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Abstract

We introduce an attention-based method that uses learned binary attention masks to ensure
that only attended image regions influence the prediction. Context can strongly affect object
perception, sometimes leading to biased representations, particularly when objects appear
in out-of-distribution backgrounds. At the same time, many image-level object-centric tasks
require identifying relevant regions, often requiring context. To address this conundrum, we
propose a two-stage framework: stage 1 processes the full image to discover object parts
and identify task-relevant regions, while stage 2 leverages input attention masking to re-
strict its receptive field to these regions, enabling a focused analysis while filtering out
potentially spurious information. Both stages are trained jointly, allowing stage 2 to refine
stage 1. Extensive experiments across diverse benchmarks demonstrate that our approach
significantly improves robustness against spurious correlations and out-of-distribution back-
grounds. Code is available in this anonymized repository.

1 Introduction

Deep Learning (DL) models often rely on contextual cues to learn object representations. While this can
be beneficial for certain tasks, it can also introduce spurious correlations on which the model learns to
rely, hampering generalization Rosenfeld et al. (2018); Choi et al. (2012); Xiao et al. (2021). A common
example is when models prioritize background cues over intrinsic object properties, leading to failures in
out-of-distribution (OOD) settings where such correlations no longer hold Beery et al. (2018); Aniraj et al.
(2023). It is therefore crucial to ensure that the model focuses on task-relevant image regions and that users
can assess whether the attended regions are appropriate.

To obtain these insights, many post hoc explainability methods Minh et al. (2022) have been proposed,
commonly categorized as eXplainable AI (XAI) tools, which generate explanations in the form of saliency
maps, providing a glimpse into the model’s decision-making process without altering its structure. While
post hoc methods are appealing because they do not affect model performance, this also means that they
are unsuitable to prevent the model from latching onto spurious cues. Additionally, these methods offer
no guarantee that the explanations are faithful to the model’s reasoning Adebayo et al. (2018); Feng et al.
(2018); Friedman et al. (2023), making failures difficult to detect Bove et al. (2024) and potentially misleading
users Rudin (2019).

In contrast, models that integrate spatial attention maps directly into their inference process can help guiding
the model towards focusing on the correct image regions and have the potential to provide guarantees of
faithfulness, as they reveal the reasoning of the model rather than relying on a post hoc approximation.
Among these, part discovery methods Huang & Li (2020); van der Klis et al. (2023); Aniraj et al. (2024) have
gained prominence for inherently highlighting relevant object parts through learned attention maps. These
methods typically compute the similarity between learned prototypes and high-level feature representations,
using the resulting soft attention maps to assign greater importance to specific regions when forming the
final image representation.

However, we argue that the attention maps produced by such methods do not fully capture the model’s
reasoning, leading to the same reliability issues as post hoc approaches. Specifically, (i) high-level feature
representations at later stages aggregate information from the entire image due to their large receptive field,
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Figure 1: Previous attention-based approaches apply the attention mask to a deep feature tensor, where all
locations can be affected by the whole image due to large receptive fields (top). Our approach ensures that
only the selected tokens contribute to the downstream task (bottom).

resulting in unintended background dependence; and (ii) soft attention masks, being non-binary, assign
non-zero weights to all locations, allowing further unintended information leakage.

To address these issues, we propose a two-step framework that jointly learns a region selector and a Vision
Transformer (ViT)-based classification model, where the latter relies solely on the selected image regions
(Fig. 1). Building on a recent part discovery method Aniraj et al. (2024), we use discretized attention
maps—formed by merging discovered parts—to explicitly select image regions for a second-stage classifier.
This classifier, which also takes the raw image as input, has only access to the selected regions, thus mitigating
spurious correlations present in other regions. Our approach provides an end-to-end signal that jointly
optimizes both stages. Thus, our core contribution is a model that explicitly ignores image regions that do
not contribute to its prediction, ensuring robustness against spurious correlations present in those regions.
This design allows for systematic evaluation using established benchmarks for robustness against spurious
correlations.

2 Related Works

Spatial attention in computer vision. Attention mechanisms induce the model to focus on a subset
of the input that is deemed relevant to solve the task at hand. Originally devised as a means to reduce
computational load in image classification Mnih et al. (2014), spatial attention mechanisms started to gain
popularity for tasks such as captioning Xu et al. (2015), visual reasoning Hudson & Manning (2018), and
other tasks Guo et al. (2022) where a sharp focus on a sequence of relevant image regions allows the model to
decompose the complex task into multiple, simpler ones. Recent work on part discovery Huang & Li (2020);
van der Klis et al. (2023); Aniraj et al. (2024) also leverages attention mechanisms. These approaches assume
that focusing the attention on the correct parts will lead to better classification results, and leverage this
learning signal to discover the semantic parts that compose the objects of interest. However, all of these
methods apply attention to deep feature representations, where large receptive fields allow regions outside
the attended area to influence the attended regions. This can potentially reduce faithfulness, or how well
the attention map actually coincides with the image regions that matter for the downstream task. This has
led to work aiming at measuring the faithfulness of attention maps in ViTs Wu et al. (2024b), as well as to
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Figure 2: Left: iFAM first discovers task-relevant regions (Stage 1) and then classifies using only the selected
regions (Stage 2), preventing reliance on background cues. Right: At test time, we leverage the model’s
inherently faithful region attribution to design (training-free) intervention strategies that further enhance
robustness to spurious correlations.

methods improving it Xie et al. (2022); Wu et al. (2024a); Ntrougkas et al. (2024) Unlike these works, our
two-stage framework ensures that the attention maps are inherently faithful by explicitly constraining the
predictor’s receptive field.

Local object representations. Object-centric computer vision tasks require representations that remain
invariant to changes in backgrounds and co-occurring objects. Previous works provide local object repre-
sentations via mask-invariance losses Stone et al. (2017), clustering-like losses Yun et al. (2022) or directly
altering the attention mechanism Ibtehaz et al. (2024). While some methods aim to align post-hoc explana-
tions with segmentation maps Ross et al. (2017), they do not guarantee that only attended areas contribute
to the decision, with studies highlighting information contamination from outside the object attention masks
due to large receptive fields Aniraj et al. (2023).

Input attention maps for interpretability. Auxiliary mask predictors have been proposed to explain
black-box classifiers by identifying minimal masks that preserve predictions without retraining Yuan et al.
(2020); Phang et al. (2020); Stalder et al. (2022); Brinner & Zarrieß (2023); Nalmpantis et al. (2023); Zhang
et al. (2024). Others use post hoc attribution maps to guide training Ismail et al. (2021). Closer to our
approach, joint amortized explanation methods (JAMs) Chen et al. (2018); Yoon et al. (2018); Ganjdanesh
et al. (2022) jointly learn selector and predictor models but risk encoding class information through the
selection pattern Jethani et al. (2021); Puli et al. (2024). Although more recent methods have proposed
solutions to alleviate this drawback, they involve either unstructured selection masks Jethani et al. (2021)
or simplistic ones parametrized as a single spatial Gaussian Ganjdanesh et al. (2022). COMET Zhang et al.
(2024) takes a step further and aims at finding the complete foreground, rather than a sufficient mask. In
contrast to these works, our approach introduces a mechanism specifically developed for ViTs and leverages
recent advances in part discovery to provide a rich spatial representation to the predictor. Empirical results
show this improves performance, particularly in the presence of spurious cues.

Input attention maps for robustness. Joint learning of input masks has also been explored to enhance
model robustness. Xiang et al. (2021) shows that limiting the receptive field and applying targeted patch
masking improves adversarial robustness. Spurious correlations can be mitigated by isolating foreground
regions and constructing image composites with mismatched backgrounds Xiao et al. (2023); Noohdani et al.
(2024); Chakraborty et al. (2024), encouraging the model to rely on foreground cues. Asgari et al. (2022)
masks key image regions using attribution maps, forcing the model to identify alternative features and assess
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potential spurious correlations. Multiple spurious cues can coexist in a dataset, and techniques designed to
mitigate one may inadvertently amplify another Li et al. (2023). In this work, we leverage the part discovery
mechanism to simultaneously model several of these correlations.

3 Methodology

iFAM (Inherently Faithful Attention Maps for vision transformers) depicted in Fig. 2, consists of two
stages: the first one has access to the whole image and predicts which image regions should be selected for
the second stage. These selected regions then define the receptive field used by the second stage for solving
the downstream task. This design ensures that the second stage can only pay attention to the selected image
regions, guaranteeing that it cannot make use of any information outside the mask.

3.1 Early vs Late Masking

Existing attention-based methods learn two functions on the input: a selector fsel, with s = fsel(x),
and a feature extractor fpred, with h = fpred(x). The input x ∈ RDin×N is a set of N elements, such as
pixels or tokens, h ∈ RDout×N is a set of feature vectors and s ∈ {0, 1}N is a binary selection mask1. An
image feature vector z ∈ RDout , to be used for some downstream task, is then computed as:

z = m(fpred(x), fsel(x)), (1)

where m(·, ·) is some masking and aggregator function. A common choice is a weighted average:

z = 1
N

N∑
i=1

sihi. (2)

With our approach, the image feature vector is computed by applying the selector (stage-1) and the
feature extractor (stage-2) sequentially:

z = fpred(m(x, fsel(x))), (3)

where m(·, ·) is now a masking function applied to the input of fpred, and the aggregation is assumed to be
performed within fpred. Since the masking happens at the input level, the receptive field is determined by
the mask for any aggregation method.

Implementation on a ViT with attention masks. In the case the model fpred is based on self-
attention Vaswani et al. (2017), such as a ViT, m(·, ·) can be implemented by modulating the self-attention
in each layer with a mask M ∈ RN×N :

Attention(Q, K, V) = softmax
(

QK⊤
√

D
+ M

)
V, (4)

where the elements in M are defined as:

Mij =
{

−∞, if si = 0 or sj = 0
0, otherwise.

(5)

This forces the attention from and towards the masked out tokens to be zero after the softmax, preventing
them from having any influence on the resulting image representation.

1s ∈ [0, 1]N in case of a soft selection mask.
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3.2 Stage 1: Identifying Relevant Image Regions

To identify relevant image regions for the downstream task, we leverage the PDiscoFormer part discovery
method Aniraj et al. (2024). This approach, guided solely by image-level class labels and part-shaping priors,
partitions the image into K + 1 regions, where K distinct foreground parts are identified, and the remaining
region represents the background, which is discarded. The discovered parts are shared across classes. Each
part is associated with a learned prototype, encouraging semantic consistency across the dataset. The
prototypes are also trained to be mutually de-correlated, so that each part captures a distinct aspect of the
object. To this end, we use the original PDiscoFormer default settings.

3.3 Stage 2: Masked-input classification

PDiscoFormer suffers from the same issues that we have identified as flaws in attention mechanisms: it uses
soft attention masks that are applied to a high-level representation. To address this drawback, we propose
to make the masks binary, via discretization, and to use them to explicitly define the receptive field of the
second stage model, using Eq. (4).

Discrete masks. PDiscoFormer produces part attention maps that assign, for each image token, a weight
distribution across parts, with weights summing to one. These weights are designed to approach a hard
assignment via Gumbel softmax, where one part receives a weight close to one, while the others are close to
zero. However, we emphasize that these maps still remain a soft distribution across parts. This may seem
as a subtlety, but we argue that only a truly discrete attribution map can provide faithfulness guarantees by
fully preventing information leakage. To tackle this issue, we introduce a discretization step for the obtained
part maps prior to the second stage. At this point, the foreground parts are merged together to obtain a
binary input mask for the second stage model. With the aim to allow gradient flow between the second and
first stages, we employ the straight-through gradient trick used by Gumbel softmax Jang et al. (2017), where
the hard masks are used in the forward pass and the soft ones in the backward pass.

Input image masks. An additional requirement in order to prevent information leakage, related to the
receptive fields of modern computer vision architectures, is to adopt early masking Aniraj et al. (2023).
That is, masking directly the input of the model instead of doing so at a higher-level representation. In
this way, only the unmasked tokens are considered by the ViT, thus eliminating any possible information
contamination from the unattended regions.

Part dropout. During training, we randomly drop out discovered image parts with a probability p. This
not only helps to promote robustness to missing parts in the second stage (which will be useful for the
intervention functionality discussed in Sec. 3.4), but also makes sure that all parts have the opportunities to
backpropagate useful learning signals to the first stage, as the stage-2 model cannot always rely on a single
informative part to perform classification.

3.4 Test-time Correction/Interventions

Although the stage-1 training objective encourages foreground discovery, spurious objects or correlations
may still be captured due to the weakly supervised nature of the task. Unlike standard DL models, our
framework is locally interpretable, meaning it faithfully reveals the image regions responsible for solving the
task. This property enables targeted test-time corrections to mitigate learned spurious correlations. Here,
we propose two intervention methods.

Drop a part that captures a spurious object. The original PDiscoFormer, due to the asymmetry in
the treatment of the background part, exhibits a bias toward assigning as much as possible of the image
content to the background, the unattended image regions. This implies that the discovered parts are typically
the most informative for the downstream task, often corresponding to the image regions that are causally
related to the classification label. However, when the number of parts K is set sufficiently high, some parts
may begin to focus on spurious correlations. iFAM allows the users to select, at inference time, a subset of
the discovered parts to feed into the stage-2 classifier. Since the part discovery component encourages each
part to capture semantically consistent content across the dataset, this operation can be performed globally.
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This allows for the manual inspection of a few images (see Appendix D) to gain insights into what each
part captures. If one of the parts is found to consistently capture an element associated with a spurious
correlation, it can be excluded from the input to the second stage.
Drop tokens assigned to a part with low confidence. In cases where OOD objects present at inference
time lead to false positive part detections, it is possible to simply remove the low confidence tokens from any
given part. This can be achieved by checking whether the assigned parts are unexpectedly distant from the
corresponding prototype in the feature space, based on statistics drawn from the training set Liu et al. (2020).
Specifically, a distance-based threshold τ q

k can be calibrated on the training set given a large percentile q,
such that q is the proportion of tokens assigned to part k that have a distance to the corresponding part
prototype smaller than τ q

k . At inference, tokens assigned to part k with distance exceeding τ q
k are reclassified

as background.

Finally, since these two approaches are complementary, the first addressing part-level intervention while the
second covers individual tokens from all parts, they can be adopted simultaneously.

4 Experimental Setup

We aim to discover task-relevant image regions using only image-level class labels, applying attention masking
to restrict the predictor’s receptive field and focus solely on these regions. To evaluate the effectiveness of
our approach, we use datasets with known background-related biases or other spurious correlations.

4.1 Datasets and Evaluation Metrics

We evaluate our approach on two binary classification tasks: MetaShift cat vs. dog Liang et al. (2022);
Wu et al. (2023) and Waterbirds Sagawa et al. (2020), with spurious background correlations. In MetaShift,
dogs predominantly appear in outdoor settings (e.g., bench, bike) and cats in indoor environments (e.g., sofa,
bed) during training, while the test set contains only indoor backgrounds (e.g., shelf ), making dogs harder to
detect. In Waterbirds, derived from CUB Wah et al. (2011), species are assigned to waterbird and landbird
classes with controlled background replacement. During training, 95% of waterbirds appear on water and
95% of landbirds on land, with the hardest groups thus consisting of waterbirds on land and landbirds on
water. Both datasets report average accuracy (AA), which can be inflated by leveraging background
correlations, and worst group accuracy (WGA), which measures robustness under background shifts.
We also train on CUB as a 200-way classification task and evaluate on Waterbird200 (CUB with artificial
backgrounds) to assess robustness in fine-grained scenarios. Additionally, we assess our approach on SIIM-
ACR Zawacki et al. (2019), a chest X-ray dataset for pneumothorax (collapsed lung) detection, where
positive samples are often biased by visible chest tubes Saab et al. (2022); WGA is computed on a curated
subset without this artifact. Finally, we test the scalability to larger datasets on the ImageNet-9 (IN-9)
Backgrounds Challenge Xiao et al. (2021), which allows direct evaluation of models trained on ImageNet-
1K (IN-1K) Russakovsky et al. (2015) for background robustness. We focus on three IN-9 variants: Original
(unaltered), Mixed-Same (same-class backgrounds), and Mixed-Rand (random-class backgrounds). BG-
GAP Xiao et al. (2021) measures the accuracy drop from Mixed-Same to Mixed-Rand.

4.2 Baselines

We compare our method against several approaches from the literature, including late-masking-based PDis-
coFormer Aniraj et al. (2024), standard CNN/ViT models, and dedicated de-biasing methods, across
MetaShift, Waterbirds, CUB–Waterbirds200, SIIM-ACR, and IN-9. For MetaShift and Waterbirds, we
also evaluated early and late masking techniques based on the result of a saliency-based foreground de-
tection method Siméoni et al. (2023). For datasets with pixel-level annotations (e.g., masks or boxes), we
additionally report results from models trained with this extra supervision as upper bounds.
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Table 1: Results on MetaShift, Waterbird, ImageNet-1K (IN-1K), and IN-9 (Original: IN-9O; Mixed-Same: MS; Mixed-Rand:
MR). BG-GAP = MS−MR (lower is better). Shaded rows (performance upper bounds): † models trained with extra supervision;
‡ larger-capacity models. K: number of foreground parts. LLE: Last Layer Ensemble Li et al. (2023), SWAG Singh et al.
(2022), MAE He et al. (2022), ^: Frozen backbone, : Fine-tuned backbone, : Intervention, gt: Ground Truth Masks, f:
FOUND (Saliency detection) Siméoni et al. (2023), 1: SWAG Singh et al. (2022) pre-train + LLE Li et al. (2023), 2: MAE He
et al. (2022) pre-train + LLE Li et al. (2023)

(a) Results on Metashift and Waterbird
MetaShift Waterbird

Method K AA WGA K AA WGA
Early maskgt† - - - 1 99.2 97.2
Late maskgt† - - - 1 95.7 84.0
ResNet50 ERM Wu et al. (2023) - 72.9 62.1 - 97.0 63.7
ViT-B ERM - 75.8 62.5 - 95.0 80.7
ViT-B DinoV2 ^ - 83.2 72.6 - 95.9 88.5
ViT-B DinoV2 PCA Darbinyan et al. (2023) - - - - 97.4 94.0
ViT-B DinoV2 - 84.7 76.8 - 98.6 95.8
ResNet50 MaskTune Asgari et al. (2022) - - - - 93.0 86.4
ResNet50 GroupDRO Sagawa et al. (2020) - 73.6 66.0 - 91.8 90.6
ResNet50 DISC Wu et al. (2023) - 75.5 73.5 - 93.8 88.7
PDiscoFormer Aniraj et al. (2024) 2 86.9 81.0 4 96.0 87.4
PDiscoFormer Aniraj et al. (2024) 4 83.2 75.5 8 94.2 84.3
PDiscoFormer Aniraj et al. (2024) 8 88.7 83.6 16 95.9 85.1
Late maskf Siméoni et al. (2023) 1 82.3 73.5 1 95.3 83.3
Early maskf Siméoni et al. (2023) 1 84.5 77.1 1 98.6 95.2
iFAM 1 88.5 86.9 1 98.7 95.8
iFAM 2 89.1 86.3 4 98.7 96.4
iFAM 4 88.7 88.6 8 99.0 97.0
iFAM 8 84.5 78.8 16 98.8 97.0
iFAM+ 8 84.8 83.0 16 98.8 97.4

(b) Results on ImageNet-9 (IN-9) Backgrounds Challenge
Method K IN-1K IN-9O MS MR BG-GAP ↓
ResNet50 ERM Wightman et al. (2021) - 81.2 96.4 90.0 84.6 5.4
ResNet-152 ERM ‡ Wightman et al. (2021) - 83.5 97.3 92.1 87.4 4.7
ViT-B ERM Touvron et al. (2022) - 83.8 97.9 92.4 87.9 4.6
ViT-L ERM ‡ Touvron et al. (2022) - 84.8 98.0 93.0 89.4 3.6
ViT-B DinoV2 Darcet et al. (2024) - 84.6 98.1 93.1 87.1 6.0
ViT-L DinoV2 ‡ Darcet et al. (2024) - 86.7 98.3 95.5 90.2 5.3
ResNet50 MaskTune Asgari et al. (2022) - - 95.6 91.1 78.6 12.5
ResNet50 LLE Li et al. (2023) - 76.3 95.5 88.3 83.4 4.9
ViT-B SWAG+LLE1Li et al. (2023) - 85.2 98.0 92.4 87.9 4.5
ViT-B MAE+LLE2Li et al. (2023) - 83.7 97.4 92.5 88.3 4.2
ViT-L MAE+LLE ‡2 Li et al. (2023) - 85.8 97.4 93.5 89.8 3.6
PDiscoFormer Aniraj et al. (2024) 1 83.3 98.4 93.9 88.6 5.3
iFAM 1 84.3 97.5 93.5 91.1 2.4
iFAM + 1 83.1 97.3 94.0 91.6 2.4

4.3 Implementation Details

All models are implemented in PyTorch. We use ViT-B Darcet et al. (2024) with publicly available DINOv2
weights Oquab et al. (2023) for initialization in all experiments, except on SIIM-ACR, where we use RAD-
DINO Pérez-García et al. (2025). Training details are provided in Appendix A.
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5 Results and Discussion

5.1 Results on robustness benchmarks

The results in Tables 1, and 2 demonstrate that our two-step approach, which explicitly limits the receptive
field of the predictor to the discovered foreground regions, leads to significant improvements in robustness
on datasets with spurious background correlations. Qualitative results are provided in Appendix D.

Results on MetaShift and Waterbird. Results on MetaShift and Waterbird (Tab. 1-a) highlight the
advantage of using a pretrained DINOv2 backbone, as also noted by Darbinyan et al. (2023). Notably,
simply fine-tuning DINOv2 surpasses all prior OOD robustness methods, while the same ViT-B pretrained
on ImageNet does not, underscoring the impact of self-supervised pretraining. Additionally, early masking
consistently outperforms late masking in robust accuracy, whether using ground-truth masks or saliency-
based selection Siméoni et al. (2023). Our method significantly improves upon these baselines, improving
WGA from 81.0% to 88.6% on MetaShift and from 94.0% to 97.0% on Waterbird—effectively halving the
error. Only early masking with ground-truth segmentation surpasses our results. However, for K = 8 parts
in MetaShift, performance drops sharply to 78.8% (from 88.6% at K = 4), suggesting that a larger number
of parts leads the model to capture spurious regions. We posit that such errors can be corrected via test-time
interventions, which we explore in the next section.

Results on IN-9. Tab. 1-b presents background sensitivity using the BG-GAP metric, which quantifies the
accuracy difference between the Mixed-Same and Mixed-Rand variants. Surprisingly, vision transformers
(ViTs) with advanced pre-training, such as DINOv2 Oquab et al. (2023); Darcet et al. (2024), perform worse
than standard CNNs and ViTs trained purely on IN-1K following modern training protocols Touvron et al.
(2022); Wightman et al. (2021), suggesting that such pre-training does not inherently improve background
robustness. While ResNets incorporating de-biasing methods during training Li et al. (2023); Asgari et al.
(2022) show minor improvements in BG-GAP, they perform significantly worse on individual IN-9 variants,
and ViTs with post-pretraining de-biasing objectives Li et al. (2023) offer only marginal gains. In contrast,
our iFAM model achieves the lowest BG-GAP of 2.4, outperforming its baseline (PDiscoFormer) and all
other models, including larger architectures like ViT-L, demonstrating its effectiveness in mitigating spurious
cues.

Results on CUB and Waterbird200. Tab. 2-a shows that fine-tuning a DINOv2 ViT-B backbone does
not scale well to fine-grained tasks. The fine-tuned CUB baseline underperforms its frozen counterpart on
Waterbird200, despite improving by 2% in-distribution, suggesting overfitting to background cues. All late-
masking models, including PDiscoFormer, stabilize around 76% on Waterbird200, indicating that background
biases persist even with an oracle late mask. Our method achieves 86.2%, closely matching early-masked
models from Aniraj et al. (2023), which rely on supervised segmentation masks. Despite using only self-
discovered masks, our approach is within 2.5% of their fully fine-tuned model.

Results on SIIM-ACR. For SIIM-ACR (Tab. 2-b), training RAD-DINO or PDiscoFormer with late mask-
ing alone results in a biased model that overly relies on spurious correlations, leading to a WG AUC close
to random performance. However, our method, with K = 8, achieves 69.0% WG AUC after interventions
(up from 65.9%), approaching the 72.0% obtained with ground-truth bounding boxes, despite not using such
additional annotations.

5.2 Additional robustness via interventions

In this experiment, we assess the impact of our intervention strategies on robustness to spurious correla-
tions. Due to the weakly supervised nature of part discovery, our model may (i) identify spurious parts
in datasets with stronger, more object-like spurious correlations (e.g., MetaShift, SIIM-ACR) or (ii) assign
out-of-distribution (OOD) objects to the foreground (e.g., models trained on CUB and evaluated on Water-
bird200). To address the first issue, we perform a leave-one-out (LOO) evaluation at inference, measuring
its effect on WGA. For OOD foreground assignments, we remove unconfident tokens and evaluate classifi-
cation performance. Additionally, we analyze the complementarity of these approaches by applying token
removal on top of LOO for the worst-performing K variant (without any intervention), where a spurious
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Table 2: Results on CUB, Waterbird200 (CUB with OOD backgrounds) and SIIM-ACR. Shaded rows (performance upper
bounds): † models trained with extra supervision . ^ : Frozen backbone, : Fine-tuned backbone, : Intervention, AUC:
Area Under the Curve.

(a) Results on CUB and Waterbird200
CUB Waterbird200

Method K in-distrib. OOD
Early maskseg †Aniraj et al. (2023) ^ 1 90.1 86.9
Early maskseg †Aniraj et al. (2023) 1 91.4 88.8
Late maskseg †Aniraj et al. (2023) ^ 1 88.6 76.6
Late maskseg †Aniraj et al. (2023) 1 90.7 74.8
ViT-B DinoV2 ^ - 89.2 76.6
ViT-B DinoV2 - 91.6 68.4
PDiscoFormer Aniraj et al. (2024) 4 89.1 76.0
PDiscoFormer Aniraj et al. (2024) 8 88.8 76.8
PDiscoFormer Aniraj et al. (2024) 16 88.7 75.8
iFAM 1 89.0 84.2
iFAM 4 90.1 86.1
iFAM 8 90.4 86.2
iFAM 16 90.6 86.2
iFAM+ 16 90.5 87.3

(b) Results on SIIM-ACR
Method K A. AUC WG AUC
BBox-ERM † Saab et al. (2022) - 92.4 72.0
Segmentation-ERM † Saab et al. (2022) - 93.3 82.0
ResNet50 Saab et al. (2022) - 90.9 45.5
ResNet50 JTT Liu et al. (2021) - 92.6 55.9
ResNet50 GEORGE Sohoni et al. (2020) - 92.0 63.4
ViT-B RAD-DINO ^ - 90.6 40.6
ViT-B RAD-DINO - 92.6 54.3
PDiscoFormer Aniraj et al. (2024) 8 92.6 46.7
iFAM 8 92.1 65.9
iFAM+ 8 91.1 69.0

Parts WGA
All 78.8
– 64.7
– 75.8
– 75.8
– 78.8
– 75.5
– 81.7
– 77.1
– 69.9

WG
Parts AUC
All 65.9
– 65.0
– 59.9
– 63.7
– 67.3
– 65.2
– 65.6
– 66.7
– 65.5

Figure 3: Leave-one-out (LOO) part removal intervention results on MetaShift (left) and SIIM-ACR (right)
for K = 8. The bottom right image shows a heatmap of the average pneumothorax occurrence across the
dataset.

part is likely to have been discovered, in MetaShift and SIIM-ACR. For comparison, we apply the same
interventions to PDiscoFormer.
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Table 3: Results of applying the token removal intervention on MetaShift, Waterbird, SIIM-ACR, and the OOD Waterbird200
dataset.

MetaShift (K=8) Waterbird (K=16) SIIM-ACR (K=8) Waterbird200 (OOD)
Method AA WGA AA WGA A. AUC WG AUC K=4 K=8 K=16
iFAM 84.5 78.8 98.8 97.0 92.1 65.9 86.1 86.2 86.2

q =97% +0.2 +0.3 -0.1 -0.4 -0.1 +0.1 +0.7 +0.5 +1.1
q =99% +0.2 +1.3 0.0 +0.4 +0.1 +0.5 +0.5 +0.7 +0.7

Table 4: Results on MetaShift and SIIM-ACR using LOO and token removal, selecting the worst-performing K variant without
any .

MetaShift SIIM-ACR
Method AA WGA A. AUC WG AUC
PDiscoFormer Aniraj et al. (2024) 83.2 75.5 92.6 48.1

LOO +2.0 +1.3 0.0 0.0
LOO + q =97% +2.0 +0.3 0.0 +0.1
LOO + q =99% +2.2 +1.3 0.0 +0.1

iFAM 84.5 78.8 92.1 65.9
LOO +0.2 +2.9 -1.5 +1.4
LOO + q =97% +0.2 +3.2 -1.3 +2.8
LOO + q =99% +0.3 +4.2 -1.0 +3.1

Part-Removal Intervention on MetaShift. Fig. 3 (left) presents part assignment maps in MetaShift,
color-coded, alongside WGA results from leave-one-out (LOO) evaluation. Most parts consistently capture
coherent semantics. However, the brown part is strongly biased toward indoor elements, likely due to
correlations between indoor backgrounds and the cat class. Removing this part at inference improves WGA
from 78.8% to 81.7%, whereas removing other parts either reduces performance or has no effect.

Part-Removal Intervention on SIIM-ACR. Fig. 3 (right) shows SIIM-ACR results, where removing the
red part increases WG AUC by nearly 1.5 points. This part predominantly covers the central chest region,
which has little overlap with common pneumothorax locations, as confirmed by the heatmap of average
pneumothorax occurrence, but often contains spurious cues, such as drainage tubes.

OOD Token Removal in Waterbird200. Fig. 4 illustrates OOD token removal for K = 8. In CUB
(second column), discovered parts align well with the bird. However, in Waterbird, background objects
are often misassigned to foreground parts. Since these objects have representations farther away from
part prototypes, applying a 97th percentile threshold effectively removes them. This results in a small but
consistent improvement in Waterbird200 (Tab. 3), with over a one-point gain at K = 16. A quantitative
analysis of intervention effects on foreground and part discovery in OOD settings is provided in Appendix C.

Combining Intervention Strategies. Tab. 4 shows that test-time interventions provide notable gains for
iFAM but only marginal improvements for PDiscoFormer. Specifically, applying both strategies improves
iFAM’s performance by over 4 and 3 points on MetaShift and SIIM-ACR, respectively, while PDiscoFormer
sees only a 1-point and 0.1-point increase in WGA.

5.3 Ablation Studies

To understand the contribution of each component in our proposed method, we conduct an ablation study on
the 200-way CUB/Waterbird200 benchmark and the binary MetaShift task. The results are given in Tab. 5.

Impact of the Second Stage. Removing the second stage of iFAM, reducing the model to PDiscoFormer,
results in the steepest accuracy drop on both robustness metrics (Waterbird and MetaShift WGA). This
highlights the importance of our two-stage approach in improving robustness.

Effect of Soft Masks. Using soft masks, where all input tokens retain some non-zero level of attention,
improves in-distribution accuracy on CUB and slightly degrades performance on in-distribution MetaShift.
However, it significantly reduces performance in out-of-distribution settings. This suggests that soft input
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Table 5: Ablation results with K = 4. Rows with ∗∗ are identical.

CUB Waterbird200 MetaShift
in-distrib. OOD AA WGA

Full iFAM ∗∗ 90.1 86.1 88.7 88.6
No second stage 89.1 76.0 83.2 75.5
Soft masks 90.6 85.7 88.0 86.3
K = 1 w/o shaping 90.3 80.2 85.4 79.1
No stage-1 classif. 88.9 85.0 86.9 82.3
Frozen stage-2 89.1 83.7 85.0 85.0
Part Dropout = 0.5 89.8 85.5 87.1 84.3
Part Dropout = 0.3 ∗∗ 90.1 86.1 88.7 88.6
Part Dropout = 0.1 89.8 85.4 84.1 82.0
Part Dropout = 0.0 89.9 85.4 86.5 86.0

CUB iFAM WB200 iFAM q = 99% q = 97%

Figure 4: Qualitative results of part discovery of our model on the CUB dataset (K = 8), along with results on the corresponding
out-of-distribution (OOD) images from the WB200 (WaterBirds200) dataset and the effect of the test-time intervention of
thresholding on the OOD images.

masks allow background regions to influence stage-2 classification, leading to a weaker robustness to spurious
correlations.

Role of the first stage learning objective. Removing only the first stage classification loss or completely
removing the PDiscoFormer part discovery losses both result in notable but non-catastrophic performance
drops. This suggests that, although using PDiscoFormer as stage-1 contributes to the quality of the model,
the stage-2 classification is still capable to drive the foreground discovery of stage-1.

Importance of Fine-tuning Stage-2. Fully fine-tuning the second stage leads to consistent performance
improvements, as the model cannot overfit to spurious correlations that are filtered out by stage-1.

Part Dropout. A sensitivity analysis on the part dropout rate in stage-2 reveals that a value of 0.3 is
appropriate.
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6 Conclusion

Limitations. The main limitation of our approach is the extra computational cost incurred by the use of two
forward passes: one for part discovery and the second for the downstream task. While the straight-through
gradient requires the entire image to be processed during training, the second pass only requires access to a
subset of the image at inference, allowing optimization via patch token pruning Li et al. (2022).

Conclusion. We investigated a two-step framework where stage-1 processes the full image to discover task-
relevant regions, while stage-2 operates exclusively on this binary selection. By guaranteeing the receptive
field of the stage-2 predictor through attention masking, we ensure that only the regions identified by stage-1
influence its representations, thereby minimizing background-related biases. Empirically, we show that this
approach significantly improves robustness on benchmarks designed to test resilience against such biases.
Our findings highlight the importance of inherently faithful attention mechanisms for developing robust
computer vision systems.
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A Training Settings

We trained all models for 90 epochs using the AdamW optimizer Loshchilov & Hutter (2019). During the part
discovery stage, we followed the procedure outlined in the original paper Aniraj et al. (2024). Specifically, the
class token, position embedding, and register token were kept unfrozen, while the remaining ViT layers were
frozen. In this stage, we trained these unfrozen tokens along with the randomly initialized layers, including
the projection, modulation, and final classification layers. In the second stage, we fine-tuned all parameters
of the model.

To adjust the learning rate dynamically, we employed a cosine annealing schedule Loshchilov & Hutter
(2022). The initial learning rates were set as follows: 10−6 for the fine-tuned tokens of the ViT backbone in
both stages and for the layers of the second-stage ViT, 10−3 for the linear projection layer forming the part
prototypes, and 10−2 for the modulation and final linear layers used for classification in both stages.

We used a variable batch size, with a minimum of 16, depending on the available computational resources.
To scale the learning rate appropriately, we applied the square root scaling rule Krizhevsky (2014). Regu-
larization was performed using gradient norm clipping Pascanu et al. (2013) with a constant value of 2 and
a normalized weight decay Loshchilov & Hutter (2019) set to 0.05.

The PDiscoFormer losses were configured as in the original paper Aniraj et al. (2024), with one exception
for the biomedical dataset SIIM-ACR Zawacki et al. (2019). For this dataset, we disabled the background
loss Lp0 by setting its weight to 0, as this loss assumes the background part is more likely to occur at the
image boundaries — an assumption that does not necessarily hold for pneumothorax occurrences.

Finally, we used a constant part dropout value of 0.3 for both stages of the model in all experiments. The
dropout value for the first stage aligns with that used in the original PDiscoFormer paper Aniraj et al.
(2024), while the value for the second stage was ablated in Table 5 of our main paper.

Scaling up to larger datasets. For larger datasets such as ImageNet1K Russakovsky et al. (2015), we
adopted optimizations including Automatic Mixed Precision (AMP) Micikevicius et al. (2018) and tempo-
ral averaging using Exponential Moving Average (EMA) Kingma (2015); Morales-Brotons et al. (2024) to
accelerate and stabilize training. By leveraging these optimizations, we were able to double the batch size,
leading to a 3.5× reduction in training time, all while maintaining performance. Additionally, we found that
larger datasets benefited from longer training, prompting us to increase the total number of epochs to 120.

Baseline Training Settings. Wherever possible, we report results from cited papers or evaluate public
weights; otherwise, we re-train baselines using the experimental setup from the original paper.

B Training Time and Inference Speed

We use an input image size of 518 for the CUB Wah et al. (2011), Waterbirds Sagawa et al. (2020), SIIM-
ACR Zawacki et al. (2019) aligning with the default resolution of DINOV2. This higher resolution is
consistent with prior works van der Klis et al. (2023); Aniraj et al. (2024); Saab et al. (2022). For the
MetaShifts Liang et al. (2022) and ImageNet1K datasets, we adopt a reduced input size of 224, resulting in
lower computational requirements.

16



Under review as submission to TMLR

Table 6: Quantitative analysis of the effect of the token removal intervention on part assignment consistency
using keypoint regression (Kp) and foreground discovery (Fg. MIoU) on the OOD Waterbird200 dataset.
K: Number of foreground parts.

Method K Kp ↓ Fg. MIoU ↑ Top-1
Acc. ↑

iFAM
4

10.3 63.7 86.1
q = 97% 8.4 65.2 86.8
q = 99% 9.2 65.9 86.6

iFAM
8

9.3 68.6 86.2
q = 97% 6.7 71.4 86.7
q = 99% 7.3 72.4 86.9

iFAM
16

8.0 70.2 86.2
q = 97% 6.2 72.9 87.3
q = 99% 6.5 73.1 86.9
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Figure 5: Qualitative results for part discovery for the iFAM model (without any ) trained on the CUB
dataset for different values of K, the number of foreground parts.

Training Time. On a machine with 8 NVIDIA A100 GPUs, the training times are as follows: approximately
3 hours for CUB and Waterbirds, 5 hours for SIIM-ACR, 11 minutes for MetaShifts, and 34 hours for
ImageNet-1K (with AMP and EMA optimizations).

Inference Speed. On an RTX 3090, models trained on CUB (input size: 518) run at 43 images/second,
while those trained on MetaShift (input size: 224) reach 151 images/second. These results are reported
without any inference-time optimizations. We believe future work can further improve speed by leveraging
the sparsity of second-stage inputs.
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Figure 6: Qualitative results for part discovery for the iFAM model (without any ) trained on the Waterbirds
dataset for different values of K, the number of foreground parts.

C Quantitative Analysis of Token Removal

In Table 3 of our main paper, we demonstrated that the test-time intervention of OOD/Low-confidence token
removal consistently improves classification accuracy for models trained on CUB when evaluated on the Out-
of-Distribution dataset WaterBird200. Additionally, this technique enhances qualitative foreground object
discovery, as illustrated in Figure 4 of the main paper. In this section, we provide a detailed quantitative
analysis of these results, focusing on the model’s part assignment consistency and foreground discovery
capability under the intervention.

Evaluation Metrics. The CUB dataset provides ground-truth annotations for parts in the form of key-
points, which denote the centroid locations of parts within each image, as well as foreground-background
masks. Since the images in the Waterbird200 dataset are identical to those in CUB, differing only in their
adversarial backgrounds, the CUB annotations can also be used for Waterbird200. We evaluate foreground
discovery using mean Foreground Intersection-over-Union (Fg. mIoU) and part assignment consis-
tency using Keypoint Regression (Kp).

1. Fg mIoU. This metric assesses the model’s ability to identify the foreground region relevant for
downstream classification. We merge all detected foreground parts and compute the IoU between
the merged parts and the ground-truth foreground-background masks from the CUB dataset.

2. Kp. Following Hung et al. (2019), we measure part assignment consistency by deriving landmark
locations through a trained linear regression model. This model maps the 2D geometric centers
of the part assignment maps to their corresponding ground-truth part landmarks. The predicted
landmarks are then compared against ground-truth annotations on the test set, with the evaluation
metric being the normalized mean L2 distance.

Results on Foreground Discovery. The low-confidence token removal technique consistently improves
Foreground MIoU across all values of K on the OOD Waterbird200 dataset (see Tab. 6). However, increasing
the threshold (e.g., q =97%) leads to a slight reduction in MIoU compared to using q =99%. For instance,
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Figure 7: Qualitative results for part discovery for the iFAM model (without any ) trained on the MetaShifts
dataset for different values of K, the number of foreground parts.

at K = 8 (results shown in Figure 4 of the main paper), the baseline model achieves a Foreground MIoU
of 68.6%, which improves to 72.4% with q = 99%, but drops to 71.4% with q = 97%, suggesting that
a stricter confidence threshold may inadvertently remove some foreground regions. Despite this, the drop
in classification accuracy is minimal (from 86.9% to 86.7%), indicating that the model remains robust to
removed foreground regions. Similar trends are observed across other values of K, where q =99% generally
leads to the best Foreground MIoU, while q =97% provides slightly better classification performance.

Results on Part Assignment Consistency. The intervention improves keypoint regression (Kp) values
across all K values, indicating that the centroids of part assignment maps align more closely with ground-
truth annotations. For instance, at K = 16, the Kp value improves from 8% (baseline) to 6.2% ( q =97%),
likely due to the removal of low-confidence tokens near part boundaries, as shown in Fig. 4.

Overall, these results suggest that low-confidence token removal enhances both foreground discovery and
part assignment consistency, with q =99% generally yielding the best Foreground MIoU, while q =97%
slightly improves classification performance.

D Qualitative Results for Part Discovery

To complement the quantitative evaluations in the main paper, we provide additional qualitative results
in Figures 5 to 10. These results demonstrate our model’s ability to discover meaningful parts and accu-
rately identify foreground regions, which are crucial for downstream classification tasks and improving model
interpretability.

Results on CUB and WaterBird. In datasets such as CUB and Waterbird, where all images belong to
a single super-class (birds), the granularity of the discovered parts improves as K increases. The identified
parts generally align well with the foreground regions, as shown in Fig. 5 and Fig. 6.

Results on MetaShifts. For the binary classification task in MetaShifts (Cat vs. Dog), illustrated in
Fig. 7, the model assigns a single part (blue) to both cats and dogs when K = 1. At K = 2, the same part
(orange) is assigned to both classes, while another part (blue) is allocated to objects that frequently co-occur
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Figure 8: Qualitative Results on ImageNet-1K for Birds (without any ) for K = 1.

with these animals in the training set. However, at higher values of K, such as K = 8, the model begins to
identify more non-causal or spurious parts, likely explaining the performance drop observed for this variant
in Table 1-a of the main paper.

Results on ImageNet-1K. Qualitative results on ImageNet-1K for various animal classes, including birds,
cats, dogs, and insects, are shown in Figures 8, 9, and 10 for K = 1. At this setting, the model effectively
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Figure 9: Qualitative Results on ImageNet-1K for Cats and Dogs (without any ) for K = 1.

performs foreground discovery, which appears to generalize well across the 1000 classes of ImageNet. This
observation aligns with our quantitative results on background robustness in Table 1-b of the main paper.
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Figure 10: Qualitative Results on ImageNet-1K for Insects (without any ) for K = 1.
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