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ABSTRACT

While generative modeling has become prevalent across numerous research fields,
its potential application to image retrieval has yet to be thoroughly justified. In
this paper, we present a novel approach, reframing image retrieval as a variant of
generative modeling and employing a sequence-to-sequence model. This provides
promising alignment with the overarching theme of unification in current research.
Our framework enables end-to-end differentiable search, leading to superior per-
formance through direct optimization. During the development of IRGen, we
tackle the key technical challenge of converting an image into a concise sequence
of semantic units, which is essential to facilitate efficient and effective search. Ex-
tensive experiments demonstrate that our model yields significant improvement
over various widely utilized benchmarks, and further validate its performance on
million-scale datasets. The most intriguing finding lies in the substantial enhance-
ment of precision scores achieved through generative modeling, which potentially
opens the avenue to excluding the rerank stage typically utilized in practical re-
trieval pipelines.

1 INTRODUCTION

Generative modeling has made significant progress in a wide range of tasks including machine
translation (Vaswani et al., |2017), conversational modeling (Devlin et al., 2018}, |Brown et al., 2020;
Ouyang et al.,[2022; |/Adiwardana et al., |2020)), image captioning (Yu et al.,|2022a)), image classifica-
tion (Chen et al.| 2020), text-to-image synthesis (Ramesh et al., 2022; Ding et al., [2022)), and many
more. Originating from language and then expanding to other modalities with specially designed
tokenizers, such a universal modeling approach provides a promising direction for unifying differ-
ent tasks into a versatile pretrained model, which has attracted widespread attention (Alayrac et al.,
2022; Wang et al.| |2022a; (Ouyang et al.| 2022} [Li et al.| [2023)). Yet its potential in image retrieval
has been unexplored. This paper aims to take the unified trend one step further and investigates
generative modeling for image retrieval.

A practical retrieval system generally consists of two stages: feature representation learning (EI-
Nouby et al., 2021} [Liu et al., 2022; [Lee et al., [2022b; Yang et al., [2021)) and Approximate Nearest
Neighbor (ANN) search (Babenko & Lempitsky, 2014bj Johnson et al.,|2019;|Guo et al.,[2020; \Chen
et al., 2021). Most image retrieval methods focus only on one individual stage while ignoring the
fact that both stages are inherently and deeply connected in actual service. Thus, the practical system
often requires careful per-task hyperparameter tuning to make the most out of the coordination of
the feature extraction and ANN search. While recent progress (Gao et al.||[2020; De Cao et al.,[2020;
Wang et al.| 2022b; Tay et al., [2022)) have been made towards end-to-end search in the scenario of
recommendation, entity retrieval and document retrieval, little has been done for image retrieval.

In this paper, we cast image retrieval as a form of generative modeling and make use of standard
Transformer architecture, as in GPT (Brown et al., 2020; Radford et al., |2019; 2018)), to enable
end-to-end differentiable search. Our model, IRGen, is a sequence-to-sequence model that, given a
provided query image, directly generates identifiers corresponding to the query’s nearest neighbors.
Specifically, the model takes a query image as input and autoregressively predicts discrete visual
tokens, which are considered as the identifier of an image. The predicted visual tokens are supposed
to point to the query image’s nearest neighbor. As such, IRGen can be trained directly from the final
retrieval target starting with raw images.
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Two fundamental concerns need to be addressed to enable efficient and effective image retrieval
using generative modeling. First, autoregressive generative modeling is notable for its slow sam-
pling process due to the inherently sequential nature, thus the run-time cost for retrieval grows at
least linearly with respect to the length of a sequence. Second, it is particularly difficult to model
the semantic relationship between the identifiers if we drastically shortened the image identifier.
Therefore, a semantic tokenizer specially designed for image retrieval is an immediate problem.

We observe that existing image tokenizers (Van Den Oord et al., 2017} [Lee et al., |2022al), normally
designed for image generation task, are not suitable for image retrieval task, leading to poor perfor-
mance as analyzed in our experiments. We hence propose several key ingredients that first inject
semantic information by applying image-level supervision rather than pixel-level reconstructive su-
pervision, then generate dependent tokens in a sequence by leveraging the recursive property of
residual quantization, and lastly ensure fast inference speed by tremendously reducing the length
of the sequence via exploiting the global feature instead of spatial patch embeddings. Afterwards,
we intentionally adopt the standard Transformer architecture so that it is easy to scale up the model
using existing techniques and infrastructures.

The proposed IRGen model has set new records across a diverse range of image retrieval datasets,
owing to its end-to-end differentiable search capability. It consistently outperforms previous strong
competitors by a significant margin, sometimes even surpassing linear scan search methods. For
instance, when compared with the best baseline methods, which include linear scan search, our
model achieves remarkable improvement, such as a 20.2% increase in precision@ 10 on In-shop
Clothes dataset (Liu et al.l [2016)), a 6.0% boost in precision@2 on CUB200 (Wah et al.| 2011)) and
a 2.4% enhancement in precision@2 on Cars196 (Krause et al., |2013). To assess the scalability of
our model, we further experiment on million-level datasets, namely ImageNet (Deng et al., [2009)
and Places365 (Zhou et al., [2017a)), and consistently demonstrated superior performance in these
challenging scenarios.

It is our belief that generative models have the potential to redefine the landscape of image retrieval.
The application of generative modeling to image retrieval tasks not only represents an exciting op-
portunity but also has the potential to unify information retrieval across various modalities. At
a technical level, our model, IRGen, effortlessly bridges the gap between feature representation
learning and approximate search, creating an end-to-end differentiable framework that enables di-
rect optimization based on retrieval objectives. Furthermore, the entire framework is conceptually
straightforward, with all components relying on the standard Transformer architecture, renowned
for its remarkable scalability (Du et al., [2022; |Chowdhery et al., |2022; [Shoeybi et al. 2019} [Xu
et al.,|2021). To the best of our knowledge, our work marks the pioneering exploration of generative
modeling in the domain of image retrieval, extending the boundaries of generative modeling into
new territories. Along this journey, we have introduced a fundamentally distinct retrieval approach
that has demonstrated impressive performance on various retrieval benchmarks.

2 METHOD

2.1 SEMANTIC IMAGE TOKENIZER

As Transformer becomes the ubiquitous architecture in computer vision, it has emerged many suc-
cessful image tokenizers such as VQ-VAE (Van Den Oord et al., 2017; Ramesh et al., 2021} |Gafni
et al.,|2022; |Yu et al.}|2021), RQ-VAE (Lee et al.,|2022a)) and so on. Basically, these methods learn
a variational auto-encoder with discrete latent variables, together with a learnable and indexable
codebook over a collection of raw images. As a result, an image is represented as a sequence of
accountable discrete codes indicating the entries in the codebook. A proper combination of entries
can be decoded to a high-quality image through the decoder. Such tokenizer has been widely applied
to image synthesis, and can be easily extended to audio and video synthesis.

Despite its success in image generation, we believe that this approach may not be well-suited for
the retrieval task. There are several reasons for this. Firstly, the process of decoding latent codes to
reconstruct raw images is essential for generating images in synthesis tasks but is not required for
retrieval tasks. Secondly, the length of the code sequence has a significant impact on the inference
speed of autoregressive models, which is crucial for efficient search in our case. It is particularly
challenging to handle very short sequences of codes, whereas current code sequences used for re-
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trieval are often quite long (e.g., the feature map of 8 x 8 with a depth of 4 in RQ-VAE results
in a sequence length of 256). Additionally, for retrieval, it’s important to inject semantic informa-
tion into the latent codes, while image reconstruction loss, which is commonly used in generative
models, tends to focus on low-level details, including imperceptible local details and noise.

Building on the insights mentioned earlier, we suggest investigating the global feature extracted from
the class token instead of relying on the default spatial tokens. This approach offers a substantial
reduction in sequence length (from 64 tokens down to just 1 token). Additionally, the class token
inherently contains a condensed, high-level semantic representation as a byproduct of this strategy.
Let f,;s denote the d-dimensional feature vector outputted from the class token, which is taken as
the image representation. We adopt residual quantization (RQ) or stacked composite quantization
to approximate this feature. Suppose there are M codebooks with each containing L elements,

Cm = {Cm1, " ,cmr}, RQ recursively maps the embedding f.;s to a sequentially ordered M
codes, fis — {l1,l2,- -+ ,lp} € [L]M. Let rg = f.;5, we have
b = argminle[L]Hrmfl _leHgv ey
rm:rmfl_cmlm)m:172a"'7M' (2)

The process of sequentially generating discrete codes is inherently compatible with sequential au-
toregressive generation. This alignment helps alleviate the optimization challenges associated with
modeling the relationships within identifiers.

To further inject semantic prior, we train the network under classification loss over both the original
embeddings as well as the reconstructed embeddings. In particular, we consider a series of recon-
struction levels denoted as f'flsm = Z:’;l cii;,m = 1,2,--- M. Each prefix code thus encodes
semantic information to a certain degree. Adding up the M levels of partial reconstruction error, the
complete objective function is then formulated as,

M M

E == Ecls(fcls) + )\1 Z ‘Ccls( cgl;n) -+ )\2 Z ||I‘m||g, (3)
m=1 m=1

rp = fus —sglf57], m=1,2,--- , M, 4)

where sg[-] is the stop gradient operator. During training, we adopt alternative optimization to update
the codebook and the network. For computing the gradient of L'Cls(f'fl;”), we follow the straight-
through estimator (Bengio et al., 2013) as in (Van Den Oord et al. 2017) and approximate the
gradient by copying the gradients at f 3:“ directly to f.;s. After optimization, we hope that images
with similar classes have close codes. In the experiments, we present comparison with other discrete
identifiers including random codes and codes from hierarchical k-means algorithm or from RQ-VAE.

2.2 ENCODER-DECODER FOR AUTOREGRESSIVE RETRIEVAL

Once we have established a robust discrete latent structure equipped with semantic prior informa-
tion, our next step is to train a powerful autoregressive sequence-to-sequence model solely on these
discrete random variables without referring their visual content. Our encode-decoder architecture
decouples the input embedding from the generation of discrete codes. The model begins by taking
a query image as input to obtain the query embedding, which is then used to produce the discrete
codes. It is worth noting that the yielded discrete codes represent the query’s nearest neighbor im-
ages within the database. Therefore, our training process involves image pairs (z1, z2), where o
is the nearest neighbor of z;. Our model’s objective is to predict the identifiers of x5 when given
x; as input. This setup allows the model to learn the semantic relationships between images in the
dataset. Figure[I|provides a concise view of our training pipeline.

To be specific, let the encoder be denoted as [E based on the ViT base architecture and the decoder
be D, a standard Transformer that includes causal self-attention, cross-attention and MLP layers.
We leverage the spatial tokens outputted from the encoder as the input embedding, e = E(z),
which is injected into the decoder through cross attention. Our training objective involves predicting
the next token in the image identifier sequence. Specifically, we aim to maximize the probability
of the i-th token of the image identifier given the input embedding and the previously predicted
tokens, p(l;|x1,l1,- -+ ,li—1,0), where 6 denotes the parameters of both D and E, and l1, 12, - - - , 5y
are the M tokens that make up the image identifier for x5, generated by the image tokenizer. By
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Figure 1: We train a sequence-to-sequence model to autoregressively predict the nearest neighbor’s
image identifiers given a query image..

54

maximizing the probability of each token, we effectively maximize the likelihood of generating the
image identifier of an image,

p(l, - L2, 0) = T p(Lilwe, -y L1, 6). )

We apply a softmax cross-entropy loss on a vocabulary of M discrete tokens during training. This
loss guides the model to generate the correct sequence of tokens that represent the image identifier.

2.3 BEAM SEARCH

During inference, given a query image q, we first calculate the query embedding processed by the
encoder E and then generate the discrete codes through the decoder D based on the query embedding
in an autoregressive manner. These discrete codes represent an image that is considered as the
nearest neighbor to the query image. To perform Top-K retrieval, our model can use beam search,
allowing us to find the top-K images that are the closest matches to the query image.

Specifically, when provided with a query image, our model employs an autoregressive approach
to generate discrete codes, commencing with the start-of-sequence token. In contrast to the single
candidate considered in greedy search, our model utilizes beam search, which maintains a “beam”
of the top-K candidates at each generation step. At each step, the candidates are ranked based on
their scores, which are computed as the product of the probabilities associated with their individual
elements. We retain only the top-K sequences with the highest scores.

It’s important to note that not all generated identifiers are necessarily valid, meaning that an identifier
belonging to the set [L]* may not correspond to any images within the retrieval database. There-
fore, we must validate the generated image identifier at each step, which can be a time-consuming
process. However, we address this challenge by expediting the validation process. We achieve
this by imposing constraints on the beam search, ensuring that it explores only within a prefix tree
containing valid codes. This optimization enhances the efficiency of the retrieval process.

Beam search vs. ANN search. Indeed, there are certain similarities between beam search and ap-
proximate nearest neighbor (ANN) search, as both methods aim to select the top-K most promising
candidates by traversing tree-like data structures. However, they diverge significantly in how they
calculate the score to choose the current node. In ANN search, the score is typically determined by
computing the distance between the query feature and the feature associated with the node, using
a specific distance metric. On the other hand, in beam search, the score or probability is generated
as a function through a differentiable neural network, often an autoregressive model. This neural
network is conditioned on the query and learns to estimate the score or probability of a candidate
sequence. Consequently, the entire retrieval pipeline can be optimized in an end-to-end manner,
taking advantage of neural network training techniques.
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In-shop CUB200 Cars196
Model I 10 20 30 I 2 7 8 I 2 7 8
Linear scan search
Res101-Img 30.7 10.2 7.1 5.8 46.8 436 399 349 | 259 220 185 154
CLIP 575 228 16.6 14.1 | 66.0 63.5 594 538 | 708 678 633 57.2
CGDrepro) 832 478 402 37.0 | 767 755 737 714 | 87.1 86.1 84.6 826
IRTR (repro) 927 59.6 51.1 47.6 | 793 777 750 714 | 756 73.1 683 61.7
FT-CLIP 914 668 589 554|792 776 760 732 | 884 877 871 858
Faiss IVF PQ search
CGD repro) 60.4 305 245 220 | 71.6 708 699 687 | 84.8 844 84.1 83.3
IRTR (repro) 68.6 357 293 266 | 689 67.6 662 634|591 575 547 51.7
FT-CLIP 63.7 37.0 30.7 28.0 | 726 721 712 69.7 | 865 863 862 86.0
ScaNN search
CGD repro) 83.0 477 403 372 | 767 752 738 714 | 87.1 86.1 845 826
IRTR (repro) 920 582 50.0 466 | 793 777 751 714 | 754 728 68.1 61.6
FT-CLIP 904 64.6 569 535|792 775 760 732 | 883 877 87.1 858
SPANN search
CGDrepro) 83.0 477 403 37.1 | 767 755 737 714 | 87.0 86.1 846 826
IRTR (repro) 914 562 479 445|793 776 750 714 | 748 724 676 61.1
FT-CLIP 90.2 629 551 518|785 776 1760 732 | 836 831 875 86.3

Beam search

IRGen (ours) [ 924 87.0 86.6 86.5 [ 82.7 827 83.0 828 [ 90.1 899 90.2 90.5
Table 1: Precision comparison with different baselines, for which we consider linear scan search,
Faiss IVF search and SPANN search. (repro) denotes the model reproduced by ourselves to ensure
the same data process and comparable model size for fair comparison. Our model adopt beam search
for retrieval, achieving significant improvement and performing even better than linear scan search.

3 EXPERIMENTS

We conduct comprehensive evaluations to demonstrate the performance of the proposed IRGen.
We first evaluate our method on common image retrieval datasets and on two large-scale datasets,
ImageNet (Deng et al., [2009) and Places365 (Zhou et al.,|2017a). For a detailed description of the
datasets and implementation details, please refer to the appendix.

Baselines. We evaluate our model’s performance in comparison to five competitive baselines: 1)
ResNet-101 (He et al., |2016) trained from ImageNet dataset, denoted as Res101-Img, which is
commonly used as a feature extraction tool for various tasks; 2) CLIP (Radford et al.,|2021) trained
on 400M image-text pairs, known for powerful zero-shot capability; 3) CGD (Jun et al. [2019), a
state-of-the-art method based on ResNet; 4) IRT (EI-Nouby et al.,[202 1)), a Transformer-based model
for image retrieval and we use the best-performing model IRTg; 5) FT-CLIP, a baseline finetuned
from CLIP on the target dataset. For both CGD and IRT, we have reproduced these models to ensure
consistent data processing and comparable model sizes. Specifically, we use ResNet-101 for CGD
and DeiT-B for IRT. We also provide their best results from their original papers for reference.

Search process. The baseline models primarily focus on effective feature learning. After training,
these models are utilized to extract features for the database images. During the search process, a
given query image is initially passed through the model to obtain its query feature. Subsequently,
this query feature is compared with the features of database images using a specific distance metric.
Following the conventions established in previous works such as (Radford et al., 2021} Jun et al.,
2019; [EI-Nouby et al.| 2021)), we employ the cosine distance for the CLIP model and the Euclidean
distance for the other baseline models. We evaluate two search strategies: linear scan search (K-
nearest neighbors or KNN) and approximate nearest neighbor search (ANN). Linear scan search
is known for its accuracy but is computationally intensive. In contrast, ANN is significantly more
efficient. For ANN, we explore: (i) the popular Faiss IVF PQ (Johnson et al.,|2019); (ii) the state-
of-the-art memory-based algorithm ScaNN (Guo et al., [2020) with the default setting; and (iii) the
state-of-the-art disk-based SPANN algorithm (Chen et al.| 2021)). These evaluation strategies allow
us to assess the retrieval performance of our model against a variety of search methods.

3.1 RESULTS

Table [T] presents a detailed performance comparison in terms of precision@ K, which assesses the
percentage of retrieved candidates that share the same class as the query among the top K results.
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In-shop CUB200 Cars196
Model I 10 20 30 I 2 7 8 I 2 7 8
Linear scan search
Res101-Img 30.7 559 627 668 | 46.8 599 717 808 | 259 35.6 47 59.7
CLIP 575 83.0 875 89.7 | 660 781 877 935 | 70.8 826 91.1 959
CGD* 919 98.1 98.7 99.0 | 792 86.6 92.0 951 | 948 97.1 982 98.8
IRTR * 919 98.1 98.7 99.0 | 76.6 850 91.1 943 - - - -
FT-CLIP 914 973 98.1 985 | 792 850 893 92.0 | 8.4 905 92,5 093.8
Faiss IVF PQ search
CGD repro) 604 760 77.1 774|716 774 815 842 | 848 83.0 89.8 091.0
IRTR (repro) 68.6 79.2 80.0 802 | 689 779 850 893|591 704 782 834
FT-CLIP 63.7 707 711 712 | 726 780 823 852|865 869 872 875
ScaNN search
CGD repro) 83.0 948 962 967 | 767 835 880 91.8 | 87.1 091.7 946 96.6
IRTR (repro) 920 978 983 984 | 793 868 919 947 | 754 847 909 95.0
FT-CLIP 90.4 959 96.6 969 | 792 850 89.2 927 | 883 90.5 924 93.7
SPANN search
CGDrepro) 83.0 950 964 969 | 76.7 834 879 91.8 | 87.0 91.7 94.6 96.7
IRTR (repro) 914 972 976 97.7 | 793 868 919 94.7 | 748 843 90.5 94.7
FT-CLIP 90.2 958 96.7 97.0 | 785 850 894 929 | 8.6 90.7 925 942

Beam search

IRGen (ours) [ 924 968 97.6 979 [ 82.7 864 892 914 [ 90.1 921 932 937
Table 2: Recall comparison with different baselines, for which we consider linear scan search, Faiss
IVF search and SPANN search. (repro) denotes the model reproduced by ourselves to ensure the
same data process and comparable model size for fair comparison. we include the best result of CGD
and IRT from their original papers for context with * denotation. Our model adopt beam search for
retrieval, achieving comparable performance in most cases.

Our model consistently outperforms all other models, even surpassing those employing linear scan
search. Notably, we achieve remarkable improvements, such as a 20.2% boost in precision@ 10 on
the In-shop Clothes dataset, a 6.0% increase in precision@2 on the CUB200 dataset, and a 2.4%
gain in precision@2 on the Cars196 dataset. Furthermore, several observations can be made: 1)
Finetuned models, tailored to specific datasets, exhibit significantly better performance compared
to off-the-shelf feature extractors like CLIP and ImageNet-pretrained ResNet-101. 2) Generally,
models equipped with ANN algorithms perform slightly worse than their counterparts using linear
scan search. However, there are exceptions, such as FT-CLIP with SPANN search on the Cars196
dataset, which demonstrates the importance of end-to-end optimization. 3) Our model consistently
maintains high precision scores as K increases, while other models experience a substantial drop.

Table[2|provides a comparison of different models using the Recall@ K metric. Recall@ K measures
the proportion of queries for which at least one image among the top K retrieved candidates shares
the same label as the query image, yielding a score of 1 if true and O otherwise. The table also
includes the best recall results of CGD and IRT from their respective original papers for reference.
It’s important to note that these models may have different data preprocessing, model sizes, and
additional training techniques. Here are the key observations: 1) Our IRGen model achieves the
highest Recall@1 score compared to all other models. However, for other recall scores, our model
performs similarly or slightly worse. This discrepancy may arise from the current objective loss
used in autoregressive models, which heavily optimizes for Recall@1 while giving less emphasis to
other recall values. One potential solution is to incorporate the beam search process into training
for joint optimization. 2) Different combinations of feature extractors and ANN algorithms exhibit
significant variations across the three datasets, highlighting the challenges of achieving coordination
in practical scenarios. 3) Notably, despite the high recall achieved by baselines, they often require an
additional re-ranking stage to improve precision, whereas our model already attains high precision
scores without the need for re-ranking.

Figure [2] illustrates the precision-recall curve, where recall represents the true positive rate. Our
approach, IRGen, consistently delivers outstanding performance, maintaining high precision and re-
call simultaneously. In addition to precision-recall analysis, we evaluate our model using the mean
reciprocal rank (MRR) metric, which measures the inverse of the rank of the first relevant item. We
compute MRR for four different values: 1, 2, 4, and 8, and display the corresponding curves in
Figure[3] The baselines employ the SPANN retrieval algorithm. Our IRGen model consistently out-
performs the baselines across all evaluated metrics, confirming the effectiveness of our framework.
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Figure 2: Precision-Recall (TPR) curve comparison for different methods on (a) In-shop Clothes,
(b) CUB200 and (c) Cars196 dataset.
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Figure 3: MRR with respect to 1,2,4,8 comparison for different methods on (a) In-shop Clothes, (b)
CUB200 and (c¢) Cars196 dataset.

Notably, there is significant variability in the performance gap between each baseline and our model
across the three datasets, highlighting the challenges and dataset-dependent nature of retrieval tasks.

Results on million-level datasets. We further experiment our approach with ImageNet
dataset (Deng et al., [2009) that contains 1,281,167 images and Places365-Standard (Zhou et al.,
2017a)) containing about 1.8 M images from 365 scene categories. We compare with the strong base-
lines including CLIP model as well as FT-CLIP model finetuned based on CLIP model. The com-
parison is reported in Figure 4 and Table 3] focusing on precision@ K and MAP@100. Our IRGen
model consistently outperforms the baselines, achieving the best results in terms of precision@ K
and MAP@100. The precision values for our model remain consistently high as K increases, while
the baselines experience noticeable performance degradation. These results confirm the effective-
ness of our model in handling large-scale datasets like ImageNet, where it maintains high precision
across varying values of K and outperforms the baseline models.

3.2 ABLATIONS

The effect of identifiers. In our study of image identifiers, we compared three different approaches:
(1) assigning random identifiers to images, (2) hierarchical k-means (HKM), and (3) using the image
tokenizer RQ-VAE (Bevilacqua et al., [2022). The results of this comparison are summarized in
Table 5] The random assignment of identifiers to images yielded expectedly lower performance.
This performance gap can be attributed to the fact that models with random identifiers need to
learn not only the interaction between queries and image identifiers but also allocate capacity to
learn relationships within the identifiers themselves. On the other hand, HKM showed superior
performance compared to random assignment, underscoring the significance of semantic identifiers.
However, our proposed semantic image identifiers demonstrated a clear improvement over HKM,
highlighting their effectiveness in enhancing retrieval performance. In contrast, the performance
of RQ-VAE significantly trailed behind our model, with a performance less than 10 percent. We
attribute this difference to that the sequence length in RQ-VAE is too long for the model to effectively
capture relationships within the identifiers.

Generalize to new data. Addressing the inclusion of fresh data holds particular significance, espe-
cially in the context of search scenarios. To assess this capacity, we conducted an experiment where
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Model Precision
Dataset =~ 1p—FTCLIP IRGen (ours) Model I 0 100
ImageNet | 44.1 65.5 76.0 FT-CLIP + Linear Scan | 70.6 65.0 55.6
Places365 22.1 30.3 44.3 IRGen (Ours) 770 779 774

Table 3: MAP@100 comparison on two Table 4: Generalize to new data. We split 5% of
million-level datasets. The results of CLIP and the training data from the ImageNet dataset for

FT-CLIP are retrieved by SPANN. inference and remained unseen during training.
ImageNet Places365
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Figure 4: Precision comparison on large scale datasets: ImageNet and Places365.
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HKMza00 89.0 81.6 79.8|89.0 939 949
Ours 924 87.0 86.6|92.4 96.8 97.6 | " % %

Beam size

Table 5: Ablation study on the image Figure 5: Illustrating the search speed using
identifier (T=length). beam search.

we intentionally withheld 5% of the training data from the ImageNet dataset during the training
phase and introduced it during inference, all without updating the existing codebook and autore-
gressive (AR) model. In this experiment, we compared the performance of our model with the
formidable baseline FT-CLIP, which is equipped with a linear scan search. The results, as displayed
in Table [4] reveal that our model maintains superior performance even when confronted with new
data. This observation highlights our model’s remarkable ability to effectively generalize to pre-
viously unseen data. This capability is attributed to the fact that our model can derive semantic
identifiers for the newly introduced images using the codebook, leveraging the knowledge it has ac-
quired through the autoregressive decoder. The AR model excels in capturing the semantic structure
embedded within the database through its learned parameters.

Inference throughput. In addition to search accuracy, search efficiency is a critical criterion for re-
trieval systems. To assess the time cost of our autoregressive (AR) model, we conducted our analysis
on an NVIDIA V100-16G GPU. In Figure[5] we present the throughput for 100 queries, with beam
sizes set at 1, 10, 20, and 30 for comparison. Additionally, we break down the time cost of each
component during retrieval. The results show that the encoder is quite fast, while the autoregressive
decoder becomes the major bottleneck, especially as the beam size increases. Additional time is
consumed for checking the validity of predictions, as it’s possible that the predicted identifier may
not exist in the database. Overall, the time cost is within an acceptable range. For instance, it takes
approximately 0.07 seconds (with a beam size of 10) or 0.19 seconds (with a beam size of 30) per
query. It’s important to highlight that our model operates as an end-to-end retrieval method, which
doesn’t include the re-ranking step. In practical applications, re-ranking is typically necessary to
achieve higher precision, but it can significantly increase the time required for the retrieval process.

4 RELATED WORK

Image retrieval. Traditionally, hand-crafted features are heuristically designed to describe the im-
age content based on its color (Wengert et al., 2011;|Wang & Hua, [2011)), texture (Park et al., 2002
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Wang et al., [2014b)) or shape (Cao et al) 2011). Typical features include GIST (Siagian & Ittil
2007), SIFT (Lowel 1999), SURF (Bay et al., 2006), VLAD (Jégou et al., | 2010) and so on. Recent
years have witnessed the explosive research on deep learning based features trained over labeled
images. Besides the evolvement of the network architecture designs (Krizhevsky et al 2017} He
et al.,[2016} |Vaswani et al., [2017)), numerous efforts (Wieczorek et al., 2020; El-Nouby et al., [2021])
have been dedicated to various loss functions including classification loss (Zhai & Wul 2018} Zhou
et al.,[2019), triplet loss (Yuan et al.,[2020), contrastive loss (Jun et al.|[2019; |[EI-Nouby et al.,|2021),
center loss (Wieczorek et al., 2020) and so on. The similarity between features can be calculated
through some distance measure or evaluated through re-ranking techniques (Revaud et al.,2019).

Another different line of research centers on approximate nearest neighbor search to speed up the
search process, accepting a certain level of compromise in search accuracy. One way is to enable
fast distance computation through hashing and quantization techniques such as LSH (Indyk & Mot-
wani), |1998)), min-Hash (Chum et al., 2008)), ITQ (Gong et al., 2012), PQ (Jegou et al.| [2010), and
many others (Ge et al., 2013; Wang & Zhang, 2018} Zhu et al.|[2016)). The other way is to reduce the
number of distance comparison by retrieving a small number of candidates. Typical methods include
partition-based indexing (Babenko & Lempitsky} 2014b; Xia et al.l 2013)) that partitions the feature
space into some non-overlapping clusters and graph-based indexing (Jayaram Subramanya et al.,
2019) that builds a neighborhood graph with edges connecting similar images. To improve the re-
call rate while ensuring fast search speed, hierarchical course-to-fine strategy (Malkov & Yashunin,
2018)) has been the popular choice that the retrieved candidates are refined level by level. Addition-
ally, a number of excellent works have introduced hybrid indexing (Chen et al.l|2021) that improves
search by leveraging the best of both indexing schemes while avoiding their limitations.

Generative modeling. Deep autoregressive networks are generative sequential models that assume
a product rule for factoring the joint likelihood and model each conditional distribution through a
neural network. AR models have shown extremely powerful progress in generative tasks across
multiple domains such as images (Chen et al., 20205 |Yu et al.| |2022b), texts (Radford et al., 2019;
Yang et al., 2019), audio (Dhariwal et al [2020; (Chung et al.| [2019), and video (Wu et al., 2022}
‘Weissenborn et al., 2019). The particular key component involves linearizing data into a sequence
of symbols with notable works such as VQ-VAE (Van Den Oord et al., 2017), RQ-VAE (Lee et al.,
2022a). Recently, a number of works (Tay et al.l 2022 Wang et al.| 2022b}; De Cao et al.| [2020)
further explored the idea of using AR model to empower entity retrieval and document retrieval.

Most related to our work are NCI (Wang et al., [2022b)) and DSI (Tay et al., 2022}, which are con-
cerned with document retrieval. However, these approaches utilize hierarchical k-means clustering
applied to document embeddings derived from a small pretrained language model to obtain docu-
ment identifiers. In contrast, we put forward a novel approach that involves learning the identifier
directly from semantic supervision, and we showcase its effectiveness in the context of image re-
trieval. We posit that this discovery can also be advantageous for document retrieval tasks.

5 CONCLUSION

In this paper, we delve into the realm of generative modeling to enhance end-to-end image retrieval,
a process that directly connects a query image to its closest match. With the introduction of our
semantic image tokenizer, we’ve demonstrated that our model excels at achieving remarkable preci-
sion without compromising recall. Through extensive ablation studies and evaluations on large-scale
datasets, we’ve underscored the superior performance of our approach. We believe that this innova-
tive approach to generative modeling in image retrieval not only pushes the boundaries of this field
but also holds potential for broader applications.

Limitations. While our model has shown significant performance improvements, it’s important to
acknowledge its limitations, which can serve as avenues for future research. Although our model
has demonstrated scalability to million-scale datasets, dealing with billion-scale datasets is a com-
plex challenge. It may necessitate even larger models with higher capacity, potentially impacting
inference speed. Striking a balance between model capacity and speed is an area that warrants explo-
ration for efficient and effective billion-scale search. Training large autoregressive models requires
substantial computational resources, which raises environmental concerns. Research efforts to en-
able efficient training, such as fast fine-tuning of pretrained models, are crucial to mitigate energy
consumption and environmental impact.
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A EXPERIMENT SETTING

In-shop Clothes retrieval dataset (Liu et al., 2016) is a large subset of DeepFashion with large pose
and scale variations. This dataset consists of a training set containing 25,882 images with 3997
classes, a gallery set containing 12,612 images with 3985 classes and a query set containing 14,218
images with 3985 classes. The goal is to retrieve the same clothes from the gallery set given a
fashion image from the query set. We use both the training set and the gallery set for training in our
experiments.

CUB200 (Wah et all 2011) is a fine-grained dataset containing 11,788 images with 200 classes
belong to birds. There are 5,994 images for training and 5,794 images for testing.

Cars196 (Krause et al., |2013) is also a fine-grained dataset about cars. It contains 16,185 images
with 196 car classes, which is split into 8,144 images for training and 8,041 images for testing.

ImageNet dataset (Deng et al., 2009) contains 1,281,167 images for training and 50,000 validation
images for testing, in which we randomly sample 5,000 images as queries to speed up the evaluation
process.

Places365-Standard (Zhou et al.| 2017a)) includes about 1.8 M images from 365 scene categories,
where there are at most 5000 images per category.

Implementation details. We adopt ViT-B for encoder and similar architecture for decoder (12
transformer decoder block with dimension 768). The input image is of resolution 224 x 224 and
is partitioned to 14 x 14 patches with each patch sized 16 x 16. Intuitively, a warm initialization
of encoder should largely stable the training process. We thus warm-start the model with encoder
initialized by the pretrained CLIP model (Radford et al.,[2021). We randomly initialize the remain-
ing fully connected layer and the decoder. The semantic image tokenizer is trained with a batch
size of 128 on 8 V100 GPUs with 32G memory per card for 200 epochs. We adopt an AdamW
optimizer (Loshchilov & Hutter, 2017) with betas as (0.9,0.96) and weight decay as 0.05. We use
cosine learning rate scheduling. Note that we set the initial learning rate as 5e — 4 for the FC layers.
The learning rate of the encoder is set as one percentage of the learning rate of FC layers. We train
our models with 20 warming-up epochs and the initial learning rate is 5e — 7. For training autore-
gressive model, we select similar image pairs (21, x2). Since current retrieval datasets are usually
labeled with class information, we randomly sample an image x2 which shares the same class with
x1 as the nearest neighbor. For autoregressive model, we use batch size of 64 on 8 V100 GPUs with
32G memory per card for 200 epochs. The optimizer and the scheduler are same as the semantic
image tokenizer mentioned above. The initial learning rate is 4e — 5 for the decoder and the learning
rate for encoder is always one percentage of that for decoder. The hyperparameter for quantization
issetto M = 4 and L = 256 for fast inference. For ImageNet and Places365, the experimental
settings are the same as before except that we enlarge the layer of decoder to 24 to increase the
capacity for AR modeling.

B ABLATION ABOUT SEQUENCE LENGTH

We further investigate the length of identifier in our image tokenizer. We experiment different
lengths and report the results in Table [} We can see that if the length of the identifier is too small
(for example 2), the model gets inferior performance. As with the length gets longer to 4 or 6, the
model gets better performance. At last the performance drops a little bit if the length is too long (8).
We think 4-6 would be a good choice in most cases and we simply use 4 in all our experiments.

Precision Recall
1 10 20 30 1 10 20 30
72.1 69.6 689 68.6 | 72.1 951 96.6 97.1
924 87.0 86.6 865|924 968 97.6 979
928 872 86.8 867 | 928 967 974 978
929 874 87.0 869 | 929 969 975 978

[/ Je N NG ST |

Table 6: Ablation study on the sequence length T.
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Figure 6: Examples on Cars196 dataset.Results of CGD, IRT, FT-CLIP, our IRGen are shown from
top to bottom.The results of CGD, IRT, FT-CLIP are retrieved by SPANN.
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Figure 7: Examples on ImageNet dataset.Results of CLIP, FT-CLIP, our IRGen are shown from top
to bottom. The results of CLIP, FT-CLIP are retrieved by SPANN.

C QUALITATIVE RETRIEVAL RESULTS

In this section, we provide several retrieval examples that showcase the performance of our approach
compared to baselines. The retrieval results on In-shop Clothes, Cars196, and ImageNet using
different methods are depicted in Figure[8] Figure[6] and Figure[7] respectively. Correctly retrieved
images are highlighted with green borders, while incorrectly retrieved ones are marked with red
borders. Upon examining the results presented in these figures, it becomes evident that our proposed
method performs exceptionally well and is capable of handling even the most challenging examples.
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Figure 8: Examples on In-shop Clothes dataset.Results of CGD, IRT, FT-CLIP, our IRGen are shown
from top to bottom.The results of CGD, IRT, FT-CLIP are retrieved by SPANN.
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