0 −0.778398 0.339135
−0.778398 1.0 0.326585
0.326585 0.326585 1.0


Σ3 =

 1.0 0.326585 −0.778398
0.326585 1.0 0.339135
−0.778398 0.339135 1.0


We choose these correlations matrices so that their average is
approximately the identity. For the online algorithm we use
a fixed step size of γt = 0.1. We mask one entry at random
per row as a test set. We choose a number of iterations such
that the mini-batch algorithm observes each datapoint twice.

B. Derivations
B.1. Offline Maximizer

Proof.

argmax
Σ

Q(Σ; Σt, X) = argmax
Σ

− log(|Σ|)
2

− 1

2
Tr((Σ)−1

n∑
i=1

1

n
E[zi(zi)>|xiOi

,Σt])

Noting that the above is concave with respect to Σ, and
equating the gradient with respect to Σ to 0 we get that Σ is
maximized for

0 = Σ−1 − Σ−1E[zi(zi)>|xiOi
,Σt]Σ−1

Rearranging to solve for Σ gives us the optimizer

Σ =

n∑
i=1

1

n
E[zi(zi)>|xiOi

,Σt]
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B.2. Online Maximizer

Proof. By unraveling the above recurrence for Qt, it is
easy to see that Qt(Σ) =

∑t−1
j=1 αjQ(Σ; Σj , Xj

S) for some
αj ∈ (0, 1] with

∑t−1
j=1 αj = 1. So we can express the

maximization step as

Σt+1 = argmax
Σ

Qt+1(Σ)

= argmax
Σ

(1− γt)
t−1∑
j=1

αjQ(Σ; Σj , Xj
S)

+ γtQ(Σ; Σt, Xt
S)

In what follows we restrict ourselves to considering the case
where each Xt

S contains only a single element and denote
this by xiO. The analysis can easily be generalized to larger
batches, but we restrict ourselves to this case here for ease
of notation. Noting that the above is a convex combination
of concave functions, and therefore concave, we equate the
gradient of this function with respect to Σ to 0 to find its
maximizer

0 = (1− γt)
t−1∑
j=1

αj

(
Σ−1 − Σ−1E[zj(zj)>|xjOj

,Σj ]Σ−1
)

+ γt

(
Σ−1 − Σ−1E[zt(zt)>|xtOj

,Σt]Σ−1
)

= (1− γt)
t−1∑
j=1

αj

(
Σ− E[zj(zj)>|xjOj

,Σj ]
)

+ γt
(
Σ− E[zt(zt)>|xtOt

,Σt]
)

Rearranging to solve for Σ

Σ =
(1− γt)

∑t−1
j=1 αj

(
E[zj(zj)>|xjOj

,Σj ]
)

(1− γt)
∑t−1

j=1 αj + γt

+
γt
(
E[zt(zt)>|xtOt

,Σt]
)

(1− γt)
∑t−1

j=1 αj + γt

= (1− γt)
t−1∑
j=1

αj

(
E[zj(zj)>|xjOj

,Σj ]
)

+ γt
(
E[zt(zt)>|xtOt

,Σt]
)

= (1− γt)Σt + γt
(
E[zt(zt)>|xtOt

,Σt]
)


