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Abstract

Recent advances in decoding language from
brain signals (EEG and MEG) have been sig-
nificantly driven by pre-trained language mod-
els, leading to remarkable progress on pub-
licly available non-invasive EEG/MEG datasets.
However, previous works predominantly utilize
teacher forcing during text generation, leading
to significant performance drops without its use.
A fundamental issue is the inability to estab-
lish a unified feature space correlating textual
data with the corresponding evoked brain sig-
nals. Although some recent studies attempt
to mitigate this gap using an audio-text pre-
trained model, Whisper, which is favored for
its signal input modality, they still largely over-
look the inherent differences between audio
signals and brain signals in directly applying
Whisper to decode brain signals. To address
these limitations, we propose a new multi-stage
strategy for semantic brain signal decoding via
vEctor-quantized speCtrogram reconstruction
for WHisper-enhanced text generatiOn, termed
BrainECHO. Specifically, BrainECHO succes-
sively conducts: 1) Discrete autoencoding of
the audio spectrogram; 2) Brain-audio latent
space alignment; and 3) Semantic text gener-
ation via Whisper finetuning. Through this
autoencoding—alignment—finetuning process,
BrainECHO outperforms state-of-the-art meth-
ods under the same data split settings on two
widely accepted resources: the EEG dataset
(Brennan) and the MEG dataset (GWilliams).
The innovation of BrainECHO, coupled with
its robustness and superiority at the sentence,
session, and subject-independent levels across
public datasets, underscores its significance for
language-based brain-computer interfaces.

1 Introduction

Decoding text from brain activity, such as electroen-
cephalography (EEG) and magnetoencephalogra-
phy (MEGQG)), is a critical and frontier research topic,
that can provide a foundation for language-based

brain-computer interfaces (BCI) by enabling di-
rect text input through brain signals. In the long
term, accurate real-time translation of human brain
signals can promote the widespread application of
BCI technology in medicine, assistive technology,
and entertainment, bringing new possibilities to
human life.

With the rapid developments in natural language
processing (NLP), automatic speech recognition
(ASR), and other fields, researchers have leveraged
the powerful language understanding and generat-
ing capabilities of pretrained large language mod-
els (LLMs) for neural decoding tasks (Wang and
Ji, 2022; Duan et al., 2024; Yang et al., 2024b,c),
making it possible to accurately decode text stimuli
from non-invasive signals. EEG-to-Text (Wang
and Ji, 2022) is the first work to decode open-
vocabulary tokens from encoded word-level EEG
rhythm features with the pretrained large model
BART (Lewis et al., 2020). Furthermore, De-
Wave (Duan et al., 2024) used sentence-level raw
EEG signals to perform EEG-to-text decoding with-
out eye movement event markers.

Later on, several BART-based methods (Xi et al.,
2023; Feng et al., 2023; Amrani et al., 2024) were
introduced, predominantly employing a pretraining-
finetuning paradigm. These methods first align
EEG representations with pretrained text embed-
dings before feeding them into BART for finetun-
ing. Although these approaches have yielded im-
pressive results, they rely on a teacher-forcing gen-
eration strategy, wherein the model depends on the
ground truth preceding text during each token pre-
diction. This setting does not accurately reflect
the model’s performance in real-world scenarios.
These methods show poor decoding performance
without teacher forcing.

To address this limitation, NeuSpeech (Yang
et al., 2024b) and MAD (Yang et al., 2024c) treat
raw MEG signals as a specialized form of speech,
transforming MEG signals and feeding them into a



pre-trained Whisper model (Radford et al., 2023),
which is trained on large-scale audio-text pairs,
for end-to-end text decoding without teacher forc-
ing. However, these approaches primarily focus on
mapping continuous brain signals to discrete text
without compressing the signals into discrete repre-
sentations, thereby limiting the model’s decoding
accuracy and generalization capabilities.

Extensive researches in speech recogni-
tion (Zhang et al., 2023a; Puvvada et al., 2024)
demonstrate that discrete representations preserve
more semantic information for translation com-
pared to conventional speech features like Fbank,
thanks to their carefully designed self-supervised
learning paradigms. While DeWave (Duan et al.,
2024) aligns discrete representations of input EEG
signals and text, it assumes a chronological order
for the discrete token sequence, requiring a highly
capable feature extractor. Considering the natural
temporal alignment between audio-evoked brain
signals and audio stimuli, aligning raw signals and
speech within a discrete space leverages implicit
temporal properties, thereby reducing the difficulty
of converting neural signals into human language.

Therefore, we propose a novel multi-stage
semantic decoding framework for EEG/MEG
brain signals, aurally evoked by semantic au-
dio, through vEctor-quantized speCtrogram recon-
struction for WHisper-enhanced text generatiOn,
termed BrainECHO. Specifically, BrainECHO ex-
ecutes the following steps:

1) Discrete autoencoding of the audio spectro-
gram, particularly employing codebook-based vec-
tor quantization, to establish a pre-warmed repre-
sentation space that facilitates Mel spectrogram
reconstruction;

2) Brain-audio latent space alignment, utilizing
a brain encoder and pre-warmed quantizer and de-
coder to reconstruct the evoked brain signal’s Mel
spectrogram;

3) Semantic text generation, achieved through
AdalLoRA-based finetuning of the pre-trained
Whisper model, with the reconstructed Mel spec-
trogram as input. The overall three-stage (autoen-
coding, alignment, finetuning) training process of
the proposed BrainECHO is illustrated in Figure 1.

We validate the performance of BrainECHO us-
ing two different public audio-evoked brain signal
datasets: Brennan, which contains EEG data, and
GWilliams, which contains MEG data.

The principal contributions of our work are sum-
marized below:

Autoencoding Alignment Finetuning

Me‘ Pretrained Whisper
model finetuning

l

Decoding text

Discrete autoencoding De“’der Brain-audio latent
space alignment

of audio spectrogram
Discrete brain
representations

Figure 1: Learning process overview of our proposed
BrainECHO framework. BrainECHO follows a three-
stage autoencoding—alignment—finetuning paradigm:
Autoencoding stage is used to warm up the Mel spec-
trogram reconstruction by employing a codebook-based
quantizer to enhance generalizability and robustness.
This stage especially focuses on exploiting discrete rep-
resentations. Alignment stage reconstructs the Mel spec-
trogram from the corresponding aurally evoked brain
signals. This involves designing a new brain encoder
that integrates with the warmed-up quantizer and de-
coder from the first stage. Finetuning stage leverages
the capabilities of the pre-trained Whisper model to
achieve audio-text translation.

Discrete speech
representations

* The proposed BrainECHO framework over-
comes the current flaw in EEG/MEG-to-text
approaches that mistakenly rely on the teacher-
forcing strategy. It achieves semantic decod-
ing with significantly improved results com-
pared to using Gaussian noise as the input.

* We propose breaking down the EEG/MEG-to-
text task into a multi-stage strategy to miti-
gate the biases induced by the overwhelming
capabilities of large language models, while
still leveraging their pre-trained knowledge,
specifically utilizing Whisper in our work.

* We introduce vector-quantized discrete rep-
resentations to enhance the model’s effi-
ciency, achieving state-of-the-art (SOTA) per-
formance on EEG and MEG datasets. Specifi-
cally, we evaluate BrainECHO across various
data split scenarios, which are neglected in
prior research.

2 Related Works

Non-invasive brain signals such as EEG and MEG
offer significant advantages over invasive alter-
natives, particularly in terms of safety and cost-
effectiveness. Significant progress has been made
in decoding text from non-invasive signals.

2.1 Closed-Vocabulary Neural Decoding

Ghazaryan et al. (Ghazaryan et al., 2023) utilized
Word2vec to decode 60 nouns from MEG record-
ings. Meta (Défossez et al., 2023) developed a
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Figure 2: (a) Overview of the BrainECHO model framework. BrainECHO utilizes a three-stage training paradigm
consisting of Mel spectrogram autoencoding, brain-audio latent space alignment and Whisper finetuning. C, 7.
denotes numbers of raw wave channels and timestamps, respectively. (b) Details of the Brain Encoder, which
converts raw EEG/MEG signals into latent representations. d represents the dimension of hidden states and TS
Conv stands for Spatio-Temporal Convolution Networks. More details of Conformer are provided in Appendix A.

model employing wav2vec 2.0 (Baevski et al.,
2020) and contrastive learning to decode speech
from 3-second EEG/MEG signals. However, these
methods are constrained to decode a small set of
words or segments, restricting their applicability in
open-vocabulary text generation.

2.2 Decoder-Only Architectures for
Open-Vocabulary Brain-to-Text Decoding

Recent advancements have leveraged the power-
ful understanding and generation capabilities of
pretrained models, particularly LLMs, to extend
vocabulary from closed to open. In decoder-only
architectures, some researchers have aligned brain
signals with text to guide pretrained generative
models in text generation. For example, Zhao et
al.(Zhao et al., 2024) mapped fMRI data to text em-
beddings to iteratively guide GPT-2 in generating
text. Similarly, Chen et al.(Chen et al., 2024) used
text-aligned fMRI representations as prompts for
GPT-2 to decode language information.

2.3 Seq2seq Architectures for
Open-Vocabulary Brain-to-Text Decoding

Wang et al.(Wang and Ji, 2022) fed transformed
word-level EEG rhythm features into a pretrained
BART model to decode open-vocabulary tokens.
Duan et al.(Duan et al., 2024) integrated discrete
EEG encodings with text-EEG contrastive align-

ment to mitigate individual variability in brain
activity. However, these BART-based methods
rely on teacher forcing during inference. Further-
more, as Jo et al. (Jo et al., 2024) demonstrated,
their performance on noisy data is comparable to
that on EEG data, suggesting that these models
may simply memorize the training data. Recently,
NeuSpeech (Yang et al., 2024b) directly fed raw
MERG signals into a modified, pretrained Whisper
model for text decoding without teacher forcing.
Furthermore, MAD (Yang et al., 2024c¢) introduced
MEG-speech alignment loss to decode sentences
not present in the training data. However, these
Whisper-based methods do not utilize discrete rep-
resentations of the original signals to enhance the
model’s generalization capabilities. Our work in-
tegrates brain-audio discretization and alignment,
aiming to predict high-quality Mel spectrograms
from brain signals that align with Whisper’s input
format. Leveraging Whisper’s advanced speech
recognition abilities, our approach generates sen-
tences that closely mirror the original text.

3 Method

3.1 Task Definition

Given the raw EEG/MEG E, text content 7', and
corresponding audio stimuli A during listening
as mentioned in Section 4.1, the experimental



data can be divided into a series of sentence-level
EEG/MEG-text-speech pairs (¢, t,a). ¢ € RC=*Tz,
where C; and T; represent the channels and times-
tamps of brain signals, respectively. In general, T
varies with the length of the sentence-level audio
segment. Our goal is to decode the corresponding
open-vocabulary tokens ¢ from the brain signal ¢,
with a serving as auxiliary information.

3.2 Model Architecture

Unlike the multi-task joint training employed in
MAD (Yang et al., 2024c), BrainECHO adopts
a three-stage training process. This method re-
duces resource consumption at each training step
and facilitates the prediction of high-quality, high-
resolution Mel spectrograms from brain signals.
Specifically, we extend the spectrogram duration
from 3 seconds, as used in (Défossez et al., 2023;
Yang et al., 2024c), to over 10 seconds, enabling
sentence-level rather than segment-level brain-to-
text translation, thereby preserving the semantics
of the original sentences. The details of the model
are shown in Figure 2. The following sections will
detail each training stage.

3.2.1 Discrete Autoencoding of Audio
Spectrogram

Van den Oord et al. introduced the Vec-
tor Quantized-Variational AutoEncoder (VQ-
VAE) (Van Den Oord et al., 2017) to learn dis-
crete latent representations of audio, video, and
other data types. Building on this approach, several
studies (Li et al., 2023; Sadok et al., 2023; Yang
et al., 2023) have explored representing Mel spec-
trograms using discrete tokens to capture phoneme-
like information. Inspired by these methods, our
first stage involves autoencoding Mel spectrograms,
with the purpose of obtaining a discrete representa-
tion space that is conducive to Mel reconstruction.
Specifically, given a spectrogram m € RTm*Fm
the audio encoder Enc first converts it into a fea-
ture map z, = Enc(m) € Rim*/mxD " where
T, Fyy, and D denote the number of time frames,
frequency bins and latent channels, respectively.
The spectrogram is generated by the Whisper Pro-
cessor, enabling text decoding from the recon-
structed spectrogram using Whisper’s encoder-
decoder architecture. Then, z,, is processed by
a vector quantizer (). Specifically, each latent em-
bedding 2z, € RP (1 < i < t1,1 < j < frn)
is replaced by the nearset vector z;’ from a code-
book C € RY*P_ which consists of N learnable

D-dimensional vectors. Formally, this process is
expressed as follows:

Q) == =

where £ = argmin HZ;]%_CkH2 (1)
ke{1,2,...N}

The reconstructed spectrogram is then obtained by
the audio decoder Dec as: 1 = Dec(z4). The en-
coder and decoder are both composed of ResUNet
blocks (Kong et al., 2021). The training objective
at this stage is defined as follows:

A2 2
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where sg(-) is a function for stopping gradients,
and «, §; are hyperparameters for the quantization
loss and commitment loss weights, respectively.

3.2.2 Brain-Audio Latent Space Alignment

In the second stage, we freeze all the modules
pre-trained in the previous stage and train a brain
encoder to convert raw EEG/MEG signals ¢ into
latent features z.. The brain encoder utilizes a
Conformer-based architecture (Song et al., 2022),
which begins with Spatio-Temporal Convolutional
Networks to process the input signals into a one-
dimensional embedding sequence. The spatial con-
volutional layer reduces the number of input signal
channels to one, while the temporal convolutional
layers downsample the time dimension. This se-
quence is then added to learnable position embed-
dings and fed into a stack of Transformer encoder
blocks. Linear layers and 2D convolutional net-
works subsequently transform the EEG/MEG fea-
tures into representations matching the shape of z,,.
Similarly, z. is input into the frozen quantizer ()
and audio decoder Dec to predict the correspond-
ing Mel spectrogram m. Additionally, we align
the representations of the Mel spectrogram and raw
signals in the latent space. Notably, we employ a
unified codebook to leverage pre-warmed discrete
acoustic tokens for representing brain activity. The
introduction of vector quantization enhances the
stability and generalization of the Mel spectrogram
reconstruction from brain signals, thereby improv-
ing the performance of subsequent text decoding.
Formally, the loss for stage 2 is as follows:

Ly = ||m — Dec(Q(2)) |2 + 7 || 2m — 2|2

3
+ B2 ||z — s9(Q(z:)3



where v and (3, are used to scale the latent align-
ment loss and the commitment loss, respectively.
The intermediate representations of the codebook
and speech provide additional supervisory signals
to guide the generation of Mel spectrograms. We
employ L2 loss rather than CLIP loss (Défossez
et al., 2023; Yang et al., 2024c¢) to generate highly
restored spectrograms that match Whisper’s input.

3.2.3 Whisper Finetuning

After obtaining the predicted Mel spectrogram, it
is fed into the pretrained Whisper-base! model to
decode tokens. To adequately leverage the pre-
trained knowledge embedded in Whisper, we uti-
lize AdalLoRA (Zhang et al., 2023b), as employed
in NeuSpeech (Yang et al., 2024b) and MAD (Yang
et al., 2024c¢), to fine-tune its encoder while keep-
ing the remaining parameters frozen. The objective
is to minimize the cross-entropy loss between the
predicted sentence and the ground truth ¢.

4 Experiments

4.1 Dataset

The Brennan dataset (Brennan and Hale, 2019)
comprises 49 human EEG recordings, of which
33 remained after screening. Participants pas-
sively listened to a 12.4-minute audiobook record-
ing while their EEG signals were recorded. The
GWilliams (Gwilliams et al., 2023) dataset con-
tains raw MEG recordings from 27 English speak-
ers who listened to naturalistic stories for 2 hours.
More details are provided in Appendix B.

4.2 Preprocess

Brain signals in both datasets are preprocessed sim-
ilarly. The EEG signals are notch-filtered at 60
Hz and bandpass-filtered between 0.5 and 99 Hz,
and then resampled to 200 Hz. The MEG signals
are notched at 50 Hz, filtered with 1~58 Hz and
resampled to 100 Hz. Both datasets are normalized
to a range of -1 to 1 using robust scalar.

All audio is resampled to 16,000 Hz to align with
Whisper’s pretraining configuration. To assess the
robustness of our proposed method, we employ
different approaches to generate samples. For the
Brennan dataset, we utilize WhisperX (Bain et al.,
2023), a time-accurate speech recognition system,
to segment the audio into chunks of up to 12 sec-
onds. For the GWilliams dataset, we split the audio

1h'ctps ://huggingface.co/openai/whisper-base.
en

according to the original annotations, resulting in
segments no longer than 24 seconds. This process
generates a series of EEG/MEG-text-speech pairs.

The Whisper processor then converts the speech
into an 80-channel Mel spectrogram m using 25-
ms windows with a stride of 10 ms. To standardize
settings and reduce memory usage, the length of
the Mel spectrograms in GWilliams is downsam-
pled to half its original value, resulting in m having
a consistent shape of (80, 1200). Finally, we ob-
tain 140 and 661 unique sentences from the two
datasets, respectively.

4.3 Dataset Splitting and Validation Strategies

Individual differences and attention levels of sub-
jects can affect EEG signals, making it difficult for
models to generalize across subjects and trials. To
explore the model’s generalization ability, we de-
sign different dataset splitting and validation strate-
gies: random shuffling, session-based, sentence-
based, and subject-based splittings. More details
are provided in Appendix C. Unless otherwise spec-
ified, the Brennan and GWilliams datasets are par-
titioned by subject-based splittings and random
shuffling, respectively, in the following results.

4.4 Implementation Details

The models are trained on Nvidia 3090 GPUs
(24GB). Training on the Brennan and GWilliams
datasets take approximately 4 and 24 hours, respec-
tively, using a single GPU. The hyperparameters
are set as follows: a = 0.5, 81 = 5o = 0.1, v =1,
N = 2048, d = 256, and D = 8. The audio
encoder is configured with a downsampling rate
of 4. We use vanilla Transformer encoder with 4
layers and 8 heads. All EEG/MEG samples are
zero-padded to 2400 in the time dimension. Input
spectrograms are padded uniformly to a length of
3000 with -1 following Whisper’s configuration.
For the GWilliams dataset, the length of the pre-
dicted Mel spectrogram is upsampled by a factor
of 2. When generating with Whisper, we set the
number of beams to 5 for beam search and apply a
repetition penalty of 5.0 with a no-repeat n-gram
size of 2. Further details on the training configura-
tion are provided in Appendix D.

4.5 Experimental Results

4.5.1 Overall Comparison

We use BLEU (Papineni et al., 2002), ROUGE-
1 (Lin, 2004) and Word Error Rate (WER) to eval-
uate decoding performance. BLEU and ROUGE-1
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BLEU-N (%) 1 ROUGE-1 (%)t WER (%) |

Input Method N=1 N=2 N=3 N=4 P R F

Noise NeuSpeech (Yang et al., 2024b) 8.45 1.78 0.43 0 10.26 21.61 13.02 198.31
Noise BrainECHO 4.75 1.10  0.28 0 1125 781 8.52 105.27
EEG feature ~ EEG-to-Text (Wang and Ji, 2022)  8.82 3.15 1.90 144  10.13 21.61 13.12 233.99
EEG NeuSpeech (Yang et al., 2024b) 8531 8438 8398 8375 82.60 8273 82.64 16.97
EEG MAD (Yang et al., 2024c) 80.34 79.10 7846 78.15 81.00 90.76 83.79 42.14
EEG BrainECHO 89.78 89.06 88.74 88.55 87.05 8727 87.13 11.72
EEG BrainECHO w/ tf 98.82 98.74 98.68 98.64 9845 98.44 98.45 1.18

Table 1: Overall comparison of decoding performance on the Brennan dataset. By default, all methods are evaluated
without teacher forcing. The metrics with teacher forcing (w/ #f) are further explored. Further results and discussions

are provided in Appendix E.

are used to evaluate the quality of text generation,
while WER is used to calculate error rate based on
edit distance. As shown in Table 1, we compare
our model with popularly-referred brain-to-text ar-
chitectures, EEG-to-Text (Wang and Ji, 2022) and
NeuSpeech (Yang et al., 2024b). Obviously, our
method demonstrates remarkable decoding perfor-
mance, achieving BLEU-{1, 2, 3, 4} of 89.78,
89.06, 88.74 and 88.55, as well as WER of 11.27
without teacher forcing. The results indicate that
BrainECHO generates text highly consistent with
the ground truth. Specifically, in terms of BLEU-4,
BrainECHO outperforms the previous baseline and
current SOTA method by 87.11 (+6049%) and 4.8
(+5.73%) respectively. When using teacher forcing,
BrainECHO achieves BLEU-4 of 98.45, which is
nearly perfect, highlighting the unrealistic metrics
produced by teacher forcing evaluation.

Additionally, when random Gaussian noise is
input into BrainECHO, the translation metrics are
significantly low, indicating that BrainECHO cap-
tures the intrinsic connection between brain signals
and text, rather than simply memorizing sentences
from the training set. Intuitively, BrainECHO is
more resistant to noise than NeuSpeech (Yang et al.,
2024b). Notably, the model ideally should not
respond to noise, with a WER expected to be 1.
Therefore, a high WER (> 1), suggesting the model
outputs excessive irrelevant content, is not neces-
sarily a desirable result.

4.5.2 Different Datasets and Splitting
Strategies

The decoding metrics of BrainECHO across differ-
ent datasets and splitting strategies are shown in
Table 2. The model demonstrates optimal perfor-
mance on the Brennan and GWilliams dataset when
split by sentences and sessions, respectively. No-
tably, the performance differences across various

BLEU-N (%) 1

Dataset Split N=1 N=2 N=3 N=4
Brennan Subject 89.78 89.06 88.74 88.55
Sentence 89.24 88.52 88.18 88.01
GWilliams RS 7335 7266 7246 7242
Session  75.24 7457 7434 74.27
Subject 75.05 7438 74.18 74.14
Sentence  73.58 7299 7282 72.79

Table 2: Comparison of decoding performance on dif-
ferent datasets and splits. RS denotes random shuffling.

splitting strategies are not significant, indicating
that BrainECHO is robust and effectively alleviates
covariate shift among different subjects or trials
without the need for external information (e.g., sub-
ject or trial identifiers), provided that all unique
sentences are encountered during training. In con-
trast, the brain module used in (Défossez et al.,
2023; Yang et al., 2024¢c) employs distinct projec-
tion matrices for each subject to mitigate individual
differences, yet it cannot be generalized to unseen
subjects directly.

4.5.3 Examples of Generated Sentences

A selection of samples generated from different
methods are shown in Table 4. These examples in-
dicate that BrainECHO can produce sentences that
closely match the original text, even when the refer-
ence is long and intricate. Remarkably, even with-
out the final fine-tuning of Whisper, BrainECHO
still generates results highly relevant to the original
text, highlighting the effectiveness of brain-audio
latent space alignment (stage 2). In contrast, EEG-
to-Text (Wang and Ji, 2022) experiences difficulties
in generating semantically relevant sentences, and
NeuSpeech (Yang et al., 2024b) may generate con-
tent unrelated to the ground truth when decoding
long sentences, which can have a significant impact



BLEU-N (%) 1

Split Autoencode  N=1 N=2 N=3 N=4
Subject Separate 89.78 89.06 88.74 88.55
Joint 89.79 89.08 88.73 88.55
Sentence  Separate 89.24 88.52 88.18 88.01
Joint 89.91 89.22 88.88 88.69

Table 3: Comparison of decoding performance using
separate and joint autoencoding on the Brennan dataset.
By default, we employ separate autoencoding.

on practical applications in high-precision decod-
ing scenarios. Additional examples are provided in
Appendix F.

4.6 Ablation Study and Analysis
4.6.1 Autoencoding

We compare the decoding performance when the
autoencoding task (stage 1) is applied separately
to the Mel spectrograms from individual datasets
versus both datasets combined. The results, pre-
sented in Table 3, indicate that joint autoencoding
results in either stable or slightly improved met-
rics (except for BLEU-3) compared to separate
autoencoding when splitting Brennan by subject.
Additionally, all metrics improve when splitting
by sentence. This suggests that incorporating Mel
spectrograms from other datasets during autoencod-
ing enhances the model’s ability to extract richer
discrete speech representations, thereby enhancing
its generalizability.

4.6.2 Downsampling Ratio

To assess the impact of the downsampling ratio r,
we evaluate BrainECHOQO’s performance at r values
of 2,4, 8, and 16, while holding other hyperparam-
eters constant. Assuming each pixel in the spec-
trogram is represented by 8 bits, the correspond-
ing reductions in bit usage are approximately 2.9,
11.6, 46.5, and 186.1, respectively. As illustrated
in Figure 3, increasing r exacerbates information
loss, making accurate reconstruction of Mel spec-
trograms for sentence decoding more challenging.
Interestingly, the decoding performance at r = 2
is not as strong as at r = 4, indicating that while a
larger feature map enhances reconstruction quality,
it may also introduce translation-irrelevant informa-
tion, thereby complicating the fine-tuning of Whis-
per. Therefore, selecting a moderate r is essential
to optimize latent representation capacity.

Metrics Recon Loss
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Figure 3: Changes of BLEU-1 and Mel spectrogram
reconstruction loss with different downsampling ratio.
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Figure 4: Translation performance using various code-
book sizes on Brennan dataset.

4.6.3 Codebook Size

To explore the impact of the quantizer, we inves-
tigate the performance of BrainECHO with code-
book sizes ranging from 1024 to 4096. As shown
in Figure 4, the performance peaks at a codebook
size of 4096. However, the metrics do not increase
linearly with codebook size. When the codebook
size increases from 1024 to 2048, the decoding
performance improves, but it decreases when the
size further increases to 3072. This indicates that a
smaller codebook may not capture diverse acoustic
representations, while a larger codebook may in-
crease training difficulty and computational burden.
Thus, we choose 2048 as the codebook size for
balancing performance and efficiency.

4.6.4 Three Training Stages

To verify the effectiveness of our proposed three-
stage training, we incrementally remove each stage
and observe the corresponding changes in perfor-
mance. As presented in Table 5, when the autoen-
coding stage is removed—where the quantizer and
audio decoder are randomly initialized—BLEU-4
drops to 85.74 (-3.17%). Further removal of the
brain-audio alignment stage leads to an abnormal
increase in BLEU, highlighting the challenge of



Generated samples on Brennan

Ground Truth There seemed to be no use in waiting by the little door, so she went back to the table.

EEG-to-Text But they were all locked, and when Alice had been all the way down one side and up the other trying
(1) every door, she did not care how she was ever to get out again.

NeuSpeech There seemed to be no use in waiting by the little door, so she went back to the table.

BrainECHO w/o ft  There seemed to be no use in waiting by the little door, so she went back to the table.

BrainECHO There seemed to be no use in waiting by the little door, so she went back to the table.

Ground Truth that she’d never before seen a rabbit with either a waistcoat pocket or a watch to take out of it, and burning

with curiosity, she ran across the field after it, and fortunately

(2) EEG-to-Text

how she longed to get out of that dark hall and wander about among those beds of bright flowers and

those cool fountains, but she did not even get her head through the doorway.

NeuSpeech

But they were all locked, and when Alice had been all the way down one side and up the other trying

every door, she walked sadly down the middle, wondering how she was ever to get out again.

BrainECHO w/o ft

But she will never be foreseen around it, with either a waistcoat pocket or a watch to take out of it

and burn in curiosity. She ran across the field after it unfortunately.

BrainECHO

that she’d never before seen a rabbit with either a waistcoat pocket or a watch to take out of it and

burning with curiosity, she ran across the field after it, and fortunately

Generated samples on GWilliams

Ground Truth
EEG-to-Text

I seen him since high school maybe twenty years before and we were never buddies in the first place
It was a long time since I had last seen him in the flesh

(1) NeuSpeech

I seen him since high school when I was young, at least before and we were never buddies in any

place.
BrainECHO w/o ft 1 hadn’t seen him since high school, maybe 20 years before and you remember when he’s in the first
place.
BrainECHO I seen him since high school maybe twenty years before and we were never buddies in the first place
Ground Truth My patience was long gone and I was back in the car to warming up when Acres tapped on the window

and told me he had found whatever he was looking for

(2) EEG-to-Text
NeuSpeech

He said he had no idea how long it would take him to get back home
My patience was long gone and I was back in the car. But when I heard that many of you were looking

for whatever it was, but what about this?

BrainECHO w/o ft

My patience was long gone, and I was back in the car to warming up when acres tapped on the

window and Tunch told me he had found whatever he was looking for.

BrainECHO

My patience was long gone and I was back in the car to warming up when Acres tapped on the

window and told me he had found whatever he was looking for

Table 4: Comparison of decoding sentences generated by different methods, where bold and underline indicate
an exact match and a similar match, respectively, between prediction and ground truth. All methods use the same
generation configuration. w/o ft means decoding by inputing the predicted Mel spectrogram into Whisper directly
without fine-tuning in the final stage. Only examples of NeuSpeech are reported rather than those of MAD because
of NeuSpeech’s overall superior performance and the similarity of its method to MAD’s.

Training Stage BLEU-N (%) 1

Au Al F N=I N=2 N=3 N=4
vV VvV V' 8978 89.06 88.74 88.55
X VvV VvV 8713 8629 8592 8574
X X VvV 8763 8687 8654 8638
v /X 3964 3449 3107 2832

Table 5: Ablation study of training stages on the Bren-
nan dataset. The stages labeled Au, Al, and F corre-
spond to Mel autoencoding, brain-audio latent space
alignment, and Whisper fine-tuning, respectively.

directly constructing a representation space from
the brain signals to the Mel spectrogram. However,
by pre-warming a discrete representation space, the
reconstruction quality and stability are enhanced.
Notably, even without fine-tuning, BrainECHO
achieves impressive performance based solely on
the predicted Mel spectrogram, suggesting that it is

feasible to extract semantically rich audio features
from neural signals directly.

5 Conclusion

This paper introduces a novel three-stage brain-
to-text framework, BrainECHO, that addresses
the shortcomings of prior methods. These meth-
ods relied on teacher forcing and failed to com-
pare model performance against pure noise in-
puts. BrainECHO bridges the latent spaces of
text and corresponding aurally evoked brain sig-
nals through vector-quantized spectrogram recon-
struction and fine-tuned use of the Whisper model.
It achieves SOTA performance on public EEG
and MEG datasets across various experimental set-
tings. By extracting deep semantic information
from brain signals, BrainECHO provides valuable
insights for future research in the brain-to-text de-
coding paradigm in the BCI field.



Limitations

The limitations of our proposed work are summa-
rized as follows:

Dataset Limitations

Although our method has produced promising re-
sults, it is currently suitable only for datasets of
audio-evoked neural signals because of the brain-
audio feature alignment. Future work can address
the limitation by collecting datasets with richer
corpora, devising appropriate data augmentation
methods, and implementing new modality align-
ment frameworks.

Experiment Limitations

In our experimental setting, all data are strictly
segmented on a sentence-by-sentence basis before
being fed into the model, which may not align
with real-world decoding scenarios, due to the po-
tential unknown length of the signals to be trans-
lated. Moreover, according to the results reported
by NeuSpeech (Yang et al., 2024b), sentence-level
decoding may face overfitting issues, as neural
signals of different lengths need to be padded to
the same length before fed into the model. How-
ever, under the condition that there is a correla-
tion between signal length and sentence length, our
approach may help the model decode by implic-
itly injecting the length information of the signal.
Moreover, as reported by NeuSpeech (Yang et al.,
2024b), sentence-level decoding might encounter
overfitting problems. The reason is that neural
signals of varying lengths should be padded to a
consistent length before being fed into the model.
When a correlation exists between signal length
and sentence length, it is possible that our proposed
approach inadvertently facilitates the model’s de-
coding by implicitly integrating the length informa-
tion of the signal. MAD (Yang et al., 2024c) and
NeuGPT (Yang et al., 2024a) showed an unsatisfac-
tory result with a uniform signal length, suggesting
that the current task of generating open-vocabulary
text based solely on the neural signal pattern re-
mains extremely challenging. Our forthcoming
research efforts will focus on leveraging LLMs and
more efficient alignment strategies to diminish the
dependence on length information.

Ethical Statement

This study uses publicly available datasets and does
not involve the collection of any brain activity data

from human subjects. Therefore, our research does
not have any adverse impact on human society.
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A Conformer

Conformer utilizes a Convolution-Transformer ar-
chitecture to capture both local and global features.
The one-dimensional temporal and spatial convolu-
tion layers in TS Conv capture the local information
of neural signals, while the self-attention modules
in the Transformer blocks extract the global depen-
dencies of these local time features. The detailed
structure of Conformer is provided in Table 6.
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B Datasets

B.1 Brennan

The Brennan dataset (Brennan and Hale, 2019) con-
tains raw electroencephalography (EEG) data col-
lected from 49 human subjects. Participants were
asked to passively listen to a 12.4-minute audio-
book story of chapter one of Alice’s Advenctures
in Wonderland, while their EEG data was recorded.
Participants completed an eight-question multiple
choice questionnaire concerning the contents of
the story at the end of the experimental session.
We retain 33 participants’ data who achieved high
scores.

Participants were fitted with an elastic cap with
61 actively-amplified electrodes and one ground
electrode (actiCap, Brain Products GmbH). Elec-
trodes were distributed equidistantly across the
scalp according to the Easycap M10 layout. Con-
ductive gel was inserted into each electrode to re-
duce impedences to 25 kOhms or below. Data were
recorded at 500 Hz between 0.1 and 200 Hz refer-
enced to an electrode placed on the right mastoid
(actiCHamp, Brain Products GmbH).

The stimulus chapter originally contains 84
sentences. Since the annotation files only pro-
vide word-level annotations, directly concatenating
words to form sentences would result in the ab-
sence of punctuation marks. Therefore, we use
WhisperX (Bain et al., 2023) to segment the audio
stimulus into segments of no more than 12 seconds,
resulting in 140 sentences.

B.2 GWilliams

GWilliams (Gwilliams et al., 2023), known as the
“MEG-MASC” dataset, provides raw magnetoen-
cephalography (MEG) data from 27 English speak-
ers who listened to two hours of naturalistic stories.
Each participant performed two identical sessions,
involving listening to four fictional stories from the
Manually Annotated Sub-Corpus (MASC). The
four stories are: ‘LW1’ (861 words, 5 min 20 sec),
‘Cable Spool Boy’ (1948 words, 11 min), ‘Easy
Money’ (3541 words, 12 min 10 sec) and ‘The
Black Willow’ (4652 words, 25 min 50 sec).

An audio track corresponding to each of these
stories was synthesized using Mac OS Mojave ©
version 10.14 text-to-speech. To help decorrelate
language features from acoustic representations,
both voices and speech rate were varied every 5-20
sentences. Specifically, three distinct synthetic
voices: ‘Ava’, ‘Samantha’ and ‘Allison’ are used
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speaking between 145 and 205 words per minute.
Additionally, the silence between sentences are var-
ied between 0 and 1,000ms. Both speech rate and
silence duration were sampled from a uniform dis-
tribution between the min and max values.

Each story was divided into ~3 min sound files.
In between these sounds— approximately every 30
s— a random word list generated from the unique
content words (nouns, proper nouns, verbs, adverbs
and adjectives) selected from the preceding 5min
segment presented in random order were played.

Within each ~1 h recording session, participants
were recorded with a 208 axial-gradiometer MEG
scanner built by the Kanazawa Institute of Technol-
ogy (KIT), and sampled at 1,000 Hz, and online
band-pass fltered between 0.01 and 200Hz while
they listened to four distinct stories through binau-
ral tube earphones (Aero Technologies), at a mean
level of 70dB sound pressure level.

To ensure a fair comparison with
NeuSpeech (Yang et al., 2024b), we follow
its experimental setup by concatenating words with
the same sentence ID into full sentences, based on
the annotation files. This process results in 661
sentences.

C Dataset Splitting

In this section, we detail the dataset splitting strate-
gies employed in our study. As shown in Table 7,
four distinct strategies are utilized, each present-
ing different levels of evaluation difficulty. The
random shuffling strategy is the most basic, incor-
porating data from all subjects and trials into the
training samples. The sentence-based strategy is
more challenging, simulating scenarios where sam-
ples from different participants are not aligned, re-
sulting in missing data for some sentences for each
participant. The session-based and subject-based
strategies are the most difficult but also the most
realistic, as they assess the model’s ability to gener-
alize to new trials and subjects, respectively. This
capability is crucial for the practical application of
language-based BCIs. The Brennan dataset utilizes
only two splitting methods due to its inclusion of
data from a single trial. Consequently, splitting by
sentence yields results similar to those obtained by
random shuffling.

D Implementation Details

The training configurations for our model vary
across different datasets and training stages. De-



tailed settings for each training phase are outlined
in Table 8. The final model is selected based on
the lowest validation loss. Notably, no data aug-
mentation techniques are employed, and no subject-
related information is provided to the model.

E Evaluation Results

Evaluation metrics on the GWilliams dataset across
various splitting strategies are presented in Ta-
ble 9. NeuSpeech (Yang et al., 2024b), the pre-
vious SOTA model for MEG-to-text translation,
serves as the baseline for comparison. MAD (Yang
et al., 2024c) introduces brain-audio alignment on
the basis of NeuSpeech. When using random shuf-
fling, BrainECHO achieves a BLEU-4 score of
72.42, outperforming NeuSpeech by 24.64 points
(+51.57%). Additionally, with session-based split-
ting, BrainECHO attains a BLEU-1 score of 75.24,
exceeding NeuSpeech by 22.08 points (+41.53%).
These results indicate that BrainECHO can gen-
erate text that closely matches the ground truth.
Additionally, the results we reproduced on MAD
are unsatisfactory on both datasets, especially on
Gwilliams, indicating that optimizing the CLIP loss
between neural signals and audio representations
is particularly challenging when the input signal is
long (the original experimental setup in MAD used
only a 4-second time length).

F Generated Samples

To intuitively demonstrate the powerful decoding
ability of BrainECHO, additional translated exam-
ples for the Brennan and GWilliams datasets are
presented in Table 10 and 11, respectively. For
most test samples, our method demonstrates ac-
curate decoding. However, for certain samples,
our model generates completely unrelated content,
such as "There were doors all around the hall."
and "What a curious feeling, said Alice." in Ta-
ble 10. This suggests that the model may struggle
with discriminability in sentences of similar length,
highlighting the persistent challenge of extracting
semantically relevant patterns from low signal-to-
noise non-invasive signals.

G Reconstructed Mel Spectrograms

Figure 5 and 6 display some samples of Mel spec-
trograms reconstructed from the brain signals for
the Brennan and GWilliams datasets, respectively.
These samples demonstrate that BrainECHO can
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produces Mel spectrograms that are largely con-
sistent with the ground truth. Notably, the model
effectively restores fine details and accurately pre-
dicts the intervals and silent segments in the spec-
trograms. These results highlight the model’s ex-
pressive and predictive capabilities, as it can extract
Mel spectrograms from brain signal segments ex-
ceeding 20 seconds—a feat not achieved by previous
methods.



Layer Type \ Out Channels Filter Size Stride Padding Input Output
Conv2D 64 (1,5) (1,2) 2 IxCxT. 64xCxZL
BatchNorm2D + ELU - - - - 64xCxL  64xCxie
Conv2D 128 (1,3) (1,2) 1 64xCxL 128xCx %
BatchNorm2D + ELU - - - - 128xCx L 128xCx L
Conv2D 256 (.1 1 0 128x Cx L= 256 x O x L
BatchNorm2D + ELU - - - - 256 x C'x L= 256 x 1 x L

Rearrange ‘ - - - - 256 x 1 x % % X 256

Table 6: The structure of TS Conv. C' and 7. denote the number of EEG/MEG channels and timestamps,

respectively.
Dataset Split Details Result
Brennan Sentence  For each participant, 10% of unique sentences are allocated to the test set. The 3696:462:462
remaining sentences are shuffled and split into train:valid 8:1. Note that the test set
for each subject may contain different sentences.
Subject 3 participants (about 10% of the total number of subjects) are selected at random  3780:420:420

for the test set, 3 for the validation set, and the remaining 27 for the training set.

GWilliams RS

All data is random shuffled and divided into train:valid:test 8:1:1.

23339:2917:2918

Session

Random shuffled data of session 0 is divided into train:valid 8:1 and data of session
1 is held out as test set.

13129:2976:13069

Sentence

It is the same as Brennan above.

23305:2914:2955

Subject

2 participants (about 10% of the total number of subjects) are selected at random
for the test set, 2 for the validation set, and the remaining 23 for the training set.

24137:2469:2568

Table 7: Details of different dataset split settings. RS denotes random shuffling.

Max Learning Rate

Brennan GWilliams
Configuration P A F P A F
Batch Size 16 16 16 16 8 16
Max Epoch 400 40 40 100 40 40
Optimizer AdamW, with weight decay = le-2, betas = (0.9,0.999)

2e-4 le4 led4 2e4 led 2e-4

LR Scheduler Cosine Annealing, with T_max = Max Epoch

Early Stopping Patience 4

Table 8: Details of the experimental configuration. P, A, F denote the various training stages: pretraining, alignment
and finetuning, respectively.

BLEU-N (%) 1 ROUGE-1 (%)1 WER (%) |
Split Input Method N=1 N=2 N=3 N=4 P R F
Random  MEG feature EEG-to-Text (Wang and Ji, 2022)  9.21 2.13 057 014 974 10.73 11.38 118.25
Shuffling MEG NeuSpeech (Yang et al., 2024b) 60.3 5526 5124 47.78 60.88 59.76 58.73 56.63
MEG NeuSpeech (reproduced) 50.49 46.85 4442 4255 4639 5248 47.10 71.17
MEG MAD (Yang et al., 2024c) 3.93 0.42 0 0 8.98 6.85 7.26 105.33
MEG BrainECHO 7335 72.66 72.46 7242 69.66 70.12 69.73 31.44
Session MEG NeuSpeech (Yang et al., 2024b) 53.16 - - - - - - -
MEG BrainECHO 7524 7457 7434 7427 7294 72.84 72.78 29.59
Sentence MEG BrainECHO 73.58 7299 7282 72779 7038 70.75 70.73 31.11
Subject MEG BrainECHO 75.05 7438 7418 7414 7183 72.02 71.72 29.80

Table 9: Overall comparison of decoding performance on the GWilliams dataset

teacher forcing.
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. All methods are evaluated without



Ground Truth

There were doors all around the hall.

@ Predicted not much larger than a rat hole.
2) Ground Truth  For you see, as she couldn’t answer either question, it didn’t much matter which way she put it.
Predicted For you see, as she couldn’t answer either question, it didn’t much matter which way she put it.
3) Ground Truth  When she thogght it over afterwards, it occurred to her that she ought to have wondered at this, but at the time it
all seemed quite natural.
Predicted When she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the
time it all seemed quite natural.
@) Ground Truth I wonder how many miles I've fallen by this time, she said aloud.
Predicted I wonder how many miles I’ve fallen by this time, she said aloud.
) Ground Truth  and that if you cut your finger very deeply with a knife, it usually bleeds.
Predicted and that if you cut your finger very deeply with a knife, it usually bleeds.
) Ground Truth I can creep under the door, so either way I’ll get into the garden, and I don’t care which happens.
Predicted I can creep under the door, so either way I’ll get into the garden, and I don’t care which happens.
) Ground Truth ~ But it’s no use now, thought poor Alice, to pretend to be two people while there’s hardly enough of me to make
one respectable person.
Predicted But it’s no use now, thought poor Alice, to pretend to be two people while there’s hardly enough of me to
make one respectable person.
®) Ground Truth Sh.e was now only ten inches‘high, and her face brightened up at the thought that she was now the right size for
going through the little door into that lovely garden.
Predicted She was now only ten inches high, and her face brightened up at the thought that she is now the right size
for going through the little door into that lovely garden.
) Ground Truth  for she had read seyeral nice little histories about children who’d gotten burnt and eaten up by wild beasts and
other unpleasant things.
Predicted for she had read several nice little histories about children who’d gotten burnt and eaten up by wild beasts
and other unpleasant things.
(10) Ground Truth ~ What a curious feeling, said Alice.
Predicted This time, she found a little bottle on it.
an Ground Truth ~ Once or twice she peeped into the book her sister was reading.
Predicted Once or twice she peeped into the book her sister was reading.
12) Ground Truth  how she longed to get out of that dark hall and wander about among those beds of bright flowers and those cool
fountains, but she could not even get her head through the doorway.
Predicted how she longed to get out of that dark hall and wander about among those beds of bright flowers and
those cool fountains, but she could not even get her head through the doorway.
(12) Ground Truth  Either the well was very deep, or she fell very slowly.
Predicted Either the well was very deep, or she fell very slowly.
(13) Ground Truth  But alas for poor Alice, when she got to the door...
Predicted But alas for poor Alice, when she got to the door...
(14) Ground Truth ~ For my end, you know, said Alice to herself, in my going out altogether like a candle.
Predicted For my end, you know, said Alice to herself, in my going out altogether like a candle.
(15) Ground Truth Do you think you could manage it?
Predicted Do you think you could manage it?
Table 10: Additional samples generated on Brennan dataset. Bold denotes a correct match.
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€))

Ground Truth

Roy stooped to pick up a big white rock that looked like a dirty lump of chalk and handed it to Chad

Predicted Roy stooped to pick up a big white rock that looked like a dirty lump of chalk and handed it to Chad
@) Ground Truth  Arthur and his wine
Predicted I may finish this story
3) Ground Truth  holding fidgeting conveyed glanced after sure rotting believing suppose water malignant replied
Predicted Holding fidgeting conveyed glanced after sure rotting believing suppose water malignant replied
@ Ground Truth  We spent the next hour stomping around the hill while he said things like it was right here
Predicted We spent the next hour stomping around the hill while he said things like it was right here
) Ground Truth  there sounded slipped told mentioned for device issued all kentucky traffic whoever voice pushing
Predicted There sounded slipped told mentioned for device issued all kentucky traffic whoever voice pushing
) Ground Truth  Collapsing at iFs base Allan wrapped his arms around the stoic tree and let fqrth amoan a cry of purest agony
that escaped him as the first tears seeped from the corners of his eyes and slid down his cheeks falling to the
ground and seeping though the fallen leaves and needles to join the water of the stream flowing through the
ground beneath them
Predicted Collapsing at its base Allan wrapped his arms around the stoic tree and let forth a moan a cry of purest
agony that escaped him as the first tears seeped from the corners of his eyes and slid down his cheeks
falling to the ground and seeping though the fallen leaves and needles to join the water of the stream
flowing through the grounds beneath them
) Ground Truth ~ She seemed so self conscious and shallow on the outside but having that incredible gift
Predicted She seemed so self conscious and shallow on the outside but having that incredible gift
®) Ground Truth It s hail across the and Tara spun to retake her seat at the helm
Predicted I shall consider it in the meantime however I must be off
©) Ground Truth I put away the cell and used the motion to cover checking the knife in my sleeve and used one leg to check the
other in my sock
Predicted But I always should come now immediately before the probe is reported late
(10) Ground Truth  You could step on that marker and make the gestures the device and it would be like pushing a button in a very
complex machine hu
Predicted It speaks to the deepest instinct within us all yet is entirely original
an Ground Truth  destroyed another story last night
Predicted Destroyed another story last night
(12) Ground Truth ~ Chad finished formula but this time he mind that Roy fell for it
Predicted Chad finished formula but this time he mind that Roy fell for it
(13) Ground Truth  remote room voice truck would so what going silver taught screaming toads play being
Predicted Remote room voice truck would so what going silver taught screaming toads play being
(14) Ground Truth ~ Tell them and they will create an audience
Predicted Tell them and they will create an audience
(15) Ground Truth  Allan took a sandwich between his fingers
Predicted This is the ounces which I mentioned at the restaurant

Table 11: Additional samples generated on the GWilliams dataset. Bold denotes a correct match.
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Figure 5: Predicted Mel spectrograms on Brennan dataset.
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Figure 6: Predicted Mel spectrograms on the GWilliams dataset. For visualization purposes, only the first half of the
Mel spectrograms are displayed.
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