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Abstract

Recent advances in decoding language from001
brain signals (EEG and MEG) have been sig-002
nificantly driven by pre-trained language mod-003
els, leading to remarkable progress on pub-004
licly available non-invasive EEG/MEG datasets.005
However, previous works predominantly utilize006
teacher forcing during text generation, leading007
to significant performance drops without its use.008
A fundamental issue is the inability to estab-009
lish a unified feature space correlating textual010
data with the corresponding evoked brain sig-011
nals. Although some recent studies attempt012
to mitigate this gap using an audio-text pre-013
trained model, Whisper, which is favored for014
its signal input modality, they still largely over-015
look the inherent differences between audio016
signals and brain signals in directly applying017
Whisper to decode brain signals. To address018
these limitations, we propose a new multi-stage019
strategy for semantic brain signal decoding via020
vEctor-quantized speCtrogram reconstruction021
for WHisper-enhanced text generatiOn, termed022
BrainECHO. Specifically, BrainECHO succes-023
sively conducts: 1) Discrete autoencoding of024
the audio spectrogram; 2) Brain-audio latent025
space alignment; and 3) Semantic text gener-026
ation via Whisper finetuning. Through this027
autoencoding–alignment–finetuning process,028
BrainECHO outperforms state-of-the-art meth-029
ods under the same data split settings on two030
widely accepted resources: the EEG dataset031
(Brennan) and the MEG dataset (GWilliams).032
The innovation of BrainECHO, coupled with033
its robustness and superiority at the sentence,034
session, and subject-independent levels across035
public datasets, underscores its significance for036
language-based brain-computer interfaces.037

1 Introduction038

Decoding text from brain activity, such as electroen-039

cephalography (EEG) and magnetoencephalogra-040

phy (MEG), is a critical and frontier research topic,041

that can provide a foundation for language-based042

brain-computer interfaces (BCI) by enabling di- 043

rect text input through brain signals. In the long 044

term, accurate real-time translation of human brain 045

signals can promote the widespread application of 046

BCI technology in medicine, assistive technology, 047

and entertainment, bringing new possibilities to 048

human life. 049

With the rapid developments in natural language 050

processing (NLP), automatic speech recognition 051

(ASR), and other fields, researchers have leveraged 052

the powerful language understanding and generat- 053

ing capabilities of pretrained large language mod- 054

els (LLMs) for neural decoding tasks (Wang and 055

Ji, 2022; Duan et al., 2024; Yang et al., 2024b,c), 056

making it possible to accurately decode text stimuli 057

from non-invasive signals. EEG-to-Text (Wang 058

and Ji, 2022) is the first work to decode open- 059

vocabulary tokens from encoded word-level EEG 060

rhythm features with the pretrained large model 061

BART (Lewis et al., 2020). Furthermore, De- 062

Wave (Duan et al., 2024) used sentence-level raw 063

EEG signals to perform EEG-to-text decoding with- 064

out eye movement event markers. 065

Later on, several BART-based methods (Xi et al., 066

2023; Feng et al., 2023; Amrani et al., 2024) were 067

introduced, predominantly employing a pretraining- 068

finetuning paradigm. These methods first align 069

EEG representations with pretrained text embed- 070

dings before feeding them into BART for finetun- 071

ing. Although these approaches have yielded im- 072

pressive results, they rely on a teacher-forcing gen- 073

eration strategy, wherein the model depends on the 074

ground truth preceding text during each token pre- 075

diction. This setting does not accurately reflect 076

the model’s performance in real-world scenarios. 077

These methods show poor decoding performance 078

without teacher forcing. 079

To address this limitation, NeuSpeech (Yang 080

et al., 2024b) and MAD (Yang et al., 2024c) treat 081

raw MEG signals as a specialized form of speech, 082

transforming MEG signals and feeding them into a 083
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pre-trained Whisper model (Radford et al., 2023),084

which is trained on large-scale audio-text pairs,085

for end-to-end text decoding without teacher forc-086

ing. However, these approaches primarily focus on087

mapping continuous brain signals to discrete text088

without compressing the signals into discrete repre-089

sentations, thereby limiting the model’s decoding090

accuracy and generalization capabilities.091

Extensive researches in speech recogni-092

tion (Zhang et al., 2023a; Puvvada et al., 2024)093

demonstrate that discrete representations preserve094

more semantic information for translation com-095

pared to conventional speech features like Fbank,096

thanks to their carefully designed self-supervised097

learning paradigms. While DeWave (Duan et al.,098

2024) aligns discrete representations of input EEG099

signals and text, it assumes a chronological order100

for the discrete token sequence, requiring a highly101

capable feature extractor. Considering the natural102

temporal alignment between audio-evoked brain103

signals and audio stimuli, aligning raw signals and104

speech within a discrete space leverages implicit105

temporal properties, thereby reducing the difficulty106

of converting neural signals into human language.107

Therefore, we propose a novel multi-stage108

semantic decoding framework for EEG/MEG109

brain signals, aurally evoked by semantic au-110

dio, through vEctor-quantized speCtrogram recon-111

struction for WHisper-enhanced text generatiOn,112

termed BrainECHO. Specifically, BrainECHO ex-113

ecutes the following steps:114

1) Discrete autoencoding of the audio spectro-115

gram, particularly employing codebook-based vec-116

tor quantization, to establish a pre-warmed repre-117

sentation space that facilitates Mel spectrogram118

reconstruction;119

2) Brain-audio latent space alignment, utilizing120

a brain encoder and pre-warmed quantizer and de-121

coder to reconstruct the evoked brain signal’s Mel122

spectrogram;123

3) Semantic text generation, achieved through124

AdaLoRA-based finetuning of the pre-trained125

Whisper model, with the reconstructed Mel spec-126

trogram as input. The overall three-stage (autoen-127

coding, alignment, finetuning) training process of128

the proposed BrainECHO is illustrated in Figure 1.129

We validate the performance of BrainECHO us-130

ing two different public audio-evoked brain signal131

datasets: Brennan, which contains EEG data, and132

GWilliams, which contains MEG data.133

The principal contributions of our work are sum-134

marized below:135

Decoder

Autoencoding Alignment Finetuning
Discrete autoencoding
of audio spectrogram

Discrete speech
representations

Brain-audio latent
space alignment

Discrete brain
representations

Pretrained Whisper
model finetuning

Decoding text

Mel

Quantizer

Figure 1: Learning process overview of our proposed
BrainECHO framework. BrainECHO follows a three-
stage autoencoding–alignment–finetuning paradigm:
Autoencoding stage is used to warm up the Mel spec-
trogram reconstruction by employing a codebook-based
quantizer to enhance generalizability and robustness.
This stage especially focuses on exploiting discrete rep-
resentations. Alignment stage reconstructs the Mel spec-
trogram from the corresponding aurally evoked brain
signals. This involves designing a new brain encoder
that integrates with the warmed-up quantizer and de-
coder from the first stage. Finetuning stage leverages
the capabilities of the pre-trained Whisper model to
achieve audio-text translation.

• The proposed BrainECHO framework over- 136

comes the current flaw in EEG/MEG-to-text 137

approaches that mistakenly rely on the teacher- 138

forcing strategy. It achieves semantic decod- 139

ing with significantly improved results com- 140

pared to using Gaussian noise as the input. 141

• We propose breaking down the EEG/MEG-to- 142

text task into a multi-stage strategy to miti- 143

gate the biases induced by the overwhelming 144

capabilities of large language models, while 145

still leveraging their pre-trained knowledge, 146

specifically utilizing Whisper in our work. 147

• We introduce vector-quantized discrete rep- 148

resentations to enhance the model’s effi- 149

ciency, achieving state-of-the-art (SOTA) per- 150

formance on EEG and MEG datasets. Specifi- 151

cally, we evaluate BrainECHO across various 152

data split scenarios, which are neglected in 153

prior research. 154

2 Related Works 155

Non-invasive brain signals such as EEG and MEG 156

offer significant advantages over invasive alter- 157

natives, particularly in terms of safety and cost- 158

effectiveness. Significant progress has been made 159

in decoding text from non-invasive signals. 160

2.1 Closed-Vocabulary Neural Decoding 161

Ghazaryan et al. (Ghazaryan et al., 2023) utilized 162

Word2vec to decode 60 nouns from MEG record- 163

ings. Meta (Défossez et al., 2023) developed a 164
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Figure 2: (a) Overview of the BrainECHO model framework. BrainECHO utilizes a three-stage training paradigm
consisting of Mel spectrogram autoencoding, brain-audio latent space alignment and Whisper finetuning. C, Tε

denotes numbers of raw wave channels and timestamps, respectively. (b) Details of the Brain Encoder, which
converts raw EEG/MEG signals into latent representations. d represents the dimension of hidden states and TS
Conv stands for Spatio-Temporal Convolution Networks. More details of Conformer are provided in Appendix A.

model employing wav2vec 2.0 (Baevski et al.,165

2020) and contrastive learning to decode speech166

from 3-second EEG/MEG signals. However, these167

methods are constrained to decode a small set of168

words or segments, restricting their applicability in169

open-vocabulary text generation.170

2.2 Decoder-Only Architectures for171

Open-Vocabulary Brain-to-Text Decoding172

Recent advancements have leveraged the power-173

ful understanding and generation capabilities of174

pretrained models, particularly LLMs, to extend175

vocabulary from closed to open. In decoder-only176

architectures, some researchers have aligned brain177

signals with text to guide pretrained generative178

models in text generation. For example, Zhao et179

al.(Zhao et al., 2024) mapped fMRI data to text em-180

beddings to iteratively guide GPT-2 in generating181

text. Similarly, Chen et al.(Chen et al., 2024) used182

text-aligned fMRI representations as prompts for183

GPT-2 to decode language information.184

2.3 Seq2seq Architectures for185

Open-Vocabulary Brain-to-Text Decoding186

Wang et al.(Wang and Ji, 2022) fed transformed187

word-level EEG rhythm features into a pretrained188

BART model to decode open-vocabulary tokens.189

Duan et al.(Duan et al., 2024) integrated discrete190

EEG encodings with text-EEG contrastive align-191

ment to mitigate individual variability in brain 192

activity. However, these BART-based methods 193

rely on teacher forcing during inference. Further- 194

more, as Jo et al. (Jo et al., 2024) demonstrated, 195

their performance on noisy data is comparable to 196

that on EEG data, suggesting that these models 197

may simply memorize the training data. Recently, 198

NeuSpeech (Yang et al., 2024b) directly fed raw 199

MEG signals into a modified, pretrained Whisper 200

model for text decoding without teacher forcing. 201

Furthermore, MAD (Yang et al., 2024c) introduced 202

MEG-speech alignment loss to decode sentences 203

not present in the training data. However, these 204

Whisper-based methods do not utilize discrete rep- 205

resentations of the original signals to enhance the 206

model’s generalization capabilities. Our work in- 207

tegrates brain-audio discretization and alignment, 208

aiming to predict high-quality Mel spectrograms 209

from brain signals that align with Whisper’s input 210

format. Leveraging Whisper’s advanced speech 211

recognition abilities, our approach generates sen- 212

tences that closely mirror the original text. 213

3 Method 214

3.1 Task Definition 215

Given the raw EEG/MEG E, text content T , and 216

corresponding audio stimuli A during listening 217

as mentioned in Section 4.1, the experimental 218
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data can be divided into a series of sentence-level219

EEG/MEG-text-speech pairs ⟨ε, t, a⟩. ε ∈ RCε×Tε ,220

where Cε and Tε represent the channels and times-221

tamps of brain signals, respectively. In general, Tε222

varies with the length of the sentence-level audio223

segment. Our goal is to decode the corresponding224

open-vocabulary tokens t from the brain signal ε,225

with a serving as auxiliary information.226

3.2 Model Architecture227

Unlike the multi-task joint training employed in228

MAD (Yang et al., 2024c), BrainECHO adopts229

a three-stage training process. This method re-230

duces resource consumption at each training step231

and facilitates the prediction of high-quality, high-232

resolution Mel spectrograms from brain signals.233

Specifically, we extend the spectrogram duration234

from 3 seconds, as used in (Défossez et al., 2023;235

Yang et al., 2024c), to over 10 seconds, enabling236

sentence-level rather than segment-level brain-to-237

text translation, thereby preserving the semantics238

of the original sentences. The details of the model239

are shown in Figure 2. The following sections will240

detail each training stage.241

3.2.1 Discrete Autoencoding of Audio242

Spectrogram243

Van den Oord et al. introduced the Vec-244

tor Quantized-Variational AutoEncoder (VQ-245

VAE) (Van Den Oord et al., 2017) to learn dis-246

crete latent representations of audio, video, and247

other data types. Building on this approach, several248

studies (Li et al., 2023; Sadok et al., 2023; Yang249

et al., 2023) have explored representing Mel spec-250

trograms using discrete tokens to capture phoneme-251

like information. Inspired by these methods, our252

first stage involves autoencoding Mel spectrograms,253

with the purpose of obtaining a discrete representa-254

tion space that is conducive to Mel reconstruction.255

Specifically, given a spectrogram m ∈ RTm×Fm ,256

the audio encoder Enc first converts it into a fea-257

ture map zm = Enc(m) ∈ Rtm×fm×D , where258

Tm, Fm and D denote the number of time frames,259

frequency bins and latent channels, respectively.260

The spectrogram is generated by the Whisper Pro-261

cessor, enabling text decoding from the recon-262

structed spectrogram using Whisper’s encoder-263

decoder architecture. Then, zm is processed by264

a vector quantizer Q. Specifically, each latent em-265

bedding zijm ∈ RD (1 ≤ i ≤ tm, 1 ≤ j ≤ fm)266

is replaced by the nearset vector zijq from a code-267

book C ∈ RN×D, which consists of N learnable268

D-dimensional vectors. Formally, this process is 269

expressed as follows: 270

Q(zijm) = zijq = ck,

where k = argmin
k∈{1,2,...,N}

∥∥zijm − ck
∥∥
2
. (1) 271

The reconstructed spectrogram is then obtained by 272

the audio decoder Dec as: m̂ = Dec(zq). The en- 273

coder and decoder are both composed of ResUNet 274

blocks (Kong et al., 2021). The training objective 275

at this stage is defined as follows: 276

L1 = ∥m− m̂∥22 + α ∥sg(zm)− zq∥22
+ β1 ∥zm − sg(zq)∥22 ,

(2) 277

where sg(·) is a function for stopping gradients, 278

and α, β1 are hyperparameters for the quantization 279

loss and commitment loss weights, respectively. 280

3.2.2 Brain-Audio Latent Space Alignment 281

In the second stage, we freeze all the modules 282

pre-trained in the previous stage and train a brain 283

encoder to convert raw EEG/MEG signals ε into 284

latent features zε. The brain encoder utilizes a 285

Conformer-based architecture (Song et al., 2022), 286

which begins with Spatio-Temporal Convolutional 287

Networks to process the input signals into a one- 288

dimensional embedding sequence. The spatial con- 289

volutional layer reduces the number of input signal 290

channels to one, while the temporal convolutional 291

layers downsample the time dimension. This se- 292

quence is then added to learnable position embed- 293

dings and fed into a stack of Transformer encoder 294

blocks. Linear layers and 2D convolutional net- 295

works subsequently transform the EEG/MEG fea- 296

tures into representations matching the shape of zm. 297

Similarly, zε is input into the frozen quantizer Q 298

and audio decoder Dec to predict the correspond- 299

ing Mel spectrogram m. Additionally, we align 300

the representations of the Mel spectrogram and raw 301

signals in the latent space. Notably, we employ a 302

unified codebook to leverage pre-warmed discrete 303

acoustic tokens for representing brain activity. The 304

introduction of vector quantization enhances the 305

stability and generalization of the Mel spectrogram 306

reconstruction from brain signals, thereby improv- 307

ing the performance of subsequent text decoding. 308

Formally, the loss for stage 2 is as follows: 309

L2 = ∥m−Dec(Q(zε))∥22 + γ ∥zm − zε∥22
+ β2 ∥zε − sg(Q(zε))∥22 ,

(3) 310
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where γ and β2 are used to scale the latent align-311

ment loss and the commitment loss, respectively.312

The intermediate representations of the codebook313

and speech provide additional supervisory signals314

to guide the generation of Mel spectrograms. We315

employ L2 loss rather than CLIP loss (Défossez316

et al., 2023; Yang et al., 2024c) to generate highly317

restored spectrograms that match Whisper’s input.318

3.2.3 Whisper Finetuning319

After obtaining the predicted Mel spectrogram, it320

is fed into the pretrained Whisper-base1 model to321

decode tokens. To adequately leverage the pre-322

trained knowledge embedded in Whisper, we uti-323

lize AdaLoRA (Zhang et al., 2023b), as employed324

in NeuSpeech (Yang et al., 2024b) and MAD (Yang325

et al., 2024c), to fine-tune its encoder while keep-326

ing the remaining parameters frozen. The objective327

is to minimize the cross-entropy loss between the328

predicted sentence and the ground truth t.329

4 Experiments330

4.1 Dataset331

The Brennan dataset (Brennan and Hale, 2019)332

comprises 49 human EEG recordings, of which333

33 remained after screening. Participants pas-334

sively listened to a 12.4-minute audiobook record-335

ing while their EEG signals were recorded. The336

GWilliams (Gwilliams et al., 2023) dataset con-337

tains raw MEG recordings from 27 English speak-338

ers who listened to naturalistic stories for 2 hours.339

More details are provided in Appendix B.340

4.2 Preprocess341

Brain signals in both datasets are preprocessed sim-342

ilarly. The EEG signals are notch-filtered at 60343

Hz and bandpass-filtered between 0.5 and 99 Hz,344

and then resampled to 200 Hz. The MEG signals345

are notched at 50 Hz, filtered with 1∼58 Hz and346

resampled to 100 Hz. Both datasets are normalized347

to a range of -1 to 1 using robust scalar.348

All audio is resampled to 16,000 Hz to align with349

Whisper’s pretraining configuration. To assess the350

robustness of our proposed method, we employ351

different approaches to generate samples. For the352

Brennan dataset, we utilize WhisperX (Bain et al.,353

2023), a time-accurate speech recognition system,354

to segment the audio into chunks of up to 12 sec-355

onds. For the GWilliams dataset, we split the audio356

1https://huggingface.co/openai/whisper-base.
en

according to the original annotations, resulting in 357

segments no longer than 24 seconds. This process 358

generates a series of EEG/MEG-text-speech pairs. 359

The Whisper processor then converts the speech 360

into an 80-channel Mel spectrogram m using 25- 361

ms windows with a stride of 10 ms. To standardize 362

settings and reduce memory usage, the length of 363

the Mel spectrograms in GWilliams is downsam- 364

pled to half its original value, resulting in m having 365

a consistent shape of (80, 1200). Finally, we ob- 366

tain 140 and 661 unique sentences from the two 367

datasets, respectively. 368

4.3 Dataset Splitting and Validation Strategies 369

Individual differences and attention levels of sub- 370

jects can affect EEG signals, making it difficult for 371

models to generalize across subjects and trials. To 372

explore the model’s generalization ability, we de- 373

sign different dataset splitting and validation strate- 374

gies: random shuffling, session-based, sentence- 375

based, and subject-based splittings. More details 376

are provided in Appendix C. Unless otherwise spec- 377

ified, the Brennan and GWilliams datasets are par- 378

titioned by subject-based splittings and random 379

shuffling, respectively, in the following results. 380

4.4 Implementation Details 381

The models are trained on Nvidia 3090 GPUs 382

(24GB). Training on the Brennan and GWilliams 383

datasets take approximately 4 and 24 hours, respec- 384

tively, using a single GPU. The hyperparameters 385

are set as follows: α = 0.5, β1 = β2 = 0.1, γ = 1, 386

N = 2048, d = 256, and D = 8. The audio 387

encoder is configured with a downsampling rate 388

of 4. We use vanilla Transformer encoder with 4 389

layers and 8 heads. All EEG/MEG samples are 390

zero-padded to 2400 in the time dimension. Input 391

spectrograms are padded uniformly to a length of 392

3000 with -1 following Whisper’s configuration. 393

For the GWilliams dataset, the length of the pre- 394

dicted Mel spectrogram is upsampled by a factor 395

of 2. When generating with Whisper, we set the 396

number of beams to 5 for beam search and apply a 397

repetition penalty of 5.0 with a no-repeat n-gram 398

size of 2. Further details on the training configura- 399

tion are provided in Appendix D. 400

4.5 Experimental Results 401

4.5.1 Overall Comparison 402

We use BLEU (Papineni et al., 2002), ROUGE- 403

1 (Lin, 2004) and Word Error Rate (WER) to eval- 404

uate decoding performance. BLEU and ROUGE-1 405
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BLEU-N (%) ↑ ROUGE-1 (%)↑ WER (%) ↓

Input Method N=1 N=2 N=3 N=4 P R F

Noise NeuSpeech (Yang et al., 2024b) 8.45 1.78 0.43 0 10.26 21.61 13.02 198.31
Noise BrainECHO 4.75 1.10 0.28 0 11.25 7.81 8.52 105.27

EEG feature EEG-to-Text (Wang and Ji, 2022) 8.82 3.15 1.90 1.44 10.13 21.61 13.12 233.99
EEG NeuSpeech (Yang et al., 2024b) 85.31 84.38 83.98 83.75 82.60 82.73 82.64 16.97
EEG MAD (Yang et al., 2024c) 80.34 79.10 78.46 78.15 81.00 90.76 83.79 42.14
EEG BrainECHO 89.78 89.06 88.74 88.55 87.05 87.27 87.13 11.72

EEG BrainECHO w/ tf 98.82 98.74 98.68 98.64 98.45 98.44 98.45 1.18

Table 1: Overall comparison of decoding performance on the Brennan dataset. By default, all methods are evaluated
without teacher forcing. The metrics with teacher forcing (w/ tf ) are further explored. Further results and discussions
are provided in Appendix E.

are used to evaluate the quality of text generation,406

while WER is used to calculate error rate based on407

edit distance. As shown in Table 1, we compare408

our model with popularly-referred brain-to-text ar-409

chitectures, EEG-to-Text (Wang and Ji, 2022) and410

NeuSpeech (Yang et al., 2024b). Obviously, our411

method demonstrates remarkable decoding perfor-412

mance, achieving BLEU-{1, 2, 3, 4} of 89.78,413

89.06, 88.74 and 88.55, as well as WER of 11.27414

without teacher forcing. The results indicate that415

BrainECHO generates text highly consistent with416

the ground truth. Specifically, in terms of BLEU-4,417

BrainECHO outperforms the previous baseline and418

current SOTA method by 87.11 (+6049%) and 4.8419

(+5.73%) respectively. When using teacher forcing,420

BrainECHO achieves BLEU-4 of 98.45, which is421

nearly perfect, highlighting the unrealistic metrics422

produced by teacher forcing evaluation.423

Additionally, when random Gaussian noise is424

input into BrainECHO, the translation metrics are425

significantly low, indicating that BrainECHO cap-426

tures the intrinsic connection between brain signals427

and text, rather than simply memorizing sentences428

from the training set. Intuitively, BrainECHO is429

more resistant to noise than NeuSpeech (Yang et al.,430

2024b). Notably, the model ideally should not431

respond to noise, with a WER expected to be 1.432

Therefore, a high WER (> 1), suggesting the model433

outputs excessive irrelevant content, is not neces-434

sarily a desirable result.435

4.5.2 Different Datasets and Splitting436

Strategies437

The decoding metrics of BrainECHO across differ-438

ent datasets and splitting strategies are shown in439

Table 2. The model demonstrates optimal perfor-440

mance on the Brennan and GWilliams dataset when441

split by sentences and sessions, respectively. No-442

tably, the performance differences across various443

BLEU-N (%) ↑

Dataset Split N=1 N=2 N=3 N=4

Brennan Subject 89.78 89.06 88.74 88.55
Sentence 89.24 88.52 88.18 88.01

GWilliams RS 73.35 72.66 72.46 72.42
Session 75.24 74.57 74.34 74.27
Subject 75.05 74.38 74.18 74.14
Sentence 73.58 72.99 72.82 72.79

Table 2: Comparison of decoding performance on dif-
ferent datasets and splits. RS denotes random shuffling.

splitting strategies are not significant, indicating 444

that BrainECHO is robust and effectively alleviates 445

covariate shift among different subjects or trials 446

without the need for external information (e.g., sub- 447

ject or trial identifiers), provided that all unique 448

sentences are encountered during training. In con- 449

trast, the brain module used in (Défossez et al., 450

2023; Yang et al., 2024c) employs distinct projec- 451

tion matrices for each subject to mitigate individual 452

differences, yet it cannot be generalized to unseen 453

subjects directly. 454

4.5.3 Examples of Generated Sentences 455

A selection of samples generated from different 456

methods are shown in Table 4. These examples in- 457

dicate that BrainECHO can produce sentences that 458

closely match the original text, even when the refer- 459

ence is long and intricate. Remarkably, even with- 460

out the final fine-tuning of Whisper, BrainECHO 461

still generates results highly relevant to the original 462

text, highlighting the effectiveness of brain-audio 463

latent space alignment (stage 2). In contrast, EEG- 464

to-Text (Wang and Ji, 2022) experiences difficulties 465

in generating semantically relevant sentences, and 466

NeuSpeech (Yang et al., 2024b) may generate con- 467

tent unrelated to the ground truth when decoding 468

long sentences, which can have a significant impact 469
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BLEU-N (%) ↑

Split Autoencode N=1 N=2 N=3 N=4

Subject Separate 89.78 89.06 88.74 88.55
Joint 89.79 89.08 88.73 88.55

Sentence Separate 89.24 88.52 88.18 88.01
Joint 89.91 89.22 88.88 88.69

Table 3: Comparison of decoding performance using
separate and joint autoencoding on the Brennan dataset.
By default, we employ separate autoencoding.

on practical applications in high-precision decod-470

ing scenarios. Additional examples are provided in471

Appendix F.472

4.6 Ablation Study and Analysis473

4.6.1 Autoencoding474

We compare the decoding performance when the475

autoencoding task (stage 1) is applied separately476

to the Mel spectrograms from individual datasets477

versus both datasets combined. The results, pre-478

sented in Table 3, indicate that joint autoencoding479

results in either stable or slightly improved met-480

rics (except for BLEU-3) compared to separate481

autoencoding when splitting Brennan by subject.482

Additionally, all metrics improve when splitting483

by sentence. This suggests that incorporating Mel484

spectrograms from other datasets during autoencod-485

ing enhances the model’s ability to extract richer486

discrete speech representations, thereby enhancing487

its generalizability.488

4.6.2 Downsampling Ratio489

To assess the impact of the downsampling ratio r,490

we evaluate BrainECHO’s performance at r values491

of 2, 4, 8, and 16, while holding other hyperparam-492

eters constant. Assuming each pixel in the spec-493

trogram is represented by 8 bits, the correspond-494

ing reductions in bit usage are approximately 2.9,495

11.6, 46.5, and 186.1, respectively. As illustrated496

in Figure 3, increasing r exacerbates information497

loss, making accurate reconstruction of Mel spec-498

trograms for sentence decoding more challenging.499

Interestingly, the decoding performance at r = 2500

is not as strong as at r = 4, indicating that while a501

larger feature map enhances reconstruction quality,502

it may also introduce translation-irrelevant informa-503

tion, thereby complicating the fine-tuning of Whis-504

per. Therefore, selecting a moderate r is essential505

to optimize latent representation capacity.506

Figure 3: Changes of BLEU-1 and Mel spectrogram
reconstruction loss with different downsampling ratio.

Figure 4: Translation performance using various code-
book sizes on Brennan dataset.

4.6.3 Codebook Size 507

To explore the impact of the quantizer, we inves- 508

tigate the performance of BrainECHO with code- 509

book sizes ranging from 1024 to 4096. As shown 510

in Figure 4, the performance peaks at a codebook 511

size of 4096. However, the metrics do not increase 512

linearly with codebook size. When the codebook 513

size increases from 1024 to 2048, the decoding 514

performance improves, but it decreases when the 515

size further increases to 3072. This indicates that a 516

smaller codebook may not capture diverse acoustic 517

representations, while a larger codebook may in- 518

crease training difficulty and computational burden. 519

Thus, we choose 2048 as the codebook size for 520

balancing performance and efficiency. 521

4.6.4 Three Training Stages 522

To verify the effectiveness of our proposed three- 523

stage training, we incrementally remove each stage 524

and observe the corresponding changes in perfor- 525

mance. As presented in Table 5, when the autoen- 526

coding stage is removed–where the quantizer and 527

audio decoder are randomly initialized–BLEU-4 528

drops to 85.74 (-3.17%). Further removal of the 529

brain-audio alignment stage leads to an abnormal 530

increase in BLEU, highlighting the challenge of 531
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Generated samples on Brennan

(1)

Ground Truth There seemed to be no use in waiting by the little door, so she went back to the table.
EEG-to-Text But they were all locked, and when Alice had been all the way down one side and up the other trying

every door, she did not care how she was ever to get out again.
NeuSpeech There seemed to be no use in waiting by the little door, so she went back to the table.
BrainECHO w/o ft There seemed to be no use in waiting by the little door, so she went back to the table.
BrainECHO There seemed to be no use in waiting by the little door, so she went back to the table.

(2)

Ground Truth that she’d never before seen a rabbit with either a waistcoat pocket or a watch to take out of it, and burning
with curiosity, she ran across the field after it, and fortunately

EEG-to-Text how she longed to get out of that dark hall and wander about among those beds of bright flowers and
those cool fountains, but she did not even get her head through the doorway.

NeuSpeech But they were all locked, and when Alice had been all the way down one side and up the other trying
every door, she walked sadly down the middle, wondering how she was ever to get out again.

BrainECHO w/o ft But she will never be foreseen around it, with either a waistcoat pocket or a watch to take out of it
and burn in curiosity. She ran across the field after it unfortunately.

BrainECHO that she’d never before seen a rabbit with either a waistcoat pocket or a watch to take out of it and
burning with curiosity, she ran across the field after it, and fortunately

Generated samples on GWilliams

(1)

Ground Truth I seen him since high school maybe twenty years before and we were never buddies in the first place
EEG-to-Text It was a long time since I had last seen him in the flesh
NeuSpeech I seen him since high school when I was young, at least before and we were never buddies in any

place.
BrainECHO w/o ft I hadn’t seen him since high school, maybe 20 years before and you remember when he’s in the first

place.
BrainECHO I seen him since high school maybe twenty years before and we were never buddies in the first place

(2)

Ground Truth My patience was long gone and I was back in the car to warming up when Acres tapped on the window
and told me he had found whatever he was looking for

EEG-to-Text He said he had no idea how long it would take him to get back home
NeuSpeech My patience was long gone and I was back in the car. But when I heard that many of you were looking

for whatever it was, but what about this?
BrainECHO w/o ft My patience was long gone, and I was back in the car to warming up when acres tapped on the

window and Tunch told me he had found whatever he was looking for.
BrainECHO My patience was long gone and I was back in the car to warming up when Acres tapped on the

window and told me he had found whatever he was looking for

Table 4: Comparison of decoding sentences generated by different methods, where bold and underline indicate
an exact match and a similar match, respectively, between prediction and ground truth. All methods use the same
generation configuration. w/o ft means decoding by inputing the predicted Mel spectrogram into Whisper directly
without fine-tuning in the final stage. Only examples of NeuSpeech are reported rather than those of MAD because
of NeuSpeech’s overall superior performance and the similarity of its method to MAD’s.

Training Stage BLEU-N (%) ↑

Au Al F N=1 N=2 N=3 N=4

! ! ! 89.78 89.06 88.74 88.55
% ! ! 87.13 86.29 85.92 85.74
% % ! 87.63 86.87 86.54 86.38
! ! % 39.64 34.49 31.07 28.32

Table 5: Ablation study of training stages on the Bren-
nan dataset. The stages labeled Au, Al, and F corre-
spond to Mel autoencoding, brain-audio latent space
alignment, and Whisper fine-tuning, respectively.

directly constructing a representation space from532

the brain signals to the Mel spectrogram. However,533

by pre-warming a discrete representation space, the534

reconstruction quality and stability are enhanced.535

Notably, even without fine-tuning, BrainECHO536

achieves impressive performance based solely on537

the predicted Mel spectrogram, suggesting that it is538

feasible to extract semantically rich audio features 539

from neural signals directly. 540

5 Conclusion 541

This paper introduces a novel three-stage brain- 542

to-text framework, BrainECHO, that addresses 543

the shortcomings of prior methods. These meth- 544

ods relied on teacher forcing and failed to com- 545

pare model performance against pure noise in- 546

puts. BrainECHO bridges the latent spaces of 547

text and corresponding aurally evoked brain sig- 548

nals through vector-quantized spectrogram recon- 549

struction and fine-tuned use of the Whisper model. 550

It achieves SOTA performance on public EEG 551

and MEG datasets across various experimental set- 552

tings. By extracting deep semantic information 553

from brain signals, BrainECHO provides valuable 554

insights for future research in the brain-to-text de- 555

coding paradigm in the BCI field. 556
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Limitations557

The limitations of our proposed work are summa-558

rized as follows:559

Dataset Limitations560

Although our method has produced promising re-561

sults, it is currently suitable only for datasets of562

audio-evoked neural signals because of the brain-563

audio feature alignment. Future work can address564

the limitation by collecting datasets with richer565

corpora, devising appropriate data augmentation566

methods, and implementing new modality align-567

ment frameworks.568

Experiment Limitations569

In our experimental setting, all data are strictly570

segmented on a sentence-by-sentence basis before571

being fed into the model, which may not align572

with real-world decoding scenarios, due to the po-573

tential unknown length of the signals to be trans-574

lated. Moreover, according to the results reported575

by NeuSpeech (Yang et al., 2024b), sentence-level576

decoding may face overfitting issues, as neural577

signals of different lengths need to be padded to578

the same length before fed into the model. How-579

ever, under the condition that there is a correla-580

tion between signal length and sentence length, our581

approach may help the model decode by implic-582

itly injecting the length information of the signal.583

Moreover, as reported by NeuSpeech (Yang et al.,584

2024b), sentence-level decoding might encounter585

overfitting problems. The reason is that neural586

signals of varying lengths should be padded to a587

consistent length before being fed into the model.588

When a correlation exists between signal length589

and sentence length, it is possible that our proposed590

approach inadvertently facilitates the model’s de-591

coding by implicitly integrating the length informa-592

tion of the signal. MAD (Yang et al., 2024c) and593

NeuGPT (Yang et al., 2024a) showed an unsatisfac-594

tory result with a uniform signal length, suggesting595

that the current task of generating open-vocabulary596

text based solely on the neural signal pattern re-597

mains extremely challenging. Our forthcoming598

research efforts will focus on leveraging LLMs and599

more efficient alignment strategies to diminish the600

dependence on length information.601

Ethical Statement602

This study uses publicly available datasets and does603

not involve the collection of any brain activity data604

from human subjects. Therefore, our research does 605

not have any adverse impact on human society. 606
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B Datasets762

B.1 Brennan763

The Brennan dataset (Brennan and Hale, 2019) con-764

tains raw electroencephalography (EEG) data col-765

lected from 49 human subjects. Participants were766

asked to passively listen to a 12.4-minute audio-767

book story of chapter one of Alice’s Advenctures768

in Wonderland, while their EEG data was recorded.769

Participants completed an eight-question multiple770

choice questionnaire concerning the contents of771

the story at the end of the experimental session.772

We retain 33 participants’ data who achieved high773

scores.774

Participants were fitted with an elastic cap with775

61 actively-amplified electrodes and one ground776

electrode (actiCap, Brain Products GmbH). Elec-777

trodes were distributed equidistantly across the778

scalp according to the Easycap M10 layout. Con-779

ductive gel was inserted into each electrode to re-780

duce impedences to 25 kOhms or below. Data were781

recorded at 500 Hz between 0.1 and 200 Hz refer-782

enced to an electrode placed on the right mastoid783

(actiCHamp, Brain Products GmbH).784

The stimulus chapter originally contains 84785

sentences. Since the annotation files only pro-786

vide word-level annotations, directly concatenating787

words to form sentences would result in the ab-788

sence of punctuation marks. Therefore, we use789

WhisperX (Bain et al., 2023) to segment the audio790

stimulus into segments of no more than 12 seconds,791

resulting in 140 sentences.792

B.2 GWilliams793

GWilliams (Gwilliams et al., 2023), known as the794

“MEG-MASC” dataset, provides raw magnetoen-795

cephalography (MEG) data from 27 English speak-796

ers who listened to two hours of naturalistic stories.797

Each participant performed two identical sessions,798

involving listening to four fictional stories from the799

Manually Annotated Sub-Corpus (MASC). The800

four stories are: ‘LW1’ (861 words, 5 min 20 sec),801

‘Cable Spool Boy’ (1948 words, 11 min), ‘Easy802

Money’ (3541 words, 12 min 10 sec) and ‘The803

Black Willow’ (4652 words, 25 min 50 sec).804

An audio track corresponding to each of these805

stories was synthesized using Mac OS Mojave ©806

version 10.14 text-to-speech. To help decorrelate807

language features from acoustic representations,808

both voices and speech rate were varied every 5–20809

sentences. Specifically, three distinct synthetic810

voices: ‘Ava’, ‘Samantha’ and ‘Allison’ are used811

speaking between 145 and 205 words per minute. 812

Additionally, the silence between sentences are var- 813

ied between 0 and 1,000ms. Both speech rate and 814

silence duration were sampled from a uniform dis- 815

tribution between the min and max values. 816

Each story was divided into ∼3 min sound files. 817

In between these sounds— approximately every 30 818

s— a random word list generated from the unique 819

content words (nouns, proper nouns, verbs, adverbs 820

and adjectives) selected from the preceding 5min 821

segment presented in random order were played. 822

Within each ∼1 h recording session, participants 823

were recorded with a 208 axial-gradiometer MEG 824

scanner built by the Kanazawa Institute of Technol- 825

ogy (KIT), and sampled at 1,000 Hz, and online 826

band-pass fltered between 0.01 and 200Hz while 827

they listened to four distinct stories through binau- 828

ral tube earphones (Aero Technologies), at a mean 829

level of 70dB sound pressure level. 830

To ensure a fair comparison with 831

NeuSpeech (Yang et al., 2024b), we follow 832

its experimental setup by concatenating words with 833

the same sentence ID into full sentences, based on 834

the annotation files. This process results in 661 835

sentences. 836

C Dataset Splitting 837

In this section, we detail the dataset splitting strate- 838

gies employed in our study. As shown in Table 7, 839

four distinct strategies are utilized, each present- 840

ing different levels of evaluation difficulty. The 841

random shuffling strategy is the most basic, incor- 842

porating data from all subjects and trials into the 843

training samples. The sentence-based strategy is 844

more challenging, simulating scenarios where sam- 845

ples from different participants are not aligned, re- 846

sulting in missing data for some sentences for each 847

participant. The session-based and subject-based 848

strategies are the most difficult but also the most 849

realistic, as they assess the model’s ability to gener- 850

alize to new trials and subjects, respectively. This 851

capability is crucial for the practical application of 852

language-based BCIs. The Brennan dataset utilizes 853

only two splitting methods due to its inclusion of 854

data from a single trial. Consequently, splitting by 855

sentence yields results similar to those obtained by 856

random shuffling. 857

D Implementation Details 858

The training configurations for our model vary 859

across different datasets and training stages. De- 860
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tailed settings for each training phase are outlined861

in Table 8. The final model is selected based on862

the lowest validation loss. Notably, no data aug-863

mentation techniques are employed, and no subject-864

related information is provided to the model.865

E Evaluation Results866

Evaluation metrics on the GWilliams dataset across867

various splitting strategies are presented in Ta-868

ble 9. NeuSpeech (Yang et al., 2024b), the pre-869

vious SOTA model for MEG-to-text translation,870

serves as the baseline for comparison. MAD (Yang871

et al., 2024c) introduces brain-audio alignment on872

the basis of NeuSpeech. When using random shuf-873

fling, BrainECHO achieves a BLEU-4 score of874

72.42, outperforming NeuSpeech by 24.64 points875

(+51.57%). Additionally, with session-based split-876

ting, BrainECHO attains a BLEU-1 score of 75.24,877

exceeding NeuSpeech by 22.08 points (+41.53%).878

These results indicate that BrainECHO can gen-879

erate text that closely matches the ground truth.880

Additionally, the results we reproduced on MAD881

are unsatisfactory on both datasets, especially on882

Gwilliams, indicating that optimizing the CLIP loss883

between neural signals and audio representations884

is particularly challenging when the input signal is885

long (the original experimental setup in MAD used886

only a 4-second time length).887

F Generated Samples888

To intuitively demonstrate the powerful decoding889

ability of BrainECHO, additional translated exam-890

ples for the Brennan and GWilliams datasets are891

presented in Table 10 and 11, respectively. For892

most test samples, our method demonstrates ac-893

curate decoding. However, for certain samples,894

our model generates completely unrelated content,895

such as "There were doors all around the hall."896

and "What a curious feeling, said Alice." in Ta-897

ble 10. This suggests that the model may struggle898

with discriminability in sentences of similar length,899

highlighting the persistent challenge of extracting900

semantically relevant patterns from low signal-to-901

noise non-invasive signals.902

G Reconstructed Mel Spectrograms903

Figure 5 and 6 display some samples of Mel spec-904

trograms reconstructed from the brain signals for905

the Brennan and GWilliams datasets, respectively.906

These samples demonstrate that BrainECHO can907

produces Mel spectrograms that are largely con- 908

sistent with the ground truth. Notably, the model 909

effectively restores fine details and accurately pre- 910

dicts the intervals and silent segments in the spec- 911

trograms. These results highlight the model’s ex- 912

pressive and predictive capabilities, as it can extract 913

Mel spectrograms from brain signal segments ex- 914

ceeding 20 seconds–a feat not achieved by previous 915

methods. 916
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Layer Type Out Channels Filter Size Stride Padding Input Output

Conv2D 64 (1, 5) (1, 2) 2 1× C × Tε 64× C × Tε
2

BatchNorm2D + ELU - - - - 64× C × Tε
2

64× C × Tε
2

Conv2D 128 (1, 3) (1, 2) 1 64× C × Tε
2

128× C × Tε
4

BatchNorm2D + ELU - - - - 128× C × Tε
4

128× C × Tε
4

Conv2D 256 (C, 1) 1 0 128× C × Tε
4

256× C × Tε
4

BatchNorm2D + ELU - - - - 256× C × Tε
4

256× 1× Tε
4

Rearrange - - - - 256× 1× Tε
4

Tε
4

× 256

Table 6: The structure of TS Conv. C and Tε denote the number of EEG/MEG channels and timestamps,
respectively.

Dataset Split Details Result

Brennan Sentence For each participant, 10% of unique sentences are allocated to the test set. The
remaining sentences are shuffled and split into train:valid 8:1. Note that the test set
for each subject may contain different sentences.

3696:462:462

Subject 3 participants (about 10% of the total number of subjects) are selected at random
for the test set, 3 for the validation set, and the remaining 27 for the training set.

3780:420:420

GWilliams RS All data is random shuffled and divided into train:valid:test 8:1:1. 23339:2917:2918

Session Random shuffled data of session 0 is divided into train:valid 8:1 and data of session
1 is held out as test set.

13129:2976:13069

Sentence It is the same as Brennan above. 23305:2914:2955

Subject 2 participants (about 10% of the total number of subjects) are selected at random
for the test set, 2 for the validation set, and the remaining 23 for the training set.

24137:2469:2568

Table 7: Details of different dataset split settings. RS denotes random shuffling.

Brennan GWilliams

Configuration P A F P A F

Batch Size 16 16 16 16 8 16
Max Epoch 400 40 40 100 40 40
Optimizer AdamW, with weight decay = 1e-2, betas = (0.9,0.999)

Max Learning Rate 2e-4 1e-4 1e-4 2e-4 1e-4 2e-4
LR Scheduler Cosine Annealing, with T_max = Max Epoch

Early Stopping Patience 4

Table 8: Details of the experimental configuration. P, A, F denote the various training stages: pretraining, alignment
and finetuning, respectively.

BLEU-N (%) ↑ ROUGE-1 (%)↑ WER (%) ↓

Split Input Method N=1 N=2 N=3 N=4 P R F

Random MEG feature EEG-to-Text (Wang and Ji, 2022) 9.21 2.13 0.57 0.14 9.74 10.73 11.38 118.25
Shuffling MEG NeuSpeech (Yang et al., 2024b) 60.3 55.26 51.24 47.78 60.88 59.76 58.73 56.63

MEG NeuSpeech (reproduced) 50.49 46.85 44.42 42.55 46.39 52.48 47.10 71.17
MEG MAD (Yang et al., 2024c) 3.93 0.42 0 0 8.98 6.85 7.26 105.33
MEG BrainECHO 73.35 72.66 72.46 72.42 69.66 70.12 69.73 31.44

Session MEG NeuSpeech (Yang et al., 2024b) 53.16 - - - - - - -
MEG BrainECHO 75.24 74.57 74.34 74.27 72.94 72.84 72.78 29.59

Sentence MEG BrainECHO 73.58 72.99 72.82 72.79 70.38 70.75 70.73 31.11

Subject MEG BrainECHO 75.05 74.38 74.18 74.14 71.83 72.02 71.72 29.80

Table 9: Overall comparison of decoding performance on the GWilliams dataset. All methods are evaluated without
teacher forcing.
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(1) Ground Truth There were doors all around the hall.

Predicted not much larger than a rat hole.

(2) Ground Truth For you see, as she couldn’t answer either question, it didn’t much matter which way she put it.

Predicted For you see, as she couldn’t answer either question, it didn’t much matter which way she put it.

(3) Ground Truth When she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the time it
all seemed quite natural.

Predicted When she thought it over afterwards, it occurred to her that she ought to have wondered at this, but at the
time it all seemed quite natural.

(4) Ground Truth I wonder how many miles I’ve fallen by this time, she said aloud.

Predicted I wonder how many miles I’ve fallen by this time, she said aloud.

(5) Ground Truth and that if you cut your finger very deeply with a knife, it usually bleeds.

Predicted and that if you cut your finger very deeply with a knife, it usually bleeds.

(6) Ground Truth I can creep under the door, so either way I’ll get into the garden, and I don’t care which happens.

Predicted I can creep under the door, so either way I’ll get into the garden, and I don’t care which happens.

(7) Ground Truth But it’s no use now, thought poor Alice, to pretend to be two people while there’s hardly enough of me to make
one respectable person.

Predicted But it’s no use now, thought poor Alice, to pretend to be two people while there’s hardly enough of me to
make one respectable person.

(8) Ground Truth She was now only ten inches high, and her face brightened up at the thought that she was now the right size for
going through the little door into that lovely garden.

Predicted She was now only ten inches high, and her face brightened up at the thought that she is now the right size
for going through the little door into that lovely garden.

(9) Ground Truth for she had read several nice little histories about children who’d gotten burnt and eaten up by wild beasts and
other unpleasant things.

Predicted for she had read several nice little histories about children who’d gotten burnt and eaten up by wild beasts
and other unpleasant things.

(10) Ground Truth What a curious feeling, said Alice.

Predicted This time, she found a little bottle on it.

(11) Ground Truth Once or twice she peeped into the book her sister was reading.

Predicted Once or twice she peeped into the book her sister was reading.

(12) Ground Truth how she longed to get out of that dark hall and wander about among those beds of bright flowers and those cool
fountains, but she could not even get her head through the doorway.

Predicted how she longed to get out of that dark hall and wander about among those beds of bright flowers and
those cool fountains, but she could not even get her head through the doorway.

(12) Ground Truth Either the well was very deep, or she fell very slowly.

Predicted Either the well was very deep, or she fell very slowly.

(13) Ground Truth But alas for poor Alice, when she got to the door...

Predicted But alas for poor Alice, when she got to the door...

(14) Ground Truth For my end, you know, said Alice to herself, in my going out altogether like a candle.

Predicted For my end, you know, said Alice to herself, in my going out altogether like a candle.

(15) Ground Truth Do you think you could manage it?

Predicted Do you think you could manage it?

Table 10: Additional samples generated on Brennan dataset. Bold denotes a correct match.
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(1) Ground Truth Roy stooped to pick up a big white rock that looked like a dirty lump of chalk and handed it to Chad

Predicted Roy stooped to pick up a big white rock that looked like a dirty lump of chalk and handed it to Chad

(2) Ground Truth Arthur and his wine

Predicted I may finish this story

(3) Ground Truth holding fidgeting conveyed glanced after sure rotting believing suppose water malignant replied

Predicted Holding fidgeting conveyed glanced after sure rotting believing suppose water malignant replied

(4) Ground Truth We spent the next hour stomping around the hill while he said things like it was right here

Predicted We spent the next hour stomping around the hill while he said things like it was right here

(5) Ground Truth there sounded slipped told mentioned for device issued all kentucky traffic whoever voice pushing

Predicted There sounded slipped told mentioned for device issued all kentucky traffic whoever voice pushing

(6) Ground Truth Collapsing at its base Allan wrapped his arms around the stoic tree and let forth a moan a cry of purest agony
that escaped him as the first tears seeped from the corners of his eyes and slid down his cheeks falling to the
ground and seeping though the fallen leaves and needles to join the water of the stream flowing through the
ground beneath them

Predicted Collapsing at its base Allan wrapped his arms around the stoic tree and let forth a moan a cry of purest
agony that escaped him as the first tears seeped from the corners of his eyes and slid down his cheeks
falling to the ground and seeping though the fallen leaves and needles to join the water of the stream
flowing through the grounds beneath them

(7) Ground Truth She seemed so self conscious and shallow on the outside but having that incredible gift

Predicted She seemed so self conscious and shallow on the outside but having that incredible gift

(8) Ground Truth It s hail across the and Tara spun to retake her seat at the helm

Predicted I shall consider it in the meantime however I must be off

(9) Ground Truth I put away the cell and used the motion to cover checking the knife in my sleeve and used one leg to check the
other in my sock

Predicted But I always should come now immediately before the probe is reported late

(10) Ground Truth You could step on that marker and make the gestures the device and it would be like pushing a button in a very
complex machine hu

Predicted It speaks to the deepest instinct within us all yet is entirely original

(11) Ground Truth destroyed another story last night

Predicted Destroyed another story last night

(12) Ground Truth Chad finished formula but this time he mind that Roy fell for it

Predicted Chad finished formula but this time he mind that Roy fell for it

(13) Ground Truth remote room voice truck would so what going silver taught screaming toads play being

Predicted Remote room voice truck would so what going silver taught screaming toads play being

(14) Ground Truth Tell them and they will create an audience

Predicted Tell them and they will create an audience

(15) Ground Truth Allan took a sandwich between his fingers

Predicted This is the ounces which I mentioned at the restaurant

Table 11: Additional samples generated on the GWilliams dataset. Bold denotes a correct match.
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Figure 5: Predicted Mel spectrograms on Brennan dataset.

Figure 6: Predicted Mel spectrograms on the GWilliams dataset. For visualization purposes, only the first half of the
Mel spectrograms are displayed.
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