
Under review as submission to TMLR

Cluster Tree for Nearest Neighbor Search

Anonymous authors
Paper under double-blind review

Abstract

Tree-based algorithms are an important and widely used class of algorithms for Nearest
Neighbor Search (NNS) with random partition (RP) tree being arguably the most well
studied. However, in spite of possessing theoretical guarantees and strong practical perfor-
mance, a major drawback of the RP tree is its lack of adaptability to the input dataset.
Inspired by recent theoretical and practical works for NNS, we attempt to remedy this by
introducing ClusterTree, a new tree based algorithm. Our approach utilizes randomness
as in RP trees while adapting to the underlying cluster structure of the dataset to create
well-balanced and meaningful partitions. Experimental evaluations on real world datasets
demonstrate improvements over RP trees and other tree based methods for NNS while main-
taining efficient construction time. In addition, we show theoretically and empirically that
ClusterTree finds partitions which are superior to those found by RP trees in preserving
the cluster structure of the input dataset.

1 Introduction

Nearest neighbor search (NNS) is a fundamental problem with applications in machine learning, databases,
data science, and other fields and has enjoyed a vast amount of algorithmic work, both in theory and practice
(see the surveys Wang et al. (2016b); Andoni et al. (2018b); Wang et al. (2014; 2016a) and references within).
The problem is defined as follows: given a dataset X ⊂ Rd, build a data structure over X so that for future
queries q ∈ Rd, we can quickly return one or more datapoints in X that are closest to q.

In this paper, we focus broadly on the space partition family of methods for nearest neighbor search. Given
a query q, they produce a sublinear sized subset P ⊂ X (referred to as the candidate set) that includes the
desired neighbors. Then rather than computing distances to all points in X from q, we instead compute a
sublinear number of distances. In space partition methods, the subset P returned is determined by space
partitions that ‘bucket’ the points in X. This leads to substantially faster query times necessary for scaling
to large datasets.

Space partition methods1 have numerous advantages: they are suitable for distributed and parallel computing
as different partitions can be stored on different machines Bahmani et al. (2012); Ni et al. (2017); Li et al.
(2017); Bhaskara & Wijewardena (2018). They are also GPU friendly due to predictable memory access
patterns Johnson et al. (2021). In addition, they been used to design efficient and secure NNS algorithms
Chen et al. (2019). Lastly, they access the data X in one shot, rather than multiple adaptive access, which is
crucial for fast dataset construction as well as cryptographic security. Therefore, space partition algorithms
are an important (and well studied) class of algorithms for NNS. See also the motivation given in Dong et al.
(2020).

There are two main categories of algorithms that perform space partitions: (a) tree based methods Bentley
(1975); Uhlmann (1991); Ciaccia et al. (1997); Katayama & Satoh (1997); Liu et al. (2004); Beygelzimer
et al. (2006); Sinha (2015); Babenko & Lempitsky (2017); Ram & Sinha (2019b); Dasgupta & Sinha (2013;
2014) and (b) hashing based methods such as Locality Sensitive Hashing (LSH) Gionis et al. (1999); Andoni
& Indyk (2006); Datar et al. (2004); Wang et al. (2014; 2016a). Tree based methods have further advantages
over hashing based methods as they are extremely fast to build (requiring roughly linear time on average),

1many remarks apply to indexing based methods broadly of which space partitions fall under

1

Under review as submission to TMLR

and also provide the user control over the size of sets P returned for queries by setting an appropriate leaf-
size. Tree based methods have been shown to outperform hashing based methods in practice as well Sinha
(2014); Muja & Lowe (2009); Liu et al. (2004).

The most well studied tree based algorithm is the random partition (RP) tree of Dasgupta & Sinha (2013;
2014). It uses randomness in an oblivious manner to recursively compute partitions of the data. Despite
some theoretical guarantees and strong empirical performance of RP trees, they have a strong deficiency
which motivates ours paper: Can we utilize randomness while adapting to the underlying dataset
structure for tree-based NNS algorithms?

1.1 Our Contributions

We consider a new tree based method which utilizes the power of random projections as in RP trees while
adapting to the underlying cluster structure of the dataset. We name our tree ClusterTree. Our contribu-
tions are as follows:

• Fast dataset construction: We optimize for balanced partitions leading to fast data structure
construction, while also retaining other benefits of tree methods such as user level specification over
the size of the returned set P .

• Adapting to dataset structure: Our method adapts to the underlying cluster structure to find
balanced partitions. This leads to meaningful and explainable partitions which are especially impor-
tant given the recent interest in explainable ML algorithms (see references within recent works such
as Wan et al. (2021); Dasgupta et al. (2020); Carvalho et al. (2019) and the recent workshop XAI
(2021)).

• Theoretical analysis and Empirical advantage: We study the performance of ClusterTree
under natural dataset modeling assumptions and relate it to recent works on graph cuts as well as
fast methods for learning Gaussian mixtures; see Sections 2.1 and 3 for more details. Furthermore,
our experiments on a variety of real datasets demonstrate that our method is superior to RP trees
and other tree based methods; see Section 5.

1.2 Related Works

We briefly overview additional algorithms for NNS besides the hashing and tree-based methods outlined in the
introduction. The other class of methods besides space partitions include those where the goal is to generate
compressed representations or codes of the input points so that distances can be quickly estimated Wang
et al. (2014; 2016a); Ge et al. (2014); Jégou et al. (2011); Wu et al. (2017) when a linear scan is performed
(whereas we are interested in sublinear number of distance calculations). There have also been work to
combine compressed codes with tree methods such as Product-Split trees Babenko & Lempitsky (2017).
The fastest methods (with respect to the query time) empirically are graph based where a similarity graph
is constructed over the input points Malkov & Yashunin (2020); Hajebi et al. (2011); Malkov et al. (2014);
Wu et al. (2014). Then given a query, the graph is traversed using a greedy algorithm until convergence.

Note that space partition and tree-based algorithms, which are the focus of this paper, have several ad-
vantages over these methods. For example, the graph based search methods lack theoretical guarantees,
have sub-optimal ‘locality of reference’ (which makes them unsuited for modern architectures Johnson et al.
(2021); Bahmani et al. (2012); Ni et al. (2017); Li et al. (2017); Bhaskara & Wijewardena (2018); Sun et al.
(2014)), slow construction time, and require adaptive access to data; see the introduction for more benefits
of tree-based methods.

We focus on tree based methods which adapt to the underlying dataset. RP trees are stated to adapt to
the intrinsic dimensionality of the data and perform better for dataset possessing small intrinsic dimension
Dasgupta & Sinha (2013; 2014). However, the RP tree construction algorithm is agnostic to structure and
density and uses randomness in a data-oblivious manner. Other methods which explicitly utilize the dataset
at hand include PCA trees and 2-means trees. PCA trees recursively split on the top principal component of

2

Under review as submission to TMLR

the dataset Sproull (2005); Kumar et al. (2008); Abdullah et al. (2014). While more adaptive than RP trees,
PCA trees can be significantly costlier to construct due to PCA computation McCartin-Lim et al. (2012).
2-means trees on the other hand, adapt to the dataset by recursively finding partitions which minimize the
2-means cost Dong et al. (2020). We note work on adapting the guarantees of RP trees to KD trees, but
the performance of KD-trees is still worse than RP trees or PCA trees Ram & Sinha (2019a). Lastly, we
mention that several augmentations to RP trees have been proposed, such as using sparse random projections
and traversing the tree using auxiliary information Keivani & Sinha (2021); Hyvönen et al. (2016); Sinha &
Keivani (2017). Amongst the above tree methods, RP tree is closest to ClusterTree as they both utilize
random one-dimensional projections. However, ClusterTree employs a more sophisticated algorithm to
process the projections, which optimizes for balanced data partitions while adapting to the input dataset
cluster structure. Lastly, we remark that one-dimensional projections have been recently used (for both
theory and practice) in other settings, such as k-means clustering Charikar et al. (2023).

2 The ClusterTree Algorithm

2.1 Motivation

In this section we motivate our algorithm for ClusterTree. First, we briefly outline tree based algorithms
for NNS: trees are constructed starting from the root node, which represents the entire dataset. Then every
node is processed by splitting the points at the node using some partition rule to create left and right child
nodes. The partition rule is recursively applied to each node until each leaf node of the final tree contains at
most a user specified P number of points. Therefore, any tree based algorithm can be specified by its choice
of partition rule. Given a query q, we traverse the tree, following the correct side of the partition the query
lands on, until we reach a leaf node.

For RP trees, the partition rule consists of projecting points in a node to one-dimension via a random
projection and then splitting based on the median (or slight perturbation of it). It’s effectiveness comes from
the fact that the randomness is unlikely to split a query from its true nearest neighbor.

However, picking the median split after a random projection can be sub-optimal. For example, suppose that
the one-dimensional projection results in two well separated clusters where each cluster contains a non-trivial
fraction of points and one cluster is slightly larger than the other. The median split passes through the larger
cluster and splits it into two parts which can adversely affect the accuracy of future queries: if a query’s true
nearest neighbors is part of the larger cluster, we can fail to return many nearby points if we descend into
the wrong part of the partition. In this case, a better choice of partition would have adapted to the cluster
structure by separating the two clusters, and would have allowed for higher quality nearest neighbors to be
returned. See Figure 1 for an example.

(a) (b) (c) (d)

Figure 1: (a) Dataset consists of two well separated clusters. (b) Random one-dimensional projection of the
dataset. Histogram denote the density of projections. (c) Partitioning strategy of RP trees which uses the
median of the projection. (d) Our partitioning strategy successfully separates the clusters.

However, we still have to roughly balance every partition to ensure that the tree construction time is Õd(|X|).
In particular for the nodes at the top level of the tree, we must ensure both parts of the partition contains
a constant factor of the number of points in the node to guarantee fast construction time. To balance
these two objectives, we use the well known notion of graph conductance which optimizes for both balanced

3

Under review as submission to TMLR

partitions and cluster quality. Our strategy after performing a one-dimensional random projection is to form
a k-nearest neighbor graph, for some parameter k, and find a conductance minimizing partition. For details,
see Algorithm 1. This raises some natural questions:

• Why graph cuts? Graphs cuts are motivated by both recent theoretical and practical develop-
ments. On the theoretical side, there are recent works on NNS for general metric spaces that rely
on spectral graph theory Andoni et al. (2018c;d). On the practical side, a recent work of Dong
et al. (2020) shows that learning space partitions induced from graph cuts of the k-nearest neighbor
graph using machine learning tools leads to a very competitive algorithm for NNS. Furthermore,
another popular set of algorithms for NNS is to build graphs for a dataset X (such as the k-nearest
neighbor graph) and then given a query, perform a random walk to determine the output. The intu-
ition underlying these works is that graph structure captures properties such as clusterability, which
is intimately tied to graph cuts, and is important for accurate NNS algorithms. Lastly, another
advantage of graph cuts based on conductance is that it also optimizes for balanced partitions.

We note that the learning based method and the walk based method are not in scope of this paper
since both require large computational cost to build the data structure: both require building a
graph on the dataset while the learning based method further requires finding sparse cuts on the
whole graph (in addition to processing it using a neural network). In addition, the second method
crucially requires adaptive access to the dataset while tree based method access the data in ‘one
shot’ which is needed for secure search such as over encrypted data Chen et al. (2019) in addition
to the multiple benefits outlined in Section 1.

• Why one-dimensional projections? There are practical and theoretical reasons why we perform
one-dimensional projections. On the practical side, building the k-nearest neighbor graph in one-
dimension is extremely fast (nearly linear time) as it can be computed quickly after sorting. This is
not true in larger dimensions. Furthermore in one-dimension, there is a natural set of cuts to optimize
over, which are cuts based on prefixes of the sorted order. On the theoretical side, we motivate
this procedure by studying clusterable datasets under a natural Gaussian model. By relating to
prior works, we show that under natural assumptions, (a) optimizing for hyperplane cuts based on
prefixes leads to a ‘good’ partition for NNS, and (b) one-dimensional projections can capture cluster
structure present in the original dimension. Lastly, we optimize over multiple random projections
independently as a single projection can be very noisy; however, we can significantly increase the
probability of capturing the cluster structure by trying multiple projections.

2.2 Algorithm

We present below our algorithm for ClusterTree (Algorithm 2), which employs the efficient one-dimensional
cut detection described in Algorithm 1. First, we define the notion of graph conductance.

Definition 2.1 (Conductance). Given a graph G = (V, E), V1 ⊂ V , and V = V \ V1, the conductance of
the cut (V1, V) is given by

φ(V1) = E(V1, V)
min(vol(V1), vol(V))

where E(V1, V) is the number of edges between V1 and V and vol(S) denotes the sum of degrees of vertices
in S.

4

Under review as submission to TMLR

Algorithm 1 OneDProjection(X, T, k)

Require: Dataset X ⊂ Rd with |X| = n, T, k ≥ 0
Ensure: Output partition X = X1 ∪X2, vector v

1: for i = 1 to T do
2: Xi ← random 1 dimensional projection of X using vi ∈ Rd

3: Y1, . . . , Yn ← sorted Xi with each Yj ∈ R
4: Gi ← k-nearest neighbor graph on Xi

5: φi ← min1≤j≤n−1 φ(Sj) where Sj is the cut in Gi given by (Y1, . . . , Yj), (Yj+1, . . . , Yn)
6: wi ← (vi, β) ∈ Rd+1 is the vector encoding the projection which determines the cut
7: end for
8: Return the partition X1∪X2 induced by the cut with the smallest φi value and the vector wi associated

with the cut

The above algorithm performs our data adaptive one dimensional splitting rule. At a high level, it forms
a nearest neighbor graph in one dimension after projecting the dataset and finds the sparsest prefix cut in
the nearest neighbor graph. vi is the random vector use to perform the random projection and Xi is the
resulting set of n real numbers after computing the inner product with vi for every point in our dataset. We
sort the one-dimensional embedding represented by Xi to form Y1, . . . , Yn where we note that each Yi ∈ R.
Finally, Algorithm 2 uses the partition strategy of Algorithm 1 to form a tree data structure.

Algorithm 2 MakeClusterTree(X, P, T, k)

Require: Dataset X ⊂ Rd, leaf size P , T, k ≥ 0
Ensure: Output Cluster Tree over X

1: if |X| ≤ P then
2: Return leaf containing X
3: end if
4: (X1, X2, v)← OneDProjection(X, T, k)
5: LeftSubTree ← MakeClusterTree(X1, P, T, k)
6: RightSubTree ← MakeClusterTree(X2, P, T, k)
7: Return (LeftSubTree, RightSubTree)

Algorithm 3 Query(q, T)

Require: Query q ∈ Rd, ClusterTree T
Ensure: Output leaf of T where q falls in

1: Current node ← T
2: while current node is not a leaf node do
3: Pick left or right child of current node

based on its projection and bias
4: end while
5: Return points of X in the leaf fitting the

query q

Remark 2.1. Each node of the tree is implicitly stores the vector v used to perform the partition.

3 Theoretical Analysis

We first analyze the runtime of ClusterTree. We start with quantifying the number of operation in OneD-
Projection:
Lemma 3.1. The runtime of OneDProjection is O(T · (nd + n log n + nk)).

Note that we might not be optimizing for the cut with lowest conductance since such a cut could potentially
not respect the sorted ordering. However, we show in the next lemma that order preserving cuts are the
sparsest cuts in the graph (fewest number of edges crossing the cut) which suggests that optimizing over
prefix cuts is sufficient. We further motivate optimizing over prefix cuts with additional theoretical results
in Section 3.1 and Theorem 3.5.
Lemma 3.2. Consider a k-nearest neighbor graph on a set of n points {X1, . . . , Xn} ⊂ R satisfying Xi ≤
Xi+1 for all 1 ≤ i ≤ n − 1 . The sparsest cut respects the sorted ordering. That is, the cut with the fewest
number of edges is of the form (X1, . . . , Xj), (Xj+1, . . . , Xn) for some j.

We now state an assumption about the balanced partitions. Note that conductance automatically rewards
balanced cuts but for worst case dataset, it can potentially find a very unbalanced cut which will lead to
large tree construction.

5

Under review as submission to TMLR

Assumption 3.3. For sufficiently large datasets |X|, Algorithm 1 returns a partition such that
min(|X1|, |X2|) ≥ c|X| for an independent constant c ≤ 1/2.

We argue that this is a valid assumption for our algorithm as Assumption 3.3 holds for datasets with very
different structural properties. For example, the assumption holds for uniform inputs on one hand and also
highly clustered inputs on the other hand (see Section C). In addition, we empirically verify 3.3 for real
datasets as well in Section C.
Lemma 3.4. Given Assumption 3.3, the tree construction time of MakeClusterTree is O(T log n · (nd +
n log n + nk)) = O(Tnd log n + Tn log2 n + Tnk log n) = Õ(nd) for k, T = O(1) as in our experiments.

3.1 Nearest Neighbor Guarantees

We now study the guarantees for ClusterTree for the problem of nearest neighbor search. We define two
parameters, α and β, that have been used in the context of nearest neighbor search Dong et al. (2020). For
a given data set, α and β measure the average distance squared between two k-nearest neighbors and the
average distance squared between two arbitrary points, respectively.
Definition 3.1. Let D be a distribution from which we sample our dataset X. Denote Dclose to be the
distribution over random k-nearest neighbors (x, x′) ∈ X. To sample from Dclose, we first pick a uniformly
random point x ∈ X and then a uniformly random k-nearest neighbor x′ of x. Define

α = E(x,x′)∼Dclose
∥x− x′∥2

2, β = Ex∼D,x′∼D∥x− x′∥2
2.

Note that α is the expected distance squared between two ‘close’ points in X (with respect to k-nearest
neighbors) and β is the expected distance squared between two random elements of X.

The assumption α ≪ β is natural since it states that nearest neighbors are closer than arbitrary pairs of
points and thus a non-trivial algorithm is needed, rather than just returning a random point.

We utilize the following theorem from Dong et al. (2020):
Theorem 3.5. There exists a hyperplane H = {x ∈ Rd | ⟨a, x⟩ = b} such that the following holds. Let
X = X1 ∪X2 be the partition of X induced by H : X1 = {x ∈ X | ⟨a, x⟩ ≤ b}, X2 = {x ∈ X | ⟨a, x⟩ > b}.
Then, one has

Pr(x,x′)∈Dclose
[x, x′ are separated by H]

min(Prx∼D[x ∈ X1], Prx∼D[x ∈ X2]) ≤
√

2α

β
.

Remark 3.1. The existence of the hyperplane H from Theorem 3.5 is proved using spectral graph theory
and is intimately connected to a sparse cut in the k-nearest neighbor graph of X. Furthermore, Theorem 3.5
only guarantees the existence of a good hyperplane cut, rather than an arbitrary cut that may not be defined
by a hyperplane. However, this is exactly the family of cuts we optimize for in Algorithm 1.

Theorem 3.5 roughly states that if nearest neighbors are much closer than arbitrary pair of points, then a
good hyperplane cut exists which separates the dataset into approximately balanced parts while also assuring
that many k-nearest neighbor pairs are in the same partition. This is a natural assumption to make since
otherwise, returning arbitrary points for queries could suffice for approximate nearest neighbor applications.

Note however that this is an assumption about the dataset in the ambient dimension, but we are finding cuts
after performing a random one-dimensional projection. We argue that after such a projection, the values of
α and β are approximately preserved.
Lemma 3.6. Suppose we sample our dataset X from distribution D. Let P be a random one-dimensional
projection independent of X and define PX = {Px | x ∈ X}. Let αX , βX and αP X , βP X denote the values
of α and β for the datasets X and PX respectively. Then αP X ≤ αX and βP X = βX .

Lemma 3.6 states that if a dataset X satisfies αX ≪ βX , then the projected dataset PX also satisfies
αP X ≪ βP X . Then by an application of Theorem 3.5, we know that we can find a good hyperplane cut
for the projected dataset. However, it is not clear that such a hyperplane would also perform well for the

6

Under review as submission to TMLR

original dataset with respect to nearest neighbor search since points can be heavily distorted after a random
projection onto one-dimension. In the next section, we argue the soundness of performing one-dimensional
projection by assuming a Gaussian mixture model. While this is a simplifying step that does not model
all realistic datasets, it serves to highlight the fact that the assumption α ≪ β is natural for datasets
with a strong cluster structure, in addition to showing significance of trying multiple one-dimensional cut
in Algorithm 1 and picking the best cut. This is important since a single one-dimensional cut has a high
chance of returning a very ‘noisy’ output, even if the original dataset has a strong cluster structure. Thus
trying multiple cuts boosts the probability of finding a ‘good’ projection.

3.1.1 Gaussian Mixture Model

In this section, we analyze the performance of Algorithm 1 for the mixture of two well-separated Gaussians
and provide bounds on the number of projections that are needed in Algorithm 1 in terms of the mixture
parameters. Our intention is to demonstrate the advantageous behaviour of ClusterTree in the cases of
clustered data points. We start with the definition of c-separated Gaussians.
Definition 3.2. Gaussians N (µ1, Σ1) and N (µ2, Σ2) in Rd are defined to be c-separated for

c := ∥µ1 − µ2∥
√

d
(√

λ1(Σ1) +
√

λ1(Σ2)
) ,

where λ1(Σ) denotes the largest eigenvalue of the matrix Σ. We consider the case were c is at least a constant
value, independent of d.

We first instantiate Theorem 3.5 for a mixture of two Gaussians.
Lemma 3.7. Suppose that dataset X with |X| = n is sampled from the distribution D ∼ wN (µ1, Σ1) + (1−
w)N (µ2, Σ2). Further, suppose that X contains at least k points from each of the two distributions that make
up D and min(w, 1−w) = Ω(1). Define αX and βX as in Definition 3.1. Then αX ≤ 2 max(tr(Σ1), tr(Σ2))
and βX = Ω(∥µ1 − µ2∥2 + tr(Σ1 + Σ2)).
Remark 3.2. Note that the hypothesis in Lemma 3.7 about X having at least k points from each component
is easily satisfied with high probability if k = o(n) and min(w, 1− w) = Ω(1) by a Chernoff bound.

Lemma 3.7 tells us that if ∥µ1−µ2∥2 (distance between the two Gaussian means) is sufficiently large compared
to max(tr(Σ1), tr(Σ2)), then αX/βX is bounded away from 1. For example, if we have two spherical Gaussians
with covariance matrices σ2

1Id and σ2
2Id respectively, then we require d · n · max(σ2

1 , σ2
2) ≲ ∥µ1 − µ2∥2 for

αX/βX ≲ 1/d to hold. In terms of Definition 3.2, it suffices to require c = Ω(1) to guarantee αX/βX = o(1).

The following lemma connects the concept of c-separability with the guarantees of Theorem 3.5.
Lemma 3.8. Suppose dataset X is sampled from distribution D ∼ wN (µ1, Σ1) + (1−w)N (µ2, Σ2) and the
conditions of Lemma 3.7 hold. Then αX/βX ≲ 1/c2 for c as in Definition 3.2.

Note that the above discussion applies to the original, yet to be projected, dataset. The hope is that a
well-separated pair of Gaussians will remain so after a random projection. This might not be the case as a
single projection can be extremely noisy since we are projecting to an extremely small dimension. However,
it is possible to derive the number of one-dimensional projections needed for well-separated mixtures to also
project to well-separated one-dimensional mixtures. Thus by optimizing over multiple cuts in Algorithm 1,
we can hope to pick a one-dimensional projection which ensures that different components remain separated
after the projection.

We first need to define the Q function: For x ∈ R, Q(x) =
∫ ∞

x
exp(−t2/2) dt. The following result bounds

the number of projections needed to achieve well-separated one-dimensional projections.
Lemma 3.9. Suppose our dataset X is a mixture of two c-separated spherical Gaussians in Rd. Let T (c′, d)
denote the expected number of one-dimensional projections needed for the two mixtures to project to a c′-
separated projection in one-dimension. Then we have limd→∞ T (c′, d) = 1/(2Q(c′/c)).

The following corollary states that we only need a sub-logarithmic (in d) number of one-dimensional projec-
tions to guarantee the same order of separation as in the ambient dimension.

7

Under review as submission to TMLR

Lemma 3.10. If c′ is such that c′ ≤ c(log log d)O(1), then T (c′, d) = o(log d).

4 Hierarchical Clustering

In this section, we discuss the performance of ClusterTree for hierarchical clustering. Since our tree is
designed to preserve the underlying cluster structure of the dataset, it is very natural to use it for clustering
applications, such as hierarchical clustering. In hierarchical clustering, the goal is to design a tree over the
input dataset which hopefully captures ‘multi-scale’ clustering relationships of the dataset.

To formalize this, we first define a natural hierarchical clustering model and then prove results which suggest
that ClusterTree is naturally suited to recover such a clustering. Note that traditional algorithms for hier-
archical clustering, such as computing the minimum spanning tree, require Ω(n2) time, which is prohibitive
for large datasets, whereas ClusterTee construction is nearly linear time.
Definition 4.1 (Hierarchical Clustering Model). Let X be our dataset and P be a parameter. We assume
there is a tree T over X such that the following is satisfied:

• The leaves of T are disjoint subsets of X of size at most some parameter P and together include all
points of X,

• Level i ≥ 1 of T is a union of two subsets in level i− 1 of the tree where level 0 denotes the leaves.
We assume that each subset at level i− 1 contributes to exactly one subset in level i of the tree

• The largest level of the tree is the entire dataset X.

Note that the above definition naturally describes a hierarchical clustering model over the dataset X where
going up the tree indicates larger scale cluster structure over the dataset X. We further assume a separability
criteria for our hierarchical clustering model.
Definition 4.2. Let diam(S) denote the diameter of the subset S ⊆ X and d(S, S′) denote the distance
between two subsets S, S′:

d(S, S′) = min
x∈S,y∈S′

∥x− y∥.

We say that subsets S, S′ are r-apart if

Cr max(diam(S), diamS′) ≤ d(S, S′)

for some constant C.

If we assume the above definition applies to a pair of subsets of the tree T at any some fixed level, then
intuitively we are requiring the two subsets constitute well separated clusters.

Given such an assumption, we want to argue that repeated application of Algorithm 1 can successfully
recover the underlying tree T . The intuition behind this is that if the subsets are projected, they will also
be separated after a random projection with high probability. The following lemma shows that it is indeed
the case.
Lemma 4.1. Suppose subsets S and S′ satisfy Definition 4.2 with r ≥

√
log(|S|+ |S′|)/ϵ. Let PS and PS′

respectively denote a random one-dimensional projection of the two subsets. Then with probability at least
1− ϵ, we have

c max(diam(PS), diam(PS′)) ≤ d(PS, PS′)

for some constant c > 1.

Lemma 4.1 hints that with a sufficient separability assumption, the k-nearest neighbor graph in one-dimension
will mostly have edges within a given cluster which leads to sparse cuts between different subsets. Thus, we
can reasonably expect Algorithm 1 to separate the distinct clusters in T since it optimizes for sparse cuts.
Formally, we can prove the following statement.

8

Under review as submission to TMLR

Lemma 4.2. Let S and S′ be two r-apart subsets of dataset X for the value of r in Lemma 4.1 and P be
a random one-dimensional projection. If min(|S|, |S′|) ≥ k, then the k nearest neighbor graph of PS ∪ PS′

will have a cut that separates PS and PS′ with probability 1− ϵ.

Now consider the hierarchical clustering model given in Definition 4.1 and let T denote the implicit tree over
a dataset X. Consider a node of v of T and at some level i let S and S′ denote the subsets at level i−1 that
comprise v. If S and S′ are r-apart for a sufficiently large value of r, then Lemma 4.2 states that S and S′

will have an empty cut between them after a random one-dimensional projection. If we further assume that
each of the two pieces of the k-nearest neighbor graph is connected, Algorithm 1 will exactly split apart S
and S′, as intended in the tree T .

5 Experiments

In this section we evaluate our algorithm empirically on real and synthetic datasets. Our main results shows
the trade-off in acceleration and accuracy of ClusterTree. As in other NNS works, we measure the fraction
of actual k-nearest neighbors among the returned candidates Dong et al. (2020). This metric measures
the processing time required for queries since distances are computed from a query to all of the returned
candidates. As seen below, and in the additional experiments we provide in our supplementary material,
in the vast majority of cases ClusterTree outperforms all benchmarks in its accuracy-to-processing-time
trade-off.

Datasets. We use the following datasets which have been used in previous machine learning works on
clustering and nearest neighbor search (for example Dong et al. (2020); Keivani & Sinha (2021); Lucic et al.
(2018); Bachem et al. (2018)): KDD Cup (clustering dataset from a Quantum physics task) kdd (2004),
News (dataset of news text where each feature represents if a key word is included) Rennie (2016), Spam
(spam text where each feature represents the presence of a particular word associated with spam) van Rijn
(2016), SIFT (image descriptors) Aumüller et al. (2017), and Gaussian Mixtures. See Table 1.

Baselines Our main focus is tree-based algorithms since they are preferable in numerous settings (such
as fast construction time, secure computation, and distributed and GPU architectures). Our baselines are
the following. Random Partition (RP) Trees: This is the method from Dasgupta & Sinha (2013;
2014) and is arguably the most common tree-based nearest neighbor search algorithm. For RP trees, the
partition strategy is to split along the median (or a small perturbation of the median) after performing a one
dimensional random projection. 2-means Trees: The partition strategy is to split points after performing
a 2-means clustering. We use the classic k-means algorithm until convergence Dong et al. (2020). PCA
Trees: the partition strategy is to split along the median after projecting onto a principal direction Sproull
(2005); Kumar et al. (2008); Abdullah et al. (2014). Locality Sensitive Hashing (LSH): While this is not
a tree-based method, it is a classic space partition algorithm and the most well studied theoretical approach
(see references in Section 1). We use the Cross-Polytope version from Andoni et al. (2015; 2018a).

Dataset n (Size) d (Dimension)
Gaussian Mixture 5 · 104 102

News ∼ 4 · 105 103

RNA ∼ 3 · 105 8
Spam ∼ 106 57
SIFT 106 128

KDD Cup 5 · 104 84

Table 1: Datasets used for our experiments.
Parameter Selection: In all of our experiments, we use a fixed value of T = 20 random projections in
Algorithm 1. For the value of k, we initialize k = 20 and keep increasing k by one until the value of the
normalized cut found stops decreasing. Intuitively, it ensures we don’t overlook a potentially better cut.
Empirically, we observed that this only iterates over a few values (∼ 5) of k.

Evaluation Metric: As in other NNS works, we measure the number of candidates returned for queries
versus the k-NN accuracy, which is defined to be the fraction of its actual k-nearest neighbors that are among

9

Under review as submission to TMLR

10 104 12 104 14 104 16 104 18 104 20 104

Candidate Size

0.45

0.50

0.55

0.60

0.65

0.70
1-

NN
 A

cc
ur

ac
y

Gaussian Mixture
Cluster Tree
RP Tree

1 104 2 104 3 104 4 104 5 104 6 104 7 104

Candidate Size

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1-
NN

 A
cc

ur
ac

y

Spam

Cluster Tree
RP Tree

200 400 600 800 1000 1200 1400
Candidate Size

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1-
NN

 A
cc

ur
ac

y

News

Cluster Tree
RP Tree

2 104 3 104 4 104 5 104 6 104 7 104

Candidate Size

0.30

0.35

0.40

0.45

0.50

1-
NN

 A
cc

ur
ac

y

SIFT
Cluster Tree
RP Tree

200 400 600 800
Candidate Size

0.88

0.89

0.90

0.91

0.92

0.93

0.94

1-
NN

 A
cc

ur
ac

y

RNA

Cluster Tree
RP Tree

500 1000 1500 2000 2500 3000 3500
Candidate Size

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1-
NN

 A
cc

ur
ac

y

KDD Cup
Cluster Tree
RP Tree

Figure 2: Candidate Size vs 1-NN Error for ClusterTree and RP tree for datasets in Table 1.

5000 10000 15000 20000 25000
Candidate Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1-
NN

 A
cc

ur
ac

y

Gaussian Mixture

Cluster Tree
RP Tree
2 Means Tree
PCA Tree
LSH

1 104 2 104 3 104 4 104 5 104 6 104 7 104

Candidate Size

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1-
NN

 A
cc

ur
ac

y

Spam

Cluster Tree
RP Tree
LSH
PCA Tree

0 1000 2000 3000 4000 5000 6000 7000
Candidate Size

0.2

0.4

0.6

0.8

1.0

1-
NN

 A
cc

ur
ac

y

News
Cluster Tree
RP Tree
2-Means Tree
PCA Tree
LSH

0 1000 2000 3000 4000 5000 6000 7000 8000
Candidate Size

0.0

0.2

0.4

0.6

0.8

1.0

1-
NN

 A
cc

ur
ac

y

RNA

Cluster Tree
RP Tree
2-Means Tree
PCA Tree
LSH

0 1000 2000 3000 4000 5000 6000 7000
Candidate Size

0.2

0.4

0.6

0.8

1.0

1-
NN

 A
cc

ur
ac

y

KDD Cup

Cluster Tree
RP Tree
2-Means Tree
PCA Tree
LSH

Figure 3: Candidate Size vs 1-NN Error for all baselines.

the returned candidates Dong et al. (2020). This metric measures the processing time required for queries
since distances are computed from a query to all of the returned candidates. Note that tree-based methods
have close to identical query costs. For example, if the trees are all approximately balanced, then on average
we perform the same number of operations to return the set of candidates for queries (logarithmic number
of vector operations to traverse the tree). Furthermore, the ‘wall clock’ time for performing queries can
be heavily dependent on specific architectures and implementations. Thus, we focus on the quality of the
partitions given by the trees. We display the average over 10 independent trials in all of our results and
shade ±1 standard deviation where appropriate.

Nearest Neighbor Experiments. We first evaluate the performance of the algorithms on 1 nearest
neighbor error. We ranged over various candidate sizes (by iterating over the leaf parameter) and plotted

10

Under review as submission to TMLR

(a) (b) (c) (d)

Figure 4: First two PCA axes of: (a) KDD CUP, (b) RNA, (c) GMM, and (d) SIFT.

2 104 3 104 4 104 5 104 6 104 7 104

Candidate Size

0.45

0.50

0.55

0.60

0.65

0.70

10
-N

N
Ac

cu
ra

cy

Gaussian Mixture
Cluster Tree
RP Tree

1 104 2 104 3 104 4 104 5 104 6 104 7 104

Candidate Size

0.995

0.996

0.997

0.998

10
-N

N
Ac

cu
ra

cy
Spam

Cluster Tree
RP Tree

200 400 600 800 1000 1200 1400
Candidate Size

0.94

0.95

0.96

0.97

0.98

0.99

1.00

10
-N

N
Ac

cu
ra

cy

News

Cluster Tree
RP Tree

2 104 3 104 4 104 5 104 6 104 7 104

Candidate Size

0.250
0.275
0.300
0.325
0.350
0.375
0.400
0.425

10
-N

N
Ac

cu
ra

cy

SIFT
Cluster Tree
RP Tree

200 400 600 800
Candidate Size

0.800
0.825
0.850
0.875
0.900
0.925
0.950
0.975

10
-N

N
Ac

cu
ra

cy

RNA

Cluster Tree
RP Tree

500 1000 1500 2000 2500 3000 3500
Candidate Size

0.60

0.65

0.70

0.75

0.80

0.85

0.90

10
-N

N
Ac

cu
ra

cy

KDD Cup

Cluster Tree
RP Tree

Figure 5: Candidate Size vs 10-NN Error for ClusterTree and RP tree.

the fraction of times the nearest neighbor is in the candidate set for a query, averaged over all queries.
The results for ClusterTree versus RP trees are displayed in Figure 2. We see that for most datasets,
ClusterTree is outperforming RP Trees as fewer candidates are required to get better 1-NN accuracy. In
Figure 3, we show the results for all of the baselines. There, we see that 2-means tree performed the
worst on most datasets. Note that for the two datasets KDD Cup and RNA, the computationally intensive
PCA trees performed better than ClusterTree, while for the others: News, Spam, and Gaussian Mixtures,
ClusterTree was the best algorithm. Nevertheless, ClusterTree has been consistently better than RP
Trees. We also remark that it was not computationally feasible to run 2-means Tree and PCA trees for SIFT
and Spam. We are not plotting error bars for 2-means tree for clarity since it was much larger than all the
other algorithms; overall, we observed 2-means trees to be an inherently unstable algorithm.

We repeat the 1-NN experiments for 10-NN in Figures 5 and 6. Note that PCA trees outperform ClusterTree
on the KDD Cup dataset but ClusterTree is the best algorithm on all other datasets. Note that PCA trees
and 2-means trees are costly to construct, especially for large datasets, since they are employing a much more
computationally intensive partition rule than ClusterTree or RP trees. Lastly, LSH was not as tuneable
as the tree-based algorithms in terms of specifying the approximate size of candidates to return; we could
smoothly increase the candidate sizes for each tree based algorithm but LSH had a strict lower bound for
the number of candidates returned per dataset, even after using a large number of hash functions, for some
datasets such as Spam. This maybe due to the fact that LSH is not well suited for point sets whose norms
are not well concentrated.

11

Under review as submission to TMLR

5000 10000 15000 20000 25000
Candidate Size

0.1

0.2

0.3

0.4

0.5

0.6

0.7
10

-N
N

Ac
cu

ra
cy

Gaussian Mixture

Cluster Tree
RP Tree
2 Means Tree
PCA Tree
LSH

1 104 2 104 3 104 4 104 5 104 6 104 7 104

Candidate Size

0.986

0.988

0.990

0.992

0.994

0.996

0.998

10
-N

N
Ac

cu
ra

cy

Spam
Cluster Tree
RP Tree
PCA Tree
LSH

0 1000 2000 3000 4000 5000 6000 7000
Candidate Size

0.2

0.4

0.6

0.8

1.0

10
-N

N
Ac

cu
ra

cy

News
Cluster Tree
RP Tree
2 Means Tree
PCA Tree
LSH

0 1000 2000 3000 4000 5000 6000 7000 8000
Candidate Size

0.0

0.2

0.4

0.6

0.8

1.0

10
-N

N
Ac

cu
ra

cy

RNA
Cluster Tree
RP Tree
2 Means Tree
PCA Tree
LSH

0 1000 2000 3000 4000 5000 6000 7000
Candidate Size

0.2

0.4

0.6

0.8

1.0

10
-N

N
Ac

cu
ra

cy

KDD Cup

Cluster Tree
RP Tree
2 Means Tree
PCA Tree
LSH

Figure 6: Candidate Size vs 10-NN Error with all baselines.

Tree-Construction Running-Time: We note that both RP Trees and ClusterTree are highly efficient to
construct in practice and their main difference is in the quality of candidates returned on queries, for which
we demonstrate ClusterTree’s advantage. Since we optimize over multiple projections, there is a marginal
overhead of using ClusterTree over RP trees. Even on a dense dataset (SIFT) of 106 point in dimension 128
with the leaf parameter set to 5 ·103, the runtimes to create an RP tree was 11.8 seconds on average whereas
ClusterTree took 45.2 seconds. Thus, we do not envision the tree construction to be a bottleneck in practice
since they only have to be constructed once.

When can we expect ClusterTree to outperform RP trees? Our tree construction method especially
exploits the cluster structure as it builds the tree over the dataset. If the dataset does not possess such a
property, we expect ClusterTree and RP trees to have approximately the same behaviour. To highlight this,
we plotted the first two PCA projections of the centered and normalized versions of some of our datasets
in Figure 4. We can observe a strong cluster structure KDD Cup, RNA, and synthetic datasets. While
the projection of the SIFT dataset is mostly uniform over a region, signifying that it lacks such a structure
compared to the other datasets displayed, and therefore ClusterTree advantage is lower, as seen above.
Likewise, we can see in Figure 2 that ClusterTree is superior to RP trees in the 1-NN experiments for KDD
Cup, RNA, and synthetic datasets whereas it is comparable to RP trees for SIFT. Our other experiments
above follow a similar pattern. Therefore, we believe ClusterTree is preferable over RP trees as many
natural datasets have a strong underlying cluster structure.

Additional Experimental Results. Additional experimental results are given in Appendix B, including
experiments which validate that ClusterTree preserves cluster structure, and experiments on the sensitivity
to varying number of projections in the construction of ClusterTree.

6 Conclusion

We presented a novel and fast construction of a tree-based algorithm to perform fast nearest neighbor search
in high dimension. Our approach utilizes randomness as in RP trees while adapting to the underlying
cluster structure of the dataset to create well-balanced and meaningful partition tree. This balancedness
allows a fast, accurate and search of nearest neighbors. Our Theoretical analysis and the usage of the fast
1-dimensional graph-cuts provides a solid support to ClusterTree’s empirical performance, in particular to
its advantage over RP trees and other related benchmarks.

12

Under review as submission to TMLR

References
Kdd cup. http://osmot.cs.cornell.edu/kddcup/datasets.html, 2004.

ICML 2021 Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI, 2021.
URL https://icml2021-xai.github.io/.

A. Abdullah, Alexandr Andoni, R. Kannan, and Robert Krauthgamer. Spectral approaches to nearest
neighbor search. 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pp. 581–590,
2014.

Mohamad A. Akra and L. Bazzi. On the solution of linear recurrence equations. Computational Optimization
and Applications, 10:195–210, 1998.

Alexandr Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in high
dimensions. 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06), pp.
459–468, 2006.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Practical and opti-
mal lsh for angular distance. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015. URL https:
//proceedings.neurips.cc/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt. Falconn - fast
lookups of cosine and other nearest neighbors. https://github.com/FALCONN-LIB/FALCONN, 2018a.

Alexandr Andoni, Piotr Indyk, and Ilya P. Razenshteyn. Approximate nearest neighbor search in high
dimensions. CoRR, abs/1806.09823, 2018b. URL http://arxiv.org/abs/1806.09823.

Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, and Erik Waingarten. Data-dependent
hashing via nonlinear spectral gaps. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, pp. 787–800, New York, NY, USA, 2018c. Association for Computing
Machinery. ISBN 9781450355599. doi: 10.1145/3188745.3188846. URL https://doi.org/10.1145/
3188745.3188846.

Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, and Erik Waingarten. Hölder home-
omorphisms and approximate nearest neighbors. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pp. 159–169, 2018d. doi: 10.1109/FOCS.2018.00024.

Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A benchmarking tool for
approximate nearest neighbor algorithms. In International Conference on Similarity Search and Applica-
tions, pp. 34–49. Springer, 2017.

Artem Babenko and V. Lempitsky. Product split trees. 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6316–6324, 2017.

Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable k -means clustering via lightweight coresets.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’18, pp. 1119–1127, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450355520. doi: 10.1145/3219819.3219973. URL https://doi.org/10.1145/3219819.3219973.

Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Efficient distributed locality sensitive hashing.
In Proceedings of the 21st ACM International Conference on Information and Knowledge Management,
CIKM ’12, pp. 2174–2178, New York, NY, USA, 2012. Association for Computing Machinery. ISBN
9781450311564. doi: 10.1145/2396761.2398596. URL https://doi.org/10.1145/2396761.2398596.

J. Bentley. Multidimensional binary search trees used for associative searching. Commun. ACM, 18:509–517,
1975.

13

http://osmot.cs.cornell.edu/kddcup/datasets.html
https://icml2021-xai.github.io/
https://proceedings.neurips.cc/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/2823f4797102ce1a1aec05359cc16dd9-Paper.pdf
https://github.com/FALCONN-LIB/FALCONN
http://arxiv.org/abs/1806.09823
https://doi.org/10.1145/3188745.3188846
https://doi.org/10.1145/3188745.3188846
https://doi.org/10.1145/3219819.3219973
https://doi.org/10.1145/2396761.2398596

Under review as submission to TMLR

A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. Proceedings of the 23rd
international conference on Machine learning, 2006.

Aditya Bhaskara and Maheshakya Wijewardena. Distributed clustering via lsh based data partitioning. In
International Conference on Machine Learning, pp. 569–578, 2018.

Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. Machine learning interpretability: A survey
on methods and metrics. Electronics, 8(8), 2019. ISSN 2079-9292. doi: 10.3390/electronics8080832. URL
https://www.mdpi.com/2079-9292/8/8/832.

Moses Charikar, Monika Henzinger, Lunjia Hu, Maximilian Vötsch, and Erik Waingarten. Simple, scalable
and effective clustering via one-dimensional projections. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems, volume 36, pp.
64618–64649. Curran Associates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/
paper/2023/file/cbaffeeda13dbd8bf9489feb3f198ff4-Paper-Conference.pdf.

Hao Chen, Ilaria Chillotti, Yihe Dong, Oxana Poburinnaya, Ilya P. Razenshteyn, and M. Riazi. Sanns:
Scaling up secure approximate k-nearest neighbors search. ArXiv, abs/1904.02033, 2019.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient access method for similarity search in metric
spaces. In VLDB, 1997.

S. Dasgupta and Kaushik Sinha. Randomized partition trees for exact nearest neighbor search. In COLT,
2013.

S. Dasgupta and Kaushik Sinha. Randomized partition trees for nearest neighbor search. Algorithmica, 72:
237–263, 2014.

S. Dasgupta, Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Explainable k-means and k-medians
clustering. In ICML, 2020.

Mayur Datar, Nicole Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing scheme based on
p-stable distributions. In SCG ’04, 2004.

Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Learning space partitions for nearest neighbor
search. In International Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=rkenmREFDr.

Tiezheng Ge, Kaiming He, Q. Ke, and Jian Sun. Optimized product quantization. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 36:744–755, 2014.

A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In VLDB, 1999.

Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and H. Zhang. Fast approximate nearest-neighbor
search with k-nearest neighbor graph. In IJCAI, 2011.

Ville Hyvönen, T. Pitkänen, S. Tasoulis, Elias Jaasaari, Risto Tuomainen, Liewu Wang, J. Corander, and
T. Roos. Fast nearest neighbor search through sparse random projections and voting. 2016 IEEE Inter-
national Conference on Big Data (Big Data), pp. 881–888, 2016.

P. Indyk and A. Naor. Nearest-neighbor-preserving embeddings. ACM Trans. Algorithms, 3(3):31–es, Au-
gust 2007. ISSN 1549-6325. doi: 10.1145/1273340.1273347. URL https://doi.org/10.1145/1273340.
1273347.

H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33:117–128, 2011.

Jeff Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus. IEEE Transactions on Big
Data, 7:535–547, 2021.

14

https://www.mdpi.com/2079-9292/8/8/832
https://proceedings.neurips.cc/paper_files/paper/2023/file/cbaffeeda13dbd8bf9489feb3f198ff4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cbaffeeda13dbd8bf9489feb3f198ff4-Paper-Conference.pdf
https://openreview.net/forum?id=rkenmREFDr
https://openreview.net/forum?id=rkenmREFDr
https://doi.org/10.1145/1273340.1273347
https://doi.org/10.1145/1273340.1273347

Under review as submission to TMLR

Norio Katayama and S. Satoh. The sr-tree: an index structure for high-dimensional nearest neighbor queries.
In SIGMOD ’97, 1997.

Omid Keivani and Kaushik Sinha. Random projection-based auxiliary information can improve tree-
based nearest neighbor search. Information Sciences, 546:526–542, 2021. ISSN 0020-0255. doi:
https://doi.org/10.1016/j.ins.2020.08.054. URL https://www.sciencedirect.com/science/article/
pii/S0020025520308203.

Neeraj Kumar, L. Zhang, and S. Nayar. What is a good nearest neighbors algorithm for finding similar
patches in images? In ECCV, 2008.

Dan Kushnir. Towards clustering high-dimensional gaussian mixture clouds in linear running time. In Pro-
ceedings of the 22nd International Conference on Artificial Intelligence and Statistics AISTATS, volume 89
of Proceedings of Machine Learning Research, pp. 1379–1387. PMLR, 16–18 Apr 2019.

Tom Leighton. Notes on better master theorems for divide-and-conquer recurrences. In Lecture notes, MIT,
1996.

Jinfeng Li, James Cheng, Fan Yang, Yuzhen Huang, Yunjian Zhao, Xiao Yan, and Ruihao Zhao. Losha: A
general framework for scalable locality sensitive hashing. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp. 635–644. ACM, 2017.

Ting Liu, A. Moore, Alexander G. Gray, and Ke Yang. An investigation of practical approximate nearest
neighbor algorithms. In NIPS, 2004.

Mario Lucic, Matthew Faulkner, Andreas Krause, and Dan Feldman. Training gaussian mixture models at
scale via coresets. Journal of Machine Learning Research, 18(160):1–25, 2018. URL http://jmlr.org/
papers/v18/15-506.html.

Yu A. Malkov and D. Yashunin. Efficient and robust approximate nearest neighbor search using hierarchical
navigable small world graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42:
824–836, 2020.

Yury Malkov, Alexander Ponomarenko, A. Logvinov, and V. Krylov. Approximate nearest neighbor algo-
rithm based on navigable small world graphs. Inf. Syst., 45:61–68, 2014.

Mark McCartin-Lim, Andrew McGregor, and Rui Wang. Approximate principal direction trees. In Proceed-
ings of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK,
June 26 - July 1, 2012. icml.cc / Omnipress, 2012. URL http://icml.cc/2012/papers/348.pdf.

Marius Muja and D. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration. In
VISAPP, 2009.

Y Ni, K Chu, and J Bradley. Detecting abuse at scale: Locality sensitive hashing at uber engineering, 2017.

Parikshit Ram and Kaushik Sinha. Revisiting kd-tree for nearest neighbor search. In Ankur Teredesai,
Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (eds.), Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage,
AK, USA, August 4-8, 2019, pp. 1378–1388. ACM, 2019a. doi: 10.1145/3292500.3330875. URL https:
//doi.org/10.1145/3292500.3330875.

Parikshit Ram and Kaushik Sinha. Revisiting kd-tree for nearest neighbor search. Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019b.

Jason Rennie. 20 newsgroups dataset. http://qwone.com/~jason/20Newsgroups/, 2016.

Kaushik Sinha. Lsh vs randomized partition trees: Which one to use for nearest neighbor search? 2014 13th
International Conference on Machine Learning and Applications, pp. 41–46, 2014.

15

https://www.sciencedirect.com/science/article/pii/S0020025520308203
https://www.sciencedirect.com/science/article/pii/S0020025520308203
http://jmlr.org/papers/v18/15-506.html
http://jmlr.org/papers/v18/15-506.html
http://icml.cc/2012/papers/348.pdf
https://doi.org/10.1145/3292500.3330875
https://doi.org/10.1145/3292500.3330875
http://qwone.com/~jason/20Newsgroups/

Under review as submission to TMLR

Kaushik Sinha. Fast l1-norm nearest neighbor search using a simple variant of randomized partition tree.
In INNS Conference on Big Data, 2015.

Kaushik Sinha and Omid Keivani. Sparse randomized partition trees for nearest neighbor search. In AIS-
TATS, 2017.

R. Sproull. Refinements to nearest-neighbor searching ink-dimensional trees. Algorithmica, 6:579–589, 2005.

Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. Srs: Solving c-approximate nearest
neighbor queries in high dimensional euclidean space with a tiny index. Proc. VLDB Endow., 8:1–12,
2014.

Jeffrey K. Uhlmann. Satisfying general proximity / similarity queries with metric trees. Information Process-
ing Letters, 40(4):175–179, 1991. ISSN 0020-0190. doi: https://doi.org/10.1016/0020-0190(91)90074-R.
URL https://www.sciencedirect.com/science/article/pii/002001909190074R.

Jan van Rijn. Bng spambase dataset. https://www.openml.org/d/40515, 2016.

Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Suzanne Petryk, Sarah Adel Bargal, and
Joseph E. Gonzalez. NBDT: neural-backed decision tree. In 9th International Conference on Learn-
ing Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=mCLVeEpplNE.

J. Wang, W. Liu, Sanjiv Kumar, and S. Chang. Learning to hash for indexing big data—a survey. Proceedings
of the IEEE, 104:34–57, 2016a.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for similarity search: A survey.
ArXiv, abs/1408.2927, 2014.

Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for indexing big data - A survey.
Proc. IEEE, 104(1):34–57, 2016b. doi: 10.1109/JPROC.2015.2487976. URL https://doi.org/10.1109/
JPROC.2015.2487976.

Xiang Wu, Ruiqi Guo, A. T. Suresh, Sanjiv Kumar, D. Holtmann-Rice, David Simcha, and F. Yu. Multiscale
quantization for fast similarity search. In NIPS, 2017.

Yubao Wu, Ruoming Jin, and X. Zhang. Fast and unified local search for random walk based k-nearest-
neighbor query in large graphs. Proceedings of the 2014 ACM SIGMOD International Conference on
Management of Data, 2014.

Donghui Yan, Ling Huang, and Michael I. Jordan. Fast approximate spectral clustering. In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09,
pp. 907–916, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605584959.
doi: 10.1145/1557019.1557118. URL https://doi.org/10.1145/1557019.1557118.

16

https://www.sciencedirect.com/science/article/pii/002001909190074R
https://www.openml.org/d/40515
https://openreview.net/forum?id=mCLVeEpplNE
https://doi.org/10.1109/JPROC.2015.2487976
https://doi.org/10.1109/JPROC.2015.2487976
https://doi.org/10.1145/1557019.1557118

Under review as submission to TMLR

A Omitted Proofs

A.1 Proof of Lemma 3.1

Proof. Computing a single one dimensional projection takes time O(nd) and computing a k-nearest neighbor
graph can be done in time O(nk) after sorting the points in O(n log n) time. Note that this crucially depends
on the fact that we perform a one dimensional projection as nearest neighbors are determined by adjacent
points on the real line. It is computationally expensive to compute such a graph in arbitrary dimensions
larger than 1. Finding the sparsest prefix cut after sorting as is done in line 5 of Algorithm 1 takes linear time
once the k-nearest neighbor graph has been constructed. Overall, the runtime of each of the T procedures
is O(nd + n log n + nk).

A.2 Proof of Lemma 3.2

Proof. The proof follows from the fact that if a cut does not respect the sorted ordering, then we can switch
two points in opposite parts of the cut to reduce the number of edges across the cut.

A.3 Proof of Lemma 3.4

Proof. Consider the computational cost of building ClusterTree as a tree. We claim that at every level of
the tree, we do O(nd + n log n + nk) work. To verify this, we note that cn log(cn) + (1− c)n log((1− c)n ≤
cn log n + (1 − c)n log n = n log n. Then from Assumption 3.3, there are O(log n) levels of the tree, leading
to the stated runtime. (One can also use the Akra-Bazzi method to arrive at the same conclusion, see Akra
& Bazzi (1998) or Leighton (1996)).

A.4 Proof of Lemma 3.6

Proof. Fix the dataset X. First note that for any fixed points x, y ∈ X, we have

E∥P (x− y)∥2 = ∥x− y∥2

since P is independent of X. Now for any x ∈ X, the average distance squared from Px to its k-nearest
neighbors in PX is at most the average distance squared from Px to the points that were originally its
k-nearest neighbors in X. This gives that αP X ≤ αX . Finally, note that that the expected value of the
sum of all pairwise distances after the projection is the same as the sum of all pairwise distances from our
observation above. This proves βP X = βX , as desired.

A.5 Proof of Lemma 3.7

Proof. To prove Lemma 3.7, we will need the following auxiliary result.

Lemma A.1. Suppose x ∼ N (µ1, Σ1) and y ∼ N (µ2, Σ2) Then

E[∥x− y∥2] = ∥µ1 − µ2∥2 + tr(Σ1) + tr(Σ2).

Proof. Note that x−y is distributed as N (µ1−µ2, Σ1−Σ2) and thus, x−y ∼ µ1−µ2 +Az where z ∼ N (0, I)
and A satisfies AAT = Σ1 + Σ2. Thus,

∥x− y∥2 = ∥µ1 − µ2∥2 + 2(µ1 − µ2)T Az + zT AT Az.

Since E[z] = 0, we have
E[∥x− y∥2] = ∥µ1 − µ2∥2 + E[zT AT Az]

and
E[zT AT Az] =

∑
i,j

E[zizj](AT A)ij =
∑

i

(AT A)i = tr(AT A) = tr(AAT) = tr(Σ1 + Σ2).

Putting together the above calculations gives the desired result.

17

Under review as submission to TMLR

Note that we can upper bound αX by the expected distance squared between two points drawn form the same
component. This is because the distance to the k-th nearest neighbor from a fixed point will always be smaller
than the distance to another point drawn from the same component (assuming our hypothesis that at least
k points are drawn from each component). From Lemma A.1, it follows that αX ≤ 2 max(tr(Σ1), tr(Σ2)).

To lower bound βX , note that since min(w, 1 − w) = Ω(1), the expected distance squared between two
uniformly random points is at least asymptotically the expected distance squared between two points from
separate components. Again using Lemma A.1, it follows that βX = Ω(∥µ1 − µ2∥2 + tr(Σ1 + Σ2)).

A.6 Proof of Lemma 3.8

Proof. Lemma 3.7 tells us that
αX

βX
≲

tr(Σ1 + Σ2)
∥µ1 − µ2∥2 ≲

1
c2

where we have used the fact that d λ1(Σ) ≥ tr(Σ) for a covariance matrix Σ ∈ Rd×d.

A.7 Proof of Lemma 4.1

We first need the following auxiliary results from Indyk & Naor (2007).
Lemma A.2. Let x ∈ Sd−1 and let P be a random one-dimensional Gaussian projection. Then for all
t > 0,

Pr(|∥Px∥ − 1| ≥ t) ≤ exp(−t2/8), (1)

Pr(∥Px∥ ≤ 1/t) ≤ 3
t
. (2)

We now proceed with the proof of Lemma 4.1.

Proof. We first claim that the diameters of S and S′ don’t increase by a large factor after a random projection.
Fix x, y ∈ S. By Eq. equation 1, the probability that ∥P (x − y)∥ increases by a factor of t is at most
exp(−t2/8). Thus for a suitable constant c, we have that the probability ∥P (x−y)∥ is larger by a c(

√
log |S|+

log(1/ϵ)) factor is at most ϵ/(3|S|2). Union bounding across all pairs in S and using a similar argument
for S′ gives us that with probability at least 1 − 2ϵ/3, we have that diam(PS) ≲

√
log |S|diam(S) and

diam(PS′) ≲
√

log |S′|diam(S′).

We now claim that the sets PS and PS′ don’t come ‘too’ close together. Indeed, take any point x ∈ S and
y ∈ S′. We have that ∥x− y∥ ≥ d(S, S′). Thus by Eq. equation 2, the probability that ∥P (x− y)∥ shrinks
by a factor of Ω(1/ϵ) is at most O(ϵ).

Altogether, we know that with probability at least 1− ϵ, all three of the following events occur:

1. diam(PS) ≲
√

log |S|diam(S),

2. diam(PS′) ≲
√

log |S′|diam(S′),

3. d(PS, PS′) ≥ ϵ d(S, S′)− diam(PS)− diam(PS′).

Thus by our assumption that S and S′ are r-apart for the value of r in the lemma statement, it follows that

diam(PS) ≲
√

log |S|diam(S)− diam(PS)− diam(PS′) ≲ ϵ d(S, S′) ≲ d(PS, PS′)

and a similar statement holds for S′, proving the lemma.

18

Under review as submission to TMLR

A.8 Proof of Lemma 4.2

Proof. The proof follows from Lemma 4.1 as every point in PS will be closer to any other point in PS than
any other point in PS′. A similar symmetric statement holds for PS′. Thus, any edges of the k-nearest
neighbor graph starting from any point in PS must have its other vertex in PS as well. This implies that
there is an empty cut between PS and PS′, as desired.

Lemma A.3 (Follows from corollary 5 and 6 in Kushnir (2019)). Consider two c-separated Gaussian dis-
tributions in Rd with means µ1, µ2 and covariance matrices Σ1 and Σ2. Define T (c′, d) as in Lemma 3.9.
Let γ := 2d(c′)2λmax/∥µ1 − µ2∥2, where λmax denotes the largest eigenvalue of the matrix Σ1 + Σ2. Then

lim
d→∞

T (c′, d) ≤ 1
2Q(

√
γ)

.

B Omitted Experimental Results

We give additional experimental results in this section.

Preserving Cluster Structure of the Dataset. We empirically validate the hypothesis that
ClusterTree is superior to RP trees in finding partitions that preserve the underlying cluster structure
of the dataset. We designed two related experiments to demonstrate this. For the first set of experiments,
we measured the diameter of the leaves (weighted by the leaf sizes) of each class of trees as the parameter
P increases. Again the intuition here is that if the diameter of the leaves are small, then it mostly contains
points that are well-clustered together while conversely, if the diameter is large, then the tree has bucketed
together points that belong to different clusters. Our results are shown in Figure 7. Indeed, we see that
for most datasets ClusterTree results in leaves that are much more tightly clustered than RP Trees, which
again demonstrates that ClusterTree is adaptive to the underlying cluster structure of the dataset.

We present additional experiments on how the weighted radius of leaves of various tree-based algorithms
varies as a function size in Figure 8. See Section 5 for more details on experimental setting. Overall, we see
that ClusterTree has a smaller radius as a function of cluster size for the Gaussian Mixture, Spam, RNA,
and KDD Cup datasets. Note that for Spam, 2-means tree was too costly to run and for Gaussian Mixture,
the 2-means tree and ClusterTree have very identical curves for weighted radius as a function of candidate
size.

Varying Number of Projections. We ranged over various candidate sizes and plotted the 1-NN error as
the number of projections (the parameter T) in Algorithm 1 varied. This is to demonstrate that optimizing
over multiple one-dimensional projections is important in practice, as suggested by our theoretical analysis.
While the number of projections does not influence the performance for some datasets, we note that for
datasets such as News and RNA, optimizing over multiple projections is advantageous. The results are
shown in Figure 9. Note that only for this experiment, we use a randomly sub sample datasets Spam, News
and SIFT with 5 · 104 points for computational efficiency.

Distance to k-th Nearest Neighbors. We created instances of ClusterTree and RP trees for all of
our datasets where we set the leaf size, the parameter P in Algorithm 2, to be equal to 10% of n. We then
computed the distance from a query to the k-th nearest neighbor among the candidates returned by a tree
for various values of k and averaged this across all queries. The intuition here is that if a leaf node of a
tree contains points from multiple distinct clusters, then there will be a substantial increase in this metric
at some intermediate value of k. Indeed, this is what we observe in Figure 10. For example in the Gaussian
Mixture, KDD Cup, and Spam datasets, there is a noticeable ‘jump’ in the plots for RP trees as it is ‘mixing’
multiple clusters in the leaf nodes while for ClusterTree, the relationship is much smoother.

To recap, the intuition here is that if a leaf node of a tree contains points from multiple distinct clusters,
then there will be a substantial increase in this metric at some intermediate value of k. For example, suppose
that the leaf of a node contains points from two distinct well-separated clusters and consider a query that
lands in this leaf but is closer to only one of the clusters. Then for a large enough value of k, the k-th

19

Under review as submission to TMLR

0 2000 4000 6000 8000 10000
Candidate Size

20
30
40
50
60
70
80
90

100

W
ei

gh
te

d
Ra

di
us

Gaussian Mixture
Cluster Tree
RP Tree

2000 2500 3000 3500 4000 4500 5000
Candidate Size

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

W
ei

gh
te

d
Ra

di
us

Spam

Cluster Tree
RP Tree

250 500 750 1000 1250 1500 1750 2000
Candidate Size

16

17

18

19

20

W
ei

gh
te

d
Ra

di
us

News
Cluster Tree
RP Tree

250 500 750 1000 1250 1500 1750 2000
Candidate Size

630
640
650
660
670
680
690
700
710

W
ei

gh
te

d
Ra

di
us

SIFT
Cluster Tree
RP Tree

500 1000 1500 2000
Candidate Size

5

10

15

20

25

30

35

W
ei

gh
te

d
Ra

di
us

RNA
Cluster Tree
RP Tree

1000 2000 3000 4000 5000
Candidate Size

1000

2000

3000

4000

5000

6000

7000

W
ei

gh
te

d
Ra

di
us

KDD Cup
Cluster Tree
RP Tree

Figure 7: The leaves of ClusterTree have a smaller diameter than those of RP Trees.

0 2000 4000 6000 8000 10000
Candidate Size

20
30
40
50
60
70
80
90

100

W
ei

gh
te

d
Ra

di
us

Gaussian Mixture
Cluster Tree
RP Tree
2-Means Tree
PCA Tree

2000 2500 3000 3500 4000 4500 5000
Candidate Size

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

W
ei

gh
te

d
Ra

di
us

Spam

Cluster Tree
RP Tree
PCA Tree

250 500 750 1000 1250 1500 1750 2000
Candidate Size

13

14

15

16

17

18

19

20
W

ei
gh

te
d

Ra
di

us
News

Cluster Tree
RP Tree
2-Means Tree
PCA Tree

250 500 750 1000 1250 1500 1750 2000
Candidate Size

500

550

600

650

700

W
ei

gh
te

d
Ra

di
us

SIFT

Cluster Tree
RP Tree
2-Means Tree
PCA Tree

500 1000 1500 2000
Candidate Size

0

20

40

60

80

100

120

W
ei

gh
te

d
Ra

di
us

RNA
Cluster Tree
RP Tree
2-Means Tree
PCA Tree

1000 2000 3000 4000 5000
Candidate Size

0

2000

4000

6000

8000

10000

12000

W
ei

gh
te

d
Ra

di
us

KDD Cup
Cluster Tree
RP Tree
2-Means Tree
PCA Tree

Figure 8: Expanded version of Figure 7 using all tree-based algorithms.

nearest neighbor for this query would come from the far away cluster, leading to a significant increase in the
distance to the k-th nearest neighbor in comparison to the (k − 1)-th nearest neighbor. In contrast, if the
leaf mostly contained points from one cluster, the distance would smoothly increase. To summarize, this is
exactly the behaviour observed in Figure 10: in the Gaussian Mixture, KDD Cup, and Spam datasets, there
is a noticeable ‘jump’ in the plots for RP trees as it is ‘mixing’ multiple clusters in the leaf nodes while for
ClusterTree, the relationship is much smoother.

20

Under review as submission to TMLR

1500 2000 2500 3000 3500
Candidate Size

0.14

0.16

0.18

0.20

0.22

0.24

0.26
1-

NN
 A

cc
ur

ac
y

Gaussian Mixtures
1
20

1500 2000 2500 3000 3500
Candidate Size

0.38

0.40

0.42

0.44

1-
NN

 A
cc

ur
ac

y

Spam
1
20

40 60 80 100 120 140
Candidate Size

0.900

0.902

0.904

0.906

0.908

0.910

0.912

1-
NN

 A
cc

ur
ac

y

News

1
5
20
50

5000 10000 15000 20000 25000
Candidate Size

0.3

0.4

0.5

0.6

0.7

0.8

1-
NN

 A
cc

ur
ac

y

SIFT
1
20

0 200 400 600 800 1000 1200 1400 1600
Candidate Size

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1-
NN

 A
cc

ur
ac

y

RNA

1
2
3
4

500 1000 1500 2000 2500 3000
Candidate Size

0.70

0.75

0.80

0.85

0.90

1-
NN

 A
cc

ur
ac

y

KDD CUP
1
20

Figure 9: Optimizing over multiple projections in Algorithm 1 can improve accuracy.

0 20 40 60 80 100
k

12.0
12.2
12.5
12.8
13.0
13.2
13.5
13.8
14.0

Di
st

an
ce

 to
 k

-n
n

Gaussian Mixture
Cluster Tree
RP Tree

0 10 20 30 40 50 60 70 80
k

0.04

0.06

0.08

0.10

0.12

0.14

Di
st

an
ce

 to
 k

-n
n

Spam
Cluster Tree
RP Tree

0 100 200 300 400 500 600
k

6

7

8

9

10

11

Di
st

an
ce

 to
 k

-n
n

News

Cluster Tree
RP Tree

0 100 200 300 400 500 600
k

260

280

300

320

340

360

380

Di
st

an
ce

 to
 k

-n
n

SIFT
Cluster Tree
RP Tree

0 100 200 300 400 500 600
k

0

2

4

6

8

10

12

Di
st

an
ce

 to
 k

-n
n

Spam
Cluster Tree
RP Tree

0 100 200 300 400 500 600
k

0

50

100

150

200

250

Di
st

an
ce

 to
 k

-n
n

KDD CUP
Cluster Tree
RP Tree

Figure 10: ClusterTree has a smoother trade-off curve for distance to the k-th neighbor as k increases.

Additional Parameter Selection Details. If there are multiple cuts that have conductance 0, i.e.,
multiple separated pieces in the k-nearest neighbor graph constructed in Algorithm 1, we pick the cut that is
the most balanced. This is because any choice of the cuts would have been good with respect to preserving
near neighbors so we should optimize for keeping the tree balanced.

Note that there have been recent works on improving RP trees using additional techniques such as sparse
random projections Sinha & Keivani (2017), using auxiliary information when performing search over the
tree Keivani & Sinha (2021), and other methods Hyvönen et al. (2016). For simplicity, we did not use these
techniques as they can be used identically for ClusterTree as for RP trees.

21

Under review as submission to TMLR

Finally, we highlight that both RP tree and ClusterTree are randomized algorithms. Therefore, they have
the following additional benefit: in order to boost accuracy, we can initialize multiple instances of the data
structure to create an ensemble of trees while keeping the overall number of candidates fixed. For example,
instead of creating one tree with leaf size P , we can create two trees with leaf sizes P/2 each. In general, if we
make a constant number of trees, this can be thought of as significantly boosting accuracy by increasing the
amount of space used by only a constant factor. Note that 2-means trees and PCA trees are deterministic
so they do not have this additional benefit. For simplicity however, we only compare single instantiation of
each algorithm.

C Justifications for Assumption 3.3

We provide justification for Assumption 3.3 as its conditions hold true for one-dimensional datasets with
very different structural properties: both uniform and clustered inputs.

• Uniform Points: Suppose the input to Algorithm 1 is a set of uniformly spaced points in one-
dimensions. Then it is clear that the cut with the lowest conductance will split the dataset exactly
in half due to symmetry.

• Clustered Points: Suppose the input consists of two well-separated clusters, with each cluster
consisting of at least c-fraction of the total input size. Then the k-nearest neighbor graph for this
input will be such that the edges of each cluster will be mostly to other points of the same cluster.
Thus, the cut separating the two clusters will be extremely sparse and hence have low conductance
as well. See Figure 1 for an example.

Average Split Ratio. We now empirically validate Assumption 3.3. To do so, we compute ClusterTree
for all of our datasets setting P = 5% of the size of the dataset in each case. The results across one run of
Algorithm 2 are shown in Table 2. We observe that on average, each node of the tree splits the dataset into
two approximately balanced parts.

Dataset Avg. Split Ratio Dataset Avg. Split Ratio
KDD Cup 0.49(0.26) Spam 0.50(0.27)

News 0.50(0.00) SIFT 0.49(0.18)
RNA 0.45(0.29) Gaussian Mixture 0.53(0.12)

Table 2: The average split ratio across all nodes in the tree with standard deviation in the parenthesis using
5% of the number of points as the parameter P (leaf size).

D Future Directions

In this paper, we presented a new tree-based algorithm for NNS that utilizes randomness similarly to RP
trees while adapting to the underlying cluster structure of the input dataset. It’s partition rule consisted of
performing a random one-dimensional projection and finding a partition of the projected points that mini-
mized the conductance of the k-nearest neighbor graph. This strategy was inspired by recent theoretical and
practical works on NNS. Finally, our experiments demonstrated advantage over other tree-based algorithms
such as RP trees.

We would like to highlight some interesting future directions. Namely, can we use ClusterTree to speed up
other tree-based algorithms or other clustering algorithms that are computationally expensive? For example,
it would be interesting to see the performance of ClusterTree over other decision tree algorithms. Note
that ClusterTree is unsupervised which is advantageous in settings where acquiring labels is costly.

Similarly, it would be interesting to apply ClusterTree to speed up spectral clustering of point clouds. For
example, spectral clustering could be optimized by only clustering a representative point from each of the
partitions found by applying the ClusterTree algorithm on the dataset. A similar approach was considered

22

Under review as submission to TMLR

in Yan et al. (2009) with RP trees which lead to substantial speedups. Since ClusterTree is designed to
preserve the inherent cluster structure, we envision that our method would potentially be a better fit for this
application.

23

	Introduction
	Our Contributions
	Related Works

	The ClusterTree Algorithm
	Motivation
	Algorithm

	Theoretical Analysis
	Nearest Neighbor Guarantees
	Gaussian Mixture Model

	Hierarchical Clustering
	Experiments
	Conclusion
	Omitted Proofs
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.4
	Proof of Lemma 3.6
	Proof of Lemma 3.7
	Proof of Lemma 3.8
	Proof of Lemma 4.1
	Proof of Lemma 4.2

	Omitted Experimental Results
	Justifications for Assumption 3.3
	Future Directions

