
Published at the ICLR 2025 FPI Workshop

FOLLOW HAMILTONIAN LEADER: AN EFFICIENT
ENERGY-GUIDED SAMPLING METHOD

Yunfei Teng1 Sixin Zhang2 Yao Li1 Kai Chen1 Di He3 Qiwei Ye1
1Beijing Academy of Artificial Intelligence (BAAI), China
2IRIT, INP, Univ. Toulouse, France
3Peking University (PKU), China

ABSTRACT

Our research underscores the value of leveraging zeroth-order information for
addressing sampling challenges, particularly when first-order information is unreli-
able or unavailable. In light of this, we have developed a novel parallel sampling
method that incorporates a leader-guiding mechanism that preserves the same
invariant measure property as Hamiltonian Monte Carlo. This mechanism forges
connections between multiple sampling instances via a determined leader, en-
hancing both the efficiency and effectiveness of the entire sampling process. Our
experimental results demonstrate that our method markedly expedites the explo-
ration of the target distribution and produces superior quality outcomes compared
to traditional sampling techniques. Furthermore, our method also shows greater
resilience against the detrimental impacts of corrupted gradients as intended.

1 INTRODUCTION
Score-based generative models Sohl-Dickstein et al. (2015); Song & Ermon (2019); Ho et al. (2020)
introduce a novel approach to generative modeling that revolves around the estimation and sampling
of the Stein score Liu et al. (2016); Song & Ermon (2019). The score represents the gradient of the
log-density function∇x log π(x) evaluated at the input data point x. This type of approach usually
relies on effectively training a deep neural network to accurately estimate the score. The estimated
score is then utilized to navigate the sampling process, ultimately resulting in the production of
high-quality data samples that closely match the areas of high density in the original distribution.

In our research, we investigate the sampling of a probability distribution given by π(x) ∝ e−U(x),
where U(x) is the energy function. In the context of energy-based score-matching generative models,
the objective often involves sampling the modes in areas of high probability density. An approach
as suggested in Song & Ermon (2019); Ho et al. (2020), is to smooth the original distribution
by convolving π(x) with an isotropic Gaussian distribution of variance σ2, yielding πσ(x) =∫
π(x′)N (x;x′, σ2I) dx′. By gradually decreasing the variance σ2, πσ(x) recovers the original

distribution π(x).

Typically, the sampling of score-based approaches are integrated with numerical SDE solvers Song
et al. (2021), for example, the Euler-Maruyama solver, as well as Monte Carlo Markov Chain
(MCMC) techniques like Langevin Dynamics Parisi (1981). Furthermore, there is a notable similarity
between score-based sampling algorithms and first-order optimization algorithms. Efforts have been
made to merge these two methodologies, particularly from a perspective of sampling Welling & Teh
(2011); Chen et al. (2014b; 2016). All these methods primarily concentrates on first-order information
∇xU(x) to improve performance, while typically treating the zeroth-order information U(x) merely
as a basis for rejecting samples Hastings (1970); Roberts & Tweedie (1996); Neal (2011).

We argue that incorporating zeroth-order information can significantly enhance the algorithm’s overall
effectiveness, particularly in instances where the first-order information is compromised. To address
this, we draw inspiration from parallel tempering Swendsen & Wang (1986), a simulation method
commonly used to identify the lowest energy state in systems of interacting particles. The fundamental
principle of parallel tempering involves operating multiple sampling replicas simultaneously, each at
a different temperature level. These temperatures typically range from low, where the system is prone
to being trapped in local minima, to high, which facilitates the system’s ability to surmount energy
barriers and more thoroughly explore the energy landscape.
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Drawing inspiration from this concept, we extend the Hamiltonian Monte Carlo (HMC) framework
Neal (2011) and introduce a novel algorithm that concurrently runs multiple replicas, sampling at both
high and low Hamiltonian energy levels. Moreover, this methodology combines both zeroth and first
order information from various chains, hence enhancing the effectiveness of sampling approaches.
The experimental findings demonstrate the efficacy of our approach in scenarios where relying
solely on first-order knowledge is insufficient. These findings illustrate the capacity of incorporating
zeroth-order information to greatly enhance the efficiency and accuracy of sampling operations in
energy-based score-matching algorithms.

2 BACKGROUND

2.1 HAMILTONIAN MONTE CARLO

The primary purpose of MCMC is to construct a Markov chain that matches its equilibrium distribution
to the target distribution. One of the most popular MCMC methods is Langevin Monte Carlo
Grenander & Miller (1994); Roberts & Tweedie (1996), which proposes samples in a Metropolis-
Hastings Hastings (1970) framework for more efficient state space exploration. Another advanced
method is HMC Neal (2011); Chen et al. (2014a); Betancourt (2018), which incorporates an auxiliary
variable p and employs Hamiltonian dynamics to facilitate the sampling process. The Hamiltonian
function is structured as a composite of potential energy U(x) and kinetic energy K(p), defined as:

H(x, p) = U(x) +K(p), (1)

where x represents the position of a particle and p denotes its momentum. Kinetic energy K(p)
is commonly formulated as K(p) = 1

2p
TM−1p, where M corresponds to the mass matrix. For

simplicity, we assume in this paper that the mass matrix M is equal to the identity matrix I . The joint
distribution of position and momentum conforms to the canonical distribution:

π(x, p) = e−H(x,p)/Z, (2)

where Z =
∫∫

e−H(x,p) dxdp. Samples from π(x) can then be obtained by marginalizing p from
π(x, p), which further requires

∫
p
π(x, p) dp = constant. In the HMC algorithm, proposals are

generated by simulating Hamiltonian dynamics and then subjected to a Metropolis criterion to
determine their acceptance or rejection. A commonly employed numerical method for solving these
equations is the Leapfrog integrator Birdsall & Langdon (2005).

Recent progress in HMC techniques has focused on increasing their adaptability and applicability in
a variety of contexts. Such developments include the NUTS sampler Hoffman & Gelman (2011),
which features an automatic mechanism for adjusting the number of simulation steps. The Riemann
manifold HMC Girolami et al. leverages Riemannian geometry to modify the mass matrix M , making
use of curvature information to improve sampling efficiency. Stochastic Gradient Hamiltonian Monte
Carlo Chen et al. (2014a); Ma et al. (2015) investigates a stochastic gradient approach within the
HMC framework. Our contribution is distinct from these methods and can be integrated with them.

2.2 ENERGY-BASED SCORE-MATCHING MODEL

Probabilistic models often require normalization, which can become infeasible when dealing with
high-dimensional data LeCun et al. (2006); Du & Mordatch (2019). Since the exact probabilities
of less probable alternatives become less crucial as long as they remain relatively lower, rather than
solely predicting the most probable outcome, models can be structured to interpret relationships
between variables via an energy function. Within the context of generative models, these energy-based
models (EBMs) are devised to assign higher energy values to regions of lower probability and lower
energy values to regions of higher probability.

Score matching Hyvärinen (2005); Song & Ermon (2019) is a statistical estimation technique that
learns probability distributions by directly modeling the score function (the gradient of the log-density)
rather than the density itself. This approach circumvents the need for explicit normalization in high-
dimensional spaces, where traditional density estimation becomes computationally intractable. The
method works by minimizing the discrepancy between the model’s score function and the empirical
scores derived from observed data, enabling efficient estimation of complex distributions without
requiring normalized probability densities.

2



Published at the ICLR 2025 FPI Workshop

3 MOTIVATION

Figure 1: A good anchor point could
help improve convergence even if the
gradient is unexpectedly disturbed from
original gradient to the disturbed gradi-
ent, getting closer to the optimal point.

In our work, we assume to have access to both the gradient
information ∇xU(x) as well as the energy information
U(x). In certain scenarios, gradients may yield information
that is either of limited or potentially detrimental value
value. Our research examines situations where gradients are
compromised, highlighting the importance of zeroth-order
information, often associated with energy-based sampling.

In high-dimensional spaces, sampling algorithms may en-
counter difficulties in converging when faced with a com-
plex probability distribution. This instability can occur
when the local Hessian matrix is ill-conditioned or when
the spectrum of the local Hessian matrix is extremely large.
These circumstances frequently give rise to inaccuracies or
instabilities in numerical computations, which might cause the convergence process to break down.
The samples produced may deviate significantly from the true mode, leading to poor sample quality.

Nevertheless, as shown in Figure 1, using an anchor point can boost the stability of convergence.
Additionally, when particles tend to become trapped in local minima due to uninformative gradients
(for instance, at a saddle point or on a flat loss landscape), this method can enhance performance.

In addition, certain situations may present a divergence between the gradient information and the
ground truth. This divergence can hinder algorithms from accurately converging to the appropri-
ate modes. In these instances, it becomes essential to incorporate energy information to rectify
inaccuracies that arise from solely depending on gradients.

4 ALGORITHM

Many sampling methods typically rely on independent Markov chains, which can lead to the issues
mentioned in Section 3. Taking inspiration from Swendsen & Wang (1986), our approach involves the
utilization of multiple replicas. This approach enables us to implicitly encourage greater exploration
among multiple particles while simultaneously preserving the optimal outcomes for exploitation
purposes. We will elaborate on how our algorithm can be employed to tackle these challenges.

Algorithm 1 Elastic Leapfrog (eLeapfrog)

Input: A collection of positions {xi}ni=1 ∈ Rn×d, a collection of momenta {pi}ni=1 ∈ Rn×d,
learning rate η > 0, pulling strength λ ≥ 0, number of Leapfrog steps L.
for k = 1, · · · , L do

xl ← Leader
(
{xi}ni=1

)
for i = 1, · · · , n do pi ← pi − η

2 · ∇xUe(x
i;xl) end for

for i = 1, · · · , n do xi ← xi + η · pi end for
xl ← Leader

(
{xi}ni=1

)
for i = 1, · · · , n do pi ← pi − η

2 · ∇xUe(x
i;xl) end for

end for
Output: {xi}ni=1 ∈ Rn×d, {pi}ni=1 ∈ Rn×d

First, we present a modified version of the leapfrog method, termed the Elastic Leapfrog (eLeapfrog).
In this approach, extra elastic forces are applied between each particle and a designated leader,
effectively incorporating an additional elastic energy term into the standard Hamiltonian. This
modification augments the standard Hamiltonian with an additional elastic energy term, effectively
preventing particle divergence and promoting local exploitation. Next, we introduce a leader-pulling
mechanism designed to significantly boost the particles’ exploratory capabilities. Finally, combining
these innovations, we develop the Follow Hamiltonian Leader (FHL) algorithm, which synergistically
integrates first-order and zeroth-order information to achieve superior sampling efficiency compared
to conventional approaches.
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4.1 ELASTIC LEAPFROG

To improve the efficiency of sampling, we integrate an elastic force component into the conventional
leapfrog technique. This enhancement aims to dynamically guide particles towards a leading particle,
facilitating their movement and improve their exploration ability. The method could be treated like
temporarily storing potential energy within an elastic spring, which is then converted into kinetic
energy. By adding extra elastic force, we could define the energy of elastic HMC as:

He(x, p;x
l) = Ue(x;x

l) +K(p), where Ue(x;x
l) = U(x) +

λ

2
∥x− xl∥22 (3)

In practice, the leader xl is selected based on the energy levels of the workers. In other words, we
aim to choose a leader that is close to the worker with the lowest energy (i.e., the highest probability).
At each iteration, the leader xl is computed as the weighted average

xl = Leader({xi}ni=1) =

∑n
i=1 exp

(
−β f(xi)

)
· xi∑n

i=1 exp (−β f(xi))
, (4)

where β is a scaling factor. In our experiment, we found that β = 1 works well acrooss the
experiments. By integrating the leader selection technique with the conventional leapfrog method,
we obtain the eLeapfrog algorithm, as described in Algorithm 1.

4.2 LEADER PULLING

Next, we introduce our leader pulling method. In this approach, we define a transition kernel such
that for any given particle x, a new position x′ is sampled from

q(x′ | x, xl) = N
(
x′; (1− γ) · x+ γ · xl, σ2

l I
)
. (5)

Subsequently, we employ the Metropolis-Hastings algorithm to determine the acceptance probability
for the proposed move:

αinit = min

{
1,

n∏
i=1

e−U(xi
init) q(xi | xi

init, x
l
init)

e−U(xi) q(xi
init | xi, xl)

}
,

where xl and xl
init are determined as described in Equation (4). This method substantially enhances

the exploration capabilities of the algorithm, echoing the approach in (Chen et al., 2024), where
incorporating additional noise is shown to significantly improve exploration.

4.3 FOLLOW HAMILTONIAN LEADER

Incorporating zeroth-order information (i.e., function values rather than derivatives) serves two key
purposes. Firstly, it provides a search direction that accelerates convergence and helps mitigate issues
arising from corrupted first-order information (i.e., gradient inaccuracies), thereby speeding up the
optimization process. Second, it helps ensure that we are sampling from the correct underlying
distribution by properly accepting or rejecting the proposal.

To ensure that the sampling method maintains detailed balance—a requirement for most sampling
algorithms—we evaluate the joint distribution of a group of particles. This evaluation determines
whether to accept or reject a proposed move for the whole group, thereby preserving the integrity
of the sampling process. This adaptation results in the creation of our algorithm FHL, extensively
elucidated in Algorithm 2.

Since we continuously resample the momentum and employ a leader pulling scheme with a Gaussian
noise added to the position variable, the chain generated by FHL by construction to be irreducible,
aperiodic, and Harris recurrent. Moreover, we will demonstrate that our method also satisfies detailed
balance with respect to the target distribution.
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Algorithm 2 Follow Hamiltonian Leader

Input: A collection of initial positions {xi
0}ni=1 ∈ Rn×d, learning rate η > 0, pulling strength

λ ≥ 0, number of steps L.

for t = 1, 2, · · · , T do
# 1. Elastic Leapfrog (refer to Section 4.1)
for i = 1, · · · , n do

Randomly sample the momentum pit−1 ∼ N (0, I)
end for
{xi

prop}ni=1, {piprop}ni=1 ← eLeapfrog ({xi
t−1}ni=1, {pit−1}ni=1, η, λ, L)

Sample a random variable u ∼ Uniform(0, 1)
if u <

∏n
i=1 exp

(
H(xi

prop, p
i
prop)−H(xi

t−1, p
i
t−1)

)
then ▷ Metropolis-Hastings step

for i = 1, · · · , n do xi
t ← xi

prop, p
i
t ← piprop end for

else
for i = 1, · · · , n do xi

t ← xi
t−1, p

i
t ← pit−1 end for

end if

# 2. Leader Pulling (refer to Section 4.2)
Draw {xi

init}ni=1 by Equation (5)
Sample a random variable u ∼ Uniform(0, 1)
if u < αinit then ▷ Metropolis-Hastings step

for i = 1, · · · , n do xi
t ← xi

init end for
end if

end for

Output: XT = {xi
T }ni=1 ∈ Rn×d

Detailed Balance Analysis While the leader pulling mechanism in #2 of Algorithm 2 satisfies
detailed balance via the Metropolis-Hastings algorithm, we still need to establish that the elastic
leapfrog step also preserves detailed balance. To this end, we extend the classical detailed balance
properties of HMC (Neal, 2011) to analyze the proposed algorithm.

Denote the combined state of positions and momenta by

S = Rn×d × Rn×d.

We define the state of FHL as
s =

(
{xi}ni=1, {pi}ni=1

)
∈ S.

The detailed balance property of FHL guarantees that the joint probability density πn on S is
preserved over iterations:

πn(s) =

n∏
i=1

π(xi, pi) ∝
n∏

i=1

e−H(xi,pi).

This formulation implies that, although each particle xi is coupled with the others through a leader, it
can still behave independently. To establish the detailed balance property, we introduce the following
assumption.

Assumption 1. The probability density πn is fully supported on the state space S.

Theorem 1. Under Assumption 1, FHL (Algorithm 2) preserves the invariance of the density πn, i.e.

πn(ds′) =

∫
p(ds′|s)πn(s) ds.

where p(ds′|s) is the transition probability kernel at each iteration t ∈ {1, · · · , T}.

The proof is given in Appendix B. It is based on a classical detailed balance result in Tierney (1998)
where the key is to verify the reversibility property of the Elastic Leapfrog step #1 so that FHL can
ensure the invariance of πn.
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5 EXPERIMENT

In this section, we showcase the efficacy of incorporating zeroth-order information, specifically
energy information, into our proposed method to improve the sampling process. To evaluate our
method on the performance of the concerned questions, we conduct a comparative analysis against
the following baseline algorithms:

• LMC (Langevin Monte Carlo): An MCMC method as described in Grenander & Miller (1994)
that uses Langevin dynamics to sample from probability distributions. It is also known as
the Metropolis-adjusted Langevin algorithm.

• HMC (Hamiltonian Monte Carlo): An MCMC algorithm that employs Hamiltonian dynamics
for more efficient traversal of the state space, leading to better exploration and sampling
from complex distributions Neal (2011); Chen et al. (2014a); Betancourt (2018).

• U-LMC (Unadjusted Langevin Dynamics): A variation of LMC without the Metropolis correc-
tion, referred to Roberts & Tweedie (1996); Andrieu et al. (2010); Welling & Teh (2011).

• U-HMC (Unadjusted Hamiltonian Monte Carlo): A form of HMC that excludes the Metropolis
correction step, as in Sohl-Dickstein et al. (2014); Geffner & Domke (2021).

5.1 GAUSSIAN MIXTURE MODEL

5.1.1 EXPLORATION

To showcase the exploratory capabilities of FHL, we construct a Gaussian mixture model defined as

π(x) =

5∑
i=1

wiN (µi,Σ)

In this model, the weight coefficients wi and the mean vectors µi are specified as

{wi}5i=1 =

{
1

41
,
4

41
,
4

41
,
16

41
,
16

41

}
and {µi}5i=1 = {(0, 0), (2, 0), (−2, 0), (4, 0), (−4, 0)},

respectively. The covariance matrix is given by the diagonal matrix

Σ = diag(0.04, 1.0).

Figure 2: Visualization of N = 512 samples XT drawn from a 5-mode Gaussian mixture model
in d = 2, starting from the central mode. The plot displays the energy landscape corresponding to
the target density π. After T = 500 iterations, both the baseline methods (U-LMC, LMC, U-HMC,
HMC) and our proposed method (FHL) generate XT from the same initial set X0 = {xi

0}ni=1 with
each xi

0 = (0, 0). Due to the weakening of the gradient flows between modes, the baseline methods
tend to get trapped in metastable states.

In our experiments, we initialize all particles at the origin (0, 0) and then continuously sample from
the specified distribution. It is important to note that during transitions between modes, the gradient
flow does not effectively direct particles toward new modes; rather, it impedes their movement,
often pulling them back into modes they have already explored. In contrast, the FHL algorithm
demonstrates a remarkable ability to escape from metastable states and navigate these barriers
efficiently. The corresponding results are illustrated in Figure 2.
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5.1.2 EXPLOITATION

In our sampling process, we prioritize efficiently steering particles toward regions of high probability
density, thereby avoiding unnecessary exploitation in low-probability areas. When sampling from a
single image, our objective is to reach the global optimum, much like in typical optimization tasks.

For our experiment, we selected an image resembling the GitHub logo1, converted it into a vector
format, and used it as the mean of a multivariate Gaussian distribution. The covariance matrix for this
distribution, denoted by Σ, is diagonal, with the variance for each dimension randomly drawn from a
uniform distribution over the interval (0.001, 1.0). Mathematically, the distribution is described by
e−U(x) ∝ N (µ,Σ), where U(x) is the energy function that characterizes the system.

Figure 3: We obtain N = 64 samples from the Gaussian distribution N (µ,Σ) (with µ ∈ Rd

representing the clean image) by running each method for T = 256 steps. From the resulting set XT ,
we select and plot the sample with the lowest energy U(x). The benchmark image is generated by
directly sampling from N (µ,Σ).

The results indicate that our FHL approach outperforms the baseline methods, particularly in scenarios
where the energy landscape is ill-conditioned.

5.2 COMPOSITIONAL MODELS

A relationship between EBMs and score matching can be established by training EBMs through
denoising score matching Song & Kingma (2021). The training objective is described below:

Jσ(θ) = Ex∼π(x), ϵ∼N (0,I)

[∥∥∥ ϵ

σ
−∇xUθ

(
x+ σϵ

)∥∥∥2
2

]
. (6)

Here, Uθ is typically parameterized by a neural network with parameters θ. Minimizing Jσ(θ)
enforces that ∇xUθ(x) = −∇x log πσ(x). So that e−Uθ(x) is proportional to the smoothed target
density

πσ(x) =

∫
π(x′)N (x;x′, σ2I) dx′. (7)

As reported in Du et al. (2023), combining two diffusion models into a product model,

πprod(x) ∝ π1(x)π2(x), (8)

can lead to issues if the reverse diffusion process simply sums the score estimates from the two inde-
pendent models. In the following experiments (see Section 5.2.1 and Section 5.2.2), we demonstrate
this issue using energy-based score-matching models.

5.2.1 SYNTHETIC DATASET

We begin by presenting an example of merging two distributions generated by DDPM (Ho et al.,
2020). In this instance, the gradient does not consistently steer the particles into regions of high
probability density.

The experimental results in Figure 4 demonstrate that FHL robustly converges to the desired composite
distribution, with significantly fewer particles deviating from the high-density region compared to the
baseline methods.

5.2.2 CLEVR DATASET

We employ the CLEVR dataset from Johnson et al. (2016) for our generation and sampling exper-
iments, using the pre-trained energy model directly from Du et al. (2023). The dataset consists of
three classes—cube, sphere, and cylinder—and we examine two scenarios: one in which samples are
drawn from a single category, and another where samples are drawn from two categories.

1Downloaded from https://github.com/logos.

7

https://github.com/logos


Published at the ICLR 2025 FPI Workshop

Figure 4: Compositional sampling from πprod(x) ∝ π1(x)π2(x) is performed using DDPMs. In the
leftmost column, samples from the original distributions π1 and π2 are displayed.

In the first experiment, no model composition is involved. As illustrated in Figure 5, FHL produces
the target image without any extraneous shapes, whereas both MALA and HMC generate unwanted
shapes. Furthermore, FHL exhibits reduced noise, indicating superior sampling quality.

(a) Baseline (b) MALA (c) HMC (d) FHL
Figure 5: Generation of cube.

In the second experiment, we combine two independent diffusion models, each trained separately
to generate sphere and cylinder. As shown in Figure 6, it is clear that FHL excels at producing
high-quality images with almost no overlapping between objects, accurately rendering the intended
shapes in a pristine manner. In contrast, the other methods generate the undesired shape.

(a) Baseline (b) MALA (c) HMC (d) FHL
Figure 6: Generation of sphere and cylinder.

The experimental results demonstrate that FHL produces high-quality images, echoing our findings
in Section 5.2.1 but under a more challenging setting. These results underscore the algorithm’s
robustness in handling complex data distributions while maintaining sampling quality.

6 CONCLUSION

In this study, we recognize the significance of incorporating zeroth-order information into the sampling
process, highlighting the common limitations faced by conventional sampling methods. These limita-
tions include unstable sampling outcomes frequently associated with energy-based score-matching
models, the potential metastability arising from the multi-modal nature of the energy function, and
errors in gradient computation stemming from the complex structure of the compositional distribution.
Building upon HMC, we incorporate energy modulation techniques to enhance the sampling process.
Through this approach, our method is able to systematically reduce the potential energy, leading to
substantial advantages in practical implementations of sampling.
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Follow Hamiltonian Leader: An Efficient
Energy-Guided Sampling Method

(Supplementary Material)

A EXPERIMENT SETUP

In Section 5.2, we mainly adapted the codes and models from https://github.com/
yilundu/reduce_reuse_recycle.

• In Section 5.2.1, we train a four-layer ResNet to serve as our energy-based score-matching
model and use step sizes η = {0.002, 0.0002, 0.005, 0.0005} for all methods..

• In Section 5.2.2, we employ a U-net architecture Ronneberger et al. (2015) as
the energy-based score-matching model and conduct sampling with step sizes η =
{0.01, 0.035, 0.05, 0.1, 0.2} across all methods.

Additionally, we experiment with various configurations by varying the number of particles per group
n = {2, 4, 8, 16}, testing different pulling strengths λ = {0.1, 1.0, 10.0} and γ = {0.1, 0.2, 0.5, 0.9},
and trying σl = {0.1, 0.2, 0.5, 1.0} along with L = {4, 8, 16} for HMC-type sampling methods.

B PROOF OF THEOREM 1

For clarity in our analysis, we first rewrite Algorithm 1 and Algorithm 2 in the following forms in
Algorithm 3 and Algorithm 4. The Elastic function used in Algorithm 4 corresponds to a general
case where the choice of λ in 3 can be made adaptive to the values of joint states.

Algorithm 3 FHL method per iteration t

Input: A joint state st = ({xi
t}ni=1, {pit}ni=1) ∈ S at iteration t, learning rate η > 0, pulling

strength λ ≥ 0, number of Leapfrog steps L.
Step 1 (momentum resampling): s′t = R(st), where R denotes the momentum resampling
operation, i.e. s′t = R(st) =

(
{xi

t}ni=1, {pinew}ni=1

)
where {pinew}ni=1 are i.i.d. samples drawn

from the isotropic Gaussian distribution.
Step 2 (elastic eLeapfrog): From s′t, eLeapfrog proposes a new state:

s+ =
(
{xi

+}ni=1, {pi+}ni=1

)
.

In other words, this step is a transform L such that s+ = L(s′t).
Step 3 (momentum flip, only in theory):

sprop = F(s+) =
(
{xi

+}ni=1, {−pi+}ni=1

)
.

Step 4: accept the proposed state sprop with probability

α = min

{
1,

π(sprop)

π(s)

}
.

If accepted, st+1 = sprop; otherwise, st+1 = s′t.
Step 5: leader pulling mechanism in #2 of Algorithm 2
output: st+1
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Algorithm 4 eLeapfrog method per iteration k

Input: A joint state sk = ({xi
k}ni=1, {pik}ni=1) ∈ S at iteration k, learning rate η > 0, pulling

strength λ ≥ 0.
Step A: the (unique) leader xl

k is determined by {xi
k}ni=1 , i.e.

xl
k = Leader({xi

k}ni=1)

From this, the elastic strength ρik is computed collectively for each particle, i.e.

ρik = Elastic({xi
k}ni=1, x

l
k), ∀i ≤ n.

Step B: update the momentum of each particle,

pik+1/2 = pik −
η

2
(∇xU(xi

k) + ρik(x
i
k − xl

k)), ∀i ≤ n.

Step C: update the position of each particle,

xi
k+1 = xi

k + ηpik+1/2, ∀i ≤ n.

Step D: select the (unique) leader among {xi
k+1}i,

xl
k+1 = Leader({xi

k+1}ni=1)

and then compute the elastic strength collectively,

ρik+1 = Elastic({xl
k+1}i, xl

k+1), ∀i ≤ n

Step E: update the momentum of each particle,

pik+1 = pik+1/2 −
η

2
(∇xU(xi

k+1) + ρik+1(x
i
k+1 − xl

k+1)), ∀i ≤ n.

output: sk+1 = ({xi
k+1}ni=1, {pik+1}ni=1)

Let p1 be the transition kernel of Step 1 in Algorithm 3, and p2(ds
′|s) be the transition kernel of

Steps 2-4 in Algorithm 3. Let p3 be the transition kernel of Step 5 in Algorithm 3.

By the definition of p, we have

p(ds′|s) =
∫

p3(ds
′|s′′)p12(ds′′|s), p12(ds

′|s) =
∫

p2(ds
′|s′′)p1(ds′′|s)

Note that the above integrals integrate the intermediate state s′′. If st be the joint state at iteration t,
then from Algorithm 3, st+1|s′t ∼ p2(·|s′t)

According to Theorem 2 in Tierney (1998), p2 corresponds to a standard Metropolis-Hastings
algorithm with a deterministic proposal Q and an accept/reject function α. The proposal Q(ds′|s)
represents Steps 2-3, while the function α(s, s′) equals to the accept/reject probability specified in
Step 4.

Reversibility of eLeapfrog Note that the L in Step 2 of Algorithm 3 is composed of L repeated
steps of a basic operation G in eLeapfrog, i.e. L = G◦L. We first verify that

(FG)−1 = FG. (9)

We assume that the operator G modifies the state sk =
(
{xi

k}ni=1, {pik}ni=1

)
in an internal loop of

eLeapfrog summarized in Algorithm 4, which returns sk+1 = G(sk). The operator F applied to
G(sk) will then flip the sign of the momentum pik+1 of each particle in sk+1. As sk ∈ S is chosen
arbitrarily, (9) is equivalent to

GF(sk+1) = F(sk), (10)
because (FG)−1 = FG is equivalent to GFG = F due to F−1 = F.

To verify (10), we compute GF(sk+1) based on the steps A-E in Algorithm 4. The state F(sk+1)
is
(
{xi

k+1}ni=1, {−pik+1}ni=1

)
. To apply G, we denote xi

k+1 by x̃i
k and −pik+1 by p̃ik. We can now

re-apply the steps A-E to the state of x̃i
k and p̃ik:

12
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Step A. A unique and deterministic leader x̃l
k is determined by {x̃i

k}ni=1 , i.e.

x̃l
k = Leader({x̃i

k}ni=1)

Note that the leader being unique ensures that x̃l
k = xl

k+1. From this, the elastic strength ρ̃ik
is computed, i.e.

ρ̃ik = Elastic({x̃i
k}ni=1, x̃

l
k), ∀i ≤ n.

It is clear that ρ̃ik = ρik+1 for each i ≤ n.
Step B. Update the momentum of each particle,

p̃ik+1/2 = p̃ik −
η

2
(∇xU(x̃i

k) + ρ̃ik(x̃
i
k − x̃l

k)), ∀i ≤ n.

As x̃i
k = xi

k+1, p̃ik, p̃ik = −pik+1 and ρ̃ik = ρik+1, we have

p̃ik+1/2 = −pik+1 −
η

2
(∇xU(xi

k+1) + ρik+1(x
i
k+1 − x̃l

k+1)) = −pik+1/2, ∀i ≤ n.

Step C. Update the position of each particle,
x̃i
k+1 = x̃i

k + ηp̃ik+1/2 = xi
k+1 − ηpik+1/2 = xi

k, ∀i ≤ n.

Step D. Select the leader among x̃i
k+1,

x̃l
k+1 = Leader({x̃i

k+1}ni=1) = xl
k,

and then compute the elastic strength,
ρ̃ik+1 = Elastic({x̃l

k+1}i, x̃l
k+1) = ρik, ∀i ≤ n

Step E. Update the momentum of each particle (verify as in Step B),

p̃ik+1 = p̃ik+1/2 −
η

2
(∇xU(x̃i

k+1) + ρ̃ik+1(x̃
i
k+1 − x̃l

k+1)) = −pik, ∀i ≤ n.

The above A-E steps show that effectively (10) holds.

Detailed balance of p2 It reamains to check that p2 has the detailed balance with respect to πn, i.e.
p2(ds

′|s)πn(ds) = p2(ds|s′)πn(ds′).

According to the condition (3) in Tierney (1998), it is sufficient to verify that:
πn(ds)Q(ds′|s)α(s, s′) = πn(ds′)Q(ds|s′)α(s′, s).

Since Q is a deterministic proposal, it is a Dirac measure
Q(ds′|s) = δFL(s)(ds

′).

As α(s, s′) = min
{
1, π(s′)

π(s)

}
, a key property is to verify that (FL)−1 = FL (so that each elastic

Leapfrog operator G has a volume preservation property just like the original Leapfrog method).
From (9), we have G−1 = FGF, and

(FL)−1 = (F ◦G ◦G ◦ · · · ◦G)−1 = G−1 ◦ · · ·G−1 ◦G−1 ◦ F−1.

As F−1 = F by definition, we have
FGF ◦ FGF ◦ · · · ◦ FGF ◦ F−1 = F ◦G◦L.

This implies that we indeed have (FL)−1 = FL. It follows from the special case 2.2 in Tierney
(1998) that p2 has the detailed balance.

Invariance of p Since the momentum resampling (Step 1) samples the marginal distribution of πn,
it preserves the invariance, i.e.,

πn(ds′) =

∫
p1(ds

′|s)πn(s) ds.

As p2 has the detailed balance, it also preserves the invariance, i.e.,

πn(ds′) =

∫
p2(ds

′|s)πn(s) ds.

As a consequence, we conclude that p has the invariance property since p3 is also a standard
Metropolis-step, i.e.

πn(ds′) =

∫
p(ds′|s)πn(s) ds.
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