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Abstract

Human perception of similarity across uni- and multi-
modal inputs is highly complex, making it challenging to
develop automated metrics that accurately mimic it. While
general-purpose vision-language models (VLMs) like CLIP
and large multi-modal models (LMMs) can serve as zero-
shot perceptual metrics, they are not explicitly trained for
this task. As a result, recent efforts have developed spe-
cialized models for narrow perceptual tasks. However, the
extent to which these metrics align with human perception
remains unclear. To address this, we introduce UniSim-
Bench, a benchmark covering seven multi-modal percep-
tual similarity tasks across 25 datasets. Our evaluation re-
veals that models fine-tuned on a specific dataset struggle
to generalize to unseen datasets within the same task or to
related perceptual tasks. As a first step towards a unified
multi-task perceptual similarity metric, we fine-tune both
encoder-based and generative vision-language models on
a subset of UniSim-Bench tasks. This approach achieves
the highest average performance and, in some cases, sur-
passes task-specific models, showing the viability of a uni-
fied perceptual metric. Moreover, our comparative analy-
sis demonstrates that encoder-based VLMs exhibit superior
generalization capabilities as perceptual metrics.

1. Introduction
Developing automated metrics that replicate human per-
ception of similarity remains a complex and open problem
due to its complex nature. With the rapid advancement of
vision-language models [1, 31, 35, 40, 42], there is a grow-
ing need for metrics capable of evaluating similarity across
multiple modalities. Prior works [12, 19] have shown that
foundation encoder models like CLIP [42] or DINO [7] can
be used as expressive metrics, where the semantic similar-
ity between visual or text inputs is approximated through
the alignment of embedding vectors. Moreover, LMMs
[1, 25, 31] can be prompted to solve perceptual tasks us-
ing natural language. While these models exhibit strong
zero-shot performance on some perceptual tasks, they often
struggle with more fine-grained or complex tasks. There-

fore, specializing encoder-based [28, 36, 43, 44, 50, 51, 56]
and generative models [48, 49, 59] for narrow applications,
e.g., image-to-image similarity or text-image alignment has
become a relevant research direction.

Despite this progress, the extent to which current met-
rics truly capture the human notion of similarity remains
unclear. We argue that for an effective investigation, the
various perceptual tasks—often studied separately in pre-
vious works—should be considered as a unified whole. In
fact, they represent distinct but interconnected facets of hu-
man perception, and therefore, a unified framework is es-
sential to holistically evaluate and develop more compre-
hensive perceptual metrics. As a first step, we introduce
UniSim-Bench, a benchmark integrating 7 widely used uni-
and multi-modal perceptual tasks (illustrated in Fig. 3 and
Fig. 4), encompassing 25 datasets, in a single framework.
Our evaluation on UniSim-Bench reveals significant limi-
tations of current perceptual metrics. We observe limited
intra-task generalization, where models fine-tuned on a
specific dataset often struggle to generalize to other datasets
within the same task. Additionally, there is poor inter-task
generalization, i.e., the good performance specialized met-
rics does not transfer to strongly correlated tasks (Fig. 1).
These weaknesses highlight the gaps of the current model
in capturing human perception and limit their applicability.

To address these limitations, we propose UniSim, a fam-
ily of unified multi-task perceptual models. We fine-tune
both CLIP [42] and LLaVA-NeXT [31] on multiple percep-
tual datasets using tailored multi-task learning approaches.
The UniSim models achieve higher average accuracy across
tasks than the baselines and exhibit generalization to left-
out datasets within each task, showing the viability of a
unified perceptual metric. Together, UniSim-Bench and
UniSim open the way towards understanding the challenges
of learning automated metrics that broadly mimic human
perceptual similarity, beyond narrow, specific tasks.

2. Towards a Unified Framework for Multi-
Modal Perceptual Similarity Tasks

We here introduce our unified framework for benchmarking
and developing perceptual similarity metrics.
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Figure 1. Correlation maps of model performance across tasks.
(a) General-purpose models exhibit good correlations across core
2AFC tasks. (b) With specialized models correlation is weak or
negative suggesting overfitting to their narrow tasks.

2.1. Multi-modal perceptual similarity tasks

Image-to-Image Similarity ( Img-2AFC ). Each data
point consists of a triplet (xref,x1,x2), and one has to
decide which of two images x1,x2 is more similar to the
reference image xref. The BAPPS [55] and PIEAPP [41]
and NIGHTS [12] datasets are employed for this task.

Image-to-Text Alignment ( IT-2AFC ). Each sample
(tref,x1,x2) consists of a prompt tref, two images x1,x2

and the label indicating the more aligned image. We use the
IMAGEREWARD [51], HPDV2 [50], and AGIQA-3K [29]
datasets. Moreover, we adapt the MAGICBRUSH [54] and
HQ-EDIT [24] datasets from instruction-guided image
editing to the IT-2AFC task.

Text-to-Image Alignment ( Text-2AFC ). Assessing the
quality and specificity of generated captions for a given im-
age is essential for ensuring accurate and meaningful text
generation. The Text-2AFC task can be seen as the re-
verse of IT-2AFC, where the goal is to select the text t1
or t2 that better describes the reference image xref. We
use three datasets: POLARIS [44], CD-COCO [4] (based on
MS-COCO [34]) and HQ-EDIT [24].

Image Quality Assessment ( IQA ). In this well-
established task, one has to determine which of two
images x1,x2 has higher quality. The KADID-10K dataset
[33], KONIQ-10K [21], PIEAPP [41], AGIQA-3K [29] and
PIPAL [26] are included.

Perceptual Attributes Assessment ( PAA ). Here, we
evaluate perceptual attributes of the image including
brightness, colorfulness, contrast, and sharpness. We use
the KONIQ-10K [21] dataset for all attributes and the
SICE [6] dataset for brightness.

Odd-One-Out ( OOO ). Given a triplet of images
(x1,x2,x3), the task consists of finding the one that does
not belong with the others—that is, the most dissimilar
image. We use CIFAR-100-OOO [38] derived from the
coarse CIFAR-100 classes and follow a similar approach to

obtain IMAGENET-OOO.

Image-to-Image Retrieval ( IR ). Unlike the previous
tasks, retrieval involves ranking the entire pool of images
rather than choosing between 2-3 alternatives. We employ
the ROXFORD and RPARIS datasets [39] for this task.

2.2. UniSim-Bench: an open-ended multi-modal
perceptual similarity benchmark

Building on the multi-modal perceptual tasks from Sec. 2.1,
we now present our unified framework UniSim-Bench.

Composition. We split the tasks from Sec. 2.1 into two
groups: the first consists of the Core 2AFC Tasks—Img-
2AFC, IT-2AFC, Text-2AFC, and IQA—which form a di-
verse set of complementary tasks to evaluate different as-
pects of perceptual similarity. The second group consists of
the OOD Generalization Tasks, including PAA, OOO, and
IR, which capture more peripheral yet important aspects of
perception. Together, the two splits form UniSim-Bench,
which includes 7 tasks and 25 datasets (details in App. B).

Correlation between tasks. To better understand the re-
lationship among tasks in UniSim-Bench, we compute
Kendall’s τ correlation between the performance of ex-
isting perceptual metrics across task pairs. Fig. 1 illus-
trates the correlation maps among general-purpose mod-
els (Fig. 1a) and specialized models fine-tuned for specific
tasks (Fig. 1b). General-purpose models exhibit positive
correlation values across Core 2AFC Tasks, which, how-
ever, become very weak or even negative for the specialized
models. This underscores the necessity of a unified metric
that encompasses all of them.

2.3. UniSim: a family of multi-task perceptual sim-
ilarity metrics

UniSim training data. UniSim is trained on a subset of
datasets from the core tasks of UniSim-Bench, as de-
tailed in App. B, while the OOD Generalization Tasks
are entirely excluded from training. Additionally, cer-
tain datasets from the Core 2AFC Tasks (i.e., BAPPS, IM-
AGEREWARD, AGIQA-3K, CD-COCO, KONIQ-10K) are
deliberately withheld for evaluating generalization. While
Core 2AFC Tasks vary in structure, we have standardized
them into a 2AFC format where each data point is a triplet
(zref, z0, z1) consisting of text prompts or images, with a
reference item zref and two alternatives z0, z1, as well as a
label y ∈ {0, 1} indicating which alternative is more similar
to the reference.1

CLIP-based UniSim. To fine-tune a CLIP model to solve
the binary classification problem, we optimize the hinge

1For IQA we use the prompt ‘‘A high quality photo.’’ as
reference to complete the triplet



Table 1. Evaluation on the Core 2AFC Tasks of UniSim-Bench. We provide a comparative analysis of general-purpose, specialized, and
UniSim models on the first section of UniSim-Bench. LMM-based models are distinguished with the ♣ symbol, while models highlighted
with color are specialized in individual tasks (e.g., DS is specialized for the Img-2AFC task). Additionally, the datasets used for training
each model are indicated as superscripts next to their names.
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General-purpose models

CLIP ViT-L/14 81.5 64.2 76.1 73.9 63.1 65.8 62.9 78.2 84.7 70.9 75.0 82.0 83.6 80.2 84.1 69.1 90.5 77.7 88.8 82.0 76.8
CLIP ViT-H/14 84.0 69.0 76.8 76.6 63.3 65.5 65.1 76.5 86.5 71.4 66.4 81.8 85.6 77.9 67.0 61.1 72.0 65.7 67.5 66.7 73.1
LLaVA-NeXT-0.5B♣ 57.1 52.8 63.0 57.6 61.3 76.6 65.2 64.4 75.1 68.5 53.7 71.6 57.9 61.1 53.6 52.7 55.1 57.5 50.8 53.9 60.3
LLaVA-NeXT-7B♣ 91.3 67.0 79.9 79.4 71.5 76.1 68.5 72.7 86.5 75.1 59.6 79.4 80.0 73.0 64.1 79.2 83.6 79.7 80.9 77.5 76.2
Qwen2-VL-7B♣ 88.0 58.5 73.2 73.2 54.6 39.0 49.7 58.0 50.0 50.3 50.3 50.4 50.0 50.2 63.4 61.7 56.1 49.0 58.1 57.7 57.8
InternVL2.5-8B♣ 85.4 56.2 69.2 70.3 68.0 69.2 68.1 82.0 87.3 74.9 65.6 81.5 87.9 78.3 70.0 68.7 66.9 72.3 69.6 69.5 73.3

Specialized models

DS(1) ViT-B/32 95.3 73.3 88.5 85.7 63.1 62.0 64.4 68.8 79.8 67.6 61.3 75.6 84.1 73.7 70.1 58.0 78.4 67.1 72.7 69.2 74.1
IR(3) BLIP 87.1 66.1 77.6 76.9 74.3 74.5 72.4 74.3 83.5 75.8 54.2 72.2 85.4 70.6 62.3 58.0 75.1 74.8 60.1 66.1 72.3
HPSv2(4) ViT-H/14 78.5 66.7 70.8 72.0 73.8 83.5 72.6 74.9 81.2 77.2 68.2 78.1 81.5 75.9 67.0 63.6 68.9 65.4 73.5 67.7 73.2
PAC-S ViT-L/14 86.9 69.1 78.1 78.0 65.0 67.0 65.8 75.6 86.9 72.1 60.5 77.6 85.6 74.6 75.0 56.5 86.1 70.0 83.2 74.2 74.7
LIQE(5,6) ViT-B/32 77.9 68.7 76.6 74.4 61.9 67.3 64.1 59.9 78.3 66.3 63.5 78.2 81.0 74.2 92.4 87.9 98.2 76.7 86.0 88.2 75.8

Our models(†)

UniSim ViT-B/32 87.7 69.9 84.6 80.7 70.4 74.5 71.7 78.1 84.1 75.8 91.2 94.2 85.6 90.3 89.9 72.0 93.6 77.3 93.4 85.3 83.0
UniSim ViT-L/14 90.7 68.1 85.0 81.3 69.4 82.3 71.3 91.8 86.0 80.2 94.2 96.1 88.3 92.9 94.7 71.8 98.9 80.2 89.2 87.0 85.3
UniSim♣ LL-N-0.5B 89.8 70.0 85.3 81.7 69.2 80.7 66.7 90.8 92.7 80.0 75.4 99.9 89.2 88.2 94.3 77.6 97.0 80.6 89.8 87.9 84.4

loss, as in earlier methods [36]

L(zref, z0, z1, y, ϕ, ψ) = max{0, (2y − 1)·
(simϕ,ψ(zref, z0)− simϕ,ψ(zref, z1)) + µ},

(1)

where simϕ,ψ is the similarity function induced by the
CLIP model (with encoders ϕ, ψ, see Sec. A.2), and µ ≥ 0
a margin to ensure confident predictions. We fine-tune
only the image encoder ϕ, i.e., the text encoder ψ is
frozen. We concatenate the datasets belonging to the same
task and denote the i-th data sample for the t-th tasks as
(z

(t,i)
ref , z

(t,i)
0 , z

(t,i)
1 , y(t,i)), getting the training objective

min
ϕ

4∑
t=1

n∑
i=1

L(z(t,i)
ref , z

(t,i)
0 , z

(t,i)
1 , y(t,i), ϕ, ψ) (2)

where, in practice, we replace n (the entire dataset) with the
batch size used for training. This approach ensures that the
number of samples seen is balanced across tasks, regardless
of the dataset size. Following [10, 36] we use LoRA [22]
for efficient fine-tuning while mitigating overfitting. We ap-
ply this approach to the CLIP model with ViT-B/32 (from
the OpenCLIP library [9]) and ViT-L/14 [42].

LMM-based UniSim. For the LMM-based version of our
perceptual metric, we fine-tune the LLaVA-NeXT-0.5B
model [31], as it has shown advanced capability to handle
multi-image inputs and image-text interleaved formats. For
the training, we leverage the instruction fine-tuning mecha-
nism of LLaVA-NeXT-0.5B and to mitigate the risk of over-
fitting to specific structural patterns 1) we design a variety
of templates for both instructions and answers, and 2) we
combine the Multi-image (500K) part of M4-Instruct [31]
dataset with our perceptual dataset (842K).

3. Evaluation on UniSim-Bench
Next, we use UniSim-Bench for a comprehensive analysis
of general-purpose, specialized, and our UniSim models.

3.1. Evaluation on Core 2AFC Tasks

Intra-task generalization. Among the three tiers of gen-
eralization we evaluate, the standard training-test set gen-
eralization is typically achieved by all specialized models
and UniSim. However, intra-task generalization—where
models are tested on unseen datasets within their training
tasks—poses a significant challenge for most specialized
models. For instance, both HPSv2 and ImageReward (IT-



Table 2. Evaluation on the OOD Generalization Tasks of
UniSim-Bench. The average performance on these unseen tasks
(last column) is lower for both specialized perceptual models and
our multi-task models compared to the general-purpose baselines.

Models PAA OOO IR Avg

General-purpose models

CLIP ViT-L/14 66.8 65.8 45.5 59.4
CLIP ViT-H/14 68.2 70.3 50.2 62.9
LLaVA NeXT-0.5B♣ 63.0 33.0 - -
LLaVA NeXT-7B♣ 67.8 60.4 - -
Qwen2-VL-7B♣ 59.1 49.7 - -
InternVL2.5-8B♣ 60.7 53.5 - -

Specialized models

DreamSim ViT-B/32 70.7 61.4 38.0 56.6
ImageReward BLIP 65.1 70.2 41.7 59.0
HPSv2 ViT-H/14 67.9 56.4 36.4 53.6
PAC-S ViT-L/14 65.8 71.2 48.0 61.6
LIQE ViT-B/32 71.0 60.1 18.8 49.9

Our models

UniSim ViT-B/32 72.9 61.9 34.2 56.3
UniSim ViT-L/14 67.6 53.7 25.1 48.8
UniSim♣ LL-N-0.5B 64.8 24.2 - -

2AFC specialists) perform worse than the generalist base-
lines on HQ-EDIT, highlighting that existing approaches
still struggle with intra-task generalization. Conversely, the
UniSim models successfully generalize to the intra-tasks
datasets and outperform the baseline on the left-out datasets,
sometimes of a large margin e.g., on CD-COCO.

Inter-task generalization. Table 1 indicates that models
specialized for a single perceptual task often suffer perfor-
mance degradation on tasks outside their training domain
(see also Fig. 3). This is likely due to overfitting to the nar-
row perceptual task, and fine-tuning on a vision-only task
may adversely impact image-text alignment. For instance,
HPSv2, specialized for IT-2AFC, underperforms compared
to the baseline (CLIP with ViT-H/14) on Text-2AFC, high-
lighting a lack of generalization even across closely related
tasks. In contrast, UniSim consistently ranks as the first
or second best across nearly all tasks and achieves the best
average performance demonstrating the feasibility of a uni-
fied multi-modal metric that can effectively handle diverse,
widely-used tasks.
3.2. Evaluation on OOD Generalization Tasks

Table 2 reports the results on the OOD Generalization Tasks
of the models from Table 1 (average accuracy over datasets
is shown, detailed results in App. C). The average perfor-
mance on these unseen tasks (last column) is lower for
perceptual models (both specialized and multi-task) com-

2 3 4 5 6 7 8
#Images

0

20

40

60

80

Ac
cu

ra
cy

 (%
) 16.5

2.4

26.2
2.3 31.5

11.5
34.0

8.4

33.8

6.4

32.4

4.1

32.8

4.3

CLIP ViT-L/14
UniSim ViT-L/14
LLaVA-NeXT-0.5B
UniSim LL-N-0.5B

Figure 2. Increasing the alternatives in Image-to-Text Align-
ment task. We report accuracy as the number of alternative im-
ages increases in the IT-2AFC (HPDV2 dataset). Both UniSim
models preserve higher accuracy than the respective baselines (the
gap is highlighted in the plot) as the number of alternatives grows.

pared to the general-purpose baselines. However, for per-
ceptual attributes assessment (PAA), specialized models of-
ten achieve accuracy close to or slightly exceeding that of
the baselines. For example, all UniSim models outperform
their baseline models from which they are fine-tuned. Un-
like for the core tasks (Table 1), the performance of LMMs
is generally worse than with CLIP models, demonstrating
stronger generalization capabilities than LMMs.

3.3. Additional Analyses

From 2AFC to NAFC in Image-to-Text Alignment task.
We analyze the effect of increasing, at test time, the num-
ber of alternative images in IT-2AFC (HPDV2 dataset)
from 2 to N (we recall the core tasks in UniSim-Bench
are 2AFC). Fig. 2 shows the accuracy of CLIP and
LLaVA-based UniSim, and the corresponding baselines,
for N = 2, . . . , 8. The UniSim models outperform their
base models: CLIP-based UniSim maintains nearly 50%
accuracy at N = 8, three times higher than CLIP. Finally,
encoder models significantly outperform LMMs, highlight-
ing a current limitation of LMM-based approaches.

4. Conclusion

To advance comprehensive multi-task perceptual modeling,
we introduce UniSim-Bench, a benchmark integrating core
multi-modal 2AFC perceptual tasks and out-of-distribution
generalization tests. Our evaluation shows that single-task
metrics often underperform general-purpose models (e.g.,
CLIP) on unseen datasets/tasks, as they overfit to training
data, limiting generalization—even to closely related tasks.
Additionally, while recent perceptual metrics increasingly
rely on generative VLMs, our findings reveal that these
models generalize worse than encoder-based VLMs due to
structural overfitting. These generalization challenges un-
derscore the need for more robust multi-modal similarity
metrics, and our multi-task UniSim models take a first step
toward capturing human perception more comprehensively.
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A. Related Work
A.1. Perceptual similarity tasks

Learning to assess the similarity between data items in a
way that aligns with human perception has long been a core
challenge in computer vision and machine learning. Tradi-
tional perceptual metrics often focused on uni-modal tasks,
e.g., assessing image-to-image similarity [12, 55] or quality
in denoising and compression contexts [46, 56]. Recent ad-
vances in generative and multi-modal AI call however for
perceptual metrics addressing cross-modal consistency, as
they are used for training and evaluating text-to-image gen-
erative models [50, 51], captioning models [31, 32], and the
perceptual capabilities of multi-modal LLMs [25, 31]. De-
spite shared goals, prior work has generally treated these
perceptual tasks as isolated problems, and developed dis-
tinct approaches. To fill this gap, we propose a unified
framework that enables consistent evaluations of existing
metrics and the development of generalized perceptual sim-
ilarity metrics across uni- and multi-modal domains.

Image-to-Image Similarity Metrics. Recent perceptual
metrics have increasingly leveraged deep neural networks to
produce data representations, enabling comparisons in the
embedding space through measures such as ℓp-norms and
cosine similarity [10, 36, 55]. For image-to-image compar-
isons, earlier approaches [14, 55] utilized the CNN back-
bones of image classifiers as vision encoders. In contrast,
more recent methods [10, 36] exploit modern vision foun-
dation models [7, 9, 42], which are trained on vast datasets
containing hundreds of millions to billions of samples, to
extract highly generalizable visual representations. Addi-
tionally, alternative backbones have been explored for vi-
sual representation, such as LipSim [16], which employs
Lipschitz networks to enhance robustness against adversar-
ial attacks, and MAE [18], which leverages autoencoders to
generate representations.

Image-to-Text Alignment. With the rise of generative
models capable of producing images from textual prompts,
there has been an increasing demand for robust multi-modal
metrics that can effectively evaluate the alignment between
the input prompt and the generated image. CLIP-score [19]
and BLIP-score [32] are strong candidates for this task, as
their vision and text encoders are specifically trained to pro-
duce representations that are aligned. However, the primary
challenge is that the scores generated by these models are
not well aligned with human preference. To address this
issue, recent metrics [50, 51] focus on aligning model eval-
uations with human preferences. These approaches involve
collecting datasets that reflect human judgments by present-
ing prompts alongside pairs of synthetic images and ask-
ing participants to select the image that best aligns with the

given prompt. Using this data, ImageReward [51] fine-tunes
a BLIP model, while HPSv2 [50] fine-tunes a CLIP model,
ensuring their outputs are better aligned with human prefer-
ences.

Text-to-Image Alignment. Evaluating the correctness
and comprehensiveness of generated captions for images is
crucial in the evaluation of vision-language models. Simi-
lar to image-to-text alignment, the CLIP-score [19] is lever-
aged for this task. However, the CLIP model is suboptimal
for evaluation metrics because its training data lacks the
richness and descriptiveness necessary for evaluating gen-
erated long captions as investigated by [43]. To address this
issue, Sarto et al. [43] leverage contrastive learning with
augmented positive samples to improve the alignment be-
tween captions and visual content on the CLIP architecture.
Moreover, Polos [44] proposes a framework for developing
metrics based on human feedback and by leveraging pre-
trained CLIP and RoBERTa [37] as the encoders. Note that
Polos is excluded from our evaluations because it requires
an additional text reference, beyond the image-caption pair,
to effectively assess the alignment between the caption and
the image.

Image Quality Assessment (IQA). With the increasing
demand from applications such as super-resolution, de-
noising, and generative models, the development of ad-
vanced IQA methods has gained significant momentum. In
this context, foundation models have emerged as the pre-
ferred alternative to traditional techniques. Again, vision-
language models like CLIP have been effectively employed
to compare the visual representations of an image against
text prompts describing quality attributes, such as ‘‘A
high-quality photo.’’. From then new variants
of CLIP have been introduced that provide specific se-
tups for training and inference. Recent successful ap-
proaches include CLIP-IQA [46], which introduces an in-
novative prompt pairing strategy. This method assesses im-
age quality by utilizing the relative distance between the
image and two contrasting prompts: ‘‘Good photo.’’
and ‘‘Bad photo.’’. Moreover, LIQE [56] proposes
a framework for training IQA task along with auxiliary
tasks such as scene classification and distortion type identi-
fication to enhance the model’s generalization. Addition-
ally, LMMs have been employed for IQA. Notably, Liu
et al. [37], Wu et al. [49], Zhu et al. [59] utilize mPLUG-
Owl2[52] as their base model, fine-tuning it further on IQA
datasets. While mPLUG-Owl2 operates as a single-image
LMM, our proposed model harnesses the capabilities of
multi-image LMMs, which are better suited for perceptual
tasks involving multiple images.



Img-2AFC

Which image is more similar to the reference?

Text-2AFC

Which caption better describes the image?

A: a brightly colored parrot perched on a 
tree branch with a clear blue sky and the 
sun setting in the background

B: a brightly colored parrot perched on a 
tree branch against a starry night sky with 
enhanced vibrant colors

IQA

Which image has
higher quality?

IT-2AFC

Which image better reflects the prompt?

Prompt: an expansive view of a futuristic containment 
building in a forested valley and snow…

Figure 3. Summary of our UniSim framework. (1) We unify existing multi-modal perceptual similarity tasks into a single comprehensive
benchmark UniSim-Bench (whose Core 2AFC Tasks are illustrated in the top row). (2) We show that models specialized in individual tasks
(e.g., DreamSim [12], HPSv2 [50], PAC-S [43], LIQE [56]) do not generalize well to both unseen perceptual tasks and unseen datasets
within the same task, even with worse accuracy than CLIP [42]. (3) We introduce our multi-task perceptual metric UniSim which surpasses
the baseline CLIP model and has superior or competitive performance across tasks compared to the specialized models.

A.2. Foundation models as perceptual metrics

Encoder models. Replacing raw data with deep features
extracted from pre-trained neural networks has become the
standard in perceptual metrics. These learned representa-
tions can better capture human-perceived similarity com-
pared to traditional metrics, and are used in tasks like
image-to-image similarity [10, 36, 55], text-image align-
ment [19, 28, 43, 44, 51], image quality assessment [50, 56].
Foundation models like CLIP [42] and BLIP [32] have
been the basis for many of these metrics. Specifically,
CLIP consists of an image encoder, ϕ : I → RD, and
a text encoder ψ : T → RD, which project data from
different modalities into a shared D-dimensional latent
space. Using contrastive learning, CLIP aligns the em-
beddings of image-text pairs with their corresponding se-
mantic meanings within this latent space. The similarity
between inputs can be then quantified by the cosine sim-
ilarity of their embedding vectors. For instance, given
a caption t ∈ T and two images x1,x2 ∈ I , a CLIP
model can determine which image better aligns with the
caption by solving: argmaxz∈{x1,x2} simϕ,ψ(z, t), where

simϕ,ψ(z, t) =
〈

ϕ(z)
∥ϕ(z)∥2

, ψ(t)
∥ψ(t)∥2

〉
is the generic similar-

ity function that uses the CLIP encoders ϕ, ψ to measure
the similarity of the items of any input pair (in this case an
image-text pair). Encoder models have the advantage of as-
sociating each input with a single feature vector, allowing
reuse for multiple comparisons.

Generative models. Recently, large multi-modal models
(LMMs) have made significant progress [8, 15, 35, 47, 52],
achieving strong capabilities in multi-image understanding
and reasoning [25, 31, 52]. This makes LMMs promising
alternatives to traditional encoders as perceptual metrics.
A generalist LMM can be easily adapted to specific
perceptual tasks using prompting. In the example above,
one could query ‘‘Image A: <x1>, Image B:
<x2>. Which image is better described
by <t>?’’. This approach offers greater flexibility than
encoder models, leveraging the extensive training and scale
of these LMMs. However, a key drawback is the challenge
of scaling LMMs to tasks involving many text prompts or
images, such as image-to-image retrieval. In addition to
generalist models [25, 31], some works have specialized
LMMs for specific perceptual tasks, often focusing on
single-image evaluations, such as image quality assessment
[48, 49, 59], and image aesthetics evaluation [23].

A.3. Benchmarks

Several benchmarks have been recently developed to eval-
uate the perceptual and multi-modal understanding capa-
bilities of vision-language models. BLINK [13] covers 14
visual perception tasks, but includes only a single dataset
for image-to-image similarity. MUIRBENCH [45] assesses
12 multi-image understanding tasks, with one about image-
text alignment. Also about image-text similarity, several
benchmarks [27, 29, 30, 57] offer comprehensive frame-



OOO

Which is the odd-one-out image in the triplet?
PAA

Which image is better  
described by the attribute?

Perceptual attribute: colorfulness

IR
Which images show the same 

subject as the query?

Figure 4. OOD Generalization Tasks in UniSim-Bench. We il-
lustrate samples from the three tasks not used for training, but to
evaluate the model’s generalization capabilities.

works for evaluating text-to-image generative models. In
visual quality analysis, Q-Bench, Q-Bench+ [48], 2AFC-
LMM [58], and MICBench [49] assess a wide range of vi-
sual attributes, including low-level perception, detailed de-
scription, and overall quality. While each of these bench-
marks addresses some particular facets of perceptual eval-
uation, they often focus on reasoning and understanding
tasks. This underscores further the need for a comprehen-
sive benchmark to assess the perception capabilities of auto-
mated metrics across all aspects of multi-modal similarity.

B. Details on UniSim Framework

In this section, we detail first the various components of the
UniSim framework starting with an overview of UniSim-
Bench, then the UniSim training process.

B.1. Perceptual Tasks & Datasets in UniSim-Bench

In the following, each paragraph is dedicated to a specific
perceptual task covered in UniSim-Bench and its associated
datasets (also summarized in Table 3), and complements the
descriptions in Sec. 2.1.

Image-to-Image Similarity ( Img-2AFC ). In this task,
each data point consists of a triplet (xref,x1,x2), and one
has to decide which of two images x1,x2 is most similar
to the reference image xref. The BAPPS dataset [55] con-
tains patches of real images perturbed with different cor-
ruptions, and compares their similarity to the original im-
ages: this was used to tune the LPIPS metric. A similar
approach is used to build PIEAPP [41], where many distor-
tion are applied natural images. Conversely, NIGHTS [12]
includes high resolution synthetic images, and aims at cap-
turing similarity in terms of pose, perspective, foreground
color, number of items, and object shape. All datasets con-

Task Dataset
UniSim
trains on

Test
samples

Core 2AFC Tasks

Img-2AFC
NIGHTS [12] ✓ 1824
BAPPS [55] ✗ 5K
PIEAPP [41] ✓ 3314

IT-2AFC

IMAGEREWARD [51] ✗ 412
HPDV2 [50] ✓ 5K
AGIQA-3K [29] ✗ 5K
MAGICBRUSH [54] ✓ 693
HQ-EDIT [24] ✓ 2K

Text-2AFC
CD-COCO [4] ✗ 780
POLARIS [44] ✓ 5K
HQ-EDIT [24] ✓ 2K

IQA

KADID-10K [33] ✓ 5K
KONIQ-10K [21] ✗ 5K
PIEAPP [41] ✓ 5K
AGIQA-3K [29] ✗ 5K
PIPAL [26] ✓ 3025

OOD Generalization Tasks

PAA
SICE [6] ✗ 2151
KONIQ-10K [21] ✗ 4 x 5K

OOO
CIFAR-100-OOO [38] ✗ 5K
IMAGENET-OOO ✗ 5K

IR
ROXFORD [39] ✗ 70
RPARIS [39] ✗ 70

Total 88K

Table 3. Composition of UniSim-Bench. We details the datasets
used to evaluate each task in our benchmark, as well as whether
they are used to train our UniSim models.

tain labels describing the human preference over the alter-
native images.

Image-to-Text Alignment ( IT-2AFC ). Perceptual met-
rics are utilized to assess the quality of synthetic images
produced by text-to-image generative models [17, 20], eval-
uating both the overall image quality and the alignment be-
tween the provided description and the generated image, en-
suring that all relevant details are accurately captured. To
achieve this, the IMAGEREWARD [51] dataset was curated,
comprising six synthetic images for each prompt, with a
total of 412 prompts in the test set which are then ranked
by experts to capture human preferences for text-to-image
generation. For each prompt, we compare the images with
highest and lowest rank, to have confident ground-truth la-
bels. Additionally, the HPDV2 dataset [50] was introduced
as a large-scale collection aimed at capturing human prefer-
ences across a wide variety of image sources. It comprises
798,090 human preference annotations across 433,760 im-
age pairs, making it one of the largest datasets of its kind.
The test set samples consist of a prompt, multiple images,



and ranks indicating the alignment of each image with the
prompt. Following the IT-2AFC setting, two images are
randomly selected, and the label is assigned based on their
respective rankings. Another dataset utilized in this area
is called AGIQA-3K [29], designed to evaluate the subjec-
tive quality of AI-generated images. It provides subjective
scores for two key aspects: perceptual quality, which as-
sesses the overall visual appeal and realism of the images,
and text-to-image alignment, which evaluates how well the
generated image corresponds to the given textual descrip-
tion. For our benchmark, we first filter out images with low
perceptual quality scores. Then, two images are randomly
selected and labeled based on the alignment score to form
a IT-2AFC sample. The area of instruction-guided image
editing features datasets in a structured format, compris-
ing source images, textual instructions, and target images.
These datasets naturally align with the IT-2AFC task, as ba-
sically, the instruction is a description of the target image.
Consequently, we have utilized the MAGICBRUSH [54] and
HQ-EDIT [24] from this literature to capitalize on their de-
tailed annotations and structured triplets. HQ-EDIT pro-
vides textual descriptions for both the source and target im-
ages. Consequently, each sample effectively becomes two
distinct samples by utilizing one description at a time and
swapping the label accordingly.

Text-to-Image Alignment ( Text-2AFC ). The majority
of the literature on perceptual metrics has concentrated
on evaluating the quality and alignment of synthetic im-
ages produced by generative models. However, the reverse
task—where an image serves as the input and text is gen-
erated as the output—is equally significant. Assessing the
quality and specificity of generated captions is essential for
ensuring accurate and meaningful text generation. To ad-
dress this gap, we incorporate the Text-2AFC task, as one of
the important tasks for multi-modal perceptual metrics. For
this task, we utilize three datasets including POLARIS [44],
CD-COCO [4] and HQ-EDIT [24]. The POLARIS dataset
consists of 131,020 generated captions and 262,040 refer-
ence captions, with human evaluations gathered from 550
participants. Each sample includes an image, a reference
caption, and generated captions that received a score of 0.5
or lower. The CD-COCO [4] benchmark utilizes the MS-
COCO [34] dataset and generates multiple captions for each
image using advanced captioning models and by fusing the
top two captions richer, more descriptive captions are cre-
ated. We utilize 1,000 samples that have human annota-
tions and prune the ones with negative votes and by pairing
them with five original captions of MS-COCO data, we cre-
ate a total of 780 paired samples for evaluations. Finally,
the HQ-EDIT dataset, introduced in the previous section, is
particularly well-suited for this task as it provides detailed
descriptions for both source and target images. Each sam-

ple in the Text-2AFC task comprises either a combination
of the source image, source description, and target descrip-
tion or the target image paired with the source and target
descriptions.

Image Quality Assessment ( IQA ). This is an estab-
lished task where one has to determine which of two im-
ages x1,x2 has higher quality. While there exist works
focusing on no-reference quality assessment, i.e., an abso-
lute score, we here restrict our evaluation to pairwise com-
parison. The KADID-10K dataset [33] contains artificially
corrupted images with varying levels of severity. Each cor-
rupted image corresponds to a specific reference image. To
generate a single sample for IQA, we randomly select an
image from the dataset and pair it with another image that
represents the next severity level of corruption. Similarly,
the KONIQ-10K dataset consists of a pool of images with
authentic distortions, from which two images are randomly
selected to form a sample Additionally, the PIEAPP dataset
can be leveraged by comparing original images with their
corresponding corrupted versions. As previously discussed,
the AGIQA-3K dataset provides both a perceptual quality
score and an image-text alignment score, making it an ex-
cellent resource for evaluating the Image Quality Assess-
ment (IQA) by utilizing the the perceptual quality score.
Another dataset for IQA is the PIPAL [26] dataset com-
prising 29,000 images, including 250 high-quality reference
images, each subjected to 116 types of distortions. To en-
sure reliable subjective quality scores, the dataset includes
over 1.13 million human judgments for annotation.

Perceptual Attributes Assessment ( PAA ). This task
refers to the evaluation of specific visual characteristics or
qualities of the image that directly influence how it is per-
ceived by humans. These attributes are subjective and in-
volve measuring various aspects of the image’s appearance
that contribute to its overall visual quality. More specifically
the perceptual attributes included in our work consist of
brightness (the perceived level of light or luminance in the
image), colorfulness (the intensity or vibrancy of the colors
in the image), contrast (the degree of difference between
the darkest and lightest parts of the image) and sharpness
(the clarity or focus of details in the image). For brightness
evaluation, we utilize the SICE [6] dataset, while for other
attributes, including brightness, we leverage the KONIQ-
10K [21] dataset. More specifically, both datasets contain a
pool of images with varying levels of the associated percep-
tual attribute. To create a sample, two images are randomly
selected from the pool, and the label is assigned to the im-
age with the higher perceptual attribute level.



Table 4. Overview of UniSim training data. We report the com-
position of the dataset used for fine-tuning the UniSim models.
The number of samples refers to the total contained in the datasets,
but might differ from what effectively seen during training by the
UniSim models (for example we balance the number of samples
from each task while fine-tuning CLIP).

Task Dataset Type Training
samples

Img-2AFC NIGHTS [12] Synthetic 15.9K
PIEAPP [41] Realistic 50.5K

IT-2AFC
HPDV2 [50]

Synthetic
645.1K

MAGICBRUSH [54] 11.5K
HQ-EDIT [24] 100K

Text-2AFC
POLARIS [44] Realistic 245.9K
HQ-EDIT [24] Synthetic 100K

IQA
KADID-10K [33]

Realistic
9.1K

PIEAPP [41] 50.5K
PIPAL [26] 73.7K

Total 1.3M

Odd-One-Out ( OOO ). Given a triplet of images, the
task consists in finding the one that does not belong
with the others, that is the most dissimilar one. We use
the dataset derived by [38] from the coarse CIFAR-100
classes, named CIFAR-100-OOO. Moreover, we follow a
similar approach to obtain IMAGENET-OOO: we create
6 macro-classes (aquatic animals, terrestrial
animals, clothes, transportations, places,
musical instruments) merging a subset of the IM-
AGENET-1k classes: in this way we get sufficiently seman-
tically separated classes but with enough intra-class diver-
sity so that the tasks is not trivial. Then, for each triplet
we sample two images from a macro-class and one from
another, which is the ground-truth odd-one-out image. We
name this dataset IMAGENET-OOO.

Image Retrieval ( IR ). Perceptual metrics have long
been employed to identify the closest matches to a
query image within a database of images. In this work
we employ the revisited versions of Oxford and Paris
datasets [39]. Both datasets offer three evaluation protocols
(easy, medium, hard) to assess performance across varying
difficulty levels. ROXFORD contains around 5,000 images
in the retrieval pool, while RPARIS includes around 6,000
images, and each use 70 query images. For our evaluations,
we report the average accuracy on the medium and hard dif-
ficulty levels.

Discussion. In designing our benchmark, we aimed to
capture a wide range of perceptual similarity tasks to en-
able a comprehensive evaluation of existing automated met-
rics. While this set, to the best of our knowledge, forms

the broadest benchmark currently available for the topic, we
consider it an open-ended effort. Future expansions could
include additional applications of perceptual similarity met-
rics and higher-quality datasets for existing tasks. Despite
potential limitations, we believe our benchmark provides
valuable insights into the shortcomings of current metrics
and offers a foundation for the development of more robust
metrics across diverse modalities and applications, as ex-
plored in the following sections.

B.2. UniSim Training

In this section, we present the implementation details of our
proposed perceptual metrics, UniSim-CLIP and UniSim-
LL-N, which are based on encoder and generative multi-
modal models, respectively.

UniSim-CLIP: Encoder-based Perceptual Metric. For
the training of UniSim-CLIP, we experiment with differ-
ent versions of CLIP, including ViT-B/32 and ViT-L/14
(336x336 input resolution), which vary in patch size, model
size and image resolution. For the training data, the datasets
presented in Table 4 are utilized. To ensure a balanced
number of samples across tasks, we randomly select 400K
samples from each task, resulting in a total of 1.6M sam-
ples for training. To ensure consistency, a unified train-
ing configuration is employed across all versions, includ-
ing the use of hinge loss with a margin of 0.05, a batch
size of 32, only one epoch with a maximum learning rate
of 5 × 10−6, a weight decay of 0.35, and a warm-up pe-
riod of 500 steps, following a cosine learning rate schedule.
Moreover, we leverage LoRA (Low-Rank Adaptation) [22]
(with rank=16, alpha=32, and dropout=0.2) as employed in
the previous works [10, 36] to enable efficient fine-tuning
while mitigating overfitting.

UniSim-LL-N: LMM-based Perceptual Metric. To
train UniSim-LL-N, we choose the LLaVA-NeXT [31]
as the base model leveraging its advanced capability to
handle multi-image inputs and image-text interleaved for-
mats. LLaVA-NeXT, which relies on SigLIP-400M/14 vi-
sion encoder and the Qwen-1.5 language model (LLM), has
two versions with different sizes: LLaVA-NeXT-0.5B and
LLaVA-NeXT-7B.

One significant challenge in fine-tuning LMMs for per-
ceptual tasks is that the ground truth typically consists of
a single word representing the model’s prediction between
two alternatives. For training, we initially utilized our uni-
fied perceptual dataset, see Table 4, annotated with four dis-
tinct tasks: Img-2AFC (120K samples), IT-2AFC (300K
samples), Text-2AFC (300K samples), and IQA (120K
samples). It is important to note that the number of sam-
ples for each task varies based on the complexity of the
respective task. Additionally, we create another training

https://huggingface.co/laion/CLIP-ViT-B-32-laion2B-s34B-b79K
https://huggingface.co/openai/clip-vit-large-patch14
https://huggingface.co/lmms-lab/llava-next-interleave-qwen-0.5b
https://huggingface.co/lmms-lab/llava-next-interleave-qwen-7b


Tasks Instruction

Img-2AFC
Answer the following multiple-choice question:\nHere are three images: <image><image><image>. \n

If image 1 is the reference image, which image of the other two is more similar to the reference image? \n
Options: \n(A) Image 2 \n(B) Image 3

IT-2AFC
Answer the following question:\nHere are two images: <image><image>,

and here is the reference caption: {prompt}. which of the two images is more aligned to the reference caption?\n
Options:\n(A) Image 1 \n(B) Image 2

Text-2AFC

Answer the following multiple-choice question:\nGiven the reference image: <image>
and two captions, caption 1: {caption1}, caption 2: {caption2} \n

which caption has a better alignment with the reference image?
\nOptions:\n(A) Caption 1\n(B) Caption 2

IQA
Answer the following multiple-choice question:\nGiven two images: <image><image>

which image has a better quality? \nOptions:\n(A) Image 1\n(B) Image 2

PAA
Answer the following multiple-choice question:\nGiven two images: <image><image>

which image is more {perceptual attribute}? \nOptions:\n(A) Image 1 \n(B) Image 2

OOO
Answer the following multiple-choice question:\nHere are three images: <image><image><image>,

Which one (A, B, C) is the odd-one-out of the group?\n
Options:\n(A) Image 1\n(B) Image 2\n(C) Image 3’

Table 5. Instructions employed during inference for each perceptual task. We detail the prompt used for evaluating the LMMs on the
various perceptual tasks.

dataset for UniSim-LL-N, which incorporates the multi-
image section of the M4-Instruct dataset [31], consisting
of 500K samples, added to the UniSim data. We discuss
in App. C how including this additional non-perceptual
data for training helps improving generalization. For the
LLaVA-NeXT-0.5B the entire model, including the vision
tower, adapter, and language model, is fine-tuned with
learning rate 10−5 for all components, except 2× 10−6 for
the vision tower. While for LLaVA-NeXT-7B the adapter,
and language model, are fine-tuned with 2× 10−6 learning
rate to avoid overfitting to the training data. Weight decay
is disabled, and a warm-up ratio of 0.03 of the total train-
ing steps is applied. The training is performed for a single
epoch, following the standard practice for training LMMs.

C. Additional Experiments
In this section, we begin by providing details on the eval-
uation setup. Next, we present the complete versions of
Tables 1 and 2, including the detailed results over datasets
and models omitted in the main part. Finally, we discuss the
variations in the UniSim-LL-N models, focusing on differ-
ences in their size and training data.

C.1. Baselines

General-purpose multi-modal models. For encoder
models, we benchmark the CLIP models with ViT-B/32,
(which serves as the baseline for both DreamSim, LIQE,
and UniSim-ViT-B/32), ViT-L/14 (baseline for PAC-S and
UniSim-ViT-L/14), as well as ViT-H/14 (baseline for the

HPS-v2 model). We further test SigLIP SoViT-400m/14 [2]
(results in appendix), and BLIP-2 [32] (with a ViT-L/14
encoder), which is the base model for ImageReward.
Among LMMs we include Llava-NeXT-0.5B [31] (basis of
the LLM-based UniSim), its larger version Llava-NeXT-
7B [31] and the recent Mantis Idefics2-8B [25] (results in
appendix), which are specifically multi-image autoregres-
sive models. Additionally, we include Qwen2-VL-7B [47]
and InternVL2.5-8B [8], two recent LMMs demonstrating
strong general visual reasoning capabilities. For LMMs,
we further test in-context learning strategies [5], however,
these approaches fail to enhance the zero-shot performance;
see App. C.

Specialized perceptual metrics. For Img-2AFC, Dream-
Sim (DS) [12] achieves SOTA performance via an ensemble
of multiple vision encoders fine-tuned on NIGHTS: since
this is not associated with a text-encoder, we primarily com-
pare their single-encoder (ViT-B/32) version. For the IT-
2AFC task, we select the ImageReward (IR) model [51] and
HPSv2 [50]: these are trained on the IMAGEREWARD and
HPDV2 datasets respectively for evaluating text-to-image
generative models. As a metric specialized in Text-2AFC,
we report the results of PAC-S [43], designed for image cap-
tioning evaluation. Finally, for IQA we report LIQE [56]
and Compare2Score [49] (fine-tuned from mPLUG-Owl2-
8B [52]) as encoder and generative baseline models respec-
tively. We provide more details on the models in App. B,
and the evaluation of additional baselines in App. C.
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General-purpose models

CLIP ViT-B/32 85.1 68.6 80.2 78.0 65.8 63.3 66.1 72.4 85.2 70.6 61.4 78.9 84.6 75.0 59.8 51.8 80.5 68.3 74.4 67.0 72.6
CLIP ViT-L/14 81.5 64.2 76.1 73.9 63.1 65.8 62.9 78.2 84.7 70.9 75.0 82.0 83.6 80.2 84.1 69.1 90.5 77.7 88.8 82.0 76.8
CLIP ViT-H/14 84.0 69.0 76.8 76.6 63.3 65.5 65.1 76.5 86.5 71.4 66.4 81.8 85.6 77.9 67.0 61.1 72.0 65.7 67.5 66.7 73.1
BLIP ViT-L/14 80.8 65.0 72.1 72.6 64.1 67.0 64.5 73.3 85.4 70.9 66.3 78.9 82.6 75.9 65.1 55.2 61.0 57.0 61.9 60.0 69.9
SigLIP SoViT/14 82.8 66.8 78.8 76.1 63.8 69.2 65.5 75.2 79.1 70.6 66.2 82.0 76.5 74.9 57.2 55.2 62.5 59.3 61.5 59.1 70.2
LLaVA-NeXT-0.5B♣ 57.1 52.8 63.0 57.6 61.3 76.6 65.2 64.4 75.1 68.5 53.7 71.6 57.9 61.1 53.6 52.7 55.1 57.5 50.8 53.9 60.3
LLaVA-NeXT-7B♣ 91.3 67.0 79.9 79.4 71.5 76.1 68.5 72.7 86.5 75.1 59.6 79.4 80.0 73.0 64.1 79.2 83.6 79.7 80.9 77.5 76.2
Mantis Idefics-8B♣ 89.5 63.8 75.0 76.1 71.0 73.9 68.5 75.8 84.4 74.7 64.7 77.8 83.0 75.2 58.3 76.3 65.1 79.0 74.9 70.7 74.2
Qwen2-VL-7B♣ 88.0 58.5 73.2 73.2 54.6 39.0 49.7 58.0 50.0 50.3 50.3 50.4 50.0 50.2 63.4 61.7 56.1 49.0 58.1 57.7 57.8
InternVL2.5-8B♣ 85.4 56.2 69.2 70.3 68.0 69.2 68.1 82.0 87.3 74.9 65.6 81.5 87.9 78.3 70.0 68.7 66.9 72.3 69.6 69.5 73.3

Specialized models

DS(1) ViT-B/32 95.3 73.3 88.5 85.7 63.1 62.0 64.4 68.8 79.8 67.6 61.3 75.6 84.1 73.7 70.1 58.0 78.4 67.1 72.7 69.2 74.1
DS(1) Ensemble 96.2 72.5 89.1 85.9 - - - - - - - - - - - - - - - - -
IR(3) BLIP 87.1 66.1 77.6 76.9 74.3 74.5 72.4 74.3 83.5 75.8 54.2 72.2 85.4 70.6 62.3 58.0 75.1 74.8 60.1 66.1 72.3
HPSv2(4) ViT-H/14 78.5 66.7 70.8 72.0 73.8 83.5 72.6 74.9 81.2 77.2 68.2 78.1 81.5 75.9 67.0 63.6 68.9 65.4 73.5 67.7 73.2
PAC-S ViT-L/14 86.9 69.1 78.1 78.0 65.0 67.0 65.8 75.6 86.9 72.1 60.5 77.6 85.6 74.6 75.0 56.5 86.1 70.0 83.2 74.2 74.7
LIQE(5,6) ViT-B/32 77.9 68.7 76.6 74.4 61.9 67.3 64.1 59.9 78.3 66.3 63.5 78.2 81.0 74.2 92.4 87.9 98.2 76.7 86.0 88.2 75.8
C2S♣(5,6) mOwl-2 - - - - - - - - - - - - - - 96.2 92.0 99.2 76.3 87.3 90.2 -

Our models(†)

UniSim ViT-B/32 87.7 69.9 84.6 80.7 70.4 74.5 71.7 78.1 84.1 75.8 91.2 94.2 85.6 90.3 89.9 72.0 93.6 77.3 93.4 85.3 83.0
UniSim ViT-L/14 90.7 68.1 85.0 81.3 69.4 82.3 71.3 91.8 86.0 80.2 94.2 96.1 88.3 92.9 94.7 71.8 98.9 80.2 89.2 87.0 85.3
UniSim♣ LL-N-0.5B 89.8 70.0 85.3 81.7 69.2 80.7 66.7 90.8 92.7 80.0 75.4 99.9 89.2 88.2 94.3 77.6 97.0 80.6 89.8 87.9 84.4
UniSim♣,v1 LL-N-0.5B 91.7 68.4 85.3 81.8 72.8 77.7 65.8 96.2 91.2 80.7 74.4 99.8 89.0 87.7 94.9 70.3 97.7 79.6 89.7 86.4 84.2
UniSim♣,v1 LL-N-7B 92.7 67.6 86.6 82.3 60.2 72.6 65.2 97.7 91.7 77.5 71.2 99.9 90.7 87.3 93.4 73.9 96.6 81.2 89.9 87.0 83.5

Table 6. Full evaluation on the Core 2AFC Tasks of UniSim-Bench. We complement the results of Table 1 with additional metrics.
LMM-based models are distinguished with the ♣ symbol, while models highlighted with color are specialized in individual tasks (e.g., DS
is specialized for the Img-2AFC task). For LLaVA-based UniSim, v1 is trained on perceptual data only (while the default version also
uses the multi-image portion of LLaVA-NeXT data, see App. C). The datasets used for training each model are indicated as superscripts
next to their names. Observations: (1) Specialized models generally perform worse than general-purpose models on tasks outside their
training domain, highlighting a significant lack of generalization. For example, the HPSv2 model, which is specialized for the IT-2AFC
task, performs worse than the baseline (ViT-H/14) on the closely related Text-2AFC task. (2) UniSim ranks as the first or second best
across nearly all tasks, demonstrating the feasibility of training a unified multi-modal metric capable of handling diverse and widely-used
tasks.

C.2. Evaluation on UniSim-Bench

Evaluation setup. While evaluating encoder-based per-
ceptual metrics on IQA, we test two approaches with
the encoder models: first, a naive approach computes
the alignment between the prompt ‘‘A high quality
photo.’’ (i.e, the reference) and the two alternative
images. Second, we apply the CLIP-IQA technique from
[46], where for each image one measures the similarity
to two opposite prompts (‘‘Good photo.’’, ‘‘Bad
photo.’’), and obtains a quality score as the similarity

to the first prompt after softmax normalization. The image
with higher quality score is then chosen. For each model
we test both approaches and report the results of the one
which performs best on average on the task. Finally, we
use the same two approaches for PAA, again reporting the
best-performing one for the task. For evaluating the LMM-
based models, we use specific instructions tailored to each
perceptual task. These instructions are detailed in Table 5.



Table 7. Detailed evaluation on the OOD Generalization Tasks of UniSim-Bench. To complement the results of Table 2, report the
performance of the various perceptual metrics on each dataset included in the OOD Generalization Tasks, together with the average
performance over tasks. Moreover, we include the LMM-based UniSim models trained with different data from Table ?? (indicated with
v1 ).
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General-purpose models

CLIP ViT-B/32 97.1 67.0 61.5 57.7 69.5 70.6 68.2 74.3 71.3 28.1 59.6 43.8 61.9
CLIP ViT-L/14 94.5 58.5 57.6 58.2 65.4 66.8 69.4 62.1 65.8 31.8 59.3 45.5 59.4
CLIP ViT-H/14 96.3 66.1 57.0 61.1 60.5 68.2 66.7 73.9 70.3 36.8 63.6 50.2 62.9
SigLIP 400m 98.0 61.4 63.1 56.7 64.0 68.6 67.2 72.3 69.8 37.1 68.7 52.9 63.7
BLIP ViT-L/14 94.2 64.3 54.6 57.6 59.8 66.1 61.6 65.2 63.4 19.0 52.9 35.9 55.1
LLaVA NeXT-0.5B♣ 87.6 55.8 63.4 51.8 56.3 63.0 33.0 33.0 33.0 - - - -
LLaVA NeXT-7B♣ 92.7 64.6 64.4 58.2 59.3 67.8 55.3 65.5 60.4 - - - -
Mantis Idefics-8b♣ 97.0 60.7 62.7 61.0 59.7 68.2 44.0 44.1 44.1 - - - -
Qwen2-VL-7B♣ 82.0 54.4 49.9 52.8 56.6 59.1 44.3 55.1 49.7 - - - -
InternVL2.5-8B♣ 72.8 60.5 55.1 55.4 59.5 60.7 48.3 58.6 53.5 - - - -

Specialized models

DS(1) ViT-B/32 99.0 66.3 63.2 58.7 66.1 70.7 59.4 63.4 61.4 25.2 50.7 38.0 56.7
DS(1) Ensemble - - - - - - 64.8 69.1 67.0 27.3 57.2 42.2 -
IR(3) ViT-L/14 91.4 62.2 57.0 56.2 58.8 65.1 67.6 72.7 70.2 24.2 59.3 41.7 59.0
HPSv2(4) ViT-H/14 92.9 65.0 59.1 62.9 59.7 67.9 51.1 61.7 56.4 23.0 49.9 36.4 53.6
PAC-S(5) ViT-L/14 88.8 67.5 60.0 57.7 54.8 65.8 69.2 73.1 71.2 33.7 62.2 48.0 61.6
C2S♣(6,7)mOwl-2 63.5 62.7 51.1 57.5 71.4 61.2 - - - - - - -
LIQE(6,7) ViT-B/32 92.8 68.0 58.2 60.0 75.9 71.0 65.7 54.4 60.1 12.8 24.8 18.8 49.9

Our models(†)

UniSim ViT-B/32 97.8 67.9 65.4 60.0 73.2 72.9 60.1 63.6 61.9 20.0 48.4 34.2 56.3
UniSim ViT-L/14 95.4 62.1 60.8 59.3 60.3 67.6 49.6 57.7 53.7 15.8 34.3 25.1 48.8
UniSim♣ LL-N-0.5B 73.0 62.3 64.8 60.1 63.8 64.8 23.7 24.6 24.2 - - - -
UniSim♣,v1 LL-N-0.5B 68.7 62.4 61.9 61.0 63.1 63.4 15.9 16.4 16.2 - - - -
UniSim♣,v1 LL-N-7B 71.5 56.4 58.1 51.8 61.3 59.8 24.7 15.5 20.1 - - - -

Complete evaluation. Table 6 presents a comprehensive
evaluation of perceptual metrics using UniSim-Bench. The
table includes SigLIP 400m [53], a variation of CLIP where
the softmax function is replaced with a sigmoid function.
Additionally, it features DreamSim Ensemble, which inte-
grates DINO [7], OpenCLIP [9], and the CLIP model for
enhanced performance. Table 7 provides a detailed evalua-
tion of each dataset within OOD Generalization Tasks, of-
fering a comprehensive overview of the strengths and weak-
nesses of each model.

Other analyses. As previously mentioned, two versions
of LLaVA-NeXT (0.5B and 7B) are used to train the
UniSim-LL-N models. A comparison of these versions
(trained only on UniSim training data) is presented in Ta-
bles 6 and 7 (marked as v1). Notably, UniSim-LL-N-7B
exhibits clear signs of overfitting, performing worse than its
baseline on the left-out datasets in Core 2AFC Tasks and
on most datasets in OOD Generalization Tasks. In contrast,
UniSim-LL-N-0.5B demonstrates better generalization.

Moreover, we see that UniSim-LL-N-0.5B, trained on
both the UniSim training data and a subset of the LLaVA-



NeXT data, achieves better generalization performance than
UniSim-LL-N-0.5Bv1 , trained only on the UniSim data (see
Table 7). We hypothesize that such additional data reduces
overfitting to the specific 2AFC data structure.

Table 8. Varying the IT-2AFC training data. UniSim is trained
on IT-2AFC datasets (HQ-EDIT, HPDV2, MAGICBRUSH): we
study how using either just one or two influences the intra-task
generalization (IMAGEREWARD, AGIQA-3K) and performance on
Text-2AFC.
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UniSim ViT-B/32

HQ-EDIT 85.3 71.9 62.0 67.7 69.5 68.6 71.3 89.9
+ HPDV2 83.6 74.1 64.2 71.1 71.4 71.3 72.9 90.4

+ MAGICBRUSH 84.1 74.5 78.1 70.4 71.7 71.1 75.8 90.3

UniSim ViT-L/14

HQ-EDIT 87.9 78.7 50.9 62.6 69.0 65.8 69.8 92.5
+ HPDV2 84.7 82.1 54.3 71.1 70.7 70.9 72.6 92.3

+ MAGICBRUSH 86.0 82.3 91.8 69.4 71.3 70.4 80.2 92.9

D. Additional Analyses

Ablation study on the IT-2AFC training data. We study
here the effect of varying the number of datasets used for
training UniSim models. In particular, we focus on IT-
2AFC, and report in Table 8 the results when fine-tuning
CLIP models with various configurations. The default
UniSim training uses three datasets (HQ-EDIT, HPDV2,
MAGICBRUSH), and we test using either just one (HQ-
EDIT) or two (HQ-EDIT + HPDV2) of them (the training
datasets for the other tasks are unchanged). We find that
using two or three datasets (noting that MAGICBRUSH is
relatively small, thus has a limited impact) improves intra-
task generalization, as observed on IMAGEREWARD and
AGIQA-3K. Additionally, this setup also enhances perfor-
mance on a different yet related task, Text-2AFC, indicating
that jointly training on multiple perceptual tasks can be mu-
tually beneficial.

In-Context Learning for LMMs. In-context learning
(ICL) [5] is a technique where a model learns to perform
tasks by conditioning its predictions on a small set of input-
output demonstration examples provided directly in the
context rather than updating the model parameters. Fig. 5
illustrates the effect of applying ICL to LLaVA-NeXT-
0.5B/7B and UniSim-LL-N-0.5/7B, which are LMMs. The

Figure 5. LMMs with ICL. We report accuracy (averaged across
four datasets, including one from each of Core 2AFC Tasks) of
LMMs when varying the number of in-context demonstrations.
ICL does not help the performance of the perceptual metrics.

reported accuracy is averaged across four datasets, includ-
ing one from each of Core 2AFC Tasks. Our experiments
demonstrate that, regardless of the number of demonstra-
tions provided (ranging from 1 to 3), the use of ICL con-
sistently reduces the accuracy across all evaluated models.
This observation aligns with recent findings [3, 11] that
highlight the challenges and non-trivial effectiveness of ap-
plying ICL in the context of LMMs.
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