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Abstract: We introduce BiGym, a new benchmark and learning environment for
mobile bi-manual demo-driven robotic manipulation. BiGym features 40 diverse
tasks set in home environments, ranging from simple target reaching to complex
kitchen cleaning. To capture the real-world performance accurately, we provide
human-collected demonstrations for each task, reflecting the diverse modalities
found in real-world robot trajectories. BiGym supports a variety of observations,
including proprioceptive data and visual inputs such as RGB, and depth from 3
camera views. To validate the usability of BiGym, we thoroughly benchmark
the state-of-the-art imitation learning algorithms and demo-driven reinforcement
learning algorithms within the environment and discuss the future opportunities.
Project website: https://chernyadev.github.io/bigym/
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Figure 1: BiGym focuses on mobile manipulation with home assistance humanoids. We provide 40
tasks ranging from simple mobile target reaching to complex dishwasher manipulations. Specifically,
each task comes with demonstrations recorded by human demonstrators and can be used to benchmark
both imitation learning and reinforcement learning algorithms.
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1 Introduction

Machine learning benchmarks are of significant importance for measuring and understanding the
progress of research algorithms. Examples of notable benchmarks include ImageNet [1] for image
understanding, KITTI [2] for autonomous driving, and SQuAD for language-based question answer-
ing [3]. In robotics, prior benchmarks have greatly reduced the cost of iterating and developing
algorithms. Examples include OpenAI Gym [4], DeepMind Control Suite [5], and MetaWorld [6].
However, all of these benchmarks focus on pure reinforcement learning (RL) with dense shaped
rewards, limiting their application in long-horizon manipulation tasks where accurately defining
reward functions is challenging.

While crafting reward is difficult, obtaining expert trajectories, such as those from human demon-
strations, is relatively straightforward. This advantage has boosted the popularity of demonstration-
driven methods within the robot learning community, manifesting as both imitation learning
(IL) [7, 8, 9, 10, 11, 12, 13] and demo-driven RL [14, 15, 16, 17]. To support the research of
building demo-driven agents, RLBench [18] was created with a wide range of single-arm fixed
manipulation tasks with expert demonstrations generated by motion planners. Using motion planners
allows RLBench to generate a large amount of demonstration data purely in simulation, however,
the output trajectories are often either unnatural due to the inherent randomness in sampling-based
planners, or have an unrealistically narrow trajectory distribution when compared to noisy real-world
human demonstrations. Moreover, the community-progress is beginning to plateau on a large number
of RLBench tasks, in particular with recent 3D next-best pose agents [10, 11, 16, 17, 19, 20, 21].

These limitation highlights the need for a new benchmark which provides: (1) more natural demon-
strations like those seen in real-world robot data and (2) a set of new challenging tasks where
state-of-the-art algorithms are likely to perform poorly. To this end, we present BiGym, a demo-
driven mobile bi-manual manipulation benchmark with a humanoid embodiment. BiGym covers 40
visual mobile manipulation tasks, ranging from simple tasks like moving plates between drainers
to interacting with articulated objects such as dishwashers (see Figure 1). Unlike prior humanoid
benchmarks [22, 23] that focus only on RL with dense shaped reward functions, which may lead to
undesired behaviors [24], we provide for each task only sparse rewards but with 50 demonstrations,
allowing evaluation of both IL and RL algorithms. Additionally, compared to previous benchmarks
that rely on expert demonstrations generated by planners [18], the human-collected demonstrations
in BiGym are much more realistic and multi-modal (see Figure 3), better reflecting the trajectories of
real-robot movements. Finally, BiGym considers locomotion and mobile bi-manual manipulation
challenges separately; specifically, BiGym allows users to switch between the whole-body mode,
which jointly considers locomotion and manipulation, and a bi-manual mode, which focuses on
upper-body mobile manipulation while controlling the lower body with fixed controllers (see Fig-
ure 2). This separation of action modes enables researchers to better investigate and benchmark the
capability of various algorithms with different focuses, i.e., locomotion control and mobile bi-manual
manipulation solely. Code for BiGym is available on our project website.

2 Related Works

With the rapid progress in robot learning algorithms, the role of benchmarks has become crucial as a
tool to understand the effect of various algorithmic design choices and compare algorithms in the
same setup. There have been a series of benchmarks for complex manipulation tasks. Most of the
existing benchmarks consider a single-arm manipulation scenario. The IKEA furniture assembly
environment [25], BEHAVIOUR [26], and Habitat [27] provide a wide range of long-horizon
household object (mobile) manipulation tasks. They emphasise long-horizon planning capabilities
but employ abstract low-level actions that overlook physical interactions. Some benchmarks focus on
more realistic settings with physics interactions [18, 28, 29, 30, 31, 32] and mainly support training
RL agents. Notably, James et al. [18] provide APIs to generate expert demonstrations with motion
planners. As a result, it is widely used for benchmarking IL [10, 11, 21] and demo-driven RL
algorithms [16, 17, 19, 20]. Concurrent to our work, RoboCasa [33] constructs realistic environments
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Figure 2: (a) BiGym builds upon Unitree H1 robot with 3 RGB-D cameras at the head, left wrist, and right
wrist. We collect human demonstrations by tele-operating with VR devices. BiGym allows users to control the
humanoid in either whole-body mode, which considers both locomotion and manipulation, or the bi-manual
mode, which simplifies the locomotion with a predefined controller for the lower-body. (b) BiGym provides
human-collected multi-modal demonstrations for tasks, e.g., in reach target multi modal, the agent can
finish the task by reaching the target with either the left or right hand.

with human demonstrations, but only for single-arm tasks. Unlike these benchmarks that only consider
a single-arm manipulation setup, BiGym provides a variety of mobile bi-manual manipulation tasks.

Bi-manual manipulation benchmarks consider controlling two arms or floating dexterous hands
to interact with the environment [34, 35, 36]. More recently, benchmarks for humanoid robots
have been introduced. For instance, LocoMujoco [22] focuses on locomotion control of different
types of humanoids with two arms, but does not include manipulation tasks. As a concurrent work,
HumanoidBench [23] focuses on benchmarking RL algorithms with task-specific shaped rewards on
15 locomotion and 12 manipulation tasks. In contrast, BiGym supports benchmarking both IL and
RL algorithms by providing 40 tasks with human-collected demonstrations. These demonstrations
exhibit realistic noisy trajectories that cover a wider data distribution compared to planner-generated
demonstrations [18], thus enabling the evaluation that better reflects the real-world performance of
algorithms. We provide a detailed comparison across benchmarks in Table 1.

3 BiGym

We present BiGym, a demo-driven mobile bi-manual manipulation benchmark. BiGym consists of
40 mobile bi-manual manipulation tasks, ranging from simple target reaching to complex dishwasher
cleaning tasks. To evaluate IL and demo-driven RL algorithms in a realistic scenario with noisy, multi-
modal demonstrations, BiGym provides human-collected demonstrations for all tasks. We describe
which challenges BiGym presents (see Section 3.1), the simulation platform (see Section 3.2), and
details on human demonstration datasets (see Section 3.3) and tasks (see Section 3.4).

3.1 Challenges of BiGym

We design BiGym to pose the following challenges:

Partial Observability. BiGym tasks are formulated as a partially observable Markov decision process
(POMDP) [37] with discrete time t = 1, 2, . . . , T , continuous action at, hybrid-observations, which
include visual observations ot and robot low-level states st, and reward rt. To achieve the task, the
agent is required to learn a belief bt, i.e., a distribution over the environment states, given past partial
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Benchmark Mobile # Arms Action Mode Task Horizon Demonstrations Human Demo # Tasks

MetaWorld [6] ✗ 1 J / EE 500 ✗ ✗ 50
RLBench [18] ✗ 1 J / EE 100 - 1000 ✓ ✗ 106
RoboSuite [41] ✓ 1 / 2 J / EE 500 ✓ ✓ 9

LocoMujoco [22] ✓ 0∗ J 100 - 500 ✗ ✗ 27
HumanoidBench [23] ✓ 2 J 500 - 1000 ✗ ✗ 27

BiGym (ours) ✓ 2 J / J + FB 1000 - 7000 ✓ ✓ 40

Table 1: Comparison with widely used benchmarks. J: Joint position action mode that controls all the joint
angles of the robot. EE: End-Effector action mode with low-level planners. FB: Floating base.
∗Although LocoMujoco considers humanoids, it only studies the locomotion tasks, rather than manipulation.

observations {ot, st}Tt=1 and actions {at}Tt=1, which is non-trivial given the curse of history and the
curse of dimensionality of POMDPs [38, 39].

Complex Task Space. Mobile bi-manual manipulation introduces a much more complex task space
compared to fixed single-arm settings. This is because, with the presence of dual arms and the
mobility of the agent, there may exist multiple ways of solving a single task. For example, to grasp a
cup on the side of a table and put it into the closed drawer, the robot can consider several different
ways: (1) pick up the cup with one hand, pull the drawer with the other hand, and put the cup into the
drawer; (2) pull the drawer with one hand, pick up the cup with the same hand, and put the cup into
the drawer. The mobility of the robot also allows navigating to the target with different routes. As a
result, even if a mobile robot has a comparable number of degrees of freedom to a fixed robot, the
task space is highly multi-modal and significantly more complex. To test the capabilities of robot
learning algorithms in such scenarios, BiGym offers a wide range of tasks featuring complex task
spaces and human-collected demonstrations with diverse modalities.

Long Task-Horizon and Sparse Reward. In common household scenarios, the agent will need
to perform long-horizon tasks, which are composed of a series of sub-tasks, which require both
task-level planning and low-level motion planning. For example, to load plates into the dishwasher,
the agent should correctly locate the plates, open the dishwasher, pull out the trays, accurately put
the plates on the trays, and finally, close the door. In addition, due to the complex task space, it is
extremely difficult to properly define reward functions. If one can define such rewards, the agent may
easily fall into local minimas by learning to exploit such sub-optimal shaped rewards. Thus, BiGym
instead provides a set of sparsely-rewarded tasks along with noisy human-collected demonstrations,
to evaluate the performance of IL and demo-driven RL algorithms in a more realistic setup.

Realistic Multi-Modal Demonstrations. In contrast to prior benchmarks that generate expert demon-
strations with motion planners [18, 31, 40], BiGym provides human-collected demonstrations that are
highly noisy and multi-modal. Specifically, we design BiGym tasks to be solvable in multiple ways to
induce a multi-modal demonstration distribution. For instance, in reach target multi modal task,
reaching the target can be achieved with either left or right hand, as shown in Figure 2(b). This design
enables us to evaluate the capabilities of robot learning algorithms using more realistic demonstrations,
rather than synthetic demonstrations consisting of unnatural trajectories (see Figure 3).

3.2 Simulation Platform

We build BiGym simulation environments based on MuJoCo [42] (see Figure 2(a) for the illustration
of the whole system). We brief the core design choices below and more details are in Appendix A.

Humanoid Body Configurations. We implement the platform with the Unitree H1 robot given its
publicly available model [43]. As the original H1 comes with no grippers, we attach an additional
Robotiq 2F-85 gripper with an actuated wrist joint to each arm. We note that it is easy to swap the
parallel gripper with other dexterous manipulators, but we leave it for future study as we observe that
parallel grippers are sufficient for current tasks.
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reach_target_multi_modal wall_cupboard_open reach_target put_knife_on_chopping_board

(a) BiGym (b) RLBench

Figure 3: Visualisations of arm wrist position distributions of BiGym and RLBench. We visualise the
wrist positions of both BiGym human collected trajectories on the reach target multi modal and the
wall cupboard open task, as well as the RLBench reach target and the put knife on chopping board
task. The trajectories of BiGym are noisy, multi-modal, but smooth in general, but the motion planner generated
trajectories of RLBench are either straight lines or unnatural.

1 from bigym.envs.reach_target import ReachTarget
2 from bigym.action_modes import JointPositionActionMode
3 from demonstrations.demo_store import DemoStore
4 from demonstrations.utils import Metadata
5
6 env = ReachTarget(
7 action_mode=JointPositionActionMode(
8 floating_base=True , absolute=True ,
9 )

10 )
11
12 demo_store = DemoStore.google_cloud ()
13 demos = demo_store.get_demos(Metadata.from_env(env))
14
15 agent = Agent ()
16 agent.ingest(demos)
17
18 obs , training_steps , episode_length = None , 100, ENV_TIME_LIMIT
19 for i in range(training_steps):
20 if i % episode_length == 0:
21 obs , _ = env.reset ()
22 action = agent.act(obs)
23 obs , reward , terminated , truncated , info = env.step(action)
24 agent.add_to_buffer(obs , reward , terminated , truncated , info)
25 agent.update ()
26 env.close()

Figure 4: Example usage of the BiGym Environment for training a reinforcement learning agent. Demonstra-
tions are pulled from a remote store and cached locally. Users can also customise their action modes or use the
off-the-shelf JointPositionActionMode with flags to switch between the bi-manual or whole-body action
modes with either absolute or delta actions.

Observation Spaces. As shown in Figure 2(a), we mount three cameras on the robot: the forehead,
the left wrist, and the right wrist. Each camera can generate both RGB and depth observations,
which supports a diverse types of algorithms which use either type of observation. As a result, the
observation space is defined as O = {Ihead, Ileft, Iright,Dhead,Dleft,Dright, sproprio}, where I is the
RGB image, D is the depth image, and sproprio is the proprioception state of the robot. Additional
observations, e.g., the gripper poses and robot poses, can also be easily obtained if required.

Action Modes. It remains unclear to the robotics community what action modes are the best for
complex embodiment in mobile bi-manual manipulation tasks. Thus in BiGym, we provide flexible
configurations for users to customise the action modes they want to use, and leave the choice to the
users. Specifically, we provide two off-the-shelf action modes: the whole-body action mode and
the bi-manual action mode, with either delta or absolute actions. For the whole-body action mode,
we allow full control of the humanoid joints. This allows studying whole-body manipulation with
locomotion. With the bi-manual action mode, we simplify the control by treating the lower-body of
the humanoid as an omni-directional floating base controlled by classic controllers. In this case, we
can focus on upper-body bi-manual mobile manipulation skills.

Scenes. The scenes in BiGym are created from MuJoCo MJCF models using a custom object-
oriented API based on dm control [5]. All MJCF models provided in BiGym were created from
publicly available 3D models. Many other 3D models were processed to be used in BiGym: meshes
were decimated to reduce the total number of polygons, moving parts of articulated objects were
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separated, required joints and actuators were added, and convex collision meshes were created.
Currently, BiGym provides 46 high-quality assets that could be reused to facilitate the creation of
new environments. In addition to rigid object models, BiGym offers a set of articulated models, such
as a dishwasher and customisable kitchen modules.

API. The interface for the benchmark follows the standard Gymnasium APIs [44] for training IL and
RL agents. A typical workflow of RL agents training is demonstrated in Figure 4.

3.3 BiGym Human Demonstration Datasets

One of the key design choices in BiGym is to provide a fixed number of human-collected demonstra-
tions for each task. This allows BiGym benchmark to better reflect the challenges of real-world robot
learning, which involves dealing with noisy, multi-modal demonstrations in contrast to synthetic
demonstrations generated by motion planners [18]. We describe BiGym’s human demonstration
dataset collection and management system as below and more details are in the appendix.

Demo Collection Pipeline. We use VR2 to collect demonstrations by virtually tele-operating the H1
robot in simulation (using the 6 DoF poses of the headset and controllers). The headset pose controls
the position and orientation of the H1 body, and the 6 DoF poses of the controllers are used to operate
the arms. We solve the inverse kinematics for each arm and then reorient the grippers to match the
orientation of the respective controller.

Down-Sampling Demonstrations. The control frequency of demonstrations can significantly affect
the horizon length of tasks and the ability to capture fine grained control, both of which can greatly
affect task success [45]. To provide users with the flexibility in selecting action frequencies, we
capture demonstrations at the frequency of physics calculation (500 Hz) and provide the functionality
to down-sample the demonstrations to a desired frequency (20-500 Hz).

Demonstration Management. To minimise the use of storage for saving demonstrations, we save
lightweight demonstrations that only contain control signals (actions). We then provide a tool that
enables users to pull such lightweight demonstrations and replay them to obtain full demonstrations
with user-specified observations such as RGB or depth images. These demonstrations are cached in
users’ local storage so that users do not have to re-download or replay the same demonstrations again.

Tools. BiGym provides two tools for demonstration management. The demo player tool provides
various demonstration-related functionalities such as downloading, deleting, verifying, replaying at
different frequencies, converting, and re-recording demonstrations. The demo recorder enables
users to easily collect data by streamlining the process of recording demonstrations with VR.

3.4 BiGym Tasks

BiGym provides 40 high-quality tasks with human-collected demonstrations to support the research
on household mobile bi-manual manipulation. We describe the tasks and their configurations below.

Reach Target Tasks. Different from the standard reach target tasks in single-arm settings, we
consider three variants of reach target tasks:

(1) reach target single: The robot must use a specified wrist to reach a coloured target.
(2) reach target multi modal: The robot must reach the target with either left or right wrist.
This induces a multi-modal demonstration distribution of reaching the target with different hands.
We expect the policy to understand this multi-modality during training.
(3) reach target dual: In this task, the robot must reach two targets, one with each arm. The
success criteria require both wrists to be aligned with corresponding targets. Once this criteria is
met, the targets are highlighted to provide visual feedback.

Table-Top Manipulation Tasks. We then consider table-top manipulation which requires the robot
to interact with rigid-body objects, e.g., plates and cups. The challenge here is that the robot should be

2Valve Index VR headset, two controllers and two base stations
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able to identify remote objects and perform manipulation tasks that require moving the base together
with the arms. We introduce the following tasks:

(4) stack blocks: Move blocks across the table, and stack them in the target area.
(5) move plate: Move the plate between two draining racks.
(6) move two plates: Move two plates simultaneously from one draining rack to the other.
(7) flip cup: Flip the cup, initially positioned upside down on the table, to an upright position.
(8) flip cutlery: Take the cutlery from the static holder, flip it, and place it back into the holder.

In addition to simple single-object manipulation tasks, we introduce complex manipulation tasks that
require interaction with articulated objects, where it is crucial to understand the object’s kinematics to
perform constrained motion planning. The scenarios include: Dishwasher and Kitchen Counter tasks.

Dishwasher Tasks. We consider a set of tasks which require interactions with the articulated
dishwasher, ranging from sliding trays to long-horizon unloading tasks:

(9) dishwasher open: Open the dishwasher door and pull out all trays.
(10) dishwasher close: Push back all trays and close the door of the dishwasher.
(11) dishwasher open trays: Pull out the dishwasher’s trays with the door initially open.
(12) dishwasher close trays: Push the dishwasher’s trays back with the door initially open.
(13) dishwasher load plates: Move plates from the rack to the lower tray of the dishwasher.
(14) dishwasher load cups: Move cups from the table to the upper tray of the dishwasher.
(15) dishwasher load cutlery: Move cutlery from the table holder to the dishwasher’s cutlery
basket. At the beginning of the episode, the dishwasher is open, with the lower tray pulled out.
(16) dishwasher unload plates: Move plates from the tray of the dishwasher to a table rack.
(17) dishwasher unload cups: Move cups from the upper tray of the dishwasher to the table.
(18) dishwasher unload cutlery: Move cutlery from the cutlery basket to a tray on the table.
(19) dishwasher unload plate long: A full task of unloading a plate: picking up the plate
from dishwasher, placing this plate into the rack located in the closed wall cabinet, and closing the
dishwasher and cupboard.
(20) dishwasher unload cup long: A full task of unloading a cup: picking up the cup, placing
it inside the closed wall cabinet, and closing the dishwasher and cupboard.
(21) dishwasher unload cutlery long: A full task of unloading a cutlery: picking up a cutlery,
placing it into the cutlery tray inside the closed drawer, and closing the dishwasher and drawer.

Kitchen Counter Tasks. In addition, BiGym considers a more complex kitchen counter scenario
with multiple challenging articulated objects, e.g., the cupboard, the drawer, etc. Similar to the
dishwasher tasks, we provide a range of short and long-horizon tasks as below:

(22) drawer top open: Open the top drawer of the kitchen cabinet.
(23) drawer top close: Close the top drawer of the kitchen cabinet.
(24) drawers open all: Open all sliding drawers of the kitchen cabinet.
(25) drawers close all: Close all sliding drawers of the kitchen cabinet.
(26) wall cupboard open: Open doors of the wall cabinet.
(27) wall cupboard close: Close doors of the wall cabinet.
(28) cupboards open all: Open all drawers and doors of the kitchen set.
(29) cupboards close all: Close all drawers and doors of the kitchen set.
(30) take cups: Take two cups out from the closed wall cabinet and put them on the table.
(31) put cups: Pick up cups from the table and put them into the closed wall cabinet.
(32) pick box: Pick up a large box from the floor and place it on the counter.
(33) store box: Move a large box from the counter to the shelf in the cabinet below.
(34) saucepan to hob: Take the saucepan from the closed cabinet and place it on the hob.
(35) store kitchenware: Take all items from the hob and place them in the cabinet below.
(36) sandwich toast: Use the spatula to put the sandwich on the frying pan.
(37) sandwich flip: Flip the sandwich in the frying pan using the spatula.
(38) sandwich remove: Take the sandwich out of the frying pan.
(39) store groceries lower: Place a random set of groceries in the cabinets below the counter.
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(40) store groceries upper: Place a random set of groceries in cabinets and shelves on the wall.

Reward Functions. We provide sparse rewards for all the tasks based on success detector: a reward
of 1 is given for reaching the successful criteria and 0 otherwise. Details are available in Appendix B.

4 Experiments

The contribution of the paper is BiGym. However, in this section, we aim to validate that current
algorithms can attain some degree of performance on all BiGym tasks, even if minimal. To this end,
we conduct experiments with both state-of-the-art IL and demo-driven RL algorithms. Specifically,
we focus on the following seven general robot learning algorithms:

IL Algorithms. We aim to investigate how different policy representations contribute to the final
performance of the algorithms on BiGym, which provides highly noisy and multi-modal demonstra-
tions. In pursuit of this goal, we consider the following algorithms: standard Behaviour Cloning
(BC), Action Chunking Transformers (ACT) [9] which trains a transformer model [46] to predict a
sequence of actions, and Diffusion Policies [8] which trains a diffusion model to approximate the
expert action distribution. In particular, we do not benchmark against the popular 3D next-best pose
agents [10, 11, 16, 17, 19, 20, 21] since they reply on heuristic-based key-frame extraction methods
which only apply to single fixed arms [17]; thus, they are not currently applicable to the mobile
bi-manual manipulation morphology.

RL Algorithms. We mainly consider demo-driven RL algorithms which support training with expert
demonstrations. Specifically, we focus on off-policy algorithms and offline RL algorithms that have
demonstrated good capabilities in online settings. We consider the following algorithms: DrQV2 [47],
Advantage Weighted Actor-Critic (AWAC) [48], Implicit Q-Learning (IQL) [49], and Coarse-to-fine
Deep Q-Network (CQN) [50]. We note that BiGym tasks can be extremely challenging for RL
algorithms due to their sparse reward, partial observations, and complex dynamics. To provide a
reference for future studies, we provide the results of all the methods as-is with the common set of
hyperparameters, instead of tuning their performance for individual BiGym tasks.

We provide experimental results and discussions in Appendix C.

5 Discussions

Limitations. Currently, BiGym has the following main limitations. Firstly, although BiGym has
posed a series of challenging tasks of whole-body mobile bi-manual manipulation, most tasks are
still at the skill level, requiring less complex long-horizon task and motion planning, except for
the “ long” tasks, e.g, unload cups long. To fully benchmark the capability of algorithms in an
ultimate household environment, such tasks are necessary. In addition, BiGym only supports the
Unitree H1 robot at the moment. More different embodiments will be included for future tasks.

Opportunities and Future Works. BiGym presents various future research opportunities, including
but not limited to: (1) exploring better network architectures for approximating multi-modal noisy
human demonstrations; (2) studying better belief estimation mechanisms for the POMDP in the
mobile manipulation context; (3) investigating better collaboration modes between arms on mobile
platforms; (4) whole-body motion planning which improve the efficiency and performance of mobile
agents while navigating in cluttered environments.

Conclusion. We introduce BiGym, a new and challenging benchmark for demo-driven mobile
bi-manual manipulation. BiGym covers 40 challenging tasks of mobile bi-manual manipulation,
ranging from simple target reaching to complex dishwasher manipulation tasks. Built upon the
humanoid embodiment of Unitree H1 robot, BiGym allows users to flexibly customise the action
modes: the whole-body mode and the bi-manual mode. Furthermore, we provide multi-modal and
noisy human-collected demonstrations for all BiGym tasks, exhibiting realistic trajectories compared
to synthetic ones generated by motion planners. In our experiments, we validate the usability of
BiGym by benchmarking state-of-the-art IL and RL algorithms.
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A Additional Simulation Details

In this section, we provide additional details about BiGym.

Observation Spaces. For image observations, we allow users to specify the resolution of the
images, where the default resolution is 84×84. Higher resolution may allow learning better policies,
but we find the default value works across tasks. In the whole-body mode, the proprioception
state sfbproprio ∈ R76 = {srbqpos, srbqvel, sgrip}, where srbqpos ∈ R37 is the joint angle positions of
the robot, srbqvel ∈ R37 is the corresponding velocities, and sgrip ∈ R2 is the gripper opening
amount of both grippers. On the contrary, the bi-manual mode greatly simplifies the locomotion
by replacing the lower-body control with a predefined controller, i.e., a floating base. This reduces
the dimension of srbqpos and srbqvel to sbmqpos ∈ R29 and sbmqvel ∈ R29. Furthermore, an additional state
sbase = (x, y, z, θ) ∈ R4 is included in sproprio to indicate the position and orientation of the floating
base. As a result, sbmproprio ∈ R64 = {sbmqpos, sbmqvel, sbase, sgrip}

Action Spaces. In the whole-body mode where the agent has the full control over the body, an action
space Awb ∈ R23 is defined as Awb = {Aarms,Alegs,Atorso,Agrip}, where Aarms ∈ R10 controls
both arms, Alegs ∈ R10 controls the legs, Atorso ∈ R1 controls the main torso joints, and Agrip ∈ R2

controls the opening amount of grippers. In bi-manual mode, the user controls the floating base
instead of the leg joints. Therefore the action space becomes Abm ∈ R16 = {Aarms,Abase,Agrip},
with Abase ∈ R4 controlling the delta actions (δx, δy, δz, δθ) of the base.

Simulation Performance. We present the simulation speed in Figure 5. The benchmark was done
on a headless server of NVIDIA L4 GPU and Intel Xeon Gold 6438Y+ CPU, in a single process.
Benefiting from the highly optimised MoJoCo engine, BiGym runs at around 400FPS to 1400FPS
depending on the number of cameras. The performance could be further improved by using parallel
environments or MuJoCo XLA, which speeds up the execution with XLA just-in-time compilation.
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Figure 5: The environment run speed of BiGym with (a) different number of cameras and (b) different action
modes. In (a), we use the bi-manual control method for measuring the performance.

B Details of Task Success Detectors

In this section, we detail the definitions of all task success detectors.

Reach Target Tasks.

(1) reach target single: The distance from the robot left wrist to the target is smaller than a
tolerance value. The default tolerance value is 0.1.
(2) reach target multi modal: The distance from either the robot left wrist or the right wrist is
smaller than a tolerance value. The default tolerance value is 0.1.
(3) reach target dual: The distance from the left wrist and the right wrist to their corresponding
goals are smaller than a tolerance value. The default tolerance value is 0.1.
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Table-Top Manipulation Tasks.

(4) stack blocks: The three blocks are stacked on each other, i.e. in collision with each other, in a
target region on the table.
(5) move plate: The following conditions must be met: (a) the orientation of the plate is upright,
(b) the plate is not colliding with the table, (c) the plate is colliding with the rack and (d) the robot
has released the plate from its gripper.
(6) move two plates: Transfer two plates to the target rack and meet all conditions similar to the
move plate task.
(7) flip cup: The following criteria must be met: (a) The cup is in collision with the counter. (b)
The orientation of the cup is upright. (c) The robot has released the cup from its gripper.
(8) flip cutlery: Similar to the flip cup task, but cutlery is used instead.

Dishwasher Tasks.

(9) dishwasher open: The joint angles of the dishwasher door and both trays are close to 1 with a
tolerance value. The default value is 0.1.
(10) dishwasher close: The joint angles of the dishwasher door and both trays are close to 0 with
a tolerance value. The default value is 0.1.
(11) dishwasher open trays: The joint angles of dishwasher trays are close to 1 with a tolerance
value. The default value is 0.1.
(12) dishwasher close trays: The joint angles of dishwasher trays are close to 0 with a tolerance
value. The default value is 0.1.
(13) dishwasher load plates: All plates are in collision with the bottom tray of the dishwasher
and the robot has released the plates from it’s grippers.
(14) dishwasher load cups: All cups are in collision with the middle tray of the dishwasher and
the robot has released the cup from its gripper.
(15) dishwasher load cutlery: All cutlery are in collision with the dishwasher cutlery basket
and the robot has released the cutlery from its gripper.
(16) dishwasher unload plates: All plates are moved from the bottom tray of the dishwasher
to the drainer on the table, and placed onto the rack positioned on the counter-top.
(17) dishwasher unload cups: All cups are moved from the middle tray of the dishwasher to the
cabinet and in collision with the cabinet counter. Additionally, all cups are released from the robot
gripper.
(18) dishwasher unload cutlery: All cutlery are moved from the dishwasher basket to the tray
and are in collision with the tray.
(19) dishwasher unload plate long: All conditions of dishwasher close and
dishwasher unload plates must be met. Additionally, all plates are placed inside the
wall cabinet. Finally, all joint angles of the wall cabinet doors are close to 0 with a tolerance. The
default value is 0.1.
(20) dishwasher unload cup long: Similar to dishwasher unload plate long but with
cups.
(21) dishwasher unload cutlery long: Similar to dishwasher unload cutlery long but
with cutlery and instead of the cabinet, the cutlery must be placed in a closed drawer.

Kitchen Counter Tasks.

(22) drawer top open: The joint angle of the top drawer is close to 1 with a tolerance value. The
default value is 0.1.
(23) drawer top close: The joint angle of the top drawer is close to 0 with a tolerance value. The
default value is 0.1.
(24) drawers open all: The joint angles of all drawers are close to 1 with a tolerance value. The
default value is 0.1.
(25) drawers close all: The joint angles of all drawers are close to 0 with a tolerance value. The
default value is 0.1.
(26) wall cupboard open: The joint angle of two doors of the wall cupboard is close to 1 with a
tolerance value. The default value is 0.1.
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(27) wall cupboard close: The joint angle of two doors of the wall cupboard is close to 0 with a
tolerance value. The default value is 0.1.
(28) cupboards open all: The joint angles of the two doors and all drawers of the kitchen set are
close to 1 with a tolerance value. The default value is 0.1.
(29) cupboards close all: The joint angles of the two doors and all drawers of the kitchen set
are close to 0 with a tolerance value. The default value is 0.1.
(30) take cups: All cups are in collision with the counter on the table and the robot has released
the cups from its gripper.
(31) put cups: All cups are in collision with the cupboard shelf and the robot has released the cups
from its gripper.
(32) pick box: The box is in collision with the counter and the robot has released the box from its
grippers.
(33) store box: The box is in collision with the shelf and the robot has released the box from its
grippers.
(34) saucepan to hob: The saucepan is in collision with the hob and the robot has released the
saucepan from its grippers.
(35) store kitchenware: Both the saucepan and the pan are in collision with the shelf, and the
robot has released the objects from its grippers.
(36) sandwich toast: All the following conditions must be met: (a) The sandwich is in collision
with the pan. (b) The orientation of the sandwich is either up or down. (c) The pan is in collision
with the hob.
(37) sandwich flip: Similar to sandwich toast. In addition the sandwich orientation must be
flipped.
(38) sandwich remove: All the following conditions must be met: (a) The sandwich is in collision
with the board. (b) The orientation of the sandwich is either up or down.
(39) store groceries lower: All items are in collision with the shelf of the cabinet below the
counter. Additionally, all items are released from the robot gripper.
(40) store groceries upper: All items are in collision with the shelf of the cabinet on the wall.
Additionally, all items are released from the robot gripper.

C Experiments

C.1 Implementation Details

We implemented all algorithms using PyTorch [51].

ACT. Following the official implementation3, we train a ResNet-18 encoder [52] to extract visual
features and a transformer model to predict a sequence of actions. Inputs to the transformer model
are multi-view image features and proprioceptive features from a conditional variational autoencoder
(CVAE) [53]. During execution, we use receding horizon control for all tasks by training the policy
to output an action sequence of length 16 and executing only the first step in the sequence. Following
the official implementation, we enable temporal ensembling to improve the smoothness of the policy.

Diffusion Policy. Our implementation of Diffusion Policy closely follows the official release4. To be
consistent with ACT, we use ResNet-18 as vision encoders for all camera observations. As discussed
in Chi et al. [8], the Diffusion Policy is susceptible to the choice of backbones and their parameters:
the UNet-1D backbone might outperform the causal transformer backbone in certain tasks and vice
versa. Thus, we benchmark both the UNet-1D backbone and the causal Transformer backbone,
and report the highest achieved performance between them in our main results. In addition, for all
Diffusion Policy variants, we use action sequence length of 16 and execution length of 1, which we
find to achieve strong performance in general. Following ACT, we also enable temporal ensembling
for Diffusion Policies, which we find to be crucial for stabilising the inference.

3https://github.com/tonyzhaozh/aloha
4https://github.com/real-stanford/diffusion_policy
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Other Baselines. For BC and demo-driven RL baselines, we adopt the same network architectures
which consist of an CNN-based image encoder and a fully-connected output head. The image encoder
encodes each camera image with 3 layers of CNNs, each has kernel size 3 and 32 channels. In
between the layers, we use SiLU activation function [54] and layer normalisation [55]. We flatten the
CNN features and concatenate with the proprioception states to form the final observation feature
vector. The head has 2 fully connected layers of dimension 512, and bottlenecks the output to
dimension 64. After the bottleneck layer, we normalise the output with layer normalisation followed
by tanh activation.

Training Details. We use a frame stack of 4, Adam optimiser [56] with a learning rate of 0.0001,
and batch size of 256 for all IL and demo-driven RL algorithms. In addition, specifically for all RL
algorithms, we follow AW-Opt [57] and keep the demonstration ratio for each batch to be 50% by
using a separate demonstration replay buffer. This helps the exploration of the agent during sparse
reward settings. We run 150K training steps for IL algorithms and 100K steps for demo-driven RL
methods. We observe that all algorithms converge after 100K steps and longer training does not give
additional performance boost. All results are averaged over the last 3 checkpoints.

C.2 Results and Discussions

In Table 2, we provide the performance of IL and demo-driven RL methods on 40 BiGym tasks.
Overall, we observe that BiGym tasks are challenging and pose a variety of unique and interesting
challenges for future researches. We outline our observations as below:

The mobile manipulation of articulated or rigid-body objects is challenging for the state-of-
the-art algorithms. BiGym has presented a series of tasks that involve interactions with articulated
or rigid-body objects, which typically require high-precision manipulation, e.g., move two plates,
cupboards open all, and stack blocks. When coupled with the mobile base, these tasks become
more challenging because (i) accurately measuring the grasping poses while moving is hard, and
(ii) correctly estimating the posterior distribution of the states given partial history information of
a POMDP is difficult. For instance, while we observe that ACT and Diffusion Policy achieve the
overall best performance across all tasks, they still struggle in the seemingly simple tasks, e.g.,
stack blocks, which requires the agent to pick 3 cubes, and stack them to a target region located
on the other side of the table. We believe a more robust system with stronger memory mechanisms to
track the “beliefs”, i.e., estimating the posterior distributions of the states, is necessary to solve such
challenging BiGym tasks.

The long-horizon tasks in BiGym requires both task and motion planning of the agent. BiGym
introduces a series of long-horizon tasks, e.g., dishwasher unload cups long and put cups. All
algorithms fail on these tasks. Intuitively, these tasks are composed of multiple sub-tasks, and the
difficulty level of achieving these long-horizon tasks grows exponentially at the same time. As
model-free agents, our baselines are not capable of performing task-level reasoning. Hierarchical
methods [12] could work as a better policy representation for these tasks. We leave it for future study.

The complex policy space of BiGym requires carefully designed agent architectures. We observe
that almost on all tasks, ACT and Diffusion Policy achieves superior performance to BC and demo-
driven RL baselines. We hypothesize this is because both ACT and Diffusion Policy utilise powerful
policy classes based on generative representation learning, i.e., CVAE and Diffusion models, and
they also use expressive network architecture such as transformers or UNets. In contrast, BC and
all demo-driven RL approaches use simple CNN + MLP architectures. It is likely that these weaker
architectures struggle to deal with the complex multi-modal noisy demonstrations introduced in
BiGym. We believe this can motivate future research on finding appropriate policy representations
for mobile bi-manual manipulation.

Demo-driven RL approaches struggle with the complex task space and sparse reward in BiGym.
We observe that demo-driven RL algorithms fail on most of the BiGym tasks. For instance, CQN [50],
which exhibits strong performance on fixed single-arm demo-driven RL setups, fails to solve most of
the BiGym tasks. It is notable that all RL algorithms only achieve non-zero success rates on simple

16



Table 2: Success rates (%) of IL and demo-driven RL algorithms on 40 BiGym tasks, evaluated on 50
episodes. We report the results aggregated over the last three checkpoints.

Task IL Algorithms RL Algorithms

BC ACT DiffPolicy DrQV2 AWAC IQL CQN

reach target single 66.0±0.0 100.0±0.0 61.3±5.8 100.0±0.0 94.0±2.0 82.0±5.3 92.7±1.2
reach target multi modal 75.3±2.3 98.7±1.2 63.3±3.1 100.0±0.0 100.0±0.0 53.3±8.1 69.3±2.3
reach target dual 23.3±2.3 90.7±1.2 19.3±3.1 24.0±2.0 77.3±6.1 48.7±20.2 40.0±10.6
stack blocks 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
move plate 2.7±1.2 30.0±3.5 20.0±2.0 0.0±0.0 0.0±0.0 0.0±0.0 0.7±1.2
move two plates 7.3±2.3 11.3±7.0 12.0±4.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
flip cup 0.0±0.0 21.3±1.2 6.0±2.0 0.0±0.0 0.0±0.0 1.3±1.2 0.0±0.0
flip cutlery 0.7±1.2 22.0±2.0 1.3±1.2 0.0±0.0 0.7±1.2 1.3±1.2 1.3±1.2
dishwasher open 6.0±5.3 72.0±45.0 4.0±4.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher close 84.7±20.0 100.0±0.0 99.3±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher open trays 16.7±5.8 100.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher close trays 0.0±0.0 100.0±0.0 52.0±18.3 2.0±2.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher load plates 0.0±0.0 34.0±8.7 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher load cups 0.0±0.0 46.0±0.0 8.7±5.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher load cutlery 8.7±2.3 42.0±8.7 3.3±2.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher unload plates 5.3±1.2 2.0±3.5 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher unload cups 9.3±4.2 15.3±10.1 0.7±1.2 0.7±1.2 0.7±1.2 0.0±0.0 0.0±0.0
dishwasher unload cutlery 3.3±2.3 18.0±3.5 1.3±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher unload plates long 0.0±0.0 0.7±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher unload cups long 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
dishwasher unload cutlery long 1.3±2.3 14.7±8.3 5.3±5.8 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

drawer top open 9.3±16.2 100.0±0.0 3.3±3.1 0.0±0.0 8.7±15.0 2.0±2.0 0.0±0.0
drawer top close 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
drawers open all 10.7±10.1 100.0±0.0 16.7±8.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
drawers close all 0.0±0.0 100.0±0.0 27.3±18.6 100.0±0.0 100.0±0.0 100.0±0.0 44.0±10.4
wall cupboard open 22.0±31.2 97.3±1.2 100.0±0.0 27.3±5.0 12.0±17.3 9.3±2.3 0.0±0.0
wall cupboard close 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 26.0±41.6 97.3±4.6 70.0±2.0
cupboards open all 5.3±4.2 17.3±21.4 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
cupboards close all 63.3±7.0 0.7±1.2 1.3±2.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
take cups 0.0±0.0 26.0±2.0 5.3±2.3 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
put cups 3.3±2.3 30.0±7.2 0.7±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
pick box 20.7±1.2 40.7±1.2 22.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
store box 8.7±3.1 13.3±3.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
saucepan to hob 21.3±4.6 88.0±2.0 34.7±3.1 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
store kitchenware 0.0±0.0 2.7±2.3 0.7±1.2 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
sandwich toast 5.3±1.2 30.7±6.1 10.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
sandwich flip 0.0±0.0 32.0±2.0 4.7±1.2 0.7±1.2 0.0±0.0 0.0±0.0 0.0±0.0
sandwich remove 40.7±8.3 55.3±7.0 48.0±0.0 0.7±1.2 0.0±0.0 0.0±0.0 0.0±0.0
store groceries lower 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
store groceries upper 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Average 18.0±1.1 46.3±1.4 20.8±0.8 13.9±0.2 13.0±1.2 12.4±0.0 10.5±0.4

tasks with little interaction with the objects, e.g., reach target single and top drawer close,
and completely fail to solve all the other tasks. We hypothesise this is because (i) the presence of
mobile base makes it more difficult for agents to explore meaningful state. e.g. an erroneous base
turning action can easily cause robot to lose view of the objects. and (ii) RL agents struggle to learn
value-functions on long-horizon BiGym tasks with sparse reward.
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