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ABSTRACT

Rapid progress has been made in instruction-learning for image editing with
natural-language instruction, as exemplified by InstructPix2Pix. In biomedicine,
such counterfactual generation methods can help differentiate causal structure
from spurious correlation and facilitate robust image interpretation for disease
progression modeling. However, generic image-editing models are ill-suited for
the biomedical domain, and counterfactual medical image generation is largely
underexplored. In this paper, we present MedJourney, a novel method for counter-
factual medical image generation by instruction-learning from multimodal patient
journeys. Given a patient with two medical images taken at different time points,
we use GPT-4 to process the corresponding imaging reports and generate a natural
language description of disease progression. The resulting triples (prior image,
progression description, new image) are then used to train a latent diffusion model
for counterfactual medical image generation. Given the relative scarcity of image
time series data, we introduce a two-stage curriculum that first pretrains the de-
noising network using the much more abundant single image-report pairs (with
dummy prior image), and then continues training using the counterfactual triples.
Experiments using the standard MIMIC-CXR dataset demonstrate the promise of
our method. In a comprehensive battery of tests on counterfactual medical image
generation, MedJourney substantially outperforms prior state-of-the-art methods in
instruction image editing and medical image generation such as InstructPix2Pix
and RoentGen. To facilitate future study in counterfactual medical generation, we
plan to release our instruction-learning code and pretrained models.

1 INTRODUCTION

Biomedical data is inherently multimodal, comprising physical measurements and natural-language
narratives. In particular, biomedical imaging represents an important modality for disease diagnosis
and progression monitoring. Counterfactual medical image generation seeks to answer the “what
if” question in biomedical imaging|Cohen et al.|(2021)); |Sanchez & Tsaftaris| (2022). E.g., given a
radiology image of a cancer patient, what would the image look like if the cancer has undergone
specific progression? Such capabilities can potentially make image interpretation more explainable
and robust, by revealing the underlying causal structure as well as spurious correlation.

Existing methods for counterfactual medical image generation, however, are generally limited to
modeling simple image class change. I.e., how would an image change to be classified as a different
category (Cohen et al.| (2021); Sanchez & Tsaftaris| (2022)), as studied extensively in adversarial
learning [Zhang et al.|(2019)); [Madani et al.|(2018b). Such restricted counterfactual image generation
can be viewed as image editing with a fixed set of predefined class changes. Recently, there has
been rapid progress in image editing with arbitrary natural-language instruction, as exemplified by
InstructPix2Pix (Brooks et al.,[2023). However, these models are trained using generic images and
text, which makes them ill-suited for the biomedical domain. There have been recent attempts to
adapt image generation to the radiology domain, as exemplified by RoentGen (Chambon et al.| 2022a)).
But they condition image generation on text description only, rather than on the prior image and
counterfactual conditions, thus are not well suited for counterfactual image generation. In general,
unconstrained counterfactual medical image generation remains largely unexplored.
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Figure 1: The general architecture of MedJourney for counterfactual medical image generation. Given the prior
image, and a text description of patient disease progression, MedJourney would generate the counterfactual
image that maximally reflects the prescribed changes while minimizing deviation from the original image.

In this paper, we present MedJourney, a novel method for counterfactual medical image generation by
instruction-learning from multimodal patient journeys. Given two medical images taken at different
time points for a given patient, detailed information about the disease progression is readily available
in their corresponding reports, but manually synthesizing such “image-editing instruction” from the
reports is expensive and time-consuming. To scale instruction-following data generation, we use
GPT-4 to generate a natural language description of disease progression from the two corresponding
reports. We then apply the resulting triples (prior image, progression description, new image) to train
a latent diffusion model for counterfactual medical image generation.

Compared to single image-report pairs, image time series are relatively scarce. e.g., there are
over three hundred thousand radiology image-text pairs in MIMIC-CXR Johnson et al.| (2019), the
largest publicly available de-identified medical multimodal dataset, but only about ten thousand
counterfactual triples can be generated from the image-report time-series data. Therefore, instead
of directly learning the counterfactual triples, we introduce a curriculum learning scheme that first
pretrains the diffusion model using the much more abundant single image-report pairs using a dummy
prior image, and then continues training using the counterfactual triples. We conduct extensive
experiments on MIMIC-CXR. On a battery of tests for counterfactual medical image generation,
MedJourney substantially outperforms prior state-of-the-art methods in instruction image editing and

medical image generation such as InstructPix2Pix Brooks et al.|(2023)) and RoentGen |Chambon et al.
(2022a). We summarize our main contributions below:

* We propose MedJourney, which is the first method for counterfactual medical image generation
that can closely follow arbitrary natural-language descriptions of disease progression to generate
counterfactual images of high quality.

* We introduce a novel way for adapting general-domain text-to-image generation to counterfactual
medical image generation by leveraging GPT-4 to produce the first instruction-following dataset at
scale from multimodal patient journeys.

* We explore an extensive suite of tests for evaluating counterfactual medical image generation, such
as pathology, race, age, and spatial alignment.

* We conduct extensive experiments on MIMIC-CXR and show that MedJourney substantially
outperforms state-of-the-art methods such as Instruct-Pix2Pix and RoentGen on counterfactual
medical image generation.

* We plan to release our instruction-learning code and pretrained models to facilitate future study in
counterfactual medical image generation.

2 RELATED WORKS

General Image Generation and Editing. Some pioneering works like Generative Adversarial

Networks (GAN) (Goodfellow et al.|[2014) and Variational Auto-Encoder (Kingma et al., 2019) had

precipitated a surge of image generation works in general domain (Mao et al.,|2017; |[Karras et al.

2019 [Yoon et al},[2019; [Higgins et al, 2016} [Yang et al, 2017} [Karras et al., 2019). Most recently,

diffusion-based model arises and demonstrates promising image generation performance (Ho et al
[2020; [Nichol & Dhariwall, 202T). Later on, a latent diffusion model (LDM) is consequently proposed
which significantly unleashes the power to generate images of high quality and resolution (Rombach|
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et al.|[2022). Built on top of LDM are a number of works to make it more spatial-aware (Yang et al.|
2022} |Li et al.| 2023)), controllable (Zhang et al.,[2023a; Mou et al.| 2023; Huang et al.,[2023) and
customizable (Ruiz et al.,|2022). Going beyond text-to-image generation, text-based image editing
recently drew increasing attention. A number of works propose to alter a small portion of visual
contents in a given image, which can be the image style (Meng et al., [ 2022;|Zhang et al., 2023c)), local
objects(Meng et al., 2022; Hertz et al.| 2022; |Kawar et al.,2023), efc. To build a more natural image
editing interface, Instruct-Pix2Pix (Brooks et al.,2023)) replaces the plain texts (e.g., “a dog”) with
instructions (e.g., “change cat to dog”). The authors developed an effective way to compose synthetic
paired images using GPT-4 (?) and Prompt2Prompt (Hertz et al.,|2022). Our work is inspired by
Instruct-Pix2Pix but goes further to develop an instructed image generation model for medical images,
particularly for chest X-ray images. Rather than synthesizing training data, we curate a good number
of real paired data and develop a reliable model that not only cares about image quality but also the
genuine emulation of real patient journeys.

Medical Image Generation. While there has been a large amount of work for image generation
in the general domain, the medical domain is under-explored. Some earlier works used GAN for
synthesizing different types of medical images (Costa et al.,[2017; Madani et al.| |2018bfja; Zhang et al.}
2018; Zhao et al., 2018; Y1 et al.} 2019). To address the problem of limited training data, the authors
in|Madani et al.| (2018a)) and [Madani et al.|(2018b) proposed to use GAN to generate X-ray images
for data augmentation. InZhang et al.|(2019), the generation process is decomposed into sketch and
appearance generation which facilitates the generation of diverse types of medical images, such as
X-Ray, CT and MRI, efc. With the rise of latent diffusion models (LDMs), the quality of generated
medical images is significantly improved (Chambon et al., [2022bja; [Packhauser et al., [2023}; |Schon
et al.,|2023)). Beyond 2D images, it is further applied for 3D image synthesis (Dorjsembe et al.| [2023}
Khader et al.|[2023). Most recently, some works explored a few ways of unifying medical reports and
image generation into a single framework by leveraging a sequence-to-sequence model (Lee et al.,
2023al) or a pre-trained large language model (LLM) (Lee et al.|[2023b). All these works studied the
potential of utilizing LDMs for medical text-to-image generation and mitigating the scarcity of real
medical data. Our work significantly differs from existing studies in its goal to emulate the medical
journey of individual patients by leveraging temporally paired multi-modal data (i.e. medical reports
and images). We advocate for the development of a model capable of “editing" a source image in
strict adherence to provided instructions that chronicle changes over a specific time frame. To the
best knowledge, we are the first to study the instructed image generation in the medical domain, and
strongly envision its prospects for counterfactual analysis.

Counterfactual Analysis in Medicine. Counterfactual analysis serves as a crucial way to make
image interpretation more understandable and robust. Typically, for a medical image classifier,
different visualization tools (Simonyan et al., 2013 |Zhou et al.| 2016; Selvaraju et al.,2017) can be
employed to interpret the model and spot the spurious correlations (Kim et al.,[2019). Later on, a
number of works studied the way of generating counterfactual images to probe the existing image
classifiers (Thiagarajan et al., 2022 [Lenis et al., 2020} [Fontanella et al.| [2023; Major et al., [2020;
Cohen et al.| 2021}; |Atad et al., 2022; Bedel & Cukur, |2023). However, these approaches largely
rely on gradient-based methods that are limited by their dependence on pre-determined classification
labels as targets. In contrast, our approach also supports image modification but is designed to take
arbitrary textual instructions as inputs, favoring much more flexible and customizable medical image
editing. This makes our model a powerful image-editing tool for counterfactual analysis and, more
importantly, helps to emulate the temporal disease transition of a patient.

3 DATASET AND PREPROCESSING

We use the standard MIMIC-CXR dataset Johnson et al.[(2019) in our study, which contains 377,110
image-report pairs from 227,827 radiology studies. A patient may have multiple studies, whereas
each study may contain multiple chest x-ray (CXR) images taken at different views. In this work,
we only use posteroanterior (PA), the standard frontal chest view, and discard AP and lateral views.
This results in 157,148 image-text pairs. We follow the standard partition and use the first nine
subsets (P10-P18) for training and validation, while reserving the last (P19) for testing. We then
identify patient journey and generate 9,354, 1,056, 1,214 counterfactual triples for train, validation,
test, respectively, following the procedure below.
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1) Retain the original language and structure from both reports unless
there's a clear and compelling reason to modify for clarity or accuracy.

2) Prioritize the direct description of the image's findings. Eliminate
statements or phrases that don't directly describe the findings in the
image, like recommendations or suggestions for follow-up from either
report.

3) If aterm or phrase is standard medical language and doesn't introduce
ambiguity in either report, leave it unchanged.

4) Omit findings specific to views other than the PA view from both
reports.

Figure 2: MedJourney uses GPT-4 to generate instruction-following data from multimodal patient journeys.
Top: two images taken at different time points for a patient and their corresponding reports. Bottom left: GPT-4
prompt for synthesizing disease progression from the two reports. Bottom right: Example disease progression
generated by GPT-4.

(a) real image from pa- (b) "resolved pleural ef- (c) "an opacity adjacent (d) "atelectasis of the (e) "cardiac silhouette
tient with plural effusion fusion" to the left heart border" right middle lobe" appears enlarged”

Figure 3: Example counterfactual generation by MedJourney. Top: source image and counterfactual images
given various progression description. Bottom: attention map for the italicized description by a state-of-the-art

pathology classifier Cohen et al| (2021). MedJourney generates counterfactual images that generally reflect the
prescribed progression well.

Identify patient journey. We order studies with PA view for the same patient and select consecutive
pairs as candidates for generating counterfactual triples.

Image registration. To mitigate unwanted artifacts stemming from varying image positions and
angles across studies, we perform standard registration, using the SimpleITK toolkit

( ) (see endix).
2018) ( Appendix)

Data filtering. We prioritize studies with at least one finding as identified by CheXpert and filter
the rest. There is a nontrivial portion of MIMIC-CXR images with mislabeled views, which can lead
to severe hallucinations. We further filter out image pairs for which the registration score is below a
threshold, thus indicating misaligned views.

Text preprocessing. Radiology reports typically contain a “Findings” section with detailed obser-
vations and an “Impression” section with a concise summary of the most salient findings. In this
paper, we focus on the Impression section and explore using GPT-4 to clean the text (Figure ) before
generating instruction-following data.
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4 METHOD

4.1 PROBLEM DEFINITION

Given the prior image Ip € R*W*3 and a progression description D, the goal of counterfactual
medical image generation is to learn a generative model Geen for generating the counterfactual image
Ic € RHXWX3, e, Io = Gen(Ip,D).

Compared to text-only medical image generation models such as RoentGen (Chambon et al.| 2022a)),
our problem setting is very different: the generation description D describes the counterfactual
changes from the prior image to the reference image, rather than the description of the reference
image itself. This means that the model inputs both textual description and the prior image and is
expected to produce a new image that reflects the prescribed changes while preserving other invariant
aspects.

4.2 MEDJOURNEY

We build upon the state-of-the-art latent diffusion model (LDM) (Rombach et al., [2022), which
comprises two components:

* An image autoencoder based on VQGAN that can project an image to z in latent space and then
reconstruct the image from z.

» A UNetRonneberger et al.| (2015) comprised of transformer and convolutional layers for performing
latent diffusion in the latent space z, starting from a random Gaussian noise.

By default, LDMs only take text prompts as the input for image generation. In MedJourney, we
extend LDM to condition generation on both text (progression description) and an image (prior
image). Given training counterfactual triples (Ip, D, I¢), MedJourney adopts the standard LDM loss
while concatenating the prior image encoding with the latent diffusion state:

min £ = E., e [l = fo(z, . E(D), E(Ip))[[3] M

where ¢ represents the diffusion time point, E(D) is the description embedding and E(Ip) is the
prior image embedding. Following Instruct-Pix2Pix (Brooks et al.l 2023), we concatenate the image
condition E(Ip) with z, and feed them into the LDMs, while using attention layers to cross-attend the
text condition E(D). The objective is to learn a denoising network fy that can reconstruct the noise e
given the noisy variant z; of latent representation for the reference image at timestep ¢ € {1, ..., T'}.
Once trained, the model can input a prior image and textual description to generate the reference
image.

InstructPix2Pix (Brooks et al., 2023)) uses CLIP (Radford et al.|[2021) for the image and text encoders,
which may be suboptimal for the biomedical domain. We explore replacing CLIP with Biomed-
CLIP (Zhang et al., 2023b)), which was pretrained on image-text pairs extracted from biomedical
papers. BiomedCLIP also accepts much larger context length (increased from 77 to 256) that is
more suited for clinical reports (vs general domain image captions). We introduce a learnable linear
projection layer to bridge the new text encoder with UNet.

Initially, we trained MedJourney using only the counterfactual triples. Given their relative scarcity,
the model easily overfits and hallucinations abound.

Consequently, we propose two-stage curriculum learning to leverage the much more abundant single
image-text pairs:

 Stage 1: Pretraining. We first train fy using all image-text pairs in MIMIC-CXR training with the
prior image set to a dummy image Ip = {128}7XW 3 of constant value 128.

* Stage 2: Instruction Tuning. We then fine-tune MedJourney with the counterfactual triples with a
real prior image Ip.

4.3 EVALUATION METRICS

For evaluation, we assemble a set of instances each comprising two images taken at different
times for a patient, their corresponding reports, and the GPT-4 generated progression description
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by synthesizing the two reports. At test time, MedJourney takes the first image and progression
description and outputs the counterfactual image. The second image is used as the reference standard.

Ideally, the counterfactual image should accurately reflect the prescribed changes in disease pathology
while minimizing deviation from the prior image. We propose the Counterfactual Medical Image
Generation (CMIG) score that balances accuracy and feature retention measurements. Given accuracy
measurements a1, - - - , a, and feature retention measurements fi,--- , f,,,, we first compute their

respective geometric means a = {/[ [, a; and f=%/11 j fj» and then return the CMIG score as

their geometric mean /@ - f. This ensures that the final score is not skewed to either aspect, as they
are both important for counterfactual generation. We choose geometric mean as it is robust to results
of varying scales. The CMIG scoring scheme is general. In this paper, we adopt a simple instantiation
using a pathology classifier for accuracy, a race classifier and an age classifier for feature retention.

» Pathology Classifier: We use the DenseNet-121 model from the XRV collection |(Cohen et al.
(2021), a state-of-the-art image classifier for CheXpert findings Irvin et al.| (2019). We run it on the
counterfactual image to obtain the predicted pathology finding labels. Following RoentGen Cham+
bon et al.[(2022a)) to enable head-to-head comparison, we run CheXpert [Irvin et al.[|(2019)) on the
corresponding report of the reference image to obtain reference pathology labels, focusing on the
five most prevalent findings (Atelectasis, Cardiomegaly, Edema, Pleural Effusion, Pneumothorax),
and then compute AUROC of the predicted labels against the reference ones.

* Race Classifier: Similarly, we use the state-of-the-art image classifier for race|Gichoya et al.|(2022)
to generate predicted labels on the system-generated counterfactual images, gold race information
from MIMIC as reference labels, and compute AUROC.

» Age Classifier: We use the state-of-the-art DNN model Ieki (2022) to predict age from the image,
the anchor age information from MIMIC as reference, and return Pearson correlation. MIMIC
only contains patient data within a short duration, so the two images are taken when the patient is
approximately at the anchor age.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Implemetantion details. We use the pre-trained Stable Diffusion v1.5 model [|and BiomedCLIP [
for initialization. Similar to Instruct-Pix2Pix, we keep the text encoder frozen and add a learnable
linear projection layer on top of BiomedCLIP text encoder. MedJourney is trained in two stages. In
Stage 1 (pretraining), we use 69,846 single image-text pairs and train the model with 8 x 40GB A100
GPUs for 200 epochs in 36 hours. In Stage 2 (instruction tuning), we continue training the model for
another 128 epochs using the counterfactual triples in another 23 hours. For both stages, the image
resolution is set to 256 x 256, and horizontal flip and random crop are used for data augmentation.
We use AdamW (Loshchilov & Hutter, 2019) and a fixed learning rate of 1le—* with batch size 32.

Baseline systems. We compare MedJourney to state-of-the-art representative works. (i) Stable
Diffusion (SD) (Rombach et al., [2022)): We use the target Impression as the text prompt. Notably,
we need to prepend “a photo of chest x-ray" to the prompt to generate meaningful results. (i7)
RoentGen (Chambon et al., [2022a)): state-of-the-art text-only medical image generation model.
Similarly, target Impression is used as the text prompt, in line with RoentGen’s training. (4i%)
InstructPix2Pix (IP2P) (Brooks et al.,[2023): state-of-the-art instruction-tuned image-editing model
for the general domain.

5.2 MAIN RESULTS

Table [1|compares MedJourney with prior state-of-the-art systems. MedJourney substantially outper-
forms other systems across all aspects. Not surprisingly, general-domain SD and IP2P models perform
extremely poorly across the board. E.g., SD’s pathology accuracy is close random. As expected,

Yhttps://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/
v1-5-pruned-emaonly.ckpt
“https://huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224
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https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt
https://huggingface.co/microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224
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Table 1: Comparison of test results for counterfactual medical image generation. Pathology AUC measures
accuracy (how well the generated image reflects the relevant pathology findings). Race AUC and Age Pearson
Correlation gauge feature retention (how well the generated image retains invariant features such as race and
age - age rarely changes given that MIMIC only contains data within a short duration for each patient). Our
proposed CMIG score returns the geometric mean of the two respective geometric means for accuracy and
feature retention results. This ensures that the final score is not skewed to either aspect, as they are both important
for counterfactual generation. We choose geometric mean as it is robust to results of varying scales.

Pathology Race Age
AUC AUC  Pearson Corr.

Rombach et al.| 2022 49.90 77.13 2.73 18.14
IPZI(]’TIW ém[) 58.10 78.25 17.82 42.12
RoentGen (Chambon et al., 2022a) 79.61 84.71 28.91 66.08
MedJourney (Ours) 80.54 97.22 79.38 83.23

bk

(b) SD (c) IP2P (d) RoentGen (e) MedJourney

Model CMIG Score

(a) Source Image

Progression Description

There is an increasing right pleural effusion with increased prominence of the cardiac silhouette. No evidence of left pleural
effusion. Increased prominence of central pulmonary vessels is observed, with no evidence of peripheral venous congestion.

Figure 4: Example of precision control of changes as exhibited by MedJourney. From left to right, an example
prior image and counterfactual generated by various models with the progression description below.

RoentGen performs much better as it fine-tunes SD on MIMIC-CXR data. However, RoentGen only
learns generic text-to-image generation that is not conditioned on the prior image, thus it is incapable
of preserving patient-specific invariants such as race and age. By contrast, MedJourney excels in both
pathology accuracy and feature retention, surpassing RoentGen in the CMIG score by over 17 points.

shows example counterfactual generations by MedJourney and the corresponding atten-
tion maps highlighted by a state-of-the-art pathology classifier [Cohen et al.| 2021). MedJourney
demonstrates precision controls that generally reflect the prescribed progression well.
contrasts MedJourney generation with others. There are two prominent progressions in the descrip-
tion: increased cardiomegaly and right pleural effusion.Not surprising, general-domain SD can’t
produce realistic CXR images. InstructPix2Pix generally preserves patient-specific features but can’t
execute the prescribed changes. Moreover, the overall quality of the generated image is much lower
compared to the original image. The RoentGen generation is better than SD and InstructPix2Pix,
but it still misses key pathology changes. The pleural effusion is supposed to reside at the right
side of the lung (left from viewer’s perspective), but the generated image shows pleural effusion
on both sides. Moreover, the gender of the patient is altered and a device is added to the chest. By
contrast, MedJourney demonstrates good instruction-following capability by presenting increased
cardiomegaly and right pleural effusion while preserving patient invariants such as body build, gender.

5.3 ABLATION STUDY

Table 2] shows comprehensive ablation results for MedJourney.

Image registration. There is clear benefit in performing registration to align the image pair during
training, as can be seen by comparing the top and bottom four rows in Table[2} E.g., the race AUC is
improved by over eight points after registration for the two-stage model. Similarly for age. Image
registration alleviates spatial misalignment, thus reducing the risk for the model to overfit to spurious
correlation.

Impression v.s. GPT-4 generation. As we showed in Fig. 2} the Impression section can be noisy
and fragmented. Moreover, it might miss some details of disease progression. GPT-4 generated
description is usually more succinct (averaging 146 characters v.s. 179) and more naturally phrased
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Table 2: Ablation study on various model settings: using target Impression vs GPT-4 synthesized description;
using registration or not; using two-stage curriculum learning or not.

N . . Patholo; Race Age
Description  Registration Two-Stage AUC gy AUC Pearso%l Corr. CMIG Score
Impression No No 79.83 94.23 75.39 79.99
GPT-4 No No 80.71 94.76 76.78 80.76
Impression No Yes 82.80 87.81 47.13 75.43
GPT-4 No Yes 81.35 88.58 55.12 76.38
Impression Yes No 78.06 98.67 82.73 82.70
GPT-4 Yes No 78.22 98.70 82.96 82.83
Impression Yes Yes 80.46 96.37 79.16 82.96
GPT-4 Yes Yes 80.54 97.22 79.38 83.23

Table 3: Comparison of test AUROC for a state-of-the-art pathology classifier on counterfactual images for the
five most prevalent conditions (Atelectasis, Cardiomegaly, Edema, Pleural Effusion, Pneumothorax), as well as
the KL Divergence for label distribution (lower the better).

Source At. Ca. Ed. Ef. Px. Mean \ KL Divergence
SD (Rombach et al., [2022) 49.65 50.79 5448 4531 49.28 49.90 92.65
IP2P (Brooks et al.;[2023) 5738 53.70 6259 58.85 5797 58.10 60.15
Roentgen (Chambon et al.|[2022a) 70.05 77.85 78.66 86.20 8526 79.61 40.74
MedJourney (Ours) 72.08 7376 88.64 88.11 80.12 80.54 10.9

and understandable. As can be seen In Table [2] using GPT-4 generated description consistently
improves model performance.

One-stage v.s. two-stage training. Interestingly, without registration, two-stage training actually
produces worse results. Moreover, two-stage training leads to better pathology accuracy, at the
expense of feature retention. We hypothesize that the two-stage model might learn to rely more on
text description after the additional stage of training using single image-text pairs. Using registration
in the second stage can substantially mitigate such degradation (~6 pts drop v.s. ~2 pts drop on race
AUQ), potentially because the calibration eases the model to learn the transition of the reference image
from the prior image. In the end, Overall, the best performance is attained using both registration and
two-stage training.

5.4 MODEL INSPECTION
5.4.1 PATHOLOGY ACCURACY

In[Table 3] we report more fine-grained results over the five prevalent pathology findings. Interestingly,
we find that RoentGen has overall worse performance and fluctuates substantially at individual
category. We hypothesize that the pathology classifier may not perform equally well for all categories.
Since we use the pathology classifier to generate the predicted labels from the counterfactual image,
but use CheXpert to generate the reference labels from the target report, the varying performance
of the pathology classifier might create confounding results. We thus investigate another way to
asssess pathology accuracy by applying the pathology classifier to both the counterfactual and
reference images, and computing the KL-divergence (lower the better) over the predicted scores for
individual categories (see Appendix). As can be seen in[Table 3| MedJourney counterfactual images
actually have much lower KL-divergence compared to the reference images, while applying the same
pathology classifier. This indicates that the standard pathology accuracy evaluation in RoentGen
might have inadvertently inflate its performance.

5.4.2 ANATOMY FEATURE RETENTION

In addition to feature retention of patient’s age and race, we further investigate how well our model
preserves the anatomy layout of the prior image. We use a segmentation model (Lian et al., 2021) to
identify the major components in the image and compare the counterfactual segmentation with the
reference one. As shown in Fig.[5] the MedJourney counterfactual is generally well aligned with the
reference, whereas other models often perform much worse. In Table[d] we further obtain quantitative
results by computing the Dice score (Sudre et al., 2017 averaged over the test set. MedJourney
demonstrates clear superiority compared to all other methods.
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Figure 5: Comparison of the reference and counterfactual images in segmentation output by a state-of-the-art
segmentation model. Top: image; bottom: segmentation output. Columns (from left to right): example prior
image, reference image, images generated by Stable Diffusion, InstructPix2Pix, RoentGen and MedJourney
(ours), respectively. We show masks for six different components including left lung, right lung, heart, facies
diaphragmatica, mediastinum and spine.

Model Dice E

SD 1.37 i
IP2P 38.33

RoentGen 67.38

Reference Image 74.04 3

MedJourney 81.05 '

(a) Duplicated Organs (b) Duplicated Ribs

Table 4: Comparison of segmentation Figure 6: Hallucinations of (a) organs and (b) ribs are observed in the
concordance between reference and earlier version (left) and fixed in the final version of our MedJourney
counterfactual. (right). See Sec.@for the solutions.

5.4.3 HALLUCINATIONS

In the early development of MedJourney, we observed severe hallucinations, notably duplicated
organs and ribs (left part of Fig. |§| (a) and (b)). The root causes included mismatched viewpoints of
training pairs and resolution discrepancies between training and evaluation datasets. Specifically, (a)
The duplicated-organs problem stemmed from mixing front and side views in training, which was
resolved after data cleaning. (b) The duplicated-ribs problem stemmed from the disparity in image
resolution between training and evaluation (256 x 256 for training v.s. 512 x 512 for evaluation),
which was resolved after we used 256 x 256 for both. Unlike the general image domain, we note that
subtle differences in settings may lead to problematic degradation in medical image generation.

6 DISCUSSION

The initial results with MedJourney are promising, but much remains to be explored. Upon close
inspection, we have identified image resolution as a potential cause for certain recurring errors (e.g.,
failure to generate very fine-grained changes). We are yet to explore more powerful image and
text encoders for initialization, as well as full fine-tuning. MIMIC-CXR only features emergency
medicine, which limits the learning of MedJourney. Finally, there are other accuracy and feature
retention measurements that can be potentially incorporated for more comprehensive evaluation.

7 CONCLUSION

We propose MedJourney, the first general approach for counterfactual medical image generation with
arbitrary natural-language instruction. MedJourney takes inspiration from general-domain image-
editing methods such as InstructPix2Pix, and generates instruction-following data from multimodal
patient journeys using GPT-4. We conduct extensive experiments on MIMIC-CXR and show that
MedJourney substantially outperforms existing state-of-the-art methods on a battery of tests for
counterfactual medical image generation. Future directions include: training MedJourney with higher
image resolution; improving MedJourney curriculum learning; and exploring other medical domains
and image modalities.
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A APPENDIX

A.1 DATASET DETAILS

The MIMIC-CXR dataset used in our work consists of 377,110 image-report pairs from 227,827
radiology studies conducted at Beth Israel Deaconess Medical Center. The dataset is partitioned
into ten subsets (P10-P19). For training and validation, we employ the first nine subsets (P10-P18),
while reserving the last (P19) for testing. To the end, our training set comprises 9,354 image-report
pairs from P10-P18 for training, with an additional 1,056 pairs allocated for validation. The test set
includes 1,214 pairs from P19. We elaborate the step-by-step data preprocessing below. Furthermore,
we employ 69,846 posterior-anterior (PA) view images from P10-P18 for the initial stage of training.

In Fig.[7} we calculate the age and race statistics for our train/dev/test sets. It is clearly shown that
some data bias happens in both age and race — the patients are skewed to elder and white people.

0,030 o
— [ Train/Dev Data R =3 Train/Dev Data

ml ) £ TestData 1 @ Test Data

Density
Percentage of Patients (%)

50 £ ES ) % WHTE  BLACK
Age Race

(a) Age distribution in train and test data sets. Note (b) Race distribution in train and test data sets. White
the older age distribution dominance. is the dominant class.

Figure 7: Distribution of age and race in our data sets, providing insight into the demographic composition.

A.2 MATHEMATICAL FOUNDATION

We explain below the mathematical foundation for the metrics used in our main submission.

For an image I, the classifier C yields a predicted label vector C(I), contrasted against the CheXpert’s
textual-based label L(I). The soft label AUC is defined as AUCso 1aper = C'(I) x L(I).

To objectively differentiate between real and synthesized images, we employ the KL divergence
between p = C(Ireal) and ¢ = C(Isymhesized):

: oo D)

KL divergence = p(2) log —=

z; ®) q(7)

A.3 ADDITIONAL ABLATION STUDIES

Role of text encoder. We further study the impact of the text encoder used to encode the instructions.
By default, our model uses BiomedCLIP as the text encoder considering it is pre-trained with multi-
modal medical data. Here, we replace it with CLIP and PubMedBERT (Gu et al) [2021)) text
encoder, respectively. For fair comparison, we use one-stage training for all models. In Table[3] it is
shown that BiomedCLIP outperforms CLIP and PubMedBERT on average, which demonstrates a
better trade-off between pathology and feature preservation. In particular, since BiomedCLIP has a
better understanding of the textual instructions in medical domains, it achieves substantially better
performance in pathology. Compared with CLIP, PubMedBERT is pre-trained on pure text corpus
and thus shows difficulty in understanding the pathology visually.

A.4 MORE VISUALIZATIONS

In Fig. 8] we demonstrate how the image registration takes effect. Without image registration (first
row), the gold reference image is usually not well-aligned with the prior image according to the

14
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Table 5: Additional ablation studies on the effect of different text encoders including BiodmedCLIP, CLIP and
PubMedBERT.

Pathology Race Age
Inst. Text Encoder AUC AUC  Pearson Corr. Avg
Imp. PubMedBERT 74.93 98.75 83.48 81.17
GPT4 PubMedBERT 74.54 98.90 83.9 81.08
Imp. CLIP 76.37 98.82 83.28 81.88
GPT4 CLIP 76.67 98.75 83.05 82.02
Imp. BiomedCLIP 78.06 98.67 82.73 82.70
GPT4 BiomedCLIP 78.22 98.70 82.96 82.83
Image 1 Image 2 Difference

Image 2 Registered

Difference Post Registration
T N TS
! ' -

Figure 8: Image registration comparison. Top row, from left to right: Image 1 (original, before registration),
Image 2 (registered on Image 1), and the difference (delta) between the two. Bottom row mirrors the top but
highlights the registered images and their differences. The delta images emphasize the areas of change and
alignment.

heatmap in the last column, because they are taken independently at two different time periods.
To calibrate the two images, we apply a registration algorithm to the reference image using the
prior image as the anchor. Afterward, the misalignment is significantly mitigated as shown on the
bottom-right image.

In Fig.[9] we show the medical journey of a patient given the prior image as shown in the first column.
We use different text prompts to impose the pathology at different magnitudes, such as ‘slight’,
‘moderate’ and ‘large’. Surprisingly, our MedJourney strictly follows the instructions and makes
appropriate changes to the prior image, which exhibits a smooth and natural pathology progression.

‘-

4

Prior image Slight cardiomegaly Slight left effusion Moderate right effusion Large right effusion

Figure 9: Patient medical journey emulated by our MedJourney. Given a prior image, MedJourney can generate
target images that precisely reflect the progressions described in the text prompts.
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GPT4-Curated Impression: Small left pleural effusion slightly increased compared to prior exam.

Source Image

100

150

= -

Target Image

Our Generated Image

100

150

Figure 10: Top left: prior image. Top right: reference image. Bottom left: RoentGen. Bottom right: MedJourney
(Ours). Prompt: Small left pleural effusion slightly increased compared to prior exam.
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PT4-Curated Impression: In comparison with the previous study, low lung volumes are again noted. There is an increasing right pleural effusion
ith increased prominence of the cardiac silhouette. No evidence of left pleural effusion. Increased prominence of centra
| pulmonary vessels is observed, with no evidence of peripheral venous congestion.

Source Image Target Image

Our Generated Image

Figure 11: Top left: prior image. Top right: reference image. Bottom left: RoentGen. Bottom right: MedJourney
(Ours). Prompt: In comparison with the previous study, low lung volumes are again noted. There is an
increasing right pleural effusion with increased prominence of the cardiac silhouette. No evidence of left pleural
effusion. Increased prominence of central pulmonary vessels is observed, with no evidence of peripheral venous
congestion.
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GPT4-Curated Impression: Moderate size right pleural effusion with right basilar opacity, likely representing compressive atelectasis. Infection
cannot be excluded.

Source Image Target Image

RoentGen Generated Image Our Generated Image

Figure 12: Top left: prior image. Top right: reference image. Bottom left: RoentGen. Bottom right: MedJourney
(Ours). Prompt: Moderate size right pleural effusion with right basilar opacity, likely representing compressive
atelectasis. Infection cannot be excluded.
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4-Curated Impression: 1. Stable moderate to large right apical pneumothorax with unchanged extensive subcutaneous gas. Chest tube holes ar
ntained within pneumothorax, but tip terminates within the soft tissues of the thoracic inlet.
2. Right lower lobe opaci
fication, likely due to aspiration.

Source Image Target Image

RoentGen Generated Image Our Generated Image

Figure 13: Top left: prior image. Top right: reference image. Bottom left: RoentGen. Bottom right: MedJourney
(Ours). Prompt: 1. Stable moderate to large right apical pneumothorax with unchanged extensive subcutaneous
gas. Chest tube holes maintained within pneumothorax, but tip terminates within the soft tissues of the thoracic
inlet. 2. Right lower lobe opacification, likely due to aspiration.
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GPT4-Curated Impression: Stable appearance of the moderate pleural effusion.

Source Image Target Image

RoentGen Generated Image Our Generated Image

Figure 14: Top left: prior image. Top right: reference image. Bottom left: RoentGen. Bottom right: MedJourney
(Ours). Prompt: Stable appearance of the moderate pleural effusion.
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GPT4-Curated Impression: No significant interval change. Unchanged bilateral pleural effusions, right greater than left.

Target Image

Source Image
0

Our Generated Image

RoentGen Generated Image

Figure 15: Top left: prior image. Top right: reference image. Bottom left: RoentGen. Bottom right: MedJourney
(Ours). Prompt: No significant interval change. Unchanged bilateral pleural effusions, right greater than left.
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GPT4-Curated Impression: Large right pleural effusion, increased since prior.

Source Image Target Image
~—=

RoentGen Generated Image Our Generated Image

Figure 16: Top left: prior image. Top right: reference image. Bottom left: RoentGen. Bottom right: MedJourney
(Ours). Prompt: Large right pleural effusion, increased since prior.
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