
Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

GRASSMANN GRAPH EMBEDDING

Bingxin Zhou∗
The University of Sydney
NSW 2006, Australia
bzho3923@uni.sydney.edu.au

Xuebin Zheng∗
The University of Sydney
NSW 2006, Australia
xuebin.zheng@sydney.edu.au

Yu Guang Wang
Max Planck Institute for Mathematics in the Sciences
Leipzig 04103, Germany
yuguang.wang@mis.mpg.de

Ming Li
Zhejiang Normal University
Zhejiang 321004, China
mingli@zjnu.edu.cn

Junbin Gao
The University of Sydney
NSW 2006, Australia
junbin.gao@sydney.edu.au

ABSTRACT

Geometric deep learning that employs the geometric and topological features of
data has attracted increasing attention in deep neural networks. Learning the in-
trinsic structure property of data is a crucial step for dimensionality reduction
and effective feature extraction. This paper develops Grassmann graph embed-
ding, which combines graph convolutions to capture the main components within
graphs’ hidden representations. Each set of featured graph nodes is mapped to
a point on a Grassmann matrix manifold through Singular Value Decomposition,
which is then embedded into a symmetric matrix space that approximates denoised
second-order feature information. The view of treating nodes as a set could in-
spire many potential applications. In particular, we propose Grassmann (global
graph) pooling that can connect with any graph convolution for graph neural net-
works. The Grassmann pooling achieves state-of-the-art performance on a variety
of graph prediction benchmarks.

1 INTRODUCTION

Graphs are prevalent objects in machine learning and data science. Graph representation learning
has recently attracted increasing attention with graph neural networks (GNNs) emerging as one
of the most prominent avenues in deep learning (Bronstein et al., 2017; Hamilton, 2020). One
critical ingredient of graph representation like GNNs is to effectively distill key features of graph
data. Graph convolution (Bruna et al., 2014) to GNN, or more generally, graph neural message
passing (Gilmer et al., 2017), provides an efficient way to extract core information of a graph. In
node prediction tasks, graph convolution is an excellent learner that aggregates graph features and
uses node relation to predict node labels. On the contrary, graph-level learning tasks are usually
defined on graph data with varying size and structure, in which case dimensionality reduction (for
graph size) is often an indispensable necessity. To this end, a graph pooling scheme is critical
to obtaining scaled-down graphs or graph-level embeddings. For example, TOPKPOOL (Cǎtǎlina
et al., 2018) exploits a node selection criterion by a learned score and drops all but the top-ranked
nodes; SAGPOOL (Lee et al., 2019) calculates a score with an extra MLP in the TOPK framework
to enhance the selection efficacy; and ATTENTIONPOOL (Li et al., 2016) defines a soft scoring
mechanism that concatenates node state and annotation.

One basic property of a pooling or embedding operation is node permutation invariance, as the node
order of an undirected graph must not incline the network to focus on specific information. The

∗equal contribution first authors.

1

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

CONV SVD Π

M

Ŷ

Figure 1: Computational principle of the proposed Grassmann Graph Embedding. A complete description is
provided in Section 1. This work implements the strategy and constructs Grassmann pooling (GRPOOL).

permutation invariance is intuitive in heuristic pooling operations like summation, averaging, and
maximization, where the aggregation rules do not rely on the order information of nodes. Indeed we
can define such operations on subsets of a graph. The view of treating nodes as a set in pooling can
be seen in the recent work of Kolouri et al. (2021), where a node set finds its Wasserstein Embedding
within a linear optimal transport framework, and match each pair of nodes by a proper Wasserstein
metric (Mémoli, 2011).

When graph nodes come with features, we may view the set of graph nodes from the perspective of
manifold learning. The set of feature vectors naturally generates a subspace as a new representation.
In other words, the node information of a graph can be abstracted into a lower-dimensional subspace,
and a learning task over graphs of different size and structure can thus be converted into a learning
task on a Grassmann manifold (Absil et al., 2008). We name this process of mapping a graph onto the
Grassmann manifold as Grassmann (graph) embedding. The acquired Grassmann embeddings from
graphs can be pipelined into a Grassmann learning algorithm, such as Deep Grassmann Networks
(Huang et al., 2018) and Grassmann clustering (Wang et al., 2014; 2017).

As a proof of concept, this work develops a simple manifold embedding strategy (Figure 1). An input
graph is first passed through Graph Convolutional layers to extract the hidden representation of its
node information, which is then embedded as a Grassmann point with a subspace dimension by
Singular Value Decomposition (SVD). All Grassmann points that represent corresponding graphs
are on the same Grassmann manifold, and they can be projected to Euclidean space in the form
of symmetric matrices (Absil et al., 2008), where all graphs acquire the same size representation.
The vectorized representations can be sent to a conventional learning model for any learning task
such as graph classification or clustering. The architecture design is one practice of exploiting
the Grassmann representation as a pooling or embedding component. Based on this, we propose
Grassmann Graph Pooling (GRPOOL), a feasible graph pooling mechanism for graph data in varying
size and structure. The strategy can also inspire other learning tasks, such as graph coarsening and
graph clustering.

2 GRASSMANN GRAPH EMBEDDING

We can embed multiple graphs to one Grassmann manifold using their graph convolutional network
representation. For a given set of N graphs G = {G1, . . . ,GN}, a sequence of graph convolutional
layers like GCN (Kipf & Welling, 2017) and GIN (Xu et al., 2019) maps them to a set of hidden
representations H = {H1, . . . ,HN} where Hi ∈ Rni×m is with respect to ni nodes in Gi, and
m denotes the number of hidden units in the last graph convolutional layer. To conduct graph-
level learning tasks, one needs to find a uni-dimensional graph representation that is independent
of the node size. We accomplish the mission by transforming each graph representation of H to a
Grassmann point, which can later be projected back to its Euclidean form for regular output layers.

Grassmann manifold A Grassmann manifoldM(d,m) is the space of all d-dimensional linear
subspaces of Rm for 0 ≤ d ≤ m. A point on M(d,m) is a d-dimensional subspace of Rm,
which can be represented by any orthonormal basis U = [u1,u2, . . . ,ud] ∈ Rm×d. The chosen
orthonormal basis is called a representative of its subspace. The Grassmann manifold is an abstract

2

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Table 1: Performance comparison for graph property prediction. QM7 is a regression task in MSE; ogbg-
molhiv is a classification task in ROC-AUC in percentage; others are for classification in test accuracy in
percentage. The value after ± is standard deviation.

PROTEINS D&D NCI1 Mutagenicity COLLAB ogbg-molhiv QM7
G

C
N

C
on

v

TopKPool 73.48±3.57 74.87±4.12 75.11±3.45 79.84±2.46 81.18±0.89 77.11±1.27 175.41±3.16

Attention 73.93±5.37 77.48±2.65 74.04±1.27 80.25±2.22 81.58±1.72 77.44±1.27 177.99±2.22

SAGPool 75.89±2.91 74.96±3.60 76.30±1.53 79.86±2.36 79.26±5.37 75.36±1.82 41.93±1.14

SUM 74.91±4.08 78.91±3.37 76.96±1.70 80.69±3.26 80.76±1.56 74.88±2.64 42.09±0.91

AVG 73.13±3.18 76.89±2.23 73.70±2.55 80.37±2.44 81.24±1.34 77.69±1.17 177.49±4.69

MAX 73.57±3.94 75.80±4.11 75.96±1.82 78.83±1.70 82.28±2.10 76.95±0.94 177.48±4.70

GrPool 77.79±2.16 79.10±2.98 77.80±2.01 81.01±1.28 82.94±1.06 76.60±1.10 172.35±3.50

G
IN

C
on

v

TopKPool 73.66±6.00 76.40±2.32 77.06±0.90 78.30±1.36 81.40±0.94 78.14±0.62 42.68±0.50

Attention 75.63±1.13 71.76±3.26 78.22±1.32 78.54±5.37 83.22±0.30 74.44±2.12 42.67±0.80

SAGPool 75.95±4.52 68.94±7.62 76.97±2.94 78.86±1.58 81.76±1.57 75.26±2.29 43.02±1.54

SUM 78.04±2.30 78.57±1.26 78.83±1.49 81.31±1.10 82.64±0.85 77.41±1.16 42.41±3.36

AVG 71.70±2.08 74.37±1.32 76.55±1.72 80.97±1.18 83.30±0.77 78.21±0.90 43.16±4.77

MAX 76.70±1.57 77.31±2.06 79.27±1.38 80.28±0.83 80.94±0.72 78.16±1.33 42.54±5.17

GrPool 79.80±1.09 81.18±1.14 81.31±1.55 82.53±0.72 81.32±0.68 77.82±0.90 42.36±3.39

quotient manifold that can be represented in many ways. In this paper, we embed the Grassmann
manifold into the space of symmetric matrices Sym(m) by

Π :M(d,m) −→ Sym(m), Π(U) = UU>. (1)

This method is called Grassmann embedding, which we now introduce.

Rectified manifold embedding Suppose we have obtained a graph hidden representation H ∈
H ⊂ Rn×m and its row-generated subspace span(H>), which as mentioned can be achieved by ap-
plying one or multiple layers of graph convolution like GCN. We then go to find a better Grassmann
representation for the subspace to extract the most important features of the data. Such representa-
tion is characterized by an orthogonal basis of the subspace, which can be rectified in several ways.
A typical method as demonstrated in Huang et al. (2018) is QR decomposition of matrix H>. Our
preliminary goal is to bring representation towards a unique subspace dimension k. That is, we need
to find out the most representative basis U = [u1,u2, . . . ,ud], thus U = [U], an equivalence class
of U , is a point of an underlying Grassmann manifoldM. To this end, we employ singular value
decomposition (SVD) for the hidden feature

H> = USV >, (2)

where U ∈ Rm×k with rank(H>) = k, 1 ≤ k ≤ min{m,n} is an orthonormal basis that spans the
column space of H>. The diagonal S := Diag([σ1, . . . , σk]) ∈ Rk×k contains k singular values
sorted in the descending order, where the lth singular value indicates the percentage importance of
the lth basis vector. The corresponding singular vectors constitute V = [v1, . . . ,vk] ∈ Rn×k.

The first d-columns of U (d ≤ k) from SVD include the d most important components in the
original space of H , and the subspace it spans naturally composes a Grassmann point U := [Ud]
(the equivalent class under the orthogonal groupO(d)) on the Grassmann manifoldM(d,M). This
embedding operation can be applied to any hidden representation from H, which intuitively regards
a graph with a set of n featured nodes as a d-dimensional subspace of the embedding space Rm.
Each graph feature is transformed to a hidden feature, and different graphs (possibly with varying
node size) are taken as points on the (same) Grassmann manifold, where similar instances are also
geodesically close to each other. Such similarity provides a criterion for clustering or classification.
At this point, we have finished embedding graphs to the Grassmann manifold where each graph is
represented by a subspace of orthogonal basis Ud ∈ Rm×d.

Projection mapping With the above Grassmann embedding, we have a set of embedded Grass-
mann points {U1, . . . ,UN} ⊂ M(d,M) with their relevant orthogonal matrix basis as representa-
tives. Any follow-up learning can then be built on {U1, . . . ,UN} by the Grassmann geometry, see
Absil et al. (2008). As pointed out in (1), the entire manifoldM(d,M) can be embedded (mapped)
into the Euclidean space Sym(m). This embedding naturally transforms graph features to their
Euclidean representation and thus conventional deep learning can be applied.

3

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

(a) Sensitivity analysis

50 0 50
Dimension 1

50

25

0

25

50

D
im

en
si

on
 2

(b) Raw t-SNE

50 0 50
Dimension 1

50

25

0

25

50

D
im

en
si

on
 2

(c) GCN–GRPOOL

25 0 25
Dimension 1

50

25

0

25

50

D
im

en
si

on
 2

(d) GIN–GRPOOL

Figure 2: (a) Sensitivity analysis for the threshold information ratio r on PROTEINS. The plots (b)-(d) present
the t-SNE visualizations of the vectorized graph representations produced by our GRPOOL on COLLAB with
GCN before training; with GCN after training; and with GIN after training, respectively.

To be precise, we project the graph latent representation to the symmetric positive definite (SPD)
matrix Π(Ud) = UdU

>
d . The resulting SPD matrix representation, an analog to a bilinear mapping,

captures a second-order statistics that can better reflect regional features (Tuzel et al., 2006). More-
over, the rectified representation U from (2) can reduce noise, and the approximated covariance
matrix UdU

>
d is thus more expressive. This projected Euclidean representation can be used for var-

ious tasks. For example, in graph property prediction, the Grassmann embedding can be vectorized
and output as the readout for graph prediction. In subspace clustering, Π(Ud) with respect to H is
analogous to the affinity matrix and it can be used by clustering algorithms for graph segmentation.
Remark 1. The SPD matrices from the projection mapping are points on the positive semidefinite
(PSD) cone. However, we do not leverage this special topology here when calculating the pair-wise
distance. We measure the distance between Grassmann points with Euclidean metrics, which only
requires the vector representation of m(m+ 1)/2 dimensions.

3 EXPERIMENTS FOR GRASSMANN POOLING

We evaluate the proposed GRPOOL on a set of graph classification tasks with different graph sizes,
volume, and density. We also include a graph regression task with moderate data size.

We benchmark the performance on five binary classification, one multi-class classification and one
regression tasks. Except for ogbg-molhiv (Hu et al., 2020), all datasets are provided by TUDataset
benchmarks (Morris et al., 2020) with default graph attributes. The performance is compared
against two hierarchical (TOPKPOOL (Gao & Ji, 2019; Cǎtǎlina et al., 2018), SAGPOOL (Lee et al.,
2019)) and four global pooling methods (ATTENTIONPOOL (Li et al., 2016), SUM, AVG and MAX
pooling) with two types of network architectures. For completeness, we report prediction results of
all models with GCN (Kipf & Welling, 2017) and GIN (Xu et al., 2019) (under JKNET structure
(Xu et al., 2018)) convolutional layers. We detail the model setup in Appendix C.

Table 1 compares the prediction performance of GRPOOL with baselines. We report mean test ac-
curacy for the first five classification tasks; ROC-AUC score for ogbg-molhiv classification; and
mean square error (MSE) for QM7 regression. All the mean scores are averaged over 10 repetitions.
Our GRPOOL achieves the top score with generally a lower volatility on all tasks with primary
feature matrices. The advantage is more salient on the bottom half of the table, where we apply
JKNET structure with GIN convolution for GRPOOL. It provides a global pooling method and can
express more information from its compressed graph representation. The performance of GRPOOL
on COLLAB and QM7 is less promising, which is likely due to the lack of non-structural feature
information from the dataset. In general, the abstracted subspaces provide more information com-
pared to the baseline methods with common graph convolutional layers especially when there are
feature matrices on graphs or nodes.

4 FURTHER INVESTIGATION ON GRASSMANN EMBEDDING

Real datasets could have a great number of graphs with a large variation on node sizes from a few to
thousands. Consequently, defining an identical relatively small subspace dimension d for all graphs
could potentially hurt the expressiveness of graph embedding. Instead, we let d of a Grassmann
point [Ud] ∈ M(m, d) be determined by d =

∑k
i=1 1{σi > r}. The σi corresponds to the singular

4

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

values from (2), and r denotes the global threshold of the percentage importance. However, all these
Grassmannian points {U} can be naturally mapped to the embedded Euclidean space Sym(m) of
the manifoldM(m, dmax), with dmax the highest d over all Grassmann points.

The r is a hyperparameter of the GRPOOL. However, the choice of r has little impact on the perfor-
mance of the Grassmann embedding, as demonstrated by our sensitivity analysis. The experiment
is conducted on PROTEINS with both GCN and GIN network architectures from Section 3. We
report the mean test accuracy over 10 repetitions with seven different values of the threshold ratio
r, ranging from 0.3 to 0.9 with step size 0.1. All other hyperparameters are tuned in the same way
as Section 3. Figure 2a shows that the mean test accuracy is stable over all values of the threshold
ratio r. This suggests that the hyperparameter r (within a wide range) has a negligible impact on
the performance of our proposed GRPOOL, which indicates that a moderately high value of r (e.g.,
r > 0.5) is sufficient to retain the essential information of a graph for Grassmann embedding.

The rest three plots in Figure 2 exploit two-dimensional t-distributed Stochastic Neighbor Embed-
ding (t-SNE) of flattened Euclidean graph embeddings on COLLAB, which is a 3-classification
task. Each point denotes a graph representation after GRPOOL, and their color indicates the true
labels. We randomly sampled a sufficient amount of 4, 000 instances. As the GIN-GRPOOL model
employs JKNET structure, we aggregate all four pooling results as an approximated graph represen-
tation. Both Figures 2c and 2d suggest a clear clustering pattern of the pooled graphs.

5 DISCUSSION AND CONCLUSION

In this paper, we propose GRPOOL, a new graph pooling strategy that connects with the Grassmann
geometry. The underlying method treats the hidden feature subspace of graphs as Grassmann points,
and make analysis on them. The process of extracting subspace of graph features is a non-linear
transformation that outputs the most valuable feature information, and the projection embedding
makes second-order approximation on feature relationship. The result graph representation supports
Euclidean metrics for loss design. Such strategy can be used for various scenarios. In specific, we
propose GRPOOL that pools graph hidden representations to identical vectors which we employ for
label prediction. In this way, non-linear analysis on the graph features is defined, which is useful
for working on complex or massive attributes. Moreover, the way of treating regional graphs as
Grassmann points might motivate more connections of mutual learning schemes between the two
non-Euclidean spaces of graph and manifold.

REFERENCES

P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton
University Press, 2008.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geomet-
ric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42,
2017.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral networks and locally
connected networks on graphs. In ICLR, 2014.

Cangea Cǎtǎlina, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. Towards sparse
hierarchical graph classifiers. In NeurIPS Workshop on Relational Representation Learning, 2018.

Hongyang Gao and Shuiwang Ji. Graph U-nets. In ICML, 2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In NeurIPS, volume 70, pp. 1263–1272, 2017.

William L Hamilton. Graph Representation Learning. Morgan & Claypool Publishers, 2020.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020.

5

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Zhiwu Huang and Luc Van Gool. A Riemannian network for SPD matrix learning. In AAAI,
volume 31, 2017.

Zhiwu Huang, Jiqing Wu, and Luc Van Gool. Building deep networks on grassmann manifolds. In
AAAI, volume 32, 2018.

Katsuhiko Ishiguro, Shin-ichi Maeda, and Masanori Koyama. Graph warp module: an auxiliary
module for boosting the power of graph neural networks. arXiv:1902.01020, 2019.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In ICLR, 2017.

Soheil Kolouri, Navid Naderializadeh, Gustavo K. Rohde, and Heiko Hoffmann. Wasserstein em-
bedding for graph learning. In ICLR, 2021.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In ICML, 2019.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural
networks. In ICLR, 2016.

Facundo Mémoli. Gromov-Wasserstein distances and the metric approach to object matching. Foun-
dations of Computational Mathematics, 11:417–487, 2011.

Christopher Morris, Nils M Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion
Neumann. TUDataset: A collection of benchmark datasets for learning with graphs. In ICML
Workshop Graph Representation Learning and Beyond, 2020.

Shayle R Searle and Andre I Khuri. Matrix algebra useful for statistics. John Wiley & Sons, 2017.

Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast descriptor for detection and
classification. In ECCV, pp. 589–600. Springer, 2006.

Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, and Baocai Yin. Low rank representation on
Grassmann manifolds. In Asian Conference on Computer Vision (ACCV), 2014.

Boyue Wang, Yongli Hu, Junbin Gao, Yanfeng Sun, Haoran Chen, Muhammad Ali, and Baocai Yin.
Locality preserving projections for Grassmann manifold. In IJCAI, pp. 2893–2900, 2017.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In ICML, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Xuebin Zheng, Bingxin Zhou, Ming Li, Yu Guang Wang, and Junbin Gao. MathNet: Haar-like
wavelet multiresolution-analysis for graph representation and learning. arXiv:2007.11202, 2020.

Xuebin Zheng, Bingxin Zhou, Junbin Gao, Yu Guang Wang, Pietro Liò, Ming Li, and Guido
Montúfar. How framelets enhance graph neural networks. arXiv:2102.06986, 2021.

6

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

A STABLE BACK-PROPAGATION FOR SVD

As Singular Value Decomposition (SVD) is one of the essential parts of our proposed Grassmann
graph embedding, we present in this section the derivation for the back-propagation for SVD. This
back-propagation is numerically stable, especially in the case when the input matrix has some ex-
tremely small singular values. The following materials are mainly based on the note of Townsend1.

For a matrix A ∈ Rm×n with rank k ≤ min(m,n), we decompose A = USV > by using SVD,
where U is a m× k matrix, V is in n× k, and S = diag(s1, s2, . . . , sk) is a k× k diagonal matrix
which stores the singular values of A. Here, we have the constraints that the matrices U and V
are orthogonal. We denote the objective function by f(A) whose argument is a square matrix A.
We aim to find the gradient of the objective function: A := ∇Af . For simplicity, we employ the
shorthand A := ∇Af for the derivation below. By the property of matrix algebra (Searle & Khuri,
2017), we reach the relation

df(A) = tr(A
>

dA) = tr(U
>

dU) + tr(S
>

dS) + tr(V
>

dV). (3)

To calculate A, we need the following three differentials

dU = U
(
F ◦

[
U>dAV S + SV >dA>U

])
+
(
Im −UU>

)
dAV S−1 (4)

dS = Ik ◦
[
U>dAV

]
(5)

dV = V
(
F ◦

[
SU>dAV + V >dA>US

])
+
(
In − V V >

)
dA>US−1, (6)

where Fij = 1
s2j−s2i

· 1{i 6= j} which satisfies the identity F> = −F . The calculations of F and

S−1 are often numerically unstable due to the possible near-zero singular values. To circumvent
this difficulty, we employ the following improved strategy, as similarly used by Huang & Van Gool
(2017):

Snew
i,i = Si,i · 1{Si,i > ε}+ ε · 1{Si,i ≤ ε},

where ε is a small number and can usually be set to 10−12. In practice, we can replace S by the
modified matrix Snew in the back-propagation formulas.

We evaluate the three terms in (3) respectively, as follows. By (5), we can write tr(S
>

dS) as

tr(S
>

dS) = tr
(
S
> (

Ik ◦
[
U>dAV

]))
= tr

(
U>dAV

(
Ik ◦ S

))
= tr

(
V
(
Ik ◦ S

)
U>dA

)
. (7)

Using (4) for the term tr(U
>

dU) yields

tr(U
>

dU) = tr
(
U
> [

U
(
F ◦

[
U>dAV S + SV >dA>U

])
+
(
Im −UU>

)
dAV S−1

])
.

The above expression is a sum of two terms. By F> = −F , these two terms can be simplified as

tr
(
U
>
U
(
F ◦

[
U>dAV S + SV >dA>U

]))
= tr

([
U>dAV S + SV >dA>U

] (
F ◦U>U

))
= tr

(
V S

(
F ◦U>U

)
U>dA− V S

(
F ◦U>U

)
U>dA

)
= tr

(
V S

(
F ◦

[
U>U −U

>
U
])

U>dA
)

and
tr
(
U
> (

Im −UU>
)

dAV S−1
)

= tr
(
V S−1U

> (
Im −UU>

)
dA
)
.

Thus, an equivalent expression for the term tr(U
>

dU) reads

tr
(
U
>

dU
)

= tr
(
V
[
S
(
F ◦

[
U>U −U

>
U
])

U> + S−1U
> (

Im −UU>
)]

dA
)
. (8)

1https://j-towns.github.io/papers/svd-derivative.pdf

7

https://j-towns.github.io/papers/svd-derivative.pdf

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

Table 2: Summary of the datasets for the graph property prediction tasks.

Datasets PROTEINS D&D NCI1 Mutagenicity COLLAB ogbg-molhiv QM7

graphs 1, 113 1, 178 4, 110 4, 337 5, 000 41, 127 7, 165
classes 2 2 2 2 3 2 1 (R)
Min # nodes 4 30 3 30 32 2 4
Max # Nodes 620 5, 748 111 417 492 222 23
Avg # nodes 39 284 30 30 74 26 15
Avg # edges 73 716 32 31 2, 458 28 123
Features 3 89 37 14 0 9 0

Similarly, the term tr(V
>

dV) has the following form after some simple algebraic manipulations

tr
(
V
>

dV
)

= tr
([

V
(
F ◦

[
V >V − V

>
V
])

S +
(
Im − V V >

)
V S−1

]
U>dA

)
. (9)

Finally, we substitute (7)–(9) into (3) and then retrieve the expression for B to obtain the solution

B =
[
U
(
F ◦

[
U>U −U

>
U
])

S +
(
Im −UU>

)
US−1

]
V >+

U
(
Ik ◦ S

)
V > + U

[
S
(
F ◦

[
V >V − V

>
V
])

V > + S−1V
> (

In − V V >
)]

= A.

B ESSENTIAL REQUIREMENTS FOR GRAPH POOLING

In this section, we check the two essential requirements of a valid graph pooling method, which are
graph embedding with a unified size and permutation invariance.

Proposition 1. GRPOOL always produces a graph embedding g ∈ R
m(m+1)

2 for the node represen-
tation matrix H ∈ Rn×m, regardless of the graph size n.

Proof. Given the node representation matrix H ∈ Rn×m of a graph G with n nodes andm features,
the Grassmann graph embedding gives the output UU>, where U ∈ Rm×k with k = rank(H>).
Then, the output of GRPOOL is the flattened representation of the upper triangular matrix of UU> ∈
Rm×m, which is independent of the graph size n.

Proposition 2. GRPOOL satisfies the requirement of permutation invariance so that it produces the
same Grassmann graph embedding under row permutations of the input node representation matrix.

Proof. Suppose H1 is the node representation matrix of a graph and let H2 = PH1, where P is a
permutation matrix. Then,

H>1 = USV >, H>2 = H>1 P> = USV >P>.

The Grassmann point for both H1 and H2 can be accessed by the same matrix U . Hence, the
proposed graph embedding method is permutation invariant.

C EXPERIMENT

C.1 MORE ON MODEL TRAINING

We supplement below a summary of the datasets for graph property prediction tasks in Section 3.
The ‘R’ in the bracket of the last row of QM7 represents the regression task. For the two feature-less
datasets COLLAB and QM7, we follow Zheng et al. (2020) to create the constant uninformative
node features for QM7; and follow Xu et al. (2019) to apply one-hot encoding of node degrees for
COLLAB. For ogbg-molhiv, virtual nodes (Ishiguro et al., 2019) are used in the GNNs.

8

Accepted at the ICLR 2021 Workshop on Geometrical and Topological Representation Learning

(a) GCN Convolution (b) GIN Convolution

Figure 3: Training and Validation learning curves on PROTEINS with GRPOOL.

Table 3: Search space for hyperparameter tuning.

Hyperparameter Searching Space

Learning rate 5e−3, 1e−3, 5e−4
Weight decay (L2) 5e−3, 1e−3, 5e−4
Threshold ratio r 0.5, 0.8
Hidden units 32, 64
Dropout ratio 0, 0.5

In the ablation, we consider two graph convo-
lutions to be connected with pooling methods:
GCN (Kipf & Welling, 2017) and GIN (Xu et al.,
2019). For TU Datasets, the first set connects
two GCN convolutional layers with one pooling
layer except for NCI1, where we add a third con-
volutional layer. We also study the performance
of the second GNN architecture with four GIN
convolutional layers and JKNET structure (Xu
et al., 2018). For the ogbg-molhiv, both models
use four convolutional layers. The hidden units of the one-layer MLP for baselines are set identical
to that of the convolutional layer. For GRPOOL, it is set to 64 for the first layer and 16 for the second.

Below we provide the searching space of the key hyperparameters that are fine-tuned with grid
search, including learning rate, weight decay, hidden unit numbers of convolutional layers, and
dropout ratio in MLP layers. Unless stated, models on OGB applies the same searching space.
Other hyperparameters, if not specified, are set to default values.

For model training and evaluation, we split each dataset into 80% training, 10% validation, and 10%
test samples. The stopping criterion is defined as the validation loss stops improving for 20 consec-
utive epochs, or the maximum 200 epochs is reached. In Table 1, except for those on COLLAB, the
results of baselines with GCN on TU Datasets are retrieved from Zheng et al. (2021).

C.2 LEARNING CURVE AND CONVERGENCE

The training and validation curves for loss and accuracy are shown in Figure 3. The results are re-
trieved from a (random) single run on PROTEINS. The hyperparameters and network architectures
follow exactly the same routine as Section 3. We only display results from one repetition due to
the employment of early stopping criteria, where each independent run would stop at an individual
epoch. The minor volatility after epoch 5 is generally brought about by stochastic gradients. All
four visualizations validate an efficient convergence of our GRPOOL, where the loss curve stabilizes
quickly after a few epochs. The training process is slightly longer for GIN convolution, which is
partly due to the more sophisticated network architecture for the model to fit.

9

	Introduction
	Grassmann graph embedding
	Experiments for Grassmann pooling
	Further investigation on Grassmann Embedding
	Discussion and Conclusion
	Stable Back-propagation for SVD
	Essential Requirements for Graph Pooling
	Experiment
	More on model training
	Learning Curve and Convergence

