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Abstract
Continuous and reliable positioning anywhere anytime is one of the critical technologies for autonomous driving, whereas it
is challenging yet, especially in urban environments. Due to the presence of buildings, Global Navigation Satellite System
(GNSS) is not reliable for degraded positioning accuracy and availability. With the simultaneous localization and mapping
(SLAM) approach, Light detection and ranging (LiDAR) has beenwidely used by autonomous driving vehicles for localization
and environmental perception. However, LiDAR odometry (LO) or SLAM is not accurate enough for autonomous driving
as it suffers from accumulative errors. This study proposes a GNSS/LiDAR/Map integrated positioning solution to provide
ubiquitous positioning for autonomous driving, especially in urban areas, including urban canyons and underground, where
GNSS is blocked partly or even fully. Matching LiDAR scans with a 3D map, named 3D map-based global localization
(MGL), can provide an absolute positioning solution with respect to the map. A drift error model of LiDAR odometry is
proposed to improve the accuracy of LiDAR odometry, and its model parameters are estimated online using either GNSS
or MGL absolute locations. Using the graph optimization approach, GNSS and/or MGL precise absolute positioning are
integrated with LO relative positioning to provide continuous and reliable positioning even when GNSS is degraded. The
proposed solution is validated using the NCLT public dataset, which contains LiDAR data for building 3D maps and 3D
map-based global localization, respectively. Based on the NCLT dataset, we simulate three typical urban scenarios to verify
the performance of ubiquitous positioning. The experiments show that the proposed drift error correction method decreases
accumulated error of LiDAR odometry by 35.5%, and the proposed GNSS/LiDAR/Map solution can provide continuous
positioning with the availability of 100%, and improves the positioning accuracy by 49.8%, compared to the state-of-the-art
approach of GNSS/LO fusion.
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1 Introduction

Autonomous driving depends on continuous and precise
positioning anywhere anytime during its whole course
for navigation and environmental perception ((Joerger and
Spenko, 2017; Stephenson et al., 2011)). Using the RTK
(Real-time kinematic) or PPP (Precise Point Positioning)
technologies, Global Navigation Satellite System (GNSS)
can provide precise positioning in open-sky conditions,while
the accuracy and availability of GNSS positioning are not
satisfactory in urban environments, e.g., urban canyons,
underground parking and tunnels, due to the signal block-
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age (Julier and Durrant-Whyte 2003). As Light detection and
ranging (LiDAR) is widely equipped with autonomous driv-
ing vehicles, the state-of-the-art approach integrates GNSS
and LiDAR odometry to provide continuous positioning.
However, as LiDAR odometry (LO) is relative positioning,
and it suffers from accumulative errors, the accuracy of cur-
rent GNSS/LO fusion approach depends on the accuracy and
availability of GNSS precise positioning. In urban environ-
ments where GNSS is not available for a long time, the
accuracy of GNSS/LO fusion positioning is not adequate
for autonomous driving. Therefore, continuous and precise
positioning in urban environments is challenging yet (Li et al.
2019).

LiDAR has been used in autonomous driving for local-
ization and environmental perception (Lu et al. (2020); Yurt-
sever et al. (2020)). LiDAR-based simultaneous localization
and mapping (LiDAR-SLAM) has been widely discussed
and improved over the last decade (Wang et al. 2019). By
using perception sensors (LiDAR) to derive the navigation
information, the SLAM algorithm is able to simultaneously
localize itself and map the environment. A SLAM system
usually includes front-end odometry and back-end optimiza-
tion (Hess et al. 2016). The front-end calculates the relative
pose of each LiDAR scans by point cloud registration (Ma
et al. 2022), also called LiDAR odometry, and the back-end
optimizes the position by fusing other information. To reduce
the point cloud information and represent the environment
clearly, grid-based SLAM transforms the 2D point cloud into
an occupancy grid map. Gmapping is one of the most widely
used grid-based SLAM techniques for mobile robots, uti-
lizing Rao-Blackwellized particle filters (RBPFs) to achieve
real-time positioning and mapping (Grisetti et al. 2007). The
usage and the core scan matching approach used in Hec-
tor SLAM are more flexible and adaptable (Kohlbrecher
et al. 2011). The main drawback of this algorithm is that
it is heavily dependent on the initial position and heading.
The traditional iterative closest point (ICP) is well known
as the 6DoF LiDAR-SLAM registration method. It adopts
the point-to-point matching LiDAR-SLAM as well as the
point-to-plane and plane-to-planemethods (Holz et al. 2015).
Instead of considering the whole point cloud, normal distri-
bution transform (NDT) uses surface information to calculate
the likelihood modeled by a linear combination of normal
distributions (Magnusson 2009). However, traditional NDT
matching methods do not consider the weight of different
types of surfaces, an improvedNDTmatchingmethod is pro-
posed in our study. LiDAR odometry and mapping (LOAM)
are presently considered as a state-of-the-art 6DoF SLAM
approach especially when new modifications, such as A-
LOAM, Lego-LOAM, F-LOAM, and LIO-SAM are taken
into account (Ji and Singh 2014; Shan and Englot 2019;
Shan et al. 2020; Wang et al. 2021; Zhang and Singh 2017).
It employs a feature-based registration method to extract

the edges and planar features in a consecutive point cloud.
In the work Ji and Singh (2014), the outdoor tests have
a relative accuracy of roughly 2.5%. Since there are still
errors in each relative position between scans, and these
errors will gradually accumulate, the positioning accuracy
of SLAMwill decrease over the distance. On the other hand,
the SLAM-derived solutions are relative positions in the sen-
sor coordinate system,whichmakes SLAMunable to be used
alone.

Different to the SLAM approach, which can only provide
relative position and pose, the global localization approach
can provide absolute localization solutions by matching
LiDAR scans with a previously built 3Dmap, which is called
in this study 3Dmap-based global localization (MGL). In this
paper, the 3Dmap refers to 3D point cloudmap, not the prod-
ucts generated by 3D point cloud. The matching between
LiDAR scans and a 3D map is based on the similarity of
variety of descriptors, which can be defined either manually
or by using deep learning. The key to global localization is
whether the descriptor can describe correctly the feature of a
LiDAR scan. Bosse andZlot (2013) describes scans using 3D
Gestalt descriptors directly and matched LiDAR scans with
a map using a vote-matrix representation. Some approach
converts a LiDAR scan to a range-image and calculates fea-
ture descriptors by using image feature such as Speeded Up
Robust Features (SURFs) (Rusu et al 2009; Steder et al.
2010). Different to the method using simple geometry fea-
ture, Finman et al. (2015) proposed an object-level method
that detect objects and used all object descriptors to repre-
sent a point cloud, but this method only works for RGB-D
cameras and only a small number of objects was used. The
deep learning-basedmethod opens a completely newwindow
to solving the global positioning problem in a data-driven
fashion. Zeng et al. (2017) proposed the 3DMatch method,
one data-driven 3D convolutional neural network (CNN) for
learning geometry features fromRGB-D reconstruction data.
Elbaz et al. (2017) proposed an algorithm that extracts the
geometry feature of a point cloud by deep neural network
auto-encoder, and they improved the selection of the basic
units for matching to reduce the computational complex-
ity. L3-Net is a learning-based LiDAR localization network
established by various deep neural networks such as Recur-
rent Neural Networks (RNNs) and 3D convolutional neural
networks (3D CNNs) (Lu et al. 2020). The end-to-end neu-
ral networks-based method is an emerging approach, which
directly takes the LiDAR scans as input and the global posi-
tion as output. DeepICP is the first end-to-end point cloud
registration framework. In addition to extracting descriptors
through neural networks, this method could directly match
the local and target point clouds instead of using ICP algo-
rithms (Lu et al. 2019). Given the coordinate reference of a
3Dmap, LiDAR-based global localization provides an abso-
lute positioning solution with the accuracy of roughly 10cm
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(Xu et al. 2022b). However, thismethod depends on the avail-
ability of 3D map data, and it cannot output high-frequency
positioning solutions due to the high computational load.

Many studies have reported the integration of SLAM
and GNSS, including tightly coupled and loosely coupled
approaches, to achieve better performance in terms of posi-
tioning accuracy and continuity. Li et al (2020b); Qian et al.
(2020) integrated SLAM with GNSS to enhance ambiguity
resolution and improveGNSS positioning accuracy in GNSS
partly denied environment. In Qian’s work, a LiDAR-based
fuzzy one-to-many feature matching method is reported to
aid RTK single-frequency single-epoch ambiguity resolu-
tion, which improved positioning accuracy and fixed rate of
RTK in urban environments.

The GNSS/SLAM loosely coupled approach uses either
filtering-based or optimization-based algorithms to reduce
the cumulative error of SLAM (He et al. 2021). Extended
Kalman Filter (EKF) and Rao-Blackwellized particle filter
(RBPF) have been commonly used for fusing GNSS, INS,
and LiDAR-SLAM to achieve 6DOF positioning (Gao et al.
2015; Kim and Sukkarieh 2005; Schultz et al. 2016; Sham-
sudin et al. 2018). In recent years, the graph optimization-
based fusion approach has receivedmore andmore attention,
as it can fuse flexibly different types of positioning sensors,
such as GNSS, wheel odometer, LiDAR, camera, and IMU
(Bhamidipati and Gao 2020; Chang et al. 2019; Kukko et al.
2017; Pierzchała et al. 2018).Changet al. (2019) incorporates
GNSS and IMU pre-integration results into the SLAM back-
end optimization, and uses a slidingwindow to ensure that the
computational load of back-end does not increase with time.
InPierzchała et al. (2018)’swork, four sensors are fusedusing
graph optimization, includingmulti-line LiDAR, stereo cam-
era, IMU, and GNSS. With the post-processing, the method
achieves good 3Dmapping performance for forest surveying,
while the real-time positioning performance is not adequate.
GNSS/SLAM loosely coupled approach requires at least a
limited availability of GNSS precise positioning, and the
fusion solution has unsatisfactory performance when GNSS
is not available for a long time. In general, compared to the
optimization-based approach, the filtering-based approach
has higher computational efficiency, but lower positioning
accuracy (Chang et al. 2019).

In this paper, we propose a ubiquitous positioning solu-
tion by integrating LiDAR odometry, GNSS, and 3D Map
matching-based global localization using the graph opti-
mization (GO) algorithm to provide continuous and precise
positioning for autonomous driving vehicles, especially in
urban environments. 3D map-based global localization solu-
tion has the same geo-reference system as the 3Dmap. As 3D
map data is typically geo-referred using a GNSS-based high-
precision positioning system in the mapping data collection

process (Novatel 2022), 3D map-based global localization
solution has the same coordinate system as GNSS position-
ing. Given the wide availability of 3D maps, the proposed
GNSS/LiDAR/map integrated positioning solution can pro-
vide continuous and precise positioning, and a drift error
correction model of LO is proposed to further improve the
positioning accuracy when neither GNSS nor MGL works.
To summarize, our main contributions include:

This study proposes a ubiquitous positioning solution by
integrating relative positioning, e.g., LiDAR odometry, and
absolute positioning, e.g., GNSS and MGL, for continuous
and precise positioning of autonomous driving in complex
scenarios of urban environments, e.g., from open-sky, GNSS
partly blocked to fully denied environments. The proposed
solution exploits the graph optimization method to fuse all
available measurements adaptively according to their uncer-
tainties.

An online estimated drift error correction model is incor-
porated with the proposed integrated solution to correct the
drift error of LiDAR odometry. The model parameters are
estimated using absolute positioning solutions, e.g., either
GNSS or 3D map matching-based global localization. Then
the model is applied to improve the accuracy of ubiquitous
positioning, especially when absolute positioning solutions,
e.g., either GNSS or MGL, are not available.

Three typical scenarios are set up to simulate common
urban scenes with different availabilities of GNSS andMGL,
e.g., in underground parking lots and urban canyons. The
proposed solution is validated by evaluating the positioning
accuracy and availability in these three scenarios.

The remainder of this paper is organized as follows. The
methodology of the proposed solution is described in Sect. 2.
Experimental implementation and the results are presented in
Sect. 3. Section 4 provides the discussions and conclusions.

2 Methodology

2.1 System overview

This section describes the architecture of the proposed
GNSS/LiDAR/map integrated positioning solution as shown
in Fig. 1. The proposed solution integrates three components:
LiDARodometry of relative positioning, GNSS precise posi-
tioning, and 3D map matching-based global localization of
absolute positioning.Given their uncertainty levels, these rel-
ative and absolute positioning solutions are integrated using
the graph optimization algorithm. Within the architecture,
the drift error correction model of relative positioning is esti-
mated online and is used for improving the accuracy of the
proposed integrated positioning solution, as shown in Fig. 1.
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Fig. 1 Overview of proposed ubiquitous positioning solution

2.2 3Dmapmatching-based global localization
(MGL)

3Dmap is one of the infrastructures for autonomous driving,
and it has been widely available. We use the 3D map data
to provide an absolute positioning solution using the one-
shot LiDAR global localization method, and the absolute
positioning solution is integrated into our proposed solution.
The one-shot LiDAR global localization method has been
presented in the work (Xu et al. 2022a), and we reiterate
simply the method for completeness.

The one-shot LiDAR global localization method matches
one LiDAR scan with the pre-defined 3D map to resolve
the 6DOF position and pose of the scanner with respect to
the 3D map. The global localization method consists of two
steps: place recognition and pose estimation. As presented
in Xu et al. (2022a), the place recognition method defines
the polar grid height coding image (PGHCI) descriptor, so
that the method is featured with high descriptiveness and
rotational-invariance. More importantly, by introducing the
PGHCI descriptor and the concept of virtual LiDAR, the pro-
posed place recognition method in Xu et al. (2022a) breaks
through the limitation of previous methods that require the
same types of LiDAR scanners in the mapping process and
localization process.

Given the place recognition provides a coarse location, Xu
et al. (2022a) presented a one-shot global localization solu-
tion that matches only one single LiDAR scan with 3D map
data to resolve the 6DOF pose. The one-shot global local-
ization solution consists of a high-quality CSSC descriptor
and a novel pipeline method, including two-stage similarity
estimation, Nearest Cluster Distance Ratio (NCDR), and the
Selective Generalized Iterative Closest Point (SGICP) algo-
rithm. The proposed CSSC descriptor features an enhanced
high descriptiveness using the elevation weight and point

density weight. As a result, the one-shot global localization
method achieves the positioning accuracy of 7cm-18cm for
different datasets with different types of LiDAR scanners in
the mapping process (Xu et al. 2022b).

Furthermore, the work (Xu et al. 2022b) develops an
integrity index to evaluate the integrity and precision of
the presented solution. Correspondingly, the integrity index
is used in graph optimization to determine the information
matrix of theMGL solution.When the integrity index is zero,
the solution of MGL will not be used in graph optimization.
Otherwise, the information matrix of the MGL solution will
be calculated using the integrity index.

2.3 An improved LiDAR odometry and drift error
correctionmodel

In this section, we introduce an improved LiDAR odometry
solution based on NDT matching algorithm, which is one
of three components in the proposed integrated positioning
solution. Furthermore, a drift error correction model is pro-
posed to correct the LiDAR odometry.

2.3.1 Weighted NDT-based LiDAR odometry

The NDT algorithm has been reported inMagnusson (2009),
and it is efficient for registration. For 3DLiDAR,NDT shows
a better performance than other scan matching algorithms,
such as Iterative Closest Points, in terms of both reliability
and processing speed (Magnusson 2009). However, the orig-
inal NDT algorithm constructs the matching target equation
using the same weight for all voxels. In fact, the distance
between the center of the voxel and the scanning center, as
well as the surface characteristics of the voxel will affect the
calculation of transformation parameters. This study applies
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a weighted NDT algorithm in the LiDAR odometry, which
has been validated by Chen (2020).

Firstly, the relation between scan distance and weight is
discussed. The same rotation error results in greater incon-
sistencies in voxels farther from the scanning center than
in voxels closer to the scanning center. In other words, the
greater the distance between the center of the voxel and the
scanning center, the stronger the constraint of the voxel on
the matching. Therefore, distance weights are introduced:

Wrk = |xk | (1)

where xk is the center of voxel k and Wrk is the distance
weight of voxel k.

Second, the NDT algorithm describes the surface proper-
ties of local point clouds in a concise way. In this method, the
local point cloud is projected into a series of smooth surfaces
composed of local PDFs (Probability Density Function).
Each PDF describes the shape and surface characteristics
of the local surface in its corresponding voxel by means of
mean and variance. The covariance � of each voxel is a pos-
itive definite matrix, and the eigenvalues and eigenvectors of
thematrix can be obtained by eigenvalue decomposition. The
three eigenvalues of the covariance matrix � are all positive
and are arranged in descending order as: λ1 ≥ λ2 ≥ λ3 > 0.
According to the eigenvalues and eigenvectors of the covari-
ance matrix sigma, a variety of geometric parameters of the
voxel can be calculated. West et al. (2004) introduces the
calculation methods of several parameter indexes. The fol-
lowing indexes are used to express linearity index, planarity
index, and sphericity index in the voxel:

∀ j ∈ [1, 3], σ j = √
λ j

a1D = σ1 − σ2

σ1
, a2D = σ2 − σ3

σ1
, a3D = σ3

σ1

(2)

The dimensional of the voxel (1D, 2D or 3D) is defined
as follows:

d∗ = argmax [adD]
d∈[1,3]

(3)

Voxels with different dimensional indices have different
influences on NDT scan matching. The closer the surface
inside the voxel is to the 2D plane, the more accurately the
local PDF can describe the real physical surface of the point
cloud. Therefore, voxels with a higher plane index or signif-
icant 2D characteristics contribute more to NDT matching
and should be given a higher weight. Due to the sparsity of
the point cloud, the linearity or 1D features do not represent
accurately real physical surfaces. The LiDAR we used is a
rotating LiDAR, it includes multiple scanning lines. The far-
ther away from the scanning center, the lower the point cloud
density, as Fig. 2, a plane maybe just a few line segments in

Fig. 2 Rotating LiDAR scan is sparse in far away. A whole wall far
from the scanning center is a few line segments in the sparse point cloud

the sparse point cloud. In a voxel far from the scanning center,
it may contain a line, but it might just be part of a plane. The
linearity or 1D features should be assigned lower weights.

In this paper, the weights are set as follows:

WD =
⎧
⎨

⎩

1.25 (d∗ = 2)
1.0 (d∗ = 3)
0.75 (d∗ = 1)

(4)

Therefore, the objective equation of weighted NDT scan
matching is:

F(ξ) =
n∑

k=1

Wk f̃ (T (ξ, qk))

=
n∑

k=1

−d1Wk · exp
(

− d2
2

(T (ξ, qk) − μk)
T �−1 (T (ξ, qk) − μk)

)

T (ξ, qk) = exp
(
ξ∧) · qk = Rqk + t,

Wk = Wrk · WDk

(5)

After getting the transformation T between the two
LiDAR scans, current position relative to the first LiDAR
scan is obtained by accumulating all these transformations.

2.3.2 Drift error correction model

When the LiDAR odometry calculates the relative trajec-
tory by matching consecutive LiDAR scans recursively, the
registration error between scans will be accumulated, and
the LiDAR odometry has accumulative error over time, as
shown in Fig. 3. When absolute positioning solutions are not
available for a long time, the integrated positioning solution
depends on the LO for a full availability, while its accuracy
is to be improved yet.

This study proposes a drift error correction (DEC) model
to improve positioning accuracy. As shown in Fig. 4, suppose
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Fig. 3 Errors of LiDAR
odometry accumulate over time

the current time is i, there are absolute positioning solutions
(either GNSS or MGL) available at time i, and a previous
time j, while there are no absolute positioning solutions after
time i. Time j is separated from the current time i by a certain
time interval, such as 10s. We assume the pattern of error
accumulation is the same in short periods, as the error of LO
is derived from point cloud registration. The DEC model is
estimated using the reference trajectory between time i and
j, which is derived with the absolute positioning solutions
between time i and j. The estimated DEC model is then used
for correcting the LO trajectory of the following period after
time i, e.g., the time k in Fig. 4. Behind this methodology, it
is assumed that the accumulated error of the LO behaves in
part with the nature of systematic error when the scanning
environment has no significant change, and thus the LO error
can be modeled and predicted in a short period (Ji and Singh
2014; Li et al. 2020a).

We use the trajectory estimated with the graph optimiza-
tion as the reference trajectory, and the error is defined as the
difference between the real-time LO trajectory and the ref-
erence trajectory. The drift error correction model is defined
as Eq 6.

�e =
(
pli − pgi

)

∑i−1
n= j

∥∥pgn+1 − pgn
∥∥

(6)

where pli and pgi are the position of time i from LiDAR
odometry and graph optimization, respectively.

When an absolute positioning solution (either GNSS or
MGL) is available, the DEC model can be updated using
Eq 6. Subsequently, when there are no absolute positioning
solutions, the LO is the main observables of the integrated
solution. The updated DEC model is then used to correct the
LO, and improve the accuracy of the integrated positioning
solution. As shown in Fig. 4, given the time k and the corre-
sponding LO position pk , the corrected position is calculated
using Eq.7.

p′
k = pk + �e

k−1∑

n=i

‖pn+1 − pn‖ (7)

where pk is the position of time k from LiDAR odometry, p′
k

is the position of time k after drift error correction, and �e

is the error model of LiDAR odometry which be updated by
Eq 6.

Finally, the corrected position and pose p′
k will be output

in real-time as the integrated positioning solution. It has an
improved accuracy than the original LO, and can also provide
a better initial value for graph optimization.

2.4 GNSS/LiDAR/Map fusion using Graph
optimization

This section presents first the fusion framework of integrat-
ing the LO, GNSS, and MGL using the graph optimization
algorithm, and then describes the construction of the opti-
mization equations.

The proposed fusion framework integrates the LO of
relative positioning, and GNSS and MGL of absolute posi-
tioning using the graph optimization algorithm (Grisetti et al.
2010), as shown in Fig. 5. The fusion framework exploits the
advantages of these different technologies and mitigates the
drawbacks of their own. GNSS and MGL are able to pro-
vide previse absolute positioning with the accuracy of up to
a number of centimeters, while their continuity, availability,
and accuracy are affected by the surrounding environments.
LO technology can provide continuous relative positioning
with a high rate, e.g., 10Hz (Ji and Singh 2014), while it
suffers from increasingly accumulative drift error over time,
and the accuracy is not satisfactory.

As shown in Fig. 5, the states (X), (i.e., positions of
autonomous driving vehicles), are the nodes in the graph
optimization framework, and the transformation between two
consecutive states is defined as motion edge. As to the LO,
a series of key frames are constructed based on movement
distance, the relative pose of the current key frame is associ-
ated in the graph as another measurement edge. GNSS and
MGL absolute positioning solutions are firstly aligned tem-
porally and spatially, and they are associated in the graph as
the measurement edges. It should note that for each node,
the key frame of LO is available, while GNSS and MGL
measurement edges are not necessarily available.

Given the methodology of graph optimization, for the LO,
let ẑi j

(
xi , x j

)
be the prediction of a virtual measurement

given a configuration of the nodes xiand x j . Usually, this pre-
diction is the relative transformation between the two nodes.
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Fig. 4 Illustration of the accumulative error of LO and the DECmodel.
The red lines are the trajectory of LiDAR odometry that contains
increasingly accumulative error over time, and the yellow line is the
corrected LO trajectory using the DEC model. The blue line is the

ground truth trajectory used as the reference. Green points are the posi-
tions that are estimated using the graph optimization of the proposed
solution (section 2.4). The blue axis represents time, and the current
time is i

Fig. 5 Structure of graph
optimization

The error function between the expected observation ẑi j and
the real observation zi j is simply given by:

ei j
(
xi , x j

) = zi j − ẑi j
(
xi , x j

)
(8)

The graph optimization accounts for the uncertainty of
the measurements using the information matrix �i j . For the
LO, the information matrix of this edge is calculated based
on the fitness score of two consecutive key frames as ¨ij =
score ◦ I , where score is the fitness score and I is the identity
matrix.

ForGNSSabsolute positioning solution, the error function
is defined as the difference between GNSS-derived position
and the expected position of the current node: eG = ẑi − zG .

The information matrix of GNSS positioning solution is
calculated using the corresponding covariancematrix and the
solution state (a fixed or float solution) as

�G =
⎧
⎨

⎩

score f i x ◦ I, RT Kstate = FIX
score f loat ◦ I, RT Kstate = FLOAT

0, others
,

where score f i x and score f loat are the corresponding weight
parameters for RTK fix and float solutions, respectively.
Furthermore, the covariance matrix in the RTK positioning
results can also be used to accurately calculate these two
parameters.
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For theMGLabsolute pose, the error function is defined as
the difference between MGL-derived pose and the expected
pose of the current node as eL = ẑi − zL .

The information matrix of MGL pose is calculated using
the integrity score as �L = WCS ◦ I , where WCS is the
weighted combined score of integrity index of theMGL solu-
tion, and its calculation is presented in Xu et al. (2022b).

Given the node and edges, the optimization function is
defined as follows:

F(x) =
n∑

k=1

e (xk, zk)
T �ke (xk, zk)

x̂ = argmin
x

F(x)

(9)

where x = (
xT1 , . . . , xTn

)T
is a vector of parameters to be

estimated, where xi describes the pose of node i , and each
xk describes the state of node k, which contains position
and pose. zk and �k represent, respectively, the mean and
the information matrix of a constraint relating node and the
constraint. e is a vector error function that measures howwell
the parameter blocks xk satisfy the constraint zk .

According to the above equation, graph optimization can
be seen as a non-linear least squares problem essentially,
and it can be solved by methods such as Gauss–Newton or
Levenberg–Marquardt (L–M) method.

The result of graph optimization is the optimized state
of every node, which represents the optimized positions of
an autonomous driving vehicle. The optimized positions are
used to update the drift error correction model and provide
ubiquitous positioning for an autonomous driving vehicle.

3 Experiments

3.1 Experiment setup and ground truth

The proposed integrated positioning solution is implemented
using C/C++ programming language, and it is validated
using the testing experiments and the NCLT open-source
dataset(Carlevaris-Bianco et al. 2016). In order to validate
the proposedmethods, the experiment requires a dataset con-
taining GNSS precise positioning, and two sets of LiDAR
scanning measurements of the same area, one of which is
used for building a 3D map, and the other is used as global
localization with the MGL method. Common SLAM open
datasets contain only one LiDAR scanning data, so we use
the open-source dataset NCLT as the experimental data in
this study, which contains multiple sets of LiDAR scanning
measurements in the same area. As shown in Fig. 6a, the
NCLT dataset was acquired at the campus of the University
of Michigan in USA using the set of the sensors, includ-

Fig. 6 a The segmented test route; b The corresponding 3D point cloud
map of the testing area

ing a Velodyne HDL-32E LiDAR, GNSS RTK, IMU, wheel
encoders, among others. As the MGL method requires a 3D
map as the geospatial reference, we build first a 3D point
cloud of the scene as shown in Fig. 6b. (The reference map
consists of each LiDAR scan and its 6DOF pose in a global
reference frame. The 6DOF pose of LiDAR scans is provided
by the ground truth of the dataset and transformed from the
robot’s origin to LiDAR origin.) The ground truth of the tra-
jectories is provided using the combined GNSS/LiDARwith
the post-processing. The accuracy evaluation of the MGL
method with the NCLT open-source dataset is referred to our
previous work (Xu et al. 2022b).

We use the absolute trajectory error (ATE) to evalu-
ate the localization accuracy. The absolute trajectory error
directly measures the difference between points of the true
and the estimated trajectory. As a pre-processing step, we
associate the estimated positions with ground truth posi-
tions using the timestamps. Then, we compute the difference
between each pair of positions as the errors, and calcu-
late the mean/median/standard deviation of these differences
(errors). The ‘Mean’ is short for Mean Absolute Error, the
‘RMSE’ is short for Root Mean Square Error, the ‘Max’
represents the max error, and the ‘Std’ is short for Standard
Deviation.
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3.2 Validation of DECmodel

In this subsection, we will compare the positioning accu-
racy of LiDAR odometry with and without the proposed
DEC model. In this experiment, there are two trajectories to
compare. One trajectory is the integrated NDT-based LiDAR
odometry (mentioned in section 2.2) with GNSS and MGL
solutions directly. When an absolute position from GNSS or
MGL is available, the current position of LiDAR odometry
will be replaced with this absolute position and subsequent
positioning results will be derived from this absolute posi-
tion. Another trajectory is improved using the proposed DEC
model based on the integrated NDT-based LiDAR odometry
with GNSS and MGL solutions. The ATE of two trajectories
is calculated for comparison.

The comparison of positioning accuracy for the DEC
model applied and not applied is shown in Table 1, and the
Cumulative Distribution Function (CDF) is shown in Fig. 7.
It can be seen from Table 1 that, given the DEC model is
applied, all errors, including max, RMSE, Std, and Mean
position errors, are reduced significantly. Specifically, when
the DEC model is applied, the RMSE error is reduced by
35.5%.

Figure 8 shows how the position error changes over time
when the DEC model is applied and not applied, respec-
tively. From the figure, we can see that the positioning error
of LiDAR odometry increases over time. The position error

Table 1 Comparison of positioning accuracy

Solution RMSE (m) Max (m) Std (m) Mean (m)

DEC applied 1.67 6.28 1.01 1.33

DEC not applied 2.59 9.35 1.73 1.93

Fig. 7 CDF of positioning error

of LiDAR odometry decreases significantly once GNSS or
MGL solutions are available for fusion, which have typically
positioning accuracy of 10-20cm. However, the error will
get accumulated after GNSS and MGL become unavailable,
whereas the proposed DEC model can mitigate the accumu-
lated error of the LO.

In this experiment, we prove that the proposed DEC
method can effectively reduce the accumulation of position
errors of LiDAR odometry when there is no external absolute
position for a long time. The performance of the proposed
positioning solution will be evaluated in the next experiment.

3.3 Accuracy evaluation for three different scenarios
of urban environments

The accuracy evaluation depends on the GNSS-derived
ground truth. In order to verify the performance of the pro-
posed solution in urban environments where GNSS may be
denied, we simulate three typical scenarios of urban envi-
ronments as listed in Table 2, and compares the positioning
accuracy of different combinations of positioning technolo-
gies in these urban scenarios. These typical scenarios are
featured with different availability of GNSS and MGL solu-
tions. Scenario A simulates the typical urban environment
where GNSS signals are blocked from time to time, and there
is no 3D map usable for the MGL method. Thus, GNSS pre-
cise positioning can be used at part time, and the LO can be
used always. Scenario B simulates the underground space,
e.g., tunnel and parking, where GNSS is fully denied, but
the 3D map is available for global localization. Thus, the
MGL solution is available at a low rate and the LO provides
the positions at a high rate. Scenario C simulates the typi-
cal urban road environment where GNSS signals are denied
partly from time to time, and there are 3Dmaps intermittently
available for the MGL method.

In scenario A, GNSS and LO are fused to provide con-
tinuous positioning. We compare the positioning accuracy
of four fusion methods: (1) LiDAR odometry only (using
the same starting position as the other combinations, pro-
vided byGNSS); (2) LiDARodometry integratedwithGNSS
directly, which means LiDAR odometry trajectory is aligned
with GNSS positions when they are available; (3) LiDAR
odometry integrated with GNSS positions using the global
graph optimization (GGO), which means the historical tra-
jectory is optimized using GNSS positions as the constraints;
(4) LiDARodometry integratedwithGNSS positions and the
DEC model is applied to further improve the accuracy. The
ATE accuracy comparison of scenario A is shown in Table 3
and Fig. 9.

In scenario B, MGL and LO are fused to provide contin-
uous positioning. We compare the positioning accuracy of
four fusion methods: (1) LiDAR odometry only (using the
same starting position as the other combinations, provided by
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Fig. 8 Position errors between
the estimated positions and
ground truth

Table 2 Three types of urban
scenarios

Scenario Available positioning technologies Description of simulated scenario types

A GNSS+LO GNSS partly denied, without 3D map

B MGL+LO GNSS fully denied, partly 3D map available

C GNSS+MGL+LO GNSS partly denied, partly 3D map available

Table 3 ATE comparison for scenario A

Solution Number of fusion solutions Number of GNSS position Mean(m) Std(m) RMSE(m) Max(m)

(I)LiDAR odometry only 2445 - 7.42 3.42 8.17 12.16

(II)LO+GNSS 2445 14 2.51 2.32 3.41 8.37

(III)GNSS+LO+GGO 2445 14 2.20 1.01 2.42 4.32

(IV)GNSS+LO+DEC 2445 14 1.78 1.74 2.49 7.26

MGL); (2) LiDAR odometry integrated with MGL directly,
which means LiDAR odometry trajectory is aligned with
MGLsolutionswhen they are available; (3)LiDARodometry
integrated withMGL solutions using the GGO, which means
the historical trajectory is optimized using MGL solutions as
the constraints; (4) LiDAR odometry integrated with MGL
solutions and the DEC model is applied to further improve

the accuracy. The ATE accuracy comparison of scenario B is
shown in Table 4 and Fig. 10.

In scenario C, GNSS, MGL and LO are fused to pro-
vide continuous positioning. We compare the positioning
accuracy of four fusion methods: (1) LiDAR odometry only
(using the same starting position as the other combinations,
provided by GNSS and MGL); (2) LiDAR odometry inte-

Fig. 9 Comparison of trajectory a and CDF b for scenario A
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Table 4 ATE comparison for scenario B

Solution Number of fusion solutions Number of MGL positions Mean(m) Std(m) RMSE(m) Max(m)

(I)LiDAR odometry only 2445 - 7.42 3.42 8.17 12.16

(II)LO+MGL 2445 12 2.12 1.96 2.88 8.95

(III)MGL+LO+GGO 2445 12 2.98 1.14 3.19 8.39

(IV)MGL+LO+DEC 2445 12 1.89 1.95 2.71 8.95

Fig. 10 Comparison of trajectory a CDF and b for scenario B

grated with GNSS and MGL directly, which means LiDAR
odometry trajectory is aligned with GNSS positions or MGL
solutions when they are available; (3) LiDAR odometry inte-
grated with GNSS positions and MGL solutions using the
GGO, which means the historical trajectory is optimized
using GNSS positions andMGL solutions as the constraints;
(4) LiDAR odometry integrated with GNSS positions and
MGL solutions and the DEC model is applied to further
improve the accuracy. The ATE accuracy comparison of sce-
nario C is shown in Table 5 and Fig. 11.

By comparing these results of three scenarios, although
the availability of GNSS and MGL solutions is limited in
urban environments, the integrated solution has the avail-
ability of 100%, thanks to the continuity of the LO. Here
the dataset contains 2445 LiDAR scans, and it has the same
number of positioning solutions. The limited (<1%) number
of GNSS and MGL solutions are advantageous for improv-
ing the accuracy of the proposed fusion positioning solution.
Compared to the LO, the graph optimization-based fusion

solution improves the accuracy of historical trajectory by
60.9%−82.6% for different scenarios, and the proposedDEC
model improves the accuracy of real-time trajectory by 66.8-
−85.2%, in terms of the mean error. The comparison of
Tables 3, 4 and 5 shows that more absolute positioning
solutions (e.g., either GNSS or MGL) can improve further
the positioning accuracy as there are more opportunities for
global optimization. The experimental results show that the
positioning accuracy of scenario C is improved by 51.3% and
55.3% (RMSE), compared to scenariosAandB, respectively.

From the CDF comparison of four trajectories in each
scenario, the positioning accuracy of LiDAR odometry inte-
grated with GNSS by the proposed DEC (Solution IV) is
higher than other positioning methods. According to Tables
3, 4 and 5, we can find that the max positioning error of the
fusion method with the GGO (Solution III) is smaller than
the fusion method with the proposed DEC (Solution IV). It
should be noted that the GGO optimized all historical mea-
surements with an objective of the minimum overall error,
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Table 5 ATE comparison for scenario C

Solution Number of fusion solutions Number of MGL position Mean(m) Std(m) RMSE(m) Max(m)

(I)LiDAR odometry only 2445 - 7.42 3.42 8.17 12.16

(II)LO+GNSS +MGL 2445 26 1.54 1.55 2.19 6.50

(III)LO+GNSS +MGL+GGO 2445 26 1.24 0.70 1.42 3.64

(IV)LO+GNSS +MGL+DEC 2445 26 0.86 0.86 1.21 4.01

Fig. 11 Comparison of trajectory a CDF b for scenario C

and the derived trajectory is used as the reference to calcu-
late the DECmodel, while Solution IV provides the real-time
trajectory that corrects the LO using the previously derived
DEC model. In other words, Solution III provides the glob-
ally optimized reference trajectory when absolute positions
are available, and hence it has latency. Solution IV provides
real-time positioning solutions, and it is more suitable for
applications that require high real-time performance, such
as autonomous driving. The result obtained by fusing GNSS
andMGL through graph optimization is not better than direct
fusion in scenario B, because there are fewer available abso-
lute positions. The graph optimization may result in a larger
error locally, in order to obtain the global optimal. However,
the max error of Solution III is still smaller than that of Solu-
tion II.

4 Discussion and Conclusion

In this work, we proposed a GNSS/LiDAR/Map integrated
positioning solution for ubiquitous positioning in urban
environments. The proposed solution integrates multiple
positioning technologies, including GNSS precise position-
ing, 3Dmapmatching-based global localization, and LiDAR
odometry, which are applicable in the autonomous driving
context. Our proposed fusion method combines the advan-
tages of absolute positioning and relative positioning, and
resultingly the fusion solution has 100% availability and the
positioning accuracy is improved significantly. Furthermore,
considering the error characteristics of the LO technology,
we propose a drift error correction model. The proposed drift
error model and integrated positioning solution are validated
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using the NCLT open dataset and the corresponding ground
truth.

In our first experiments, we tested the effectiveness of the
DEC model for reducing the error of the LiDAR odometry.
The experiment results show that the DEC model improves
the accuracy of theLOby35.5%.The proposedDECcan also
be used to improve the positioning accuracy of other LiDAR
odometrymethods because thatDEConly corrects the results
ofLiDARodometry anddoes not involveLiDARscanmatch-
ing. In order to evaluate the performance of the proposed
solution, we simulate three types of urban scenarios, where
these positioning technologies (LO, MGL, and GNSS) have
different availability. Thanks to the continuity of the LO, all
fusion methods provide 100% availability of integrated solu-
tions. Precise absolute positioning solutions can be used to
improve the accuracy of historical trajectory using the graph
optimizationmethod, and the historical trajectory is thenused
for updating online the DEC model. The DEC model is used
for improving the accuracy of the integrated solution, espe-
cially when precise absolute positioning solutions are not
available for a long time. Compared to the LO, the fusion
solution with the proposed DEC model improves the accu-
racy of the real-time trajectory by 66.8%−85.2%, depending
on the availability of absolute positioning solutions. To verify
the performance of the proposed DEC model and the fusion
method,weuse only very limited (roughly 1%) absolute posi-
tioning solutions. In scenario C, both GNSS and MGL can
be used to calculate the error model of LiDAR odometry
and decrease LiDAR odometry drift error. So, this scenario
achieves the best localization results compared to scenarios
A and B, due to the increase in available absolute positions.
Our experiment results show that the proposed positioning
solution can provide precise and continuous positioning for
autonomous vehicles in real-time in urban.

The applicability of the linearDECmodel proposed in this
study is limited, especially when the scanning environment
has significant change. For example, the LO errormay follow
a different pattern when the heading has large turning, or
the surrounding geometric structure changes significantly.
More sophisticatedmodels, e.g., deep neural networks-based
methods, will be studied in the future to improve the accuracy
and applicability of the DEC model. In addition, the NDT-
based LiDAR odometry gets relative position only by scan-
to-scan matching, an advanced LiDAR odometry with better
accuracy will used in our positioning solution.
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