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Abstract
Support Vector Machine (SVM) stands out as a prominent
machine learning technique widely applied in practical pat-
tern recognition tasks. It achieves binary classification by
maximizing the ”margin”, which represents the minimum
distance between instances and the decision boundary. Al-
though many efforts have been dedicated to expanding SVM
to multi-class case through strategies such as one versus one
and one versus the rest, satisfactory solutions remain to be
developed. In this paper, we propose a novel method for
multi-class SVM that incorporates pairwise class loss con-
siderations and maximizes the minimum margin. Adhering
to this concept, we derive a formulation through a new multi-
objective optimization strategy. Furthermore, the correlations
between the proposed method and multiple forms of multi-
class SVM are analyzed. Empirical evaluations demonstrate
the effectiveness and superiority of our proposed method
over existing multi-classification methods. Complete version
is available at https://arxiv.org/pdf/2312.06578.pdf. Code is
available at https://github.com/zz-haooo/M3SVM.

Introduction
Support vector machine (SVM), a fundamental machine
learning technique, initially emerged as a binary linear clas-
sifier (Boser, Guyon, and Vapnik 1992). Rooted in the theory
of VC-dimension, SVM achieves structural risk minimiza-
tion by maximizing the margin between two class. Its math-
ematical rigor and notable performance in practical applica-
tions have garnered significant attention. SVM-based clas-
sification methods have found extensive application in di-
verse machine learning tasks, including image classification
(Wei and Hoai 2016), text classification (Nie et al. 2014),
etc. Diverse SVM variants have emerged over time, such as
Twin SVM (Khemchandani, Chandra et al. 2007), Optimal
Margin Distribution Machine (Zhang and Zhou 2019),Deci-
sion Tree SVM (Nie, Zhu, and Li 2020), etc. Furthermore,
SVM has been extended to encompass various scenarios
and guides advanced methodologies and models (Tarzanagh
et al. 2023; Xu and Schuurmans 2005; Amer, Goldstein, and
Abdennadher 2013).

Despite its outstanding performance in binary classifica-
tion tasks, multi-class SVM progresses sluggishly. Existing
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multi-class SVM can be summarized into two main cate-
gories, the first of which are One versus the Rest (OvR)
(Vapnik 1999) and One versus One (OvO) techniques (Hsu
and Lin 2002). For a c-class classification, OvR utilizes c bi-
nary SVMs to separate each class from the rest, while OvO
utilizes c(c−1)

2 binary SVMs to separate each pair of classes.
A critical shortcoming of OvR arises from the unbalanced-
ness of each subproblem. Besides, treating the rest of the
classes as a single class may lead to potential inseparability
(Pisner and Schnyer 2020). The drawback of OvO lies in the
high time overhead of testing. OvO needs O(c2d) for each
test sample, which is time-consuming when c is large. Since
OvR and OvO involve multiple independent binary subprob-
lems, they fail to achieve a complete partition of the feature
space and results in certain regions with constant tied votes.

The second major method is multi-class SVM with uni-
fied formulation (Weston and Watkins 1998; Crammer and
Singer 2001; Guermeur 2002). While these multi-class
methods achieve sound performance on well-structured
data, they may be less effective for datasets with ambiguous
class boundaries. Moreover, many of these multi-class SVM
methods deviate from the fundamental principle of margin,
thus impacting generalization capabilities.

To address the aforementioned issues, we propose a novel
method called Multi-class Support Vector Machines with
Maximizing Minimum Margin (M3SVM) to overcome the
limitations of existing methods. The main contributions of
this paper are summarized as follows:

• In this paper, we propose a concise yet effective multi-
class SVM method that computes classification loss be-
tween each class pair. More importantly, we derive a
novel regularizer that enlarges the lower bound of the
margin by introducing a parameter p.

• The proposed method bases on a strategy for multi-
objective optimization and offers a lucid geometric in-
terpretation. We theoretically analyze the association of
M3SVM with the previous methods. It also functions as
a plug-and-play improvement over the softmax in neural
networks. Besides, the proposed regularizer can be inter-
preted in the context of minimizing structural risk.

• Through exhaustive experiments on realistic datasets, our
proposed method demonstrates a marked enhancement in
classification performance.



The proofs of all involved lemmas and theorems together
with supplementary experiments are relegated to Appendix
in the complete version.
Notations: The vectors and matrices are denoted by bold
lowercase and bold uppercase letters, respectively. Set
{1, 2, · · · , n} is abbreviated by [n] for simplicity.

Related Work
Binary SVM
SVM was first proposed under the form of hard margin,
whose basic formulation can be written as the following op-
timization problem (Boser, Guyon, and Vapnik 1992):

min
w,b

1

2
‖w‖22, s.t. yi

(
wTxi + b

)
> 1, i ∈ [n], (1)

where {(xi, yi)}ni=1 is the train set. SVM aims to seek a
separating hyperplane by maximizing the margin between
two classes such that wTxi + b − 1 > 0 with yi = 1 and
wTxi + b + 1 6 0 with yi = −1. The principle of SVM
is demonstrated in Figure 1a. It maximizes the ”margin” in
the figure through searching the appropriate support vectors.
The separating hyperplane wTx+b = 0 obtained by solving
the quadratic programming problem above can be employed
to classify the upcoming data without label.

(a) Binary SVM. (b) Multi-class SVM.

Figure 1: From binary SVM to multi-class SVM.

Cortes and Vapnik (Cortes and Vapnik 1995) proposed
SVM with soft margin by introducing slack variables,

min
w,b

n∑
i=1

ξi + λ‖w‖22,

s.t. yi
(
wTxi + b

)
> 1− ξi, i ∈ [n].

(2)

Each slack variable corresponds to one sample, depicting the
degree of unsatisfied constraints. By substituting the slack
variables, Eq. (2) can be formulated as the form of ”loss +
regularization”. Thus, the general form of soft margin SVM
with hinge loss is as follows:

min
w,b

n∑
i=1

[1− yi(wTxi + b)]+ + λ‖w‖22. (3)

where [·]+ = max{0, ·}. λ is a trade-off parameter to
weigh the two objectives. Subsequent studies have refined
the vanilla binary SVM in multiple ways (Crisp and Burges
1999; Mangasarian and Musicant 2001; Grandvalet et al.
2008; Ladicky and Torr 2011; Zhou et al. 2012; Nie et al.
2014; Zhang et al. 2017). Nevertheless, the exploration of
multi-class SVM remains incomplete. A few representative
methods are outlined below.

Multi-class SVM with Unified Formulation
When there is c classes, the decision function is of the fol-
lowing form

y = arg max
k∈[c]

wT
k x + bk. (4)

In this way, each class corresponds to one projection vector
w. In accordance with such decision function, a series of
multi-class SVM models have been proposed. Weston and
Watkins (Weston and Watkins 1998) integrated multi-class
SVM into a unified framework rather than solving multiple
subproblems separately, which is formulated as

min
W∈Rd×c,b∈Rc

n∑
i=1

∑
k 6=yi

ξki + λ

c∑
k=1

‖wk‖22

s.t.

{
wT
yixi + byi ≥ wT

k xi + bk + 1− ξki,
ξki > 0, k ∈ [c], k 6= yi, i ∈ [n].

(5)

where W ∈ Rd×c and b ∈ Rc are applied for test data
through Eq. (4). Crammer and Singer (Crammer and Singer
2001) proposed a new-look loss function from the perspec-
tive of decision function, which is formulated as follows.

min
W∈Rd×c,b∈Rc

n∑
i=1

ξi + λ

c∑
k=1

‖wk‖22

s.t.wT
yixi + δyi,k −wT

k xi > 1− ξi, ξi > 0, i ∈ [n].

(6)

where δyi,k equals to 1 if k = yi and 0 otherwise.
Denoting [1− (wT

yixi + byi −wT
k xi − bk)]+ as ∆ik, the

optimization objective in Eq. (5) can be converted to

min
W∈Rd×c,b∈Rc

n∑
i=1

∑
k 6=yi

∆ik + λ

c∑
k=1

‖wk‖22 . (7)

By adding bias term b, Eq. (6) can be rewritten as

min
W∈Rd×c,b∈Rc

n∑
i=1

max
k 6=yi

∆ik + λ

c∑
k=1

‖wk‖22 . (8)

This makes it clear that per-sample loss in Eq. (5) is the sum
of loss of misclassification while that in Eq. (6) is the maxi-
mum loss.

The two methods above represent unified multi-class
models, however, the explicit interpretation of the mar-
gin concept is lacking. Bredensteiner and Bennett (Breden-
steiner and Bennett 1999) constructed the M-SVM upon the
definition of piecewise-linear separability, which introduced
explicit margin for multi-class SVM. Guermeur (Guermeur
2002) explained multi-class SVM based on uniform strong
law of large numbers and proved the equivalence with (Bre-
densteiner and Bennett 1999). The aforementioned meth-
ods are representative, and subsequent work mainly revolves
around their improvement (Vural and Dy 2004; Lauer et al.
2011; G van den Burg and Groenen 2016). The explana-
tion from the margin perspective was collated by Xu et al.
(Xu et al. 2017). Nie el al. proposed capped `p-norm multi-
class SVM to deal with light and heavy outliers (Nie, Wang,
and Huang 2017). Doan et al. (Doan, Glasmachers, and



Igel 2016) composed and experimented with the aforemen-
tioned multi-class SVM methods. Lapin et al. (Lapin, Hein,
and Schiele 2015) further proposed a new multi-class SVM
model based on a tight convex upper bound of the top-k er-
ror.

Method
Problem Setup
Rethinking the decision hyperplane from a simple perspec-
tive, with each class associated with parameters (w, b), a de-
sirable linear multi-classifier is supposed to meet

wT
yixi + byi > wT

k xi + bk, k 6= yi,∀i ∈ [n]. (9)
Accordingly, a c-classification problem can be implemented
by solving c vectors. From this, the distinction between sam-
ples belonging to class j and class k is established through
the decision function:

fkl(x) = (wk −wl)
Tx + bk − bl, k < l. (10)

Thereby, fkl(x) = 0 is the corresponding separating hyper-
plane, fkl(x) > 0 for class k and fkl(x) < 0 for class l. The
illustration of our multi-class SVM is shown in Figure 1b.

To achieve OvO strategy with a unified model, our multi-
class SVM seeks separating hyperplanes by maximizing the
margin between two classes such that (wk−wl)

Txi+ bk−
bl > 1 with yi = k and (wk − wl)

Txi + bk − bl 6 −1
with yi = l. Similar to binary case in Figure 1a, the margin
of separating between class k and class l is

Margin (Ck, Cl) = 2dkl =
2

‖wk −wl‖2
. (11)

For multi-class SVM, the ideal scheme would be to maxi-
mize the margin between class pair. However, due to the mu-
tual limitation between hyperplanes, multi-class SVM can-
not do what OvO method does. Since c vectors are expected
to represent c(c−1)2 hyperplanes, there exists mutual restric-
tion between hyperplanes. Therefore, concurrently maxi-
mizing the margin between each class pair is impractical.

(a) Large margin summation. (b) Small margin summation.

Figure 2: Larger margin summation may not lead to better
classification performance.

Then, would optimizing the sum of all margins be a good
choice? Figures 2a and 2b give an intuitive no. The black
dashed lines represent the margins between class pairs. Ob-
viously, Figure 2a has a larger margin summation, but there
is hard-to-split class pair. Figure 2b is the preferred classi-
fier although with a smaller margin summation. This implies
that multi-class SVM is a challenging multi-objective opti-
mization. In the following subsection we propose a strategy
to solve this challenge.

A Strategy for Multi-objective Optimization
Multi-objective optimization refers to achieving multiple
conflicting objectives in specific scenarios, where opti-
mizing one objective comes at the expense of others.
Suppose we want to maximize the following objectives:
g1(z), g2(z), · · · , gm(z). A fundamental proposal for multi-
objective optimization is to optimize the worst case, i.e.,

max
z

min
i∈[m]

gi(z). (12)

Obviously, the minimization function is hard to address. We
propose the following two alternatives to approximate the
minimization function1:

(a) min
i∈[m]

gi(z) = −p log

(
m∑
i=1

e−
gi(z)

p

)
, p→ 0.

(b) min
i∈[m]

gi(z) =

[
m∑
i=1

g−pi (z)

]− 1
p

, p→∞.

(13)

In this way, the max-min problem (12) is converted to a
straightforward maximization problem. We introduce p into
the model as a tunable hyperparameter so that the strategy is
not only an approximation for problem (12), but also takes
all the objectives into account.

When the optimization problem becomes
min
z

max
i∈[m]

gi(z), (14)

our strategy can be applied correspondingly

(a) max
i∈[m]

gi(z) = p log

(
m∑
i=1

e
gi(z)

p

)
, p→ 0.

(b) max
i∈[m]

gi(z) =

[
m∑
i=1

gpi (z)

] 1
p

, p→∞.

(15)

A New Formulation for Multi-class SVM
We address multi-class SVM by maximizing the minimum
margin, thereby ensuring the margin between each class pair
is not excessively small. This is consistent with problem
(12). Then our multi-class SVM optimization objective can
be formulated as follows:

max
W∈Rd×c,b∈Rc

min
k,l∈[c],k<l

1

‖wk −wl‖2
,

s.t.

{
fkl(xi) > 1, yi = k,

fkl(xi) 6 −1, yi = l,
i ∈ [n].

(16)

We next convert problem (16) into a tractable form
through (b) in Eq. (13).
Theorem 1. The problem (16) is equivalent to

min
W∈Rd×c,b∈Rc

c−1∑
k=1

c∑
l=k+1

‖wk −wl‖p2,

s.t.

{
fkl(xi) > 1, yi = k,

fkl(xi) 6 −1, yi = l,
i ∈ [n].

(17)

with the given parameter p→∞.
1g(z) needs to be nonnegative in (b), while it does not in (a).



Optimizing the minimum margin is not sufficient to focus
on the all classes. An appropriate p is supposed to globally
enlarge the margin between each class pair while enhancing
the lower bound of the margins. Hyperparameter p is set in
[1, 8] in our experiments.

Similar to binary SVM, slack variable between each class
pair can be introduced:

min
W,b

∑
k<l

∑
yi∈{k,l}

ξikl + λ
∑
k<l

‖wk −wl‖p2,

s.t.

{
fkl(xi) > 1− ξikl, yi = k,

fkl(xi) 6 −1 + ξikl, yi = l,
i ∈ [n].

(18)

By substituting the slack variables, Eq. (2) can be trans-
formed into an unconstrained optimization problem:

min
W,b

∑
k<l

∑
yi∈{k,l}

[1− yiklfkl(xi)]+ + λ
∑
k<l

‖wk −wl‖p2

(19)
where yikl = 1 if yi = k and yikl = −1 if yi = l.

Assume W and b are the optimal solution of problem
(19). It is obvious that, for an arbitrary σ ∈ Rd, suppose
W̃ = W+σ1T , there is wj−wk = w̃j−w̃k. For an arbi-
trary η ∈ R, suppose b̃ = b+η1, there is bj−bk = b̃j−b̃k.
Therefore W̃ and b̃ is also the optimal solution. It is ex-
pected that the model has a unique optimal solution for spe-
cific data that is not contingent upon the initialization. With-
out loss of generality, we impose a mean-zero constraint on
W and b that W1 = 0,bT1 = 0. Here the constraint is
converted into a solvable form by the following theorem.

Theorem 2. Assume function f(Z) has the property of col-
umn translation invariance, i.e., ∀σ ∈ Rn, there is f(Z) =
f(Z+σ1T ). With given ε→ 0, the following two optimiza-
tion problems have the same optimal solution

min
Z∈Rn×m

f(Z), s.t.

m∑
j=1

zj = 0, (20)

min
Z∈Rn×m

f(Z) + ε‖Z‖2F . (21)

Considering the above theorem, the mean-zero constraint
can be transformed into an additional penalty term. The
complete model can be written as

min
W∈Rd×c,b∈Rc

∑
k<l

∑
yi∈{k,l}

[1− yiklfkl(xi)]++

λ
∑
k<l

‖wk −wl‖p2 + ε
(
‖W‖2F + ‖b‖22

)
.

(22)

λ is a trade-off parameter to balance error tolerance and en-
largment of inter-class margin. For a small λ, instances that
fall within the margin receive a high penalty, whereas for a
larger λ, the penalty decreases. The effect of ε to the model
is negligible, just for the purpose of unique solution.

Since the computation of inter-class loss is expensive in
practice, we simplify it by the following theorem.

Theorem 3. The following equation holds,∑
k<l

∑
yi∈{k,l}

[1− yiklfkl(xi)]+ =

n∑
i=1

∑
k 6=yi

[1− fyik(xi)]+.

(23)
According to Theorem 3, problem (22) is equivalent to

min
W∈Rd×c,b∈Rc

n∑
i=1

∑
k 6=yi

[1− fyik(xi)]++

λ
∑
k<l

‖wk −wl‖p2 + ε
(
‖W‖2F + ‖b‖22

)
.

(24)

In this way, we transform our loss into the summation of the
individual sample losses during optimization.

Smoothness and Convexity
Our method is intended to be applicable to gradient opti-
mization, so a smooth loss function is needed. We employ
the following straightforward function to approximate [x]+:

g(x) =
x+
√
x2 + δ2

2
, (δ > 0). (25)

Lemma 1. g(x) satisfies 0 6 g(x)− [x]+ 6 δ
2 . When δ →

0, g(x)→ [x]+.
The closeness between two functions exclusively depends

on the proximity factor δ. By replacing the hinge loss, our
overall model can be formulated as

min
W∈Rd×c,b∈Rc

n∑
i=1

∑
k 6=yi

γik +
√
γ2ik + δ2

2
+

λ
∑
k<l

‖wk −wl‖p2 + ε
(
‖W‖2F + ‖b‖22

)
.

(26)

where γik = 1 − fyik(xi). The decision function between
class k and class l is fkl(xi) = (wk−wl)

Txi+bk−bl. It is
worth noting that the alterations of ε and δ wield negligible
influence on the model. The only parameters that affect the
model performance are actually p and λ.
Theorem 4. Problem (26) is strictly concave.

Therefore, we adopt Adam (Kingma and Ba 2014) opti-
mization strategy to update W and b in problem (26), which
enables our method to be applied to the deep model. For the
sample (xi, yi) in the train set, there are two cases when we
take derivative of the objective function Eq. (26) with re-
spective to W by column. If k = yi , the derivative with
respect to wk at iteration t is

∇(t)
k =−

∑
l 6=k

γil +
√
γ2il + δ2

2
√
γ2il + δ2

xi + 2εwk+

∑
l 6=k

λp‖wk −wl‖p−22 (wk −wl) .

(27)

If k 6= yi , the derivative goes to:

∇(t)
k =

γik +
√
γ2ik + δ2

2
√
γ2ik + δ2

xi + 2εwk+∑
l 6=k

λp‖wk −wl‖p−22 (wk −wl) .
(28)



Note that the optimization is performed for W as a whole,
independent of the order in which the columns are updated.
The convexity of the objective function ensures its conver-
gence to the global optimum through the employment of
Adam. After the training process, test sample x can be clas-
sified through y = arg maxkw

T
k x + bk.

Connection to `2-regularizer
One might consider replacing the regularizer with the form
of `2-norm sum:

∑c
k=1 ‖wk‖22, like the regularization of

most classifiers (Zhang et al. 2003; Raman et al. 2019). The
relationship between the two is summarized as follows.
Lemma 2. The following equation holds,
c−1∑
k=1

c∑
l=k+1

‖wk −wl‖22 = c

c∑
k=1

‖wk −
1

c

c∑
l=1

wl‖22. (29)

According to Theorem 2, there is
∑c
l=1 wl = 0 when

W is taken to be optimal in problem (26). So we draw the
conclusion that with p = 2, problem (26) and the problem
replacing the regular term with `2 regularizer have the same
optimal solution.
Theorem 5. With p = 2, the optimization problem (24) and
the following problem has the same optimal solution

min
W,b

n∑
i=1

∑
k 6=yi

[1−fyik(xi)]++λc

c∑
k=1

‖wk‖22+ε‖b‖22. (30)

According to Theorem 5, Eq. (5) can be regarded as a
special case of our method when p = 2. The only difference
is that Eq. (5) has no constraint on b, which leads to non-
unique solutions. However, the naive `2 regularizer does not
have a clear geometric meaning. As will be demonstrated in
the experiments, p = 2 is not optimal in a wide range of
cases.

Structural Risk Minimization
We elucidate the explanation of the prposed M3SVM from
structural risk minimization (SRM) inductive principle. Fol-
lowing the fundamental assumptions in statistical learning
theory, there is a canonical but unknown joint distribution
on X × C. The goal of learning is to select a function
f : x → Rc (or in terms of probability f : x → [0, 1]c),
among from a specific design functions space F , such that
its error on the joint distribution is minimized. The discrim-
inant function for the classification problem is typically in
the form of g(x) = maxj fj(x). The risk of the classifica-
tion task can be written asR(f) =

∫
I(g(x) 6= y)dP (x, y).

Since P (x, y) is unknown, one shallow solution is to min-
imize empirical risk Re(f) = 1

n

∑n
i I(g(x) 6= y) on cer-

tain samples. SRM inductive principle is a more recog-
nized technique, which is based on the theory that for any
f ∈ F with a probability of at least 1 − ρ, the risk meets
R 6 Re + Ω(F , ρ, n), where Ω is called guaranteed risk
and can be expressed in the form of VC dimension (Vapnik
and Chervonenkis 2015), Rademacher complexity (Bartlett
and Mendelson 2002), etc. The learnable basis of the bi-
nary SVM (Schiilkop, Burgest, and Vapnik 1995) is to re-
duce the risk of VC dimensional form by minimizing ‖w‖2.

For multi-class SVM model, f can be set as a multi-valued
function f : x → wkx + bk, k ∈ [c]. Note that different f
in F are only differ in the parameters W and b in this case.

The theory of generalized risk derived from Uniform
Strong Law of Large Numbers (Guermeur 2002) implement
the SRM inductive principle by delineating a compromise
between training performance and complexity. For multi-
class SVM model, minimizing its guaranteed risk can be ap-
proximately equated to minimizing a norm of the linear op-
erator ‖T (f)‖ω , where functional T : F → M2n×c(c−1)/2
mapping a function to a real matrix. The norm is chosen in
accordance with the choice of the pseudo-metric on F , for
instance, ∀(f, f̄) ∈ F2,

ωl∞,l1(f, f̄) = max
x

∑
k<l

∣∣fk(x)− f̄k(x)
∣∣ ,

ωl∞,l∞(f, f̄) = max
x

max
k<l

∣∣fk(x)− f̄k(x)
∣∣ , (31)

which correspond to matrix norm ‖M‖l∞,l1 and ‖M‖l∞,l∞
respectively. Define T (f) = [t(1), · · · , t(2n)]T , where
t(i)(f) = [(w1−w2)Txi, · · · , (wk−wl)

Txi, · · · , (wc−1−
wc)

Txi]
T ∈ M1×c(c−1)/2. The matrix norm of T (f) pro-

vides a tight upper bound for the guaranteed risk Ω. In
M3SVM, the infimum of margin bears a close relationship
with the crude upper bound of the norm of T (f). It can be
put down to the following theorem.

Theorem 6. Let F be the multivariate linear model from
X into Rc. F are endowed with the Euclidean norm. If X
is included in a ball of radius ΛX about the origin, ∀f ∈
F(parametrized by W and b) the following bound holds:

‖T (f)‖l∞,lp 6 ΛX

(∑
k<l

‖wk −wl‖p2

) 1
p

. (32)

Our regularizer optimizes an upper bound on the guaran-
teed risk derived from covering numbers (Guermeur 2002).
Combining the methods described in the previous section,
when p → ∞, minimizing

∑c−1
k=1

∑c
l=k+1 ‖wk − wl‖p2 is

equivalent to maximizing infk<lMargin (Ck, Cl), which
reduces the upper bound of guaranteed risk. Moreover, this
method is essentially adapted to multiple metrics of F ,
whereas the previous methods correspond to a special case
when p = 2. We draw the conclusion that our method is
interpretable in terms of SRM and it is altogether possible
to improve the generalization performance (i.e. reduce the
guaranteed risk Ω) by maximizing the minimum margin.

Extension to Softmax Loss
Our proposed method exhibits versatility, extending its ap-
plicability to other linear classifiers, such as logistic regres-
sion (LR). By altering the misclassification loss, our method
acts as a regularized softmax loss and can be applied to the
last layer of the neural network. As it can learn embeddings
with large inter-class margins, the proposed loss guides the
learning of network parameters through backpropagation.
Geometric interpretation and discussions are relegated to
Appendix A.3.



Methods OvR OvO Crammer M-SVM Top-k Multi-LR SMLR M3SVM

Cornell 0.812 ± 0.065 0.845 ± 0.028 0.792 ± 0.015 0.755 ± 0.031 0.826 ± 0.016 0.783 ± 0.026 0.803 ± 0.009 0.865 ± 0.013

ISOLET 0.866 ± 0.046 0.942 ± 0.004 0.922 ± 0.042 0.910 ± 0.004 0.904 ± 0.013 0.940 ± 0.004 0.926 ± 0.008 0.945 ± 0.002

HHAR 0.845 ± 0.059 0.966 ± 0.014 0.931 ± 0.039 0.953 ± 0.008 0.970 ± 0.007 0.948 ± 0.010 0.952 ± 0.012 0.981 ± 0.004

USPS 0.887 ± 0.042 0.898 ± 0.005 0.769 ± 0.047 0.910 ± 0.018 0.825 ± 0.009 0.932 ± 0.002 0.937 ± 0.004 0.956 ± 0.011

ORL 0.919 ± 0.021 0.975 ± 0.000 0.879 ± 0.018 0.790 ± 0.034 0.879 ± 0.028 0.925 ± 0.000 0.925 ± 0.000 0.975 ± 0.000

Dermatology 0.939 ± 0.009 0.971 ± 0.003 0.933 ± 0.015 0.868 ± 0.031 0.891 ± 0.047 0.965 ± 0.007 0.965 ± 0.010 0.988 ± 0.001

Vehicle 0.794 ± 0.016 0.756 ± 0.024 0.757 ± 0.021 0.762 ± 0.019 0.778 ± 0.007 0.780 ± 0.010 0.771 ± 0.020 0.800 ± 0.011

Glass 0.656 ± 0.075 0.685 ± 0.008 0.594 ± 0.045 0.629 ± 0.044 0.674 ± 0.025 0.664 ± 0.018 0.679 ± 0.015 0.744 ± 0.007

Table 1: Average performance (w.r.t. Accuracy) on test set over 10 runs by different methods.

Experiments
In this section, we empirically evaluate the effectiveness of
our method on multi-class classification task and analyze the
experimental results.

Experiment Settings
The datasets chosen for evaluation include Cornell, ISO-
LET, HHAR, USPS, ORL, Dermatology, Vehicle and Glass,
which represent diverse data types (including image, speech,
document, etc). They can all be found at 2. The details of the
datasets are described in Appendix A.4. Our method is com-
pared with six linear multi-classification methods, includ-
ing OvR(Vapnik 1999), OvO (Hsu and Lin 2002), Cram-
mer (Crammer and Singer 2001), M-SVM (Bredensteiner
and Bennett 1999), Top-k (Lapin, Hein, and Schiele 2015),
Multi-LR (Böhning 1992) and Sparse Multinomial Logis-
tic Regression (Krishnapuram et al. 2005) (SMLR). For the
sake of fairness and generalizability, all methods are directly
trained in the original feature space rather than in well-
selected kernel spaces. For the hyperparameters involved in
M3SVM, λ is set to ten equidistant values within the interval
[1×10−4, 1×10−1], while p is set on a grid of [1, 2, · · · , 8].
For all comparative methods, we adhere to the authors’ de-
fault parameter settings and, where necessary, similarly con-
duct parameter grid searches to achieve fair comparisons as
far as possible. Since the selected standard datasets do not
suffer from class imbalance, it is convictive to employ test
accuracy (ACC) as the sole evaluation criterion of the meth-
ods. We evaluate the performance of each method and report
the average results of 10 runs.

Results
The experimental results of M3SVM and seven comparative
methods are reported in Table 1, where each result represents
the average test accuracy and standard deviation of 10 runs.
The best result on each dataset is marked in bold. In com-
parison to other widely used multi-classification algorithms,
M3SVM achieves the best classification performance on all

2https://archive.ics.uci.edu/ml/datasets.php

selected datasets, which can be attributed to the flexible fac-
tor p that adapt to diverse data structures. It is noteworthy
that the OvO method generally exhibits great performance,
owing to its independent separation of any two classes. Un-
fortunately, the complexity of classification for new arrival
data considerably limits its application. In addition to this,
the tuning parameter λ for each subproblem in OvO are not
straightforward, which accounts for the suboptimal experi-
mental results.

Beyond the convexity, the sound convergence property is
experimentally verified. The variation of the objective func-
tion values and the accuracy (ACC) on test set over the
number of iterations is depicted in Figure 3 on six datasets.
Throughout the entire training process, accuracy consis-
tently improves as the loss function decreases. It can be
found that M3SVM converges rapidly, with convergence ob-
served within 500 iterations across all datasets.

(a) ISOLET (b) HHAR

(c) Cornell (d) USPS

Figure 3: Convergence of the objective function value.



The test accuracy under various values of p on six datasets
is presented in Figure 4. A noteworthy observation is that as
the value of p increases, the model’s generalization perfor-
mance (test accuracy) initially peaks and subsequently di-
minishes (note that it is totally possible that the peak is not
within [1, 8]). This phenomenon aligns with our motivation,
where p acts as a balancing factor between the global mar-
gins and the lower bound of the margins. The increase of p
can be interpreted as a prioritization of enhancing the lower
bound of the margin. When p is small, enlarging the margin
between each class pair contributes to the reduction of the
objective function. When p is large, the objective function
primarily emphasizes boosting the lower bound of margins.
In such case, the value of the rest margins are pulled down
due to the interlocking separating hyperplanes. Through ex-
tensive experiments, we found model performance is gener-
ally better when p is around 4, which can serve as a reason-
able prior. Furthermore, it’s advisable to avoid excessively
large values of p, as they may result in poor convergence.

(a) ISOLET (b) HHAR

(c) Cornell (d) USPS

(e) Glass (f) Vehicle

Figure 4: The effect of parameter p on experimental results.

We study the sensitivity of the trade-off parameter λ. Fig-
ure 5 illustrates the variation of the test accuracy on the eight
datasets at p = 4 as a function of λ, within the range of
[1 × 10−4, 1]. One can infer that λ ensures the generaliza-
tion performance over a broad range. Empirically, the mar-

gin term is typically several orders of magnitude larger than
the loss term. Therefore, a judicious choice for λ lies in the
vicinity of 10−3. Assigning an excessively large value for
λ may lead the model to disregard the classification loss.
While the primary focus of this paper is on traditional meth-

Figure 5: Study of λ.

ods, our method can be seamlessly integrated into the realm
of deep learning. We assess the enhancement of our method
on softmax loss through visual classification tasks. Illustrat-
ing representative outcomes, the displayed training and test
accuracy curves in Figure. 6 confirm the effectiveness of our
method in mitigating overfitting. Comprehensive descrip-
tions, settings and results are presented in Appendix A.5.

(a) Train (b) Test

Figure 6: Accuracy curves with iterations on SVHN.

Conclusion
In this paper, we propose a concise but effective multi-class
SVM model that enlarge the margin lower bound for all
class pairs. We reveal the drawbacks of the related methods,
while providing the motivations and detailed derivations of
our method. Theoretical analysis confirms that the existing
methods can be viewed as non-optimal special cases of our
method. We show the proposed method can broadly improve
the generalization performance from the SRM perspective.
Our method can be integrated into neural networks, not only
enhancing inter-class discrimination but also effectively mit-
igating overfitting. Both traditional and deep empirical eval-
uations validate the superiority of our method.
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