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Abstract

Unsupervised semantic segmentation aims to discover groupings within images,
capturing objects’ view-invariance without external supervision. Moreover, this
task is inherently ambiguous due to the varying levels of semantic granularity.
Existing methods often bypass this ambiguity using dataset-specific priors. In our
research, we address this ambiguity head-on and provide a universal tool for pixel-
level semantic parsing of images guided by the latent representations encoded in
self-supervised models. We introduce a novel algebraic approach that recursively
decomposes an image into nested subgraphs, dynamically estimating their count
and ensuring clear separation. The innovative approach identifies scene-specific
primitives and constructs a hierarchy-agnostic tree of semantic regions from the
image pixels. The model captures fine and coarse semantic details, producing a
nuanced and unbiased segmentation. We present a new metric for estimating the
quality of the semantic segmentation of discovered elements on different levels
of the hierarchy. The metric validates the intrinsic nature of the compositional
relations among parts, objects, and scenes in a hierarchy-agnostic domain. Our
results prove the power of this methodology, uncovering semantic regions with-
out prior definitions and scaling effectively across various datasets. This robust
framework for unsupervised image segmentation proves more accurate seman-
tic hierarchical relationships between scene elements than traditional algorithms.
The experiments underscore its potential for broad applicability in image analysis
tasks, showcasing its ability to deliver a detailed and unbiased segmentation that
surpasses existing unsupervised methods.

1 Introduction

The advancement of image segmentation has recently taken significant steps forward. On the
one hand, the foundation models are trained on increasingly large datasets, such as CLIPseg [57]
(CLIP [67]), SAM [48], and SEEM [97], supervised by text and human prompts [92]. On the other
hand, there is a rising growth of unsupervised segmentation models. Unsupervised segmentation ex-
plores the feature hierarchy by leveraging self-supervised contrastive learning, as in SmooSeg [51],
U2Seg [62], CUTLer [87], CuVLER [5], STEGO [32], ACSeg[52], FreeSolo [85], HSG [44], Trans-
Fgu [90], DeepCut [3], and others [77, 58, 96, 86, 33, 17]. Unsupervised models discover and lo-
calize image categories with no annotation aid and evaluate the quality of the pseudo-masks they
predict on the datasets corpora used for testing, such as COCO-Stuff [10] and Cityscapes [21]. De-
spite exploring human perception more closely than the foundation models, they still rely on the
linguistic and conceptual relations between the images and their annotations.

Curated datasets, such as ImageNet [50], PascalVOC [27], or MSCOCO [53], show an extraordinary
number of objects with all their components and particulars not annotated either at the image level
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Figure 1: Hierarchy-agnostic unsupervised segmentation. Finer image parts are generated via
over-clustering, each region colour-coded randomly. Our algorithm recursively partitions these
parts, grouping them into coarser regions across multiple levels of granularity. The resulting tree
represents an unsupervised hierarchical semantic segmentation. The arrangement of regions in the
tree reflects their semantic distance, which is colour-coded in the heat map shown on the right.

or densely. Why annotate this and not that? Annotation prejudice creates a bias towards a subset
of the scene. Unsupervised learning, in contrast, has the potential to generate richer representations
that are not restrained by annotation decisions. Without juggling annotations, unsupervised features
(e.g. [64]) nearly mirror visual perception discovering scene parts and details; indeed, feature cues
live in nested context levels and are not necessarily verbalisable [76, 66], as opposed to the Gestalt
holistic view [83].

Following previous research [44, 19, 3, 94], our key idea is that the natural hierarchical structure
of visual scenes is an essential attribute that we can actively pursue in unsupervised segmentation.
We approach unsupervised semantic segmentation as an unsupervised pixel-wise feature learning
problem, discretising the hierarchical semantic knowledge yielded by self-supervised learning. Our
approach makes no assumption about the number of semantic granularity levels and the number of
partitions in each level as in [44]. We generate robust hierarchical segmentation for every image,
solely relying on hierarchical clustering in feature space, see Figure 1. This new method achieves
unsupervised segmentation by leveraging relationships between concepts hidden in the latent space
of self-supervised models, across multiple levels of semantic granularity.

We propose a simple algebraic methodology based on a vast literature [20, 6, 61, 81, 75, 91], that
unsupervisedly segments the scene parts. The method guarantees the construction of natural, scene-
dependent classes of primitives [55], which can be easily used in unsupervised segmentation without
surrendering to their a priori definitions. Our contributions are:

1. We introduce a deep recursive spectral clustering that maximises an unbiased semantic simi-
larity measure at multiple granularity levels. Exposing our method to any generic group of images,
we show that it results in hierarchical unsupervised semantic segmentation.

2. We introduce new metrics for estimating the quality of the semantic segmentation of the ele-
ments discovered on the different levels of the hierarchy, called Normalised Multigranular Covering
(NMCovering) and Normalised Hierarchical Covering (NHCovering).

3. We integrate the method into various self-supervised learning models to enhance its flexi-
bility for benchmarking purposes, making it suitable as a downstream task through unsupervised
segmentation by inferring all scene parts in the images of any given dataset.

2 Related works

Self-supervised representation learning for unsupervised segmentation. Self-supervised learn-
ing (SSL) is about learning representations of real-world data without human supervision [14, 36, 11,
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64]. Contrastive learning (CL) [18, 63] is the most prominent method in SSL, maximising feature
similarities between an image and its affine transformations while minimising similarity between
randomly sampled images. Most unsupervised segmentation methods use learning representations
to feed self-supervised features to graphs for clustering [58, 88, 87, 3]. Alternatively, features are
used for building distillation strategies [32, 96, 51], or for designing inductive priors forcing some
consistency property [51, 17, 73]. SSL representations implicitly define a distance metric in the
latent space, though learning a metric space is not their primary objective.

Unsupervised semantic segmentation. Unsupervised semantic segmentation labels pixels that be-
long to specific elements in the scene, grouping all objects of the same semantic type under a single
label, without supervision.
The earlier approaches, such as [41, 47, 17, 86, 77, 33] had not yet available powerful SSL features
like [11], though used CL principles. PiCie [17] used equivariance to transformations; IIC [41]
resorted to invariant information clustering, maximising mutual information, to find commonality
in objects, and analogously did InfoSeg [33]. CLD [86] integrated local clustering into contrastive
learning; [77] used saliency to find the image foreground and guide CL of pixel embedding.
The availability of high-level unsupervised features triggered new strategies. DINO self distilla-
tion [11] inspired both STEGO [32] and SmooSeg [51]. STEGO trains a segmentation head by dis-
tilling the feature correspondences to form compact clusters. SmooSeg uses the smooth prior over
semantically coherent regions as a supervision cue to generate semantic maps. However, many meth-
ods suffer from the background problem and elaborate on DINO’s attention to obtaining foreground
objects, such as FreeSolo [85] and [93]. Also, TransFGU [90] focuses on a top-down object-centric
approach to generate pixel pseudo labels according to GradCAM [72]. Spectral clustering, as intro-
duced to machine learning by [74], is considered in [88, 58, 87, 52, 68]. In particular, CutLER [87]
applies NCut [74] iteratively to a masked similarity matrix to discover foreground elements of the
scene. ACSeg [52] uses the affinity matrix to discover concept similarities. SemPart [68] considers
the foreground a single object saliency mask and applies graph regularisation. In [73], patch-level
contrasting learning leverages global hidden positives to learn semantic consistency.
As grouping is the common denominator, all the mentioned methods suffer from deciding the correct
level of granularity. Some methods resort to an object-centric bias, such as [77, 93], CAMs [90],
hinting self-attention [96, 79], fixed-size flat image partitioning [58]. Others, such as [96], and
[46, 73], resort to a scene-centric prior assumption.

Unsupervised parts discovering. Despite hierarchically discovering parts has a long history in
computer vision, it has only recently recovered and connected to unsupervised part segmentation.
The first input came from [31], analysing the hierarchical nature of deep learning features. One of
the first approaches was SCOPS [39] using dense self-supervised contrastive loss to discover fore-
ground parts of single objects. In [94], the authors introduce self-supervised primitive hierarchical
grouping. They leverage a boundary strength map (OWT-UCM [4]) on relatively few images to
learn from a large data set. The approach formulates an ultrametric map defining a region hier-
archy. Similarly, HSG [44] leverages region boundaries to obtain multi-level segmentation. HSG
is unsupervisedly trained from scratch, performing pixel grouping with dense contrastive learning
across different granularity levels. In [19], K fixed parts are discovered via an average part descrip-
tor and by forcing consistency using the equivariance of affine and photometric transformations.
Leopart [96] follows DINO self-distillation to classify pixels, obtaining detailed scene parts, fur-
ther clustered via community detection. Finally, DeepCut [3] approaches unsupervised semantic
part segmentation using both spectral clustering with NCut and GNN convolution, constructing a
patch-wise correlation [7] matrix from DINO features.

3 Method

We present a flexible, unsupervised method for segmenting natural images, automatically creating
data structures that organize pixels by their semantic coherence across multiple levels of detail with-
out relying on predefined hierarchies or labels. This method is designed to segment images from
coarse regions to finer parts, providing an intuitive representation of visual content; see Figure 1.

For instance, consider an urban street view. At a high level, it consists of elements such as the sky,
a road, buildings, and vehicles. Among the vehicles, there might be a bus or a car, which can be
further decomposed into parts like the body shell, wheels, and other visible components.
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Our approach segments an image I ∈ R3×M×N into a hierarchy-agnostic tree T of semantic regions,
with each pixel in the image assigned to a leaf node. Our model is a function f : I → T , represented
by a deep neural network, which maps an image to its semantic regions. Notably, this is achieved
in a fully unsupervised manner; we incorporate mechanisms that guide f to produce a meaningful
decomposition of the image, even without labelled examples.

3.1 Overview of the Approach

Our method discovers similar parts in an image by recursively partitioning a graph constructed from
deep feature representations of the image. The key idea is to treat self-supervised models for image
processing as codebooks of a lower-dimensional space, with the extracted feature vectors acting as
codes that embed semantics of visual concepts.

The primary cue for discovering parts is a deep feature extractor ϕ, a neural network pre-trained
without supervision on a standard benchmark such as ImageNet. We observe that the alignment of
codes leads to semantic similarity across multiple levels of granularity. A higher degree of alignment
indicates semantic similarity at finer granularity levels, corresponding to indivisible object parts or
primitives. Conversely, a lower degree of alignment reflects semantic similarity at coarser granular-
ity levels. By discretizing the density of these alignments, we can discover scene and object parts at
various levels of detail.

Let vi = [ϕ (I)]i ∈ Rd be the code associated with pixel location i in the image. If pixel j belongs
to the same finer part as i, their codes should be similar. Conversely, if they belong to different parts,
their codes will diverge. We expect this property to be consistent in each image I and should not be
affected by the particular object instances.

A straightforward approach might be to cluster these codes using algorithms that minimize a distor-
tion metric in the latent space to identify regions of high feature concentration. However, a critical
flaw that can arise when using these methods in high-dimensional space is the presence of many
local minima in the cost function. This would require multiple restarts of the iterative algorithms
to find a suitable solution, which is impractical due to high complexity. To overcome these limita-
tions, we adopt an efficient method to partition the image into similar regions, avoiding the pitfalls
of multiple local minima and the need for iterative restarts in high-dimensional space.

Graph construction. We represent the image I as a weighted undirected graph G = (V,E,w),
where V = {vi}ni=1 and n = M · N . The weight assigned to each edge (i, j) ∈ E is defined by a
scaled and shifted cosine similarity between feature vectors wij = w(vi, vj) ∈ [0, 1]. These weights
form the adjacency matrix W = [wij ] ∈ [0, 1]n×n, the degree matrix D = diag [di] ∈ Rn×n, where
di =

∑
j wij and the normalized graph Laplacian L = D−1/2 (D −W )D−1/2 [59].

We interpret the edge weights as indicators of the semantic granularity between nodes. Specifically,
if wij → 1, pixels i and j likely belong to the same fine-grained part (primitive). Conversely, if
wij → 0, these pixels are likely to belong to entirely different parts, indicating minimal semantic
similarity even at the coarsest level of granularity.

Similarity perturbation. In an ideal scenario, at a specific granularity level, k′ distinct connected
components emerge in G, resulting in a binary adjacency matrix W ′ ∈ {0, 1}n×n with k′ non-zero
diagonal blocks — indicating strong intra-component connectivity and no inter-component connec-
tions — and normalized Laplacian L′. However, in practice, the observed adjacency matrix is not
discrete. Instead, W exhibits tightly connected components alongside others with lower connectiv-
ity, resulting in a perturbed normalized graph Laplacian L. We regard the primitives of the model as
affected by a small symmetric perturbation H ∈ Rn×n incorporating contextual information from
coarser levels of semantic granularity, i.e. L = L′+H , making the observed adjacency real-valued.

Fortunately, the Davis-Kahan symmetric sin θ theorem [23, 91] helps us manage perturbations; see
also Appendix A. If the eigenvalues of L exhibit a spectral gap δ, the corresponding eigenspaces of
L and L′ remain close despite the perturbation H . The theorem quantifies this proximity by relating
the angle θ between the eigenspaces of L and L′, where sin θ is proportional to the norm of H and
inversely proportional to δ. By selecting the largest gap, we isolate the part of the spectrum closest
to the original graph, guessing the true semantic structure at the specific granularity level.
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Normalized smoothness measure. We consider a function g : V → R that assigns a value g(vi)
to each node vi ∈ V . Since |V | = n, we identify the function g with a vector in Rn. Based on the
considerations from [74, 8] (see also Appendix C), we define the normalized smoothness measure
of g on the graph G using the functional SG : Rn → R+ induced by L through the form:

SG(g) =
g⊤(D −W )g

g⊤Dg
=

∑
ij(g(vi)− g(vj))

2wij∑
i g(vi)

2di
. (1)

We observe that minimizing the functional yields normalized smoothest functions that assign similar
values to tightly connected nodes and different values to weakly connected ones while accounting
for their importance in the graph — avoiding trivial solutions for low connectivity nodes. Therefore,
if g is both normalized and smooth with respect to G, then g(vi) is similar to g(vj) whenever vi is
similar to vj , where similarity is quantified by the weight wij and adjusted by the node degree di.

Given these properties, we treat any function g as a continuous partition function on the graph G and
evaluate its correctness by a feature density change criterion on the data partition, which measures
variations in similarity across different regions of the graph.

Recursive partitioning with perturbation stability. We propose a recursive partitioning strategy
for discovering semantic parts by progressively dividing the graph, starting from the whole and
refining it into tightly connected subgraphs. At each recursion level, we examine the subgraph’s
granularity, identify perturbations — contextual variations affecting node connections — and derive
the unperturbed adjacency matrix to reveal finer semantic components. By capturing relationships at
multiple levels of detail, this approach yields more nuanced segmentation than methods that partition
the entire graph’s nodes into a fixed number k of sets.

We aim to find the smoothest normalized functions that best describe the semantic structure of a
subgraph G at a specific granularity.1 We tackle the minimization of Equation (1) as a standard
eigenvalue problem [74] using the Rayleigh-Ritz quotient form. This yields the orthonormal eigen-
vectors yi corresponding to the smallest eigenvalues λi of L, as guaranteed by the Courant-Fischer
theorem:

yi = argmin∥y∥=1,y⊥y<i
y⊤Ly, with y0 = D1/21 ∈ Rn. (2)

The eigenvalues λi — the values on the right-hand side of the problem above — with 0 = λ0 ≤
λ1 ≤ · · · ≤ λn−1 ≤ 2, quantify the normalized smoothness of the functions yi. Since solving the
eigenvalue problem has a computational complexity of O(n3), in practice, we limit the computation
to the kmax smallest eigenvalues for efficiency. We obtain the spectral gaps δj = λj −λj−1 > 0 for
2 ≤ j ≤ kmax − 1 and seek for the k-th gap giving the tighter sin θ bound, i.e. k = argmaxj δj .

We select up to k smoothest normalized functions on G, namely the first k eigenvectors of L,
y1, . . . , yk−1 — we ignore y0 since it is constant. These k eigenvectors provide orthogonal graph
signals based on semantic coherence, with nodes showing similar values in these functions likely
belonging to the same semantic part; thus, each signal points to a distinct connected component.

As in [61], we recover the true semantic structure of the graph considering the matrix Y =
[y1, y2, . . . , yk−1] ∈ Rn×k−1. First, we perform ℓ2-normalization of each row in Y , Xij =

Yij/(
∑

j Y
2
ij)

1/2 ∈ Rn×k−1 — the i-th row of X represents the normalized feature vector for the
i-th node, which determines the node’s membership in a cluster. Then, we take the best membership
for each node — using an algorithm that attempts to minimize distortion in a lower-dimensional
space — finding k disjoint partitions of the nodes V1, V2, . . . , Vk such that

⋃k
i=1 Vi = V and⋂k

i=1 Vi = ∅.

We determine L′ and estimate the perturbation H = L−L′ to compute the sin θ upper bound value.

Each recursion step splits the graph into tighter subgraphs. This process continues until one of the
early stopping criteria is met: (1) if a partition is too small (less than kmin), (2) if the eigenvalues
exceed a maximum smoothness threshold λmax, or (3) if the sin θ upper bound value becomes
too large (more than pmax), indicating that the current estimate of L′ is no longer reliable. These
stopping conditions ensure we halt when further partitioning does not yield meaningful semantic
components, thus identifying the final set of image parts or primitives.

1We generalize G and L to denote any subgraph and its Laplacian, rather than just the original image graph.
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Figure 2: Qualitative results of our algorithm on PascalVOC2012, COCO-Stuff and Cityscapes
datasets. The Hierarchy columns colour-code the pixel semantic hierarchy, and the Category
columns are random colour-coded, helping visually discriminate hierarchically close pixels.

Each recursive partitioning adds structure to the tree T , where nodes specify semantic regions at
various levels. The final output is T , with each leaf node capturing a distinct part of the image at an
appropriate level of granularity; see Figure 2.

The values kmin, λmax and pmax are found experimentally for the tested dataset; tables are shown in
Section 4 and Appendix D. In Appendix B, we discuss the algorithm’s properties and the generated
T , and present the complete pseudocode of our method.

3.2 Pre and Post-Processing

Boosting computation. We introduce a preprocessing strategy that condenses the graph, dramati-
cally reducing the algorithm’s time and memory requirements by several orders of magnitude while
maintaining comparable accuracy. The condensed graph simplifies the original graph into m nodes
by contracting strongly connected components into vertices, where m ≪ n.

We assume that the finest semantic content in natural images is inherently limited and cannot exceed
the raw pixel statistics. From the input image I we extract m regions [2, 69, 74] leading to an initial
undirected condensed graph Gc = (Vc, Ec, w̃), where Vc = {Ai}mi=1, such that

⋃m
i=1 Ai = Vc and⋂m

i=1 Ai = ∅, and the edge weights w̃(Ai, Aj) represent the degree of association between regions,
defined as w̃(Ai, Aj) =

∑
u∈Ai,v∈Aj

w(u, v). We then apply our recursive partitioning algorithm
to Gc and its corresponding normalized Laplacian matrix Lc. As a result, we obtain a region tree T .

Ablation studies in Section 4.3 compare performances across various overclustering methods.

Boundary Sharpening. Given a predicted region tree T with q leaves, B1, B2, . . . , Bq , each em-
bedding a disjoint segment of V , such that

⋃q
j=1 Bj = V and

⋂q
j=1 Bj = ∅, we compute the

prototypes for the image I . Each prototype is defined as the ℓ2-normalized average of the fea-
ture codes in each leaf uj = |Bj |−1

∑
v∈Bj

v. For each pixel, we define a conditional probability
distribution over the prototypes using the softmax function with smoothing parameter τ , namely,
pij = exp

(
v⊤i ujτ

−1
)
/
∑

k exp
(
v⊤i ukτ

−1
)
. We arrange the matrix P = [pij ] ∈ [0, 1](M×N)×q

and sharpen the region boundaries applying a Conditional Random Fields (CRF) [49], which re-
fine the predicted distribution P by incorporating dependencies between pixel observations I . This
improves the accuracy at the boundary, ensuring sharper and more precise segmentation of leaves.

4 Experiments

We benchmark our algorithm on unsupervised multi-granular segmentation using seven major
object- and scene-centric datasets and seven hierarchically structured datasets with varying granular-
ity levels for hierarchy-agnostic segmentation. Our evaluation includes an ablation study to assess
the contributions of each algorithm component and comparisons across different self-supervised
backbone architectures. We only utilize publicly available datasets, SSL model checkpoints without
retraining, and validation set ground-truth annotations. CRF is applied only where specified.

Each dataset provides unique characteristics essential for different segmentation challenges. Pas-
calVOC2012 [27] offers a broad range of object categories, making it suitable for general object
segmentation tasks. With its high-level division into things and stuff, COCO-Stuff [10] extends the
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MSCOCO [53] and tests the algorithm in complex scenes with multiple objects. Potsdam and Vai-
hingen [30] datasets, focused on aerial scene parsing, are designed for remote sensing and urban
planning applications. Cityscapes [21] is critical for autonomous driving research, providing de-
tailed annotations of urban street scenes. Mapillary Vistats [60] adds diversity with street scenes
from various global environments, testing the algorithm’s robustness to different conditions. KITTI-
STEP [89] and KITTI-SS [1], similar to Cityscapes, extend the evaluation to dynamic urban scenar-
ios with instance detection and object tracking. For fine-grained part segmentation, Pascal-Part [15],
PartImageNet, and PartImageNet-158 [35] offer detailed part annotations, crucial for tasks requiring
precise recognition and segmentation of object parts.

These datasets ensure a comprehensive and diverse benchmark for evaluating the performance and
robustness of our segmentation algorithm across various contexts, see Figure 2. Further details about
datasets are in Appendix D.1, and more quantitative and qualitative results are in Appendices D.3
and D.4, respectively.

To ensure reproducibility, we standardize our experimental setup. Unless otherwise specified, we use
the DINOv2-ViT-B14-REG [22] backbone with parameters kmin = 1, pmax = 20, and λmax = 0.8.
We apply the spectral method from Ng et al. [61] with m = 300 for superpixel clustering. The
recursive partitioning depth is limited at 10 levels. Depending on each backbone downsampling
factor, input images are resized to extract 60 × 60 codes, except for urban street scenes, where we
obtain 60× 120 codes. Further details in Appendix D.

4.1 Evaluation Metrics

Figure 3: Comparison of segmentation metrics. NFCovering evaluates single-level foreground
overlap, NMCovering extends across multiple granular levels for all categories, and NHCovering
integrates hierarchical consistency. Coloured arrows indicate category-specific matches.

Granularity-agnostic. Following [44], we aim to evaluate the unbiased overlapping of regions
between predicted segmentation and ground truth within each image via the Normalized Foreground
Covering (NFCovering) metric. However, it is not well-suited for the multi-granular segmentation
domain. The metric applies to a single granularity level at a time, failing to account for multiple
granularity levels. Furthermore, it disregards the background as a valid semantic instance, leading
to an incomplete estimate of segmentation performance.

We propose a novel evaluation metric, the Normalized Multigranular Covering (NMCovering),
which addresses these limitations evaluating the overlap of regions between the unrolled segments
in the region tree T and all the available ground-truth categorical segments in a semantic map Sgt.
This metric ensures that both foreground and background instances are considered, providing a
more comprehensive and granularity-independent assessment of a semantic segmentation model’s
performance. We adopt a greedy heuristic that maximises the overlap of the full hierarchy with the
ground truth segmentation and compute the average overlap ratio of the matching:

NMCovering(T → Sgt) :=
1

|Sgt|
∑

R∈Sgt

max
R′∈T

|R ∩R′|
|R ∪R′|

. (3)
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Table 1: Granularity-agnostic. Evaluation of
our algorithm on different datasets using a max-
imum overlap heuristic for category matching.

Dataset mIoU pAcc mAcc fIoU
NMCovering
(T → Sgt)

object-centric
PascalVOC2012 78.1 82.6 91.2 78.1 75.4
MSCOCO 55.7 93.1 85.0 78.8 49.6
scene-centric
COCO-Stuff 58.7 81.1 80.3 67.3 42.1
Cityscapes 48.8 82.8 76.1 68.8 44.8
KITTI-STEP 51.2 79.8 76.5 65.7 48.4
Mapillary Vistas 47.6 78.9 72.1 66.1 42.7
Potsdam 58.9 83.4 83.2 65.0 56.3

Table 2: Hierarchy-agnostic. Evaluation of our
algorithm on different datasets using a maxi-
mum overlap heuristic for category matching.

Dataset mIoU pAcc
NMCovering

NHCovering
(T → Tgt)

whole-centric
COCO-Stuff 59.5 75.1 53.5 42.9
Cityscapes 53.7 78.8 51.1 43.8
KITTI-STEP 58.3 79.6 54.2 46.5
Mapillary Vistas
part-centric
Pascal-Part 25.8 80.0 39.5 38.8
Part-Imagenet 55.4 79.5 65.8 65.2
Part-Imagenet-158 59.5 82.6 67.8 63.1

The NMCovering metric evaluates the performance of a hierarchical segmentation model consid-
ering how many ground truth objects are recognised at any granularity level and how well they are
segmented. A high score indicates a high segmentation coherence between human semantic percep-
tion and unsupervised machine one.

Hierarchy-agnostic. We introduce a second accuracy metric, the Normalized Hierarchical Cov-
ering (NHCovering). NHCovering jointly evaluates the segmentation quality and the semantic
hierarchical inclusion of the prediction relating to the ground-truth semantic region tree Tgt. Hi-
erarchical inclusion is the matching between the nodes of two distinct hierarchies preserving the
lineage from the ancestors; this problem is commonly referred to in the literature as the unordered
tree inclusion problem [45].

To calculate this metric, we use a greedy heuristic that computes the average overlap ratio of match-
ing regions, weighting each match by the ratio of matched ancestors. The operator π(R) returns the
ancestors set of the tree node R, and β(R, T ) returns the nodes set in the predicted tree T that best
match the ancestors of node R:

NHCovering(T → Tgt) :=
1

|Tgt|
∑

R∈Tgt

max
R′∈T

|R ∩R′|
|R ∪R′|

· |β(R, T ) ∩ π(R′)|
|π(R)|

, (4)

where β(R, T ) :=
⋃

P∈π(R)

argmax
P ′∈T

|P ∩ P ′|
|P ∪ P ′|

. (5)

The NHCovering metric computes the average weighted overlap of regions between the predicted
tree T and the ground-truth tree Tgt. The overlap weight measures the proportion of correct an-
cestorships with respect to the ground truth. Balancing segmentation performance with semantic
ancestry consistency provides a granularity- and hierarchy-independent performance assessment.
This score quantifies the coherence of segmentation and hierarchical organization of visual concepts
between human perception [66] and unsupervised machine one.

Refer to Figure 3 for a visual insight into the metrics. A more detailed discussion is in Appendix D.2.

4.2 Unsupervised Segmentation

Granularity-Agnostic. We adopt the NMCovering metric to benchmark the performance and
versatility of our algorithm across different natural image domains. As shown in Tables 1 and 5, our
method achieves excellent results in segmenting object-centric images and foreground discovery.
Additionally, Table 1 demonstrates our approach’s strong performance on scene-centric datasets,
such as remote-sensing images and urban street scenes. Table 3 compares our approach to other su-
pervision strategies.2 Our approach achieves segmentation quality comparable to supervised meth-
ods and surpasses other supervision strategies by a large gap.

Hierarchy-Agnostic. We further benchmark the hierarchical inclusion quality of the algorithm on
available datasets having hierarchical structures at a high level, such as MSCOCO, COCO-Stuff
and Cityscapes, and at a low level, such as PascalPart and PartImageNet. We show in Table 2

2We ran four experiments for each dataset with random seed and assumed normally distributed errors.
However, in the segmentation literature, mIoU is typically reported by the single mean value in percentage.
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Table 3: Semantic segmentation. Comparison
on PascalVOC2012 val. Ours match unsuper-
vised masks to best overlapping classes.

mIoU
Method Backbone VOC12 MSCOCO
fully-supervised
DeepLab-CRF [12] ResNet-101 77.7 -
DeepLab-CRF [12] VGG-16 - 43.6 [10]
DeepLabV3-JFT [13] ResNet-101 82.7 -
weakly-supervised
ViT-PCM [71] ViT-B16 69.3 45.0
L2G [42] ResNet-38 72.0 44.2
WeakTr [95] DeiT-S 74.0 50.3
un-supervised
Melas-Kyriazi et al. [58] ViT-S16 37.2 -
Leopart [96] ViT-S16 41.7 49.2
HSG [44] ResNet-50 41.9 -
Zhang et al. [94] ResNet-50 43.5 -
MaskDistill [79] ResNet-50 48.9 -
Ours w/o CRF ViT-S8 76.2± .9 52.1± .6
Ours w CRF ViT-B14 80.3 ± 1.1 56.5 ± .9

Table 4: Boundary potential methods. All
methods match unsupervised tree segments to
best overlapping classes.

NMCovering
PascalVOC2012 mIoU pAcc (T → Sgt)
boundary potential
SE-OWT-UCM [24] 48.4 83.0 59.0
PMI-OWT-UCM [40] 47.0 86.5 61.3
semantic smoothness
Ours w/o CRF 78.1 86.0 75.4
Ours w CRF 80.3 87.3 76.8

NMCovering
COCO-Stuff mIoU (T → Tgt) NHCovering
boundary potential
SE-OWT-UCM [24] 30.7 43.0 32.9
PMI-OWT-UCM [40] 27.5 43.2 23.1
semantic smoothness
Ours w/o CRF 58.7 53.5 42.1
Ours w CRF 59.9 55.6 43.9

Table 5: Backbone ablation. Granularity-agnostic segmentation evaluation on PascalVOC2012 val
set using a maximum overlap heuristic for category matching in each image. We report category
IoU for each experiment with micro and macro averaged scores and the NMCovering.

Backbone bkgd airplane bicycle bird boat bottle bus car cat chair cow d. table dog horse bike person p. plant sheep couch train tv mIoU pAcc mAcc fIoU NMCovering
ViT-B8 [25] 63.9 58.5 40.1 60.5 58.0 59.7 74.1 68.6 68.8 49.7 67.5 52.0 65.6 68.6 58.5 60.5 58.1 66.5 62.4 64.2 52.4 60.9 69.8 75.1 63.6 60.8
CLIP-ViT-B16 [67] 74.4 73.0 52.2 82.0 71.2 66.5 76.5 84.0 87.4 66.4 86.3 59.1 83.2 80.3 75.0 76.1 70.0 85.5 79.2 70.5 63.3 74.4 79.5 84.0 75.1 74.0
MAE-ViT-B16 [37] 66.2 81.4 54.6 85.8 73.4 71.4 82.4 80.6 83.8 64.8 85.1 66.8 83.8 81.4 74.6 72.6 66.5 87.3 77.0 76.2 68.7 75.4 73.5 85.9 69.1 70.0
MOCOv3-ViT-B16 [16] 72.2 82.6 57.2 83.0 74.4 69.9 78.7 76.1 81.8 59.0 85.7 66.7 80.3 77.2 72.3 70.6 60.2 86.4 77.6 76.4 61.8 73.8 78.1 84.9 73.0 71.1
DINO-ResNet-50 [11] 67.2 65.7 47.6 70.2 58.8 49.8 66.8 56.6 73.9 46.8 75.6 47.1 70.3 71.6 60.7 55.2 52.6 77.5 59.5 63.7 39.2 60.8 73.3 76.0 65.7 61.9
DINO-ViT-S8 [11] 69.7 83.1 51.7 85.8 75.2 70.2 84.0 82.0 86.7 67.1 85.8 66.3 85.8 80.0 76.5 73.5 66.3 86.4 81.3 75.9 66.9 76.2 76.8 85.6 72.0 72.5
DINO-ViT-B8 [11] 70.6 87.0 57.1 91.0 77.1 74.3 83.7 80.0 88.1 67.5 86.2 65.2 85.5 81.2 78.6 75.0 66.2 88.9 83.5 80.0 67.6 77.8 77.4 86.0 73.0 74.0
DINOv2-ViT-B14-R [22] 76.9 73.4 51.0 82.1 72.4 82.5 85.6 81.1 90.2 71.2 87.1 68.8 87.7 78.3 79.2 82.1 70.8 84.7 82.9 82.9 68.8 78.1 82.6 91.2 78.1 75.4

the closeness in performance of NHCovering with respect to the NMCovering, demonstrating the
ability of the algorithm to capture hierarchical relations among the parts. The lower performance on
PascalPart is due to the lower granularity of part annotations compared to PartImageNet, see [35].

Recent unsupervised semantic segmentation approaches, such as [44, 94], often employ mutual in-
formation maximisation between regions at multiple granularity levels. These methods typically
utilise hierarchical clustering that groups low-level coherent regions via boundary potentials, such
as the Ultrametric Contour Map (OWT-UCM) [4], of boundaries derived from low-level features
like brightness, colour, and texture gradients, as in Structured Edges (SE) [24] or Pointwise Mutual
Information (PMI) [40]. We compare our approach with these methods in Table 4. The results indi-
cate that low-level processes are inappropriate for the hierarchical grouping of high-level (semantic)
features. In contrast, our approach excels in this area, suggesting significant room for improvement
in the current state of the art. See some hierarchical grouping results in Figure 4.

4.3 Ablation Experiments

Backbone. We evaluate in Table 5 the consistency of our approach according to the latent space
induced by different SSL Imagenet pre-trained backbones on the granularity-agnostic task on the

Figure 4: Unsupervised parts discovering examples on PartImageNet. The left column shows
the ground truth part masks. The second to fourth column shows the predicted regions for each tree
depth. Heatmap colours encode leaves’ distance in the subtrees.

9



Table 6: Superpixel and parameters ablation experiments.
(a) NMCovering on PartIma-
geNet: superpixel vs. kmin.

Superpixel kmin kmin = 1
m = 100 1 5 (sec/iter)
colour-space
k-mean [54] 32.7 33.4 .73± .14
SLIC [2] 58.1 44.9 .05 ± .01
quick-shift [80] 60.8 58.0 .21± .12
SSL-latent-space
k-mean [54] 62.9 58.1 .34 ± .19
Spectral [61] 63.1 59.9 .61± .11

None 65.7 64.9 .84± .29

(b) mIoU for m sizes with [61].

m
Dataset 50 100 300 None
object-centric
PascalVOC2012 76.3 77.5 78.1 78.1
MSCOCO 45.8 52.4 55.7 56.1
scene-centric
COCO-Stuff 43.6 52.2 59.5 60.3
Cityscapes 30.3 37.6 48.8 50.4
part-centric
Pascal-Part 18.2 23.1 25.8 26.4
PartImageNet 36.9 47.2 48.3 48.8

(c) NHCovering with differ-
ent perturbation thresholds and
smoothness parameters on the
COCO-Stuff dataset.

λmax λmax = .5
pmax .5 .8 None (sec/iter)
15 36.9 41.1 41.4 .49± .09
20 39.5 42.9 43.1 .65± .16
None 40.9 43.7 44.0 .77± .23

PascalVOC2012 val set. The performance gap reflects the representation quality assessed by SSL
downstream task benchmarks. Such a result assesses the best model and a complementary down-
stream task benchmark for SSL. We do not adopt superpixel clustering or CRF but utilise raw patch
features as pixel codes.

Parameters kmin, pmax and λmax. In Tables 6a to 6c we validate the optimal parameters of our
algorithm. While kmin choice affects the granularity at lower levels, the pmax and λmax choice
affects the granularity at higher levels by controlling the stability of the partition.

Overclustering and CRF. We test different over clustering techniques in Table 6a. Results show
higher performances for a simultaneous normalised cut on SSL latent space. When applying CRF
with τ = 0.1, we obtain an increase in segmentation accuracy as shown in Tables 3 and 4.

5 Discussion

Broader impact. Supervised learning typically relies on highly curated datasets that require ex-
pensive and time-consuming manual annotations, especially for complex tasks that demand expert
knowledge, such as fine-grained semantic segmentation. As the demand for larger datasets grows
and costs rise, increasing interest is in advancing image understanding with minimal or no supervi-
sion. Our approach addresses this challenge by streamlining the annotation process, reducing costs,
and thereby significantly expanding the data available for supervised model training through the
dynamic discovery of semantic regions.

Limitations. While our method shows promising results, it does have limitations. One major
drawback is that both segmentation quality and algorithm execution time scale with the input size.
Small object parts are especially difficult to detect, particularly when overclustering is used during
preprocessing; the results support this. However, a trade-off between accuracy and inference time
can be experimentally determined. Moreover, our approach is based on self-supervised learning,
which, like all data-driven methods, is susceptible to inherent biases in the data. These biases can
influence the resulting latent space of the model, potentially impacting the performance and gener-
alization of our approach.

6 Conclusions

We introduce a novel method for unsupervised hierarchical decomposition of natural scenes into
primitive components, without requiring prior knowledge of scene granularity. Leveraging deep fea-
ture extraction and graph partitioning, our approach constructs a tree of semantic elements from any
scene for any dataset. Our core algorithm applies an innovative algebraic approach to deep spectral
clustering, addressing blurring from pixel similarity across object parts. Matrix perturbation theory
is employed at each tree level, ensuring stable smooth partitions. This framework not only advances
unsupervised semantic segmentation but also benchmarks deep neural network representations by
evaluating segmentation quality at multiple granularity levels and hierarchical consistency among
them. We validate our method with novel metrics, evaluating overlap with ground-truth masks
across diverse semantic segmentation datasets and semantic inclusion within hierarchical ones.
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A Theoretical Analysis and Perturbation Foundations

Figure 5: An example of ideal and perturbed adjacency matrices. The left shows an input image
with highlighted parts and a colour legend. The central matrix represents the ideal adjacency matrix
W ′, corresponding to the Laplacian L′, with non-zero diagonal blocks for k′ disconnected compo-
nents at a specific semantic granularity. Below, a disconnected graph illustrates these isolated parts.
On the right, the perturbed adjacency matrix W introduces off-diagonal entries due to pixel similar-
ity across regions, resulting in the perturbed Laplacian L. Below, a graph with added connections
shows these perturbations, with colours matching the highlighted parts in the input image.

From the example in Figure 5, we observe that perturbation arises from pixel similarity values
that inadvertently create connections between regions, which ideally should remain separate. This
unintended overlap occurs because similarity values between certain pixel pairs do not perfectly
align with the true structure of the components. Perturbation theory [23, 9, 75, 43] studies how
small changes, such as these unintended connections, affect a matrix’s eigenspaces. Recent research
has expanded this analysis from Hermitian matrices to include Laplacian matrices, which capture
graph structures, as in [82, 26, 70, 28, 65, 91].

In our method, the two matrices are an ideal Laplacian matrix L′ and the observed Laplacian matrix
L, both symmetric (not necessarily of the same rank), perturbed by a symmetric matrix H induced
by higher-order pixel similarity, L = L′+H . Given the recursive partitioning described in Section 3,
we are looking, for each subgraph, for the best matches between the eigenvectors of L′ and those of
L minimising the functional defined in Equation (1).

In the ideal normalized Laplacian L′, the graph is disconnected, and the number of connected com-
ponents is reflected in the multiplicity of the zero eigenvalue of L′. Each connected component con-
tributes one zero eigenvalue, and the constant eigenvectors corresponding to these zero eigenvalues
represent these isolated components [20, 81]. In a perturbed normalized Laplacian L, the graph is
connected and then the minimum of Equation (2) is achieved by the eigenvector corresponding to
the second smallest eigenvalue of L′. This eigenvector, known as the Fiedler vector, is not constant
and captures the connectivity structure of the graph, often used for finding the best bipartition.

However, in the case of a perturbed graph with weak connections (e.g., low weights or nodes with
only a single neighbour), small eigenvalues close to zero may not indicate strongly connected sub-
graphs. Instead, these small eigenvalues reflect loosely connected regions, where perturbations cre-
ate weak links between components that ideally should remain separate. This implies that using
the smallest eigenvectors directly for graph partitioning is sometimes unreliable, as they may reflect
unstable or artificial connections introduced by perturbations. To ensure meaningful segmentation,
it is essential to establish a measure that quantifies the stability of the partition under perturbations.
Such a measure would indicate when it is safe to apply spectral clustering, ensuring that the iden-
tified clusters are robust and well-separated. According to Theorem A.1 (shown below), to achieve
this, we seek the set of eigenvectors of the perturbed Laplacian L that are closest to the eigenvectors
of the ideal normalized Laplacian L′ despite the perturbation H:
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Theorem A.1 ([91]). Let A,A′ ∈ Rn×n be symmetric, with eigenvalues µ1 ≥ · · · ≥ µn and
µ′
1 ≥ · · · ≥ µ′

n respectively. Fix 1 ≤ r ≤ s ≤ n and assume that min(µr−1 − µr, µs − µs+1) > 0,
where µ0 := ∞ and µn+1 := −∞. Let u := s− r+1, and let Z = (zr, zr+1, . . . , zs) ∈ Rn×u and
Z ′ = (z′r, z

′
r+1, . . . , z

′
s) ∈ Rn×u have orthonormal columns satisfying Azj = µjzj and A′z′j =

µ′
jz

′
j , for j = r, r + 1, . . . , s. Then:

∥ sinΘ(Z ′, Z)∥F ≤ 2min(u1/2∥A′ −A∥op, ∥A′ −A∥F )
min(µr−1 − µr, µs − µs+1)

(6)

Moreover there exists and orthogonal matrix O′ in Rn×n such that:

∥Z ′O′ − Z∥F ≤ 23/2 min(u1/2∥A′ −A∥op, ∥A′ −A∥F )
min(µr−1 − µr, µs − µs+1)

(7)

With op and F , the spectral and the Frobenius norm, respectively.
Corollary A.1 ( [91]). Let A,A′ ∈ Rn×n be symmetric, with eigenvalues µ1 ≥ · · · ≥ µn and
µ′
1 ≥ · · · ≥ µ′

n respectively. Fix j ∈ {1, . . . , n} and assume that min(µj−1 − µj , µj − µj+1) > 0,
where µ0 := ∞ and µn+1 := −∞. If z, z′ ∈ Rn satisfy Az = µjz and A′z′ = µ′

jz
′, then:

∥ sinΘ(z′, z)∥ ≤ 2∥A′ −A∥op
min(µj−1 − µj , µj − µj+1)

(8)

Moreover, if z′⊤z ≥ 0, then:

∥z′ − z∥ ≤ 23/2∥A′ −A∥op
min(µj−1 − µj , µj − µj+1)

(9)

In our method, the above symmetric matrix A refers to the perturbed matrix L and the matrix A′ to
the ideal matrix L′; see Section 3. Since we select the k smallest eigenvalues, the interval starts from
r = n−k+1 and ends at s = n, and we have u = k. The denominator in Equation (6) simplifies to
min(µn−k−µn−k+1, µn−µn+1) = µn−k−µn−k+1, since by definition µn+1 := −∞, and, given
Z = (zn−k+1, zn−k+2, . . . , zn) ∈ Rn×k and Z ′ = (z′n−k+1, z

′
n−k+2, . . . , z

′
n) ∈ Rn×k, depending

on the chosen eigenvalue ordering, we have:

∥ sinΘ(Z ′, Z)∥F ≤ 2min(k1/2∥L′ − L∥op, ∥L′ − L∥F )
µn−k − µn−k+1

for µ1 ≥ · · · ≥ µn, (10)

or, reversing the indexing — eigenvalues in non-decreasing order — and counting from zero, we
set λi = µn−i and λ′

i = µ′
n−i for i = 0, . . . , n − 1 with Y = (y0, y1, . . . , yk−1) ∈ Rn×k and

Y ′ = (y′0, y
′
1, . . . , y

′
k−1) ∈ Rn×k the orthonormal columns satisfying Lyj = λjyj and L′y′j = λ′

jy
′
j ,

for j = 0, 1, . . . , k − 1, we have:

∥ sinΘ(Y ′, Y )∥F ≤ 2min(k1/2∥L′ − L∥op, ∥L′ − L∥F )
λk − λk−1

for λ0 ≤ · · · ≤ λn−1. (11)

Indeed, we can apply the substitution and the indexing, given the eigenpairs (λ, y) condition for
all the eigenvalues and eigenvectors populating the chosen interval (r, s). Furthermore, given the
eigenpair condition, the minimization of Equation (1) in Section 3 is guaranteed (see Algorithm 1),
and we can just ratify the smoothness by resorting to the Courant-Fisher theorem; see [38] Theorem
4.2.6. Finally, we can use the Corollary A.1 for a more refined choice of the eigenvectors.

Note that the theorem of Yu et al. [91] is particularly useful because, differently from Davis-
Kahan [23] theorem, it defines an upper bound between two symmetric matrices concerning the
angles between a subset of the eigenvectors of the two matrices or their distance (up to a rotation),
in terms of the eigenvalues of one of the two matrices. Indeed, this theorem shows that z (an eigen-
vector of the perturbed Laplacian L) is close to z′ (an eigenvector of the Laplacian L′), under two
main assumptions. First, we assume that L is close to L′ — often this is straightforward in graph
theory, for instance, if L′ is derived from a theoretical (or "population") graph structure, and L is the
Laplacian of a graph constructed from a sample or noisy measurements of this structure. Second,
applying Weyl’s inequality, we assume that, almost certainly:

|µ′
j−1 − µj | ≥ (µj−1 − µj)/2 and |µ′

j+1 − µj | ≥ (µj − µj+1)/2,

17



where µj and µ′
j are the j-th eigenvalues of L and L′, respectively. Under this eigengap condition,

assuming a sufficient separation between the population eigenvalues of L and their neighbouring
values, as shown in Yu et al. [91] results, we can conclude that ∥z′ − z∥ is small, meaning z and
z′ are close in norm. Building on this, the theorem implies that when the eigengap condition holds,
the eigenvector z associated with L remains stable under perturbations represented by H = L−L′.
Specifically, the proximity of z and z′ allows us to interpret z as a meaningful approximation of z′,
preserving the structure of the ideal graph encoded by L′.

Consequently, this alignment of eigenvectors facilitates robust graph-based clustering or segmenta-
tion, as it enables us to consistently identify clusters or partitions in perturbed graphs that mirror
the structure of the unperturbed graph. Furthermore, this result provides a foundation for using the
perturbed eigenvectors for hierarchical clustering by ensuring that the segments or clusters derived
from L approximate those of L′ even under small changes or noise in the graph data.

B The Algorithm and BFS Implementation

Figure 6: The algorithm’s two steps outputs. First, we quantize the graph to create an initial over-
clustering of semantic parts. Next, we recursively group these parts, forming multi-level semantic
clusters from coarse to fine granularity. The heatmap colour-codes the distance between tree leaves.

In Section 3 of the main paper, we have presented the recursive partitioning of the graph G, which is
simple and intuitive. As noted, we present a Breadth-First Search (BFS) pseudocode in Algorithm 1.

The method obtains graph partitions when two or more components are detectable and recur on each
partition to find new subgraphs until an early stopping condition is met, see Section 3. We report that
the proposed algorithm is defined in two steps for completeness — the first step is meant to speed
up the overall algorithm, and hence, it is optional. In the first step, we quantise the graph, creating
an over-clustering of semantic parts; in the second step, we recur on the parts, generating coarse to
finer semantic groups at multiple granularity levels; see Figure 6.

In the first step, we write the patch-wise features extracted with a deep neural network as the set of
nodes V of a weighted undirected graph G = (V,E,w), and we define w as the cosine similarity of
points, scaled and shifted in [0, 1].

In this step, we follow the approach of Ng et al. [61] to cluster the graph in m components. The
clusters define m disjoint segments A1, A2, . . . , Am (

⋃m
i=1 Ai = V ,

⋂m
i=1 Ai = ∅) of G with high

intra-cluster degree of semantic similarity.

In the second step, we adopt a top-down recursive divisive clustering approach, building a hier-
archical semantic decomposition of the image. In the recursive call at a certain level l and for
a certain subgraph c — notice that here c is an index — of a graph p we define an undirected
condensed graph Gl,p

c = (V l,p
c , El,p

c , w̃), with segments A as nodes in V l,p
c (

⋃
A∈V l,p

c
A ⊆ V ,⋂

A∈V l,p
c

A = ∅) and the edges are weighted by the associativity degree of the components
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w̃(Ai, Aj) =
∑

u∈Ai,v∈Aj
w(u, v). Notice that the condensed graph at the root level is indicated

as G0,0
0 = (V 0,0

0 , E0,0
0 , w̃) and V 0,0

0 = {Ai}mi=1. At each depth, we obtain a semantic grouping
Sl = {V l+1,c

i }c,i given by all the i-th subgraphs at level l + 1 of each subgraph c at level l.

The recursion defines the final hierarchy, namely the output tree T .

The semantic grouping algorithm discussed here builds upon conventional spectral clustering meth-
ods [74, 61, 6, 81].

Algorithm 1: Image Parsing via Granularity and Hierarchy-agnostic Semantic Regions Tree
Data: V : set of points

w: points similarity function
m: desired number of superpixels
w̃: components similarity function
kmax: max number of subgraph components
kmin: min number of subgraph points
λmax: max normalized smoothness threshold
pmax: max perturbation threshold

Result: ℓ-depth hierarchy of clusterings {Sl}ℓl=1

V 0,0
0 = {Ai}mi=1 = spectral_overclustering(V )

{Sl}ℓl=1 = bfs_partitioning({V 0,0
0 })

Function spectral_overclustering(V ):
Compute L for graph G = (V,E,w)

Y ← argminY ∈R|V |×m,Y ⊤Y =I Tr(Y
⊤LY )

Normalize rows Xij = Yij/(
∑

j Y
2
ij)

1/2

Group X rows in m clusters with K-means
return m groups {Ai}mi=1 of V

Function bfs_partitioning(Sl):
Sl+1 ← {}
foreach segment V l,p

c ∈ Sl do
n←

∣∣V l,p
c

∣∣
if n < kmin then

continue
end
Get condensed graph G← Gl,p

c = (V l,p
c , El,p

c , w̃)
Scale W with min-max normalization and compute L

Y ← argminY ∈Rn×kmax ,Y ⊤Y =I Tr(Y
⊤LY )

λ← diag(Y ⊤LY )
Reorder Y columns and λ in ascending order of λi

k ← argmaxi{λi − λi−1}kmax−1
i=2 , λi−1 < λmax

if ∄ k then
continue

end
Take first k eigenvectors Y ← Y[:,1:k]

Normalize rows Xi,j = Yi,j/(
∑

j Y
2
i,j)

1/2

Group X rows in k clusters with K-means and get L′

Compute perturbation H = L− L′

if 2min(k1/2∥H∥op, ∥H∥F )/(λk − λk−1) > k pmax then
continue

end
Found stable k subgraphs estimate Sl+1

c = {V l+1,c
i }ki=1 of V l,p

c

Sl+1←Sl+1 ∪ Sl+1
c

end
return {Sl+1} ∪ bfs_partitioning(Sl+1)
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Discussion above the algorithm. The algorithm’s design integrates several properties that signif-
icantly shape semantic components’ hierarchical structure and connectivity.

One crucial feature is the dynamic estimation of the number of components, k, a parameter closely
aligned with insights from perturbation theory. This estimate directly influences segmentation gran-
ularity, determining the expected number of distinct semantic regions and hierarchy levels in the
final output.

The algorithm produces a hierarchy-agnostic unsupervised semantic region tree T . At each recursion
stage, it seeks subgraphs that represent loosely connected regions based on robust algebraic criteria
from graph theory, capturing coherent semantic regions at each level of granularity. By isolating each
region from the context of previous layers, the algorithm accurately reflects the semantic hierarchy
within the image’s content. In this framework, the tree’s leaves represent regions with high intra-
cluster semantic similarity, positioning these clusters as primitives of broader concepts at higher
levels. The algorithm naturally embeds semantic inclusion, where finer semantic regions exist within
larger semantic contexts, mirroring how complex concepts encompass finer details.

Lastly, computing the adjacency matrix only once optimizes efficiency, reducing redundant opera-
tions and improving runtime performance, making the approach both scalable and effective for large
datasets.

Time Complexity. The breadth-first search has a time complexity of O(|V | + |E|) on a general
graph. In our case, with n nodes and n − 1 edges (assuming a tree graph), BFS has complexity
O(n+(n− 1)) = O(2n− 1) = O(n). The eigendecomposition of a symmetric matrix in the worst
case has a complexity of O(n3). Therefore, the combined time complexity is O(n+ n3) = O(n3).
However, because we only compute the smallest kmax ≪ n eigenvectors, the time complexity of the
eigendecomposition reduces to O(kmaxn

2). Thus, the overall complexity becomes O(n+kmaxn
2) =

O(kmaxn
2), since kmaxn

2 dominates n.

The recursive partitioning process starts with an eigendecomposition on the full graph, which has
a time complexity of O(kmaxn

2) for extracting the smallest kmax eigenvectors. This initial compu-
tation is the primary contributor to the algorithm’s time complexity. As the partitioning proceeds,
each recursive call operates on progressively smaller subgraphs. While each subgraph requires an
eigendecomposition, the cost decreases significantly as the graph size is reduced at each recursion
level. For balanced partitioning, the cumulative cost of these recursive steps remains asymptoti-
cally bounded by the initial computation on the full graph. Thus, the overall complexity is effective
O(kmaxn

2), ensuring computational feasibility even for large graphs.

C Graph Partitioning with Normalised Cut

We recall here the Normalised Cut (NCut) introduced by Shi and Malik [74] for measuring the
goodness of a graph partition.

Let G = (V,E,w) be a weighted undirected graph, having n nodes, V = {vi}ni=1, representing
points vi ∈ Rd. The weight on each edge of the graph wij = w(vi, vj) is a function of the similarity
between nodes vi and vj and defines an element of the adjacency matrix W = [wij ] ∈ [0, 1]n×n.
The symmetrically normalised Laplacian of the graph [59] is defined as, L = D−1/2(D−W )D−1/2,
with D = diag [di] ∈ Rn×n the diagonal degree matrix and di =

∑
j wij .

The normalised cut objective aims to partition the set V into two disjoint sets A ⊂ V and B ⊂ V
(A ∪ B = V , A ∩ B = ∅) while minimising the degree of similarity between the two sets and
maximising the one within each set, and it is defined as:

NCut(A,B) :=
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(12)

where cut(A,B) =
∑

u∈A,v∈B w(u, v) measures the degree of similarity between A and B

and is equal to the total weight of edges that the partitioning has removed, assoc(A, V ) =∑
u∈A,t∈V w(u, t) measures the degree of similarity between A and V , and assoc(B, V ) is equiva-

lently defined. The NCut is an unbiased measure of the normalised total similarity of the two sets of
points. Indeed, normalisation avoids unnatural bias when partitioning out small sets of points. Min-
imising exactly Equation (12) is NP-complete, according to the proof due to Papadimitriou [74].
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However, [74] shows a tractable real-valued solution to the relaxed problem in Equation (12) can be
obtained by solving the generalized eigenvalue system (D −W )x = λDx , for x ∈ Rn and λ ∈ R.
The eigenvectors xi span an orthogonal basis for functions on G [81]:

xi = argmin
x∈Rn,∥x∥=1,x⊥x<i

x⊤Lx, with i = 1, . . . , n− 1 (13)

with x0 = 1 ∈ Rn. The eigenvalues λi, with 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, are the values of the
right-hand side of the above expression. The eigenvector x1 corresponding to the second smallest
eigenvalue λ1 of L is the non-trivial solution to the quadratic form in Equation (13), called the
Fiedler vector [29]. However, this real-valued solution can be transformed into a discrete form to
partition the set V in two disjoint sets A and B approximating the solution to the normalised cut
problem in Equation (12) [74].

The former approach can be expanded to further partition the generated subgraphs, employing the
subsequent eigenvectors. Indeed, the eigenvector x2 linked to the third smallest eigenvalue λ2 ef-
ficiently divides into two parts, A and B. However, the practical application reveals that if higher
eigenvectors are used, the gap between real-valued and discrete-valued solutions widens, asking for
a global mutual orthogonality constraint for all eigenvectors. Consequently, solutions relying on
higher eigenvectors tend to be less dependable. It is often more advantageous to restart the partition-
ing process for each subgraph separately [74].

D More about Experiments and Metrics

The code implementation is in Python 3. We ran experiments on an ASUS ESC8000 server with
two AMD EPYC 7413 24-core processors and 256GB RAM. We used the PyTorch 2.3 deep learn-
ing framework and 2 NVIDIA A6000 GPUs with 48GB of VRAM to accelerate the feature extrac-
tion stage. For all the experiments in the paper, we ran our algorithm with the Python multi-threading
library joblib up to 96 workers.

D.1 Datasets

PascalVOC2012 [27] is a generic object-centric semantic segmentation dataset of 20 object cate-
gories and a background class. It consists of 1, 449 images for validation. We follow [12]
to obtain a larger image set with additional annotations [34], resulting in 10, 582 images.

COCO-Stuff [10] is a complex scene-centric dataset that extends the object-centric MSCOCO [53]
dataset, with a high-level hierarchical structure. Concepts are split at the root level into
things and stuff, each having outdoor and indoor subsets. There are 12 things and 15 stuff
supercategories, and 80 things and 91 stuff categories. Objects appear in complex scenes,
with more thing objects per image than PascalVOC2012 (7.3 vs. 2.3). Following [78, 84],
we use val2017 split of 5, 000 images.

Potsdam, Vaihingen [30] are scene-centric datasets for aerial scene parsing with 6 categories
(roads, cars, vegetation, trees, buildings, clutter). The raw 6000 × 6000 images are di-
vided into 100 RGB 600 × 600 patches. We obtain a total of 3, 800 images for Potsdam
and 3, 300 images for Vaihingen.

Cityscapes [21] is an urban street scene-centric dataset with a high-level hierarchical structure, hav-
ing 7 supercategories subdivided into 19 stuff and object categories. Unlike COCO-Stuff
and PascalVOC2012, where classes appear in many scene contexts, Cityscapes contains
similar street scenes that cover almost all 19 categories. The test split has 500 images.

Mapillary Vistats [60] is an urban street scene-centric dataset with a high-level hierarchical struc-
ture, having 6 root-level categories subdivided into 37 supercategories and finally 66 cate-
gories. Unlike Cityscapes and KITTI-STEP, street scenes are captured from various envi-
ronments worldwide, including several countries, weather conditions, and seasons. It aims
to provide a diverse set of street scenes. The validation split has 2, 000 images.

KITTI-STEP [89], KITTI-SS [1] are datasets for urban scene understanding, instance detection,
and object tracking. They have the same categories as Cityscapes and the same hierarchical
structure. There are 2, 981 validation frames of KITTI-STEP, 200 test images of KITTI-SS.
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Pascal-Part [15] is an extension of the PascalVOC2010 [27] dataset, designed specifically for fine-
grained annotations of objects. It is a part-centric dataset with a low-level hierarchical
structure. It contains 20 object classes, each subdivided into low-level parts (i.e., head,
left/right-eye, torso, left/right-arm, etc., for category person) for a total of 198 distinct part
classes and a background category. The dataset contains 10, 103 images.

PartImageNet [35] is a part-centric dataset with a low-level hierarchical structure designed for
fine-grained part segmentation. It extends the ImageNet dataset by providing detailed part
annotations for a subset of the images. It has 11 object supercategories and 39 part su-
percategories. PartImagenet-158 [35] arranges the annotation by ImageNet categories,
counting 158 object classes and a total of 597 part categories. The validation set contains a
total of 2, 957 images.
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Figure 7: Normalised Multigranular Covering (NMCovering) examples. For each available
ground truth categorical region R in the semantic map Sgt (left), we evaluate the overlap with the
unrolled segments R′ in the predicted region tree, e.g. T1. The yellow labels indicate the maximum
IoU matching correspondence between the ground truth and the prediction. Green line borders
indicate high-score matching and red line borders indicate low-score matching. We propose two
high-scoring predictions (centre) and two low-scoring (right). The total NMCovering is the average
sum of the matching scores, as defined in Equation (3). The NMCovering metric evaluates the
granularity-independent performance of the semantic segmentation model. The absence of correct
semantic regions in T3 and T4 yields low score matches; see plate C in T3 and plate B in T4.

D.2 Discussion About The Metrics

We average the metrics over each image in the dataset, ensuring a comprehensive assessment across
varying image contexts. In the hierarchical scenario, the score gives equal importance to all levels,
recognising the significance of coarse and fine-grained segmentation. This approach reflects the
nuanced structure of hierarchical data, where higher and lower granularity levels provide comple-
mentary insights.

The maximum overlap heuristics we use do not enforce exclusive matching. We intentionally choose
this method to accommodate scenarios where regions in subsequent hierarchical levels overlap. For
instance, in an image of human hands, the coarse category person may overlap with the finer cate-
gory hand. An exclusive matching strategy might misinterpret this overlap, leading to an inaccurate
assessment of segmentation performance. Our approach acknowledges such overlaps, providing a
more realistic evaluation.

Additionally, the granularity of ground-truth annotations is often limited. To address this, our eval-
uation process disregards predictions that do not best match any annotated object, treating them as
neither true positives nor false positives. This avoids penalising the model for predicting more de-
tailed segments than the available annotations. Moreover, this approach permits the evaluation of the
model according to standard category micro and macro-averaged segmentation metrics [56] such as
the micro pixel Accuracy (pAcc) and the macro mean pixel Accuracy (mAcc), the per-class Inter-
section over Union (IoU) and the relative macro mean IoU (mIoU), and micro frequency weighted
IoU (fIoU).
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Figure 8: Normalised Hierarchical Covering (NHCovering) computation example. Given the
semantic tree Tgt (left), for each available ground truth categorical region R, we evaluate the overlap
with the unrolled segments R′ in the predicted region tree T . We consider one low-score lineage
prediction edge (R′

1, R
′
4) and one high-score (R′

2, R
′
5). The yellow labels indicate the maximum

IoU matching correspondence between the ground truth and the predicted regions. Green and red
arrows indicate correct and wrong lineage prediction, respectively. The total NHCovering is the
sum of the matching scores weighted by the ratio of correct lineages, as reported in Equation (4).
The NHCovering metric assesses the granularity and hierarchy-independent performance of the
semantic segmentation model. Examples of lineage-weight computation are reported for the E and
D matching, on the right, using the operators π(·) and β(·, ·) defined in Section 4.1.

Interestingly, the NMCovering metric can define an upper bound for the NHCovering score with
appropriate modifications. Specifically, we find that NHCovering(T → Tgt) ≤ NMCovering(T →
Tgt). Equality between these metrics would indicate optimal model performance in terms of hier-
archical inclusion, suggesting that the model not only segments accurately but also respects the
hierarchical structure of the ground truth. Figures 7 and 8 offers finer insight into the metrics pur-
pose.

These metrics provide a robust framework for evaluating hierarchical segmentation models, balanc-
ing granularity and hierarchical accuracy while accounting for the inherent complexities in real-
world image data.

D.3 Quantitative Results

Our hierarchical semantic segmentation algorithm demonstrates strong performance across multiple
datasets and hierarchical segmentation tasks, effectively capturing meaningful semantic structures
at various levels of granularity.

Table 7 showcases the comparative strength of our method, achieving high NMCovering scores
against other low-level pixel hierarchical clustering algorithms. With λmax = 0.6, our approach
effectively segments the validation set into hierarchical clusters that closely align with ground-truth
structures, indicating robustness in preserving semantic hierarchies.

Table 8 further illustrate our algorithm’s adaptability in aerial scene segmentation, achieving notable
NMCovering scores on both train sets. Using DINO-ViT-B8 features with λmax = 0.9, the algo-
rithm accurately segments six primary categories, confirming its applicability to complex geospatial
datasets where hierarchical segmentation is critical.

Tables 9 and 10 highlight our model’s proficiency in urban scene segmentation, achieving high
NHCovering and mIoU scores across 19 categories and seven supercategories. Notably, the use of
hierarchical labels in Table 9 and detailed category IoUs in Table 10 show the model’s capability
to distinguish fine-grained features within broader urban contexts. This performance suggests our
approach can effectively capture semantic structures across varying levels of granularity, making it
well-suited for dynamic urban environments.

Table 13 is a challenging benchmark with its extensive hierarchy of ‘thing’ and ‘stuff’ categories, to-
talling 182 classes and 27 supercategories. Our algorithm achieves competitive performance across
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both high-level supercategories and fine-grained categories, achieving strong IoU scores across each
subset. This indicates that the algorithm effectively balances both coarse and fine semantic segmen-
tation layers, enabling nuanced representation across diverse objects and materials.

In Table 11, focused on Conditional Random Field (CRF) post-processing, our method shows that
including CRF enhances segmentation accuracy across various datasets, validating its role in refining
boundaries for complex regions. Additionally, comparisons with non-hierarchical spectral cluster-
ing methods Table 12 underscore our approach’s advantage in multi-level segmentation, achiev-
ing higher NMCovering scores and consistent performance even without the need for CRF post-
processing.

Table 7: Boundary potential vs. semantic smoothness. Comparison among hierarchical clustering
algorithms in terms of NMCovering on PascalVOC2012 val set for λmax = 0.6.

Method bkgd airplane bicycle bird boat bottle bus car cat chair cow d. table dog horse bike person p. plant sheep couch train tv mIoU pAcc mAcc fIoU NMCovering
SE-OWT-UCM [24] 71.3 56.4 17.9 46.4 49.4 36.4 55.1 42.6 67.8 33.3 54.0 53.2 56.2 46.6 41.5 43.7 28.4 50.2 59.0 55.0 51.3 48.4 83.0 79.4 65.5 59.0

PMI-OWT-UCM [40] 75.4 55.4 14.0 45.2 46.4 33.4 48.9 36.8 71.9 35.1 57.6 50.6 60.2 43.0 37.4 39.4 21.4 58.9 60.3 50.5 45.4 47.0 86.5 81.6 68.1 61.3
Ours 76.9 73.4 51.0 82.1 72.4 82.5 85.6 81.1 90.2 71.2 87.1 68.8 87.7 78.3 79.2 82.1 70.8 84.7 82.9 82.9 68.8 78.1 82.6 91.2 78.1 75.4

Table 8: Hierarchical semantic segmentation on Potsdam and Vaihingen train sets. We use
DINO-ViT-B8 [11] features and λmax = 0.9. The two datasets have six categories. Segmentation
performances are computed using NMCovering for ground truth masks exclusive matching.

Dataset roads buildings vegetation tree car clutter mIoU pAcc mAcc fIoU NHCovering
Potsdam 68.3 76.4 61.5 53.4 46.9 47.3 59.0 83.4 83.2 65.0 57.9

Vaihingen 56.7 67.7 43.3 63.4 29.6 56.4 52.8 76.8 73.9 58.1 53.9

Table 9: Hierarchical semantic segmentation on Cityscapes and KITTI-STEP val sets and
KITTI-SS train set. We use DINO-ViT-B8 [11] features and λmax = 0.8. The three datasets have
19 valid categories from the Cityscapes dataset divided into seven supercategories. Segmentation
performances are computed using NHCovering for ground truth masks exclusive matching.

Dataset flat construction object nature sky human vehicle mIoUS pAccS mAccS fIoUS NMCoveringS

Cityscapes 83.3 63.6 35.4 61.5 61.0 43.7 67.1 59.4 82.3 74.8 70.9 55.3
KITTI-STEP 74.3 58.7 38.1 65.9 72.7 44.4 73.0 61.0 79.3 76.7 67.8 56.1

KITTI-SS 73.4 59.7 38.5 64.5 73.4 26.5 69.8 58.0 78.5 75.8 67.2 57.4

Dataset road sidewalk building wall fence pole traffic light traffic sign vegetation terrain sky person rider car truck bus train motorcycle bicycle mIoU pAcc mAcc fIoU NMCovering
Cityscapes 83.9 48.8 64.7 47.2 46.9 27.7 15.3 29.7 61.7 41.4 61.0 43.7 20.5 70.6 54.3 64.5 63.2 25.1 42.6 48.0 82.8 76.2 68.8 44.8

KITTI-STEP 75.0 50.5 61.2 56.2 50.0 27.4 26.1 33.4 67.1 56.5 72.7 43.8 20.4 75.3 52.7 56.9 80.7 25.1 41.0 51.1 79.9 76.5 65.7 48.4
KITTI-SS 73.2 46.3 61.1 60.8 50.5 29.1 26.6 37.1 64.4 58.9 73.4 27.5 18.5 72.0 37.6 27.8 63.1 28.7 20.2 46.2 78.6 75.0 65.4 49.3

Table 10: Hierarchical semantic segmentation on Cityscapes and KITTI-STEP val sets and
KITTI-SS train set. We use DINO-ViT-B8 [11] features and λmax = 0.8. The three datasets have
19 valid categories from the Cityscapes dataset. Segmentation performances are computed using
NHCovering for exclusive matching of predictions with ground truth masks. From the second
column, we show the relative category IoU. Last four columns show mean IoU (mIoU), frequency
weighted IoU (fIoU), pixel accuracy (pAcc) and mean accuracy (mAcc).

flat construction object nature sky human vehicleDataset road sidewalk building wall fence pole traffic light traffic sign vegetation terrain sky person rider car truck bus train motorcycle bicycle mIoU pAcc mAcc fIoU NHCovering

Cityscapes 81.5 48.8 58.6 46.1 45.7 25.9 12.3 26.3 55.8 39.1 50.9 33.7 11.4 63.7 51.8 61.8 63.2 19.4 32.5 46.6 77.8 72.4 65.5 34.8
KITTI-STEP 68.5 49.3 53.8 54.4 47.1 25.9 24.8 29.6 62.8 56.4 58.7 36.0 14.7 65.1 44.5 50.5 79.7 18.1 34.7 48.5 73.0 72.3 60.9 38.0

KITTI-SS 68.6 46.3 54.2 55.9 49.3 28.4 25.0 29.6 60.6 59.1 59.0 16.9 15.6 63.1 35.5 24.9 63.1 28.7 10.7 44.9 73.4 71.5 61.2 39.1

Table 11: CRF ablation. We use maximum overlap for ground-truth category matching.

Dataset (mIoU) w/o CRF w CRF
Cityscapes 48.8 51.0
KITTI-STEP 51.2 53.4
Mapillary Vistas 47.6 48.5
Potsdam 58.9 63.2

Table 12: Recursive vs. simultaneous on PascalVOC2012 val set. Comparison between deep
recursive (Ours) and simultaneous spectral clustering (Melas-Kyriazi et al. [58]) for m = {4, 8, 16}
using a maximum overlap for category matching in each image. All the experiments run on pre-
extracted features with DINO-ViT-S8 [11], without CRF. The other parameters are defaulted in
Section 4. Notice that for simultaneous clustering the NMCovering equals the NFCovering [44].

Method bkgd airplane bicycle bird boat bottle bus car cat chair cow d. table dog horse bike person p. plant sheep couch train tv mIoU pAcc mAcc fIoU NMCovering

[58] (m = 4) 39.4 47.7 23.6 35.6 36.1 26.4 46.5 31.6 45.6 25.3 45.1 43.2 41.8 37.2 45.7 35.5 21.0 42.5 45.5 47.0 20.6 36.4 45.5 60.0 39.3 40.7
Ours (m = 4) 54.8 34.4 13.0 23.5 25.6 20.7 50.6 25.0 48.8 18.8 40.3 29.0 36.5 40.1 39.1 31.8 15.2 34.9 36.8 41.1 18.3 32.3 62.5 68.4 49.4 44.8
[58] (m = 8) 27.8 44.2 32.1 42.3 39.6 26.2 29.9 31.9 34.5 37.0 35.3 37.0 35.5 37.7 39.8 36.5 30.7 34.2 40.2 35.1 39.9 35.5 31.5 42.6 29.9 36.4
Ours (m = 8) 61.1 51.0 22.1 42.0 42.6 34.8 69.5 46.6 70.0 29.3 64.1 41.3 58.4 53.1 56.1 43.6 24.1 57.7 54.5 63.3 34.8 48.6 69.1 76.4 58.5 55.5
[58] (m = 16) 16.0 28.7 33.0 29.3 30.9 23.6 17.9 24.0 21.4 33.5 22.2 28.1 22.0 24.3 25.1 27.5 31.0 23.5 29.1 21.2 34.2 26.0 19.0 27.8 18.5 27.7
Ours (m = 16) 65.2 66.8 33.7 58.7 51.9 49.8 76.1 58.8 78.1 39.4 70.0 50.8 72.2 67.3 65.2 56.9 32.9 64.3 60.2 71.6 42.5 58.6 72.1 78.9 64.3 62.2
Ours (m = 100) 69.7 83.1 51.7 85.8 75.2 70.2 84.0 82.0 86.7 67.1 85.8 66.3 85.8 80.0 76.5 73.5 66.3 86.4 81.3 75.9 66.9 76.2 76.8 85.6 72.0 72.5
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Table 13: Hierarchical semantic segmentation on the COCO-Stuff val set. We use DINO-ViT-
B8 [11] features and λmax = 0.6. COCO-Stuff dataset has 91 ’thing’ categories (inherited from
MSCOCO), 91 ’stuff’ categories and 27 supercategories. Segmentation performances are com-
puted using NHCovering for exclusive matching of predictions with ground truth masks. The rows
show the hierarchical structure of COCO-Stuff. The first column shows the separation between
things/stuff. The second column shows supercategory labels (Coarse Tags), the third column shows
the relative supercategory IoU (IoUS) when considering all supercategories together, and the fourth
column considers 12 things supercategories only, and the fifth column considers 15 stuff supercat-
egories only. Sixth column shows leaf labels (Fine Tags), seventh column shows relative category
IoU (IoU) when considering all categories, the eighth column considers 91 thing categories only and
the ninth column considers 91 stuff categories only. Last row shows mean IoU (mIoU), frequency
weighted IoU (fIoU), pixel accuracy (pAcc), and mean accuracy (mAcc) for each experiment. Here,
accuracy values are reported in the decimal range [0, 1].

Coarse Things & Things- Stuff- Fine Things & Things- Stuff-Set Tags Stuff only only Tags Stuff only only

thing

persons 0.66 0.66

0.72

person 0.65 0.66

0.72

vehicles 0.7 0.7

bicycle 0.41 0.5
car 0.44 0.52

motorcycle 0.67 0.69
airplane 0.69 0.69

bus 0.76 0.77
train 0.75 0.75
truck 0.61 0.64
boat 0.56 0.55

outdoors 0.56 0.6

traffic light 0.2 0.28
fire hydrant 0.64 0.62
street sign N/A N/A
stop sign 0.64 0.67

parking meter 0.61 0.72
bench 0.55 0.6

animals 0.78 0.78

bird 0.59 0.61
cat 0.81 0.81
dog 0.73 0.76

horse 0.67 0.69
sheep 0.78 0.78
cow 0.78 0.78

elephant 0.79 0.79
bear 0.84 0.84
zebra 0.82 0.82
giraffe 0.75 0.75

accessorys 0.48 0.51

hat N/A N/A
backpack 0.13 0.17
umbrella 0.69 0.7

shoe N/A N/A
eyeglasses N/A N/A
handbag 0.11 0.15

tie 0.15 0.16
suitcase 0.63 0.65

sportss 0.37 0.37

frisbee 0.26 0.38
skis 0.22 0.24

snowboard 0.33 0.33
sports ball 0.09 0.07

kite 0.4 0.49
baseball bat 0.1 0.13

baseball glove 0.19 0.19
skateboard 0.43 0.44
surfboard 0.48 0.46

tennis racket 0.29 0.27

kitchens 0.54 0.56

bottle 0.23 0.35
plate N/A N/A

wine glass 0.28 0.38
cup 0.32 0.38
fork 0.12 0.23
knife 0.1 0.16
spoon 0.13 0.15
bowl 0.58 0.62

foods 0.74 0.74

banana 0.68 0.73
apple 0.42 0.45

sandwich 0.69 0.69
orange 0.64 0.68

broccoli 0.61 0.61
carrot 0.57 0.6

hot dog 0.69 0.71
pizza 0.81 0.83
donut 0.78 0.78
cake 0.72 0.69

furnitures 0.69 0.69

chair 0.44 0.46
couch 0.66 0.68

potted plant 0.43 0.51
bed 0.77 0.77

mirror N/A N/A
dining table 0.72 0.73

window N/A N/A
desk N/A N/A
toilet 0.68 0.69
door N/A N/A

electronics 0.63 0.64

tv 0.64 0.65
laptop 0.64 0.65
mouse 0.11 0.19
remote 0.2 0.27

keyboard 0.63 0.62
cell phone 0.49 0.53

appliances 0.66 0.66

microwave 0.51 0.61
oven 0.62 0.62

toaster 0.48 0.56
sink 0.34 0.48

refrigerator 0.7 0.7
blender N/A N/A

indoors 0.59 0.61

book 0.39 0.47
clock 0.44 0.5
vase 0.39 0.5

scissors 0.48 0.57
teddy bear 0.75 0.76
hair drier 0.46 0.48

toothbrush 0.14 0.21
hair brush N/A N/A

mIoUS 0.64 0.64 0.66 mIoU 0.55 0.55 0.59
fIoUS 0.69 0.78 0.71 fIoU 0.66 0.78 0.69

Coarse Things & Things- Stuff- Fine Things & Things- Stuff-Set Tags Stuff only only Tags Stuff only only

stuff

textile 0.45

0.83

0.47

banner 0.47

0.83

0.48
blanket 0.52 0.53
cloth 0.32 0.43

clothes 0.18 0.21
curtain 0.64 0.65

mat 0.45 0.49
napkin 0.42 0.5
pillow 0.25 0.22

rug 0.6 0.61
textile-other 0.38 0.43

towel 0.41 0.44

plant 0.73 0.73

branch 0.54 0.54
bush 0.55 0.55

flower 0.42 0.47
grass 0.75 0.76
leaves 0.64 0.66
moss 0.64 0.65

plant-other 0.51 0.51
straw 0.74 0.74
tree 0.72 0.72

building 0.66 0.66

bridge 0.5 0.5
building-other 0.64 0.64

house 0.6 0.6
roof 0.49 0.53

skyscraper 0.67 0.67
tent 0.54 0.55

furniture 0.54 0.54

cabinet 0.57 0.58
counter 0.48 0.53

cupboard 0.58 0.58
desk-stuff 0.58 0.59
door-stuff 0.48 0.5

furniture-other 0.45 0.47
light 0.18 0.18

mirror-stuff 0.48 0.49
shelf 0.48 0.48
stairs 0.41 0.41
table 0.53 0.56

structural 0.59 0.59

cage 0.6 0.6
fence 0.56 0.57
net 0.59 0.61

railing 0.4 0.41
structural-other 0.47 0.49

rawmaterial 0.48 0.48

cardboard 0.48 0.51
metal 0.39 0.41
paper 0.37 0.4
plastic 0.37 0.41

floor 0.69 0.7

carpet 0.73 0.73
floor-marble 0.69 0.69
floor-other 0.55 0.57
floor-stone 0.74 0.75
floor-tile 0.71 0.72

floor-wood 0.66 0.67

ceiling 0.71 0.71 ceiling-other 0.69 0.68
ceiling-tile 0.74 0.74

sky 0.87 0.87 clouds 0.87 0.87
sky-other 0.85 0.85

water 0.83 0.83

fog 0.86 0.86
river 0.78 0.78
sea 0.84 0.84

water-other 0.77 0.77
waterdrops 0.29 0.29

food 0.57 0.58

food-other 0.53 0.55
fruit 0.43 0.42
salad 0.58 0.58

vegetable 0.56 0.58

ground 0.79 0.79

dirt 0.67 0.68
gravel 0.63 0.62

ground-other 0.7 0.72
mud 0.68 0.68

pavement 0.69 0.69
platform 0.58 0.58

playingfield 0.83 0.83
railroad 0.57 0.57

road 0.7 0.71
sand 0.79 0.79
snow 0.85 0.85

solid 0.67 0.67

hill 0.66 0.66
mountain 0.68 0.68

rock 0.72 0.72
solid-other 0.47 0.5

stone 0.63 0.63
wood 0.51 0.53

wall 0.67 0.67

wall-brick 0.56 0.57
wall-concrete 0.67 0.68

wall-other 0.59 0.59
wall-panel 0.68 0.68
wall-stone 0.69 0.64
wall-tile 0.63 0.64

wall-wood 0.6 0.61

window 0.6 0.6 window-blind 0.69 0.69
window-other 0.56 0.57

pAccS 0.86 0.93 0.87 pAcc 0.85 0.93 0.86
mAccS 0.85 0.87 0.84 mAcc 0.83 0.85 0.82
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D.4 Qualitative Results

Figure 9: Qualitative results on PascalVOC2012. Random sampling from a subset of our results,
refined with CRF, having NMCovering greater than 70%. We show predicted subtrees (right) over-
lapping with semantic masks (left). Heatmap colours encode leaves’ distance in the subtrees.
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Figure 10: Qualitative results on PartImageNet. Random sampling from a subset of our results,
refined with CRF, having NHCovering greater than 70%. The left column shows the ground truth
part masks. The second to fifth column shows the predicted regions for each tree depth.
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Figure 11: Qualitative results on PartImageNet. Random sampling from a subset of our results,
refined with CRF, having NHCovering lower than 20%. The image shows failures in identifying
very small parts. The left column shows the ground truth part masks. The second to fifth column
shows the predicted regions for each tree depth. The prediction colour code does not reflect the
ground truth one.
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Figure 12: Qualitative results on PascalVOC2012. Random sampling from a subset of our results,
refined with CRF, having NMCovering greater than 70%. We assign unsupervised masks to the best
overlapping classes.
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Figure 13: Qualitative results on COCO-Stuff. Random sampling from a subset of our results,
refined with CRF, with NMCovering greater than 60%. We assign unsupervised masks to the best
overlapping classes.
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Figure 14: Qualitative results on Cityscapes. Random sampling from a subset of our results,
refined with CRF, with NMCovering greater than 40%. We assign unsupervised masks to the best
overlapping classes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We introduce and explain the reasons for the new problem setting in Sec-
tion 3 and our new metric in Section 4.1. The task also defines a new downstream task
for SSL, which does not require additional training or prior, and reports some baselines
in Table 5. We introduce our algebraic method for image pixel parsing via semantic re-
gions tree in Section 3.1. In the same section, we define our smoothness criteria for deep
features graph partitioning and our method for dynamically establishing connected compo-
nents. In Tables 1 and 2, we conduct several experiments to validate the robustness of our
algorithm on different datasets. In Tables 5 and 6, we report ablation experiments to assess
the importance of each algorithm component. In Table 3, we compare our results with dif-
ferent semantic segmentation supervision strategies to benchmark the segmentation quality
of our approach; at the same time, we demonstrate that the proposed hierarchical image
parsing effectively found visual semantic concepts in the images of a dataset, whether they
are object or scene centric, see Table 1, and whole or part centric, see Tables 2 and 6b.
Further experiments in Table 4 demonstrate the effectiveness of the algorithm in capturing
semantic hierarchical relationships and an improvement over previous traditional hierarchi-
cal models used nowadays in some unsupervised semantic segmentation SOTA to drive the
optimization. We hope our findings may improve research in this direction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We refer to theorem which are fully reported and referred.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: As stated in Section 4, to have full reproducibility, we adopt publicly available
deep network checkpoints and do not perform any retraining. We evaluate our algorithm on
publicly available datasets and use full validation sets. Our algorithm is deeply described
in Section 3, and our code is shown in the appendix, Algorithm 1. The used backbone, the
superpixel clustering method, the kmin, pmax and λmax values are the variables needed to
reproduce the results. We clearly state their values in Section 4 and table 6. Implementation
details beyond the standard algorithm are reported in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
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the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provided code for reproducing experiments in Table 1 in the supplemen-
tary material. We will release the full code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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Justification: We specified the compute workers and the memory used in Appendix D to run
our experiments. The time of execution depends on the parameters used and is discussed
in Section 4.3 and Table 6.
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Answer: [Yes]
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Answer: [Yes]
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
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Answer: [NA]
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Assets’ owners are explicitly mentioned as reference entries.
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lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

38


	Introduction
	Related works
	Method
	Overview of the Approach
	Pre and Post-Processing

	Experiments
	Evaluation Metrics
	Unsupervised Segmentation
	Ablation Experiments

	Discussion
	Conclusions
	Theoretical Analysis and Perturbation Foundations
	The Algorithm and BFS Implementation
	Graph Partitioning with Normalised Cut
	More about Experiments and Metrics
	Datasets
	Discussion About The Metrics
	Quantitative Results
	Qualitative Results


