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Abstract
Harmful fine-tuning (HFT), performed directly
on open-source LLMs or through Fine-tuning-
as-a-Service, breaks safety alignment and poses
significant threats. Existing methods aim to miti-
gate HFT risks by learning robust representation
on alignment data or making harmful data un-
learnable, but they treat each data sample equally,
leaving data vulnerability patterns understudied.
In this work, we reveal that certain subsets of
alignment data are consistently more prone to for-
getting during HFT across different fine-tuning
tasks and exhibit lower robustness compared to
other subsets. Inspired by these findings, we
propose Vulnerability-Aware Alignment (VAA),
which calculates data vulnerability, partitions data
into ”vulnerable” and ”invulnerable” groups, and
encourages balanced learning using a group dis-
tributionally robust optimization (Group DRO)
framework. Specifically, VAA learns an adver-
sarial sampler that samples examples from the
currently underperforming group and then applies
group-dependent adversarial perturbations to the
data during training, aiming to encourage a bal-
anced learning process across groups. Experi-
ments across four fine-tuning tasks demonstrate
that VAA significantly reduces harmful scores
while preserving downstream task performance,
outperforming baselines. The code is available at
https://github.com/ChanLiang/VAA.

1. Introduction
The open-source availability of large language models
(LLMs) and Fine-tuning-as-a-Service platforms enables re-
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searchers and developers to customize these models using
their own datasets. However, recent studies (Qi et al., 2024;
Yang et al., 2023; Zhan et al., 2023) reveal a new critical
safety challenge: fine-tuning aligned models can undermine
their safety alignment. This issue manifests in two ways:
first, LLMs’ safety alignment can be broken by harmful fine-
tuning (HFT) on datasets containing even a small number
of harmful examples; second, safety performance also com-
promises even when fine-tuned on entirely benign datasets.

Prior approaches to mitigating harmful fine-tuning can be
categorized into three classes: (a) alignment-stage meth-
ods that enhance the model’s safety robustness during the
alignment stage before HFT (Huang et al., 2024d; Rosati
et al., 2024a); (b) fine-tuning methods that regulate the fine-
tuning process during HFT (Mukhoti et al., 2023; Huang
et al., 2024c); and (c) post-fine-tuning methods that repair
compromised models after HFT (Yi et al., 2024; Hsu et al.,
2024). Among these, alignment-stage methods are more
controllable and computationally efficient, as they only need
to be applied once. Existing alignment-stage methods aim
to mitigate HFT risks by learning robust representation on
alignment data (Huang et al., 2024d) or making harmful
data unlearnable to reduce their impact (Huang et al., 2024b;
Rosati et al., 2024a). Nevertheless, these methods fail to
investigate the different vulnerabilities of alignment data
under HFT scenarios and treat all data uniformly, limiting
their overall effectiveness. To address this limitation, we
aim to answer the following questions:

Are certain subsets of alignment data more eas-
ily compromised during harmful fine-tuning? If
so, how can we leverage their characteristics to
design better alignment-stage methods against
harmful fine-tuning?

We first investigate how different alignment examples be-
have during the HFT process. Our analysis reveals uneven
vulnerability among alignment examples: Some subsets of
alignment data are highly susceptible to compromise dur-
ing HFT, while others remain robust. Through extensive
experiments, we demonstrate that this uneven vulnerabil-
ity persists across various fine-tuning tasks and different
proportions of harmful data, with a significant overlap in
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Figure 1: Overview of the Vulnerability-Aware Alignment. In the first stage, the vulnerability of the alignment dataset is
analyzed, and the data is partitioned into two groups using the strategy described in Section 2.2. In the second stage, the
adversarial learning framework consists of a LLM and an adversarial sampler, parameterized by a probability simplex over
the partitioned groups. At each alignment step, the sampler samples a hard group and applies a group-specific perturbation
to challenge the LLM. After training, only the LLM is retained, and the sampler is discarded.

the data that is prone to being compromised. These find-
ings indicate that the forgetting behavior in HFT is highly
data-dependent. Moreover, we observe that these vulnerable
examples are often underrepresented in the alignment data
and often exhibit lower robustness to weight perturbations.
This phenomenon likely stems from imbalanced learning
during the alignment stage, where certain data subsets are
insufficiently learned.

To incorporate this prior knowledge about the varying
vulnerability levels of alignment examples, we propose
Vulnerability-Aware Alignment (VAA), a method designed
to explicitly promote balanced learning between vulnerable
and invulnerable data groups. VAA builds upon the group
distributionally robust optimization (Group DRO) frame-
work, which iteratively optimizes the worst-performing
group using a composite objective that linearly combines
loss minimization and robustness enhancement, thereby re-
ducing performance disparities across data groups.

Specifically, VAA implements Group DRO as a two-player
game between a hard group sampler (the adversary) and the
LLM (the target model). At each training step, the adversary
first chooses a batch of data from the relatively hard group
according to an adversarially updated sampling probability,
then applies a group-dependent adversarial perturbation to
challenge the LLM. Conversely, the LLM strives to mini-
mize its loss on the data proposed by the adversary. Through
adversarial training (AT), both parts improve iteratively. Ide-
ally, at convergence, the adversary represents a uniform
distribution across different groups, as the LLM learns all
groups equally well.

We validate our method on four different fine-tuning tasks.
Comprehensive evaluations demonstrate that, compared
to baselines, our method consistently reduces the model’s

harmfulness score while preserving downstream task perfor-
mance.

2. Revisiting HFT From A Data Perspective
In this section, we revisit the problem of harmful fine-tuning
(HFT) from a data perspective. Specifically, we aim to
answer two questions: (1) Are certain subsets of data more
vulnerable to being forgotten during harmful fine-tuning?
(2) If so, what are the characteristics of these data?

2.1. Preliminaries of Harmful Fine-tuning

Considered Scenario. We study a two-stage pipeline for
fine-tuning-as-a-service. In the first stage, a LLM under-
goes safety alignment using the service provider’s curated
alignment dataset. In the second stage, the aligned model is
fine-tuned on user-provided data for personalization. The
resulting model is deployed on the provider’s infrastructure
to serve personalized responses to user prompts.

Threat Model. The attack surface lies within the user fine-
tuning stage, where users can upload datasets containing
both benign and harmful examples. Let p ∈ [0, 1] represent
the proportion of harmful example in the uploaded dataset.
Recent work (Qi et al., 2024) demonstrates that even when
p = 0 (purely benign data), fine-tuning can degrade the
model’s safety guarantees, presenting significant risks for
service providers.

Assumptions. Following (Qi et al., 2024), we assume the
service provider maintains an alignment dataset, where each
sample consists of a pair of potentially malicious prompt
and its corresponding safe response. This dataset serves as
safety demonstration data for alignment preservation.
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Figure 2: Analysis of forgetting behavior: (a) Forgetting pat-
terns on a fine-tuning task (SST2) with varying poison rates
(0%, 10%, and 20%); (b) Forgetting patterns across three
different fine-tuning tasks (SST2, GSM8K, and AGNews)
with a fixed 10% poison rate.

2.2. Characterizing Data Vulnerability in HFT

Next, we examine harmful fine-tuning from a data perspec-
tive by investigating the forgetting behavior of different
examples during harmful fine-tuning. Our goal is to identify
whether certain subsets of alignment data are more suscep-
tible to forgetting and to understand the characteristics of
these subsets.

Definition and Calculation of Data Vulnerablility. We
define data vulnerability as the tendency of specific align-
ment examples to be ”forgotten” during the harmful fine-
tuning process after the model has undergone safety align-
ment. To quantify this, we analyze the forgetting behavior
of different alignment examples during harmful fine-tuning
by examining how their harmful scores (HS) evolve over
time. The harmful score, denoted as HSti is a binary vari-
able indicating whether the i-th example produces a harmful
output at the learning step t. If the harmful score increases
during the fine-tuning process, it signifies that the alignment
example has been ”forgotten”.

To measure how often a particular alignment example is
forgotten, we compute the total number of times it is com-
promised during the fine-tuning process as:

ForgotNumi =

T∑
t=1

(
I(HSti > HS0

i )
)

(1)

Here, HS0
i is the initial harmful score of the i-th example

before harmful fine-tuning. This ForgotNum serves as a
measure of data vulnerability, indicating how susceptible
an example is to forgetting during harmful fine-tuning. A
higher ForgotNum implies greater vulnerability, suggest-
ing that the example is more sensitive to the fine-tuning
process and more likely to be compromised during HFT.
In this work, we define an example as forgotten as having

ForgotNum >0, and unforgotten if ForgotNum is 0.

Definition of Common Forgetting. To analyze the con-
sistency of forgetting across different fine-tuning settings
(e.g., different poison ratios or tasks), we define the common
forgotten set as the intersection of forgotten examples across
all settings under comparison. Let Ai denote the set of for-
gotten examples under setting i, and N the total number of
alignment examples. We define:

CommonForgot =
|A1 ∩A2 ∩A3|

N
, (2)

CommonForgotRatio =
|A1 ∩A2 ∩A3|

min(|A1|, |A2|, |A3|)
(3)

The CommonForgot metric measures the absolute propor-
tion of alignment examples that are consistently forgotten
across all settings. In contrast, CommonForgotRatio
normalizes this overlap by the size of the smallest forgetting
set, reflecting the proportion of shared forgotten examples
relative to the most constrained setting. This metric cap-
tures the degree to which forgetting patterns transfer across
different fine-tuning conditions.

Forgetting in HFT is Data-Dependent. We investigate
how the addition of harmful data affects forgetting by com-
bining the SST2 alignment dataset with randomly sampled
harmful examples from the Beavertail dataset under varying
poison ratios (p = 0%, 10%, 20%). As shown in Figure 2(a),
the non-shaded portion of each bar represents the forget-
ting rate in each setting (|Ai|/N ), while the shaded region
denotes the CommonForgot across all poison ratios, as
defined in Eq. (2).

We observe that introducing harmful data significantly in-
creases forgetting: at p = 10% and p = 20%, the overall
forgetting is approximately twice as high as in the benign
setting (p = 0%). However, a large portion of the forgot-
ten examples overlaps across poison ratios, resulting in a
high CommonForgotRatio. This indicates that certain
alignment examples are consistently vulnerable to forget-
ting, regardless of the amount of harmful data introduced
during fine-tuning.

Forgetting in HFT is Transferable Across Tasks. We fur-
ther examine forgetting patterns across distinct fine-tuning
tasks where the harmful data ratio is fixed at p = 10%,
but the specific harmful data varies for each task. Even in
this case, the forgotten alignment data shows substantial
overlap, as depicted in Figure 2(b). These results indicate
that the vulnerable patterns identified in alignment data are
transferable across tasks.

Robustness of Different Groups. As shown in Figure 3,
we investigate the reasons behind the robustness dispar-
ity between vulnerable and invulnerable data by analyzing
the aligned model’s behavior. Through an examination of
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the loss landscape, we find that vulnerable examples of-
ten exhibit greater sensitivity to changes in model weights.
This heightened sensitivity helps explain why they are more
likely to be forgotten during harmful fine-tuning, as such
fine-tuning inevitably induces a shift in model parameters.

The results reveal that a subset of alignment examples ex-
hibits significantly higher vulnerability compared to others.
These examples, despite being successfully learned during
the alignment phase, are highly susceptible to being lost
during user fine-tuning.

Data Grouping by Vulnerability. We aim to partition the
alignment dataset into two groups—vulnerable and invulner-
able examples—based on their susceptibility to forgetting
during harmful fine-tuning. This partitioning serves as the
foundation for our targeted alignment strategy in subsequent
stages (Stage 1 in Figure 1). However, in realistic deploy-
ment scenarios, the downstream fine-tuning distribution is
typically unavailable. To address this challenge, we lever-
age the empirical transferability of vulnerability patterns
observed across tasks (see Figure 2) and approximate the
forgetting behavior using a proxy fine-tuning dataset.

Specifically, we simulate HFT by fine-tuning a pre-aligned
model on Alpaca (Taori et al., 2023), augmented with 10%
randomly sampled harmful data. During this process, we
evaluate the model’s predictions on the original alignment
dataset over T iterations and record the number of times
each example transitions from a safe to a harmful output.
This count is denoted as ForgotNum (see Eq. 1).

We classify alignment examples as vulnerable if
ForgotNum> 0, and as invulnerable otherwise. As shown
in Figure 1 (left), this grouping is used as prior knowledge in
our method. Notably, this procedure is fully data-driven and
does not rely on access to the actual downstream fine-tuning
distribution, making it broadly applicable across real-world
alignment settings.

Remark HFT induces alignment performance degrada-
tion by causing parameter shifts, which lead to the forget-
ting of alignment examples. However, our analysis reveals
that this forgetting is not uniform across the alignment
dataset—certain examples are significantly more vulner-
able to such parameter perturbations and thus more likely to
be compromised. In the next section, we introduce a method
designed to address these issues by explicitly modeling data-
level vulnerability during alignment.

3. VAA: Vulnerability-Aware Alignment
Building on our analysis, we propose an alignment frame-
work that explicitly incorporates two key priors into the
training process: parameter shifts and uneven forgetting
across the alignment dataset.

Figure 3: Analysis of robustness behavior. The left panel
shows the loss landscape with respect to vulnerable data,
while the right panel illustrates the loss landscape for in-
vulnerable data. The results indicate that the model is less
robust to perturbations in vulnerable data.

3.1. Robust Objective

To model the parameter shifts introduced by harmful fine-
tuning, we use a surrogate objective that proactively captures
group-wise robustness to weight perturbations during the
alignment stage. Let Θ denote the parameter space of the
LLM, and let ℓ : Θ× (X ×Y)→ R+ be a nonnegative loss
function measuring the discrepancy between the model’s
prediction and the true output. The surrogate objective is
defined as:

fi(θ) = ℓi(θ) + λ (ℓi(θ + ϵi)− ℓi(θ))︸ ︷︷ ︸
robustness of i-th group

(4)

= (1− λ)ℓi(θ) + λℓi(θ + ϵi) (5)

Here, ℓi(θ) denotes the loss for group Gi, and ϵi represents
a worst-case perturbation applied to the model parameters
for that group. The robustness term, ℓi(θ + ϵi) − ℓi(θ),
quantifies the group’s sensitivity to parameter shifts. This
term is group-specific, reflecting the empirical observation
that different groups exhibit varying levels of vulnerability
to weight perturbations.

The objective function linearly interpolates between the orig-
inal loss and the perturbed loss, enabling a smooth transition
from standard learning to robust learning. To facilitate this
transition, we adopt a curriculum learning strategy (Bengio
et al., 2009), gradually increasing λ from 0 to 1 during train-
ing. This allows the model to first focus on finding a valid
alignment solution and subsequently improve its robustness
to potential parameter shifts.

3.2. Alignment Training via GDRO

To address the uneven forgetting problem, we need to train
an LLM to learn equally well across different groups of ex-
amples. We improve upon the Empirical Risk Minimization
(ERM) algorithm to encourage balanced learning between
groups by incorporating our prior knowledge.
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The standard ERM-based alignment method is to find param-
eters θ that minimize the empirical loss over the empirical
distribution P̂ :

θ̂ERM := argmin
θ∈Θ

E(x,y)∼P̂ [ℓ(θ; (x, y))] (6)

Here, ERM treats all alignment examples equally and opti-
mizes the average loss, which leads to ”uneven forgetting.”
Since the invulnerable group contains significantly more
samples than the vulnerable group, this imbalance leads to

”gradient starvation” phenomenon (Pezeshki et al., 2021)
under ERM, where gradients from the smaller group are
dominated by those from the larger group. Consequently,
the model underperforms on vulnerable groups, reinforcing
their susceptibility to forgetting.

To address this issue, we propose alignment training un-
der the group distributionally robust optimization (GDRO)
framework, which explicitly optimizes the performance of
the current underperforming group. Formally:

θ̂DRO = argmin
θ∈Θ

{
sup
Gi∈Q

E(x,y)∼Gi
[fi(θ; (x, y))]

}
(7)

where fi(θ; (x, y)) denotes the objective function for group
Gi and Q represents the ambiguity set, which is defined
as a subset of the convex combinations of different groups
G = {G1, . . . , Gm}:

Q :=

{∑
qiGi

∣∣∣ q ∈ ∆m−1

}
, (8)

where q is a vector belonging to the (m− 1)-dimensional
probability simplex ∆m−1.

The optimal solution to the GDRO formulation (Eq. 7)
achieves an equal objective across all groups, which effec-
tively mitigates the problem of uneven forgetting in harmful
fine-tuning.

3.3. Learning Algorithm

Following Sagawa et al. (2020), we employ an online al-
gorithm to solve formulation 7. However, rather than for-
mulating it as a reweighting problem, we consider it as a
resampling problem. To do this, we learn an adversarial
sampler q ∈ ∆m−1 to focus on the worst-case group within
the ambiguity set Q.

To derive the update rule for q, we employ mirror ascent
(Nemirovski et al., 2009) on the probability simplex ∆m−1.
Considering that we aim to maximize the objective function
f(θ) with respect to q, we formulate the update as:

q(t) = argmax
q∈∆m−1

{
ηq⟨q, f (t)⟩ −Dψ(q ∥ q(t−1))

}
, (9)

where f (t) =
[
f1(θ

(t−1)), . . . , fm(θ(t−1))
]⊤

is the vector
of objective function values for each group at iteration t,

ηq > 0 is the step size, and Dψ(q ∥ q(t−1)) is the Bregman
divergence induced by the mirror map ψ(q).

We choose the negative entropy ψ(q) =
∑m
i=1 qi log qi as

the mirror map, which induces the Kullback–Leibler (KL)
divergence DKL(q ∥ q(t−1)) =

∑m
i=1 qi log(qi/q

(t−1)
i ).

Substituting the KL divergence into Eq. (9), we obtain:

q(t) = argmin
q∈∆m−1

{
ηq

m∑
i=1

qifi +

m∑
i=1

qi log(qi/q
(t−1)
i )

}
. (10)

To solve the problem, we introduce a Lagrangian with
multiplier λ to enforce the probability simplex constraint∑m
i=1 qi = 1:

L(q, λ) =

m∑
i=1

qi

[
ηqfi + log

qi

q
(t−1)
i

]
+ λ

(
m∑
i=1

qi − 1

)
(11)

Taking the derivative ofL(q, λ) with respect to qi and setting
it to zero yields:

q
(t)
i =

q
(t−1)
i exp

(
ηqfi(θ

(t−1))
)

Z
, (12)

where Z =
∑m
j=1 q

(t−1)
j exp

(
ηqfj(θ

(t−1))
)
.

This update aligns with the EXP3 algorithm (Auer et al.,
2002) in the adversarial bandit problem, where each group
corresponds to an arm and the observed reward for arm
i is adjusted by its sampling probability q(t−1)

i to ensure
unbiasedness:

r
(t)
i =

fi(θ
(t−1))I[it = i]

q
(t−1)
i

, (13)

where I[it = i] is the indicator function that equals 1 if arm
i is selected at time t, and 0 otherwise.

As shown in the stage 2 of the Figure 1, this approach
transforms the problem into a two-player game between
the LLM (parameterized by θ) and the adversarial sampler
(parameterized by q). At each iteration, the sampler selects
a challenging group Gi fromQ according to probability dis-
tribution q. By using a first-order Taylor expansion (Foret
et al., 2021), ϵi can be approximated as α ·∇ℓi(θ)/|∇ℓi(θ)|,
where α is the perturbation magnitude. We then calculate
the reward r(t)i for selecting group Gi and update the sam-
pling probability q via the EXP3 algorithm to challenge
the LLM. Meanwhile, the LLM optimizes its performance
under this challenge by performing gradient descent on ob-
jective function f .

The overall algorithm is detailed in Algorithm 1.
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Algorithm 1 Learning Algorithm of VAA
Input: Step sizes ηq , ηθ; perturbation intensity α

Initialize θ(0) ∈ Θ and q(0) = 1/m
for t = 1 to T do

// select a group and sample examples
i ∼ q(t−1)

(x, y) ∼ Gi
// Compute group-wise perturbation
ϵi ← α · ∇ℓi(θ(t−1))

∥∇ℓi(θ(t−1))∥
// Compute group-wise reward
r
(t)
i ← fi(θ

(t−1))/q
(t−1)
i

// Update sampling distribution
q
(t)
i ← q

(t−1)
i exp(ηqr

(t)
i )

q(t) ← q(t)/
∑m
j=1 q

(t)
j

// Update model parameters
θ(t) ← θ(t−1) − ηθ∇fi(θ(t−1))

end

4. Experiments
4.1. Experimental Setup

Datasets. To perform model alignment, we utilize the
safe samples from the alignment datasets from Rosati et al.
(2024b), which are enriched versions of BeaverTails (Ji et al.,
2023). We sample 2,000 instances from alignment dataset
for training, ensuring that the harmful dataset instances are
distinct from those used in the fine-tuning stage.

To perform alignment data grouping, we utilize Al-
paca (Taori et al., 2023) as our proxy dataset to simulate
harmful fine-tuning, mixed with 10% harmful data. The
harmful data used for grouping are distinct from those used
in the user’s fine-tuning stage.

For fine-tuning, we employ four datasets: SST-2 (Socher
et al., 2013), AG News (Zhang et al., 2015), GSM8K (Cobbe
et al., 2021), and AlpacaEval (Li et al., 2023). To simulate
harmful attacks during fine-tuning, we create mixed datasets
by combining p% of unsafe data from BeaverTails with
(100− p)% of benign fine-tuning data, resulting in a total
of n samples per dataset. Unless specified otherwise, we
set p = 10 and n = 1, 000 (except for AlpacaEval, where
n = 700).

Evaluation Metrics. Following Huang et al. (2024d;b),
we evaluate our method using two metrics: Fine-tuning
Accuracy (FA) and Harmful Score (HS). FA measures the
model’s performance on the test set of each fine-tuning task.
HS quantifies the model’s resilience to harmful instructions
by calculating the proportion of outputs classified as harmful
by the moderation model from Ji et al. (2023) when tested
on unseen malicious instructions.

To compute HS, we sample 1,000 instructions from the

BeaverTails test set. For FA, the test set sizes are as fol-
lows: 872 samples for SST-2, 1,000 for AG News, 1,000
for GSM8K, and 122 for AlpacaEval. Both metrics are
evaluated on the final fine-tuned models.

Baselines. We compare our method against four baselines:
standard supervised fine-tuning (SFT), Vaccine (Huang
et al., 2024d), RepNoise (Rosati et al., 2024a), and Booster
(Huang et al., 2024b). SFT follows the conventional two-
stage training paradigm with standard alignment and fine-
tuning, while Vaccine, RepNoise, and Booster are recent
alignment-stage defense methods.

Models. We evaluate our approach on Llama2 7B (Touvron
et al., 2023) and Qwen2.5 7B (Yang et al., 2024).

Training Details. We perform full-parameter training for
both the alignment and harmful fine-tuning stages. Full
training during HFT is used to simulate worst-case align-
ment degradation, as updating all parameters may amplify
harmful behaviors. For alignment, we use the AdamW
optimizer (Loshchilov et al., 2017) with a learning rate
of 1 × 10−4 and a weight decay of 0.1, while for HFT
we adopt a lower learning rate of 3 × 10−5 to reflect the
more sensitive nature of this stage. Both stages are trained
for 5 epochs using a batch size of 8. HFT is conducted
on a diverse mix of datasets, including SST-2, AG News,
GSM8K, and AlpacaEval, covering classification, reason-
ing, and instruction-following tasks. All experiments are
conducted on 4 NVIDIA A100 GPUs with 80GB memory.

4.2. Main Experiments

Generalization to fine-tuning datasets. We evaluate VAA
across four different fine-tuning datasets. Table 1 shows that
VAA consistently outperforms the baselines on HS metrics
across all datasets, achieving harmful score reductions of
12.9%, 12.0%, 10.6%, and 3.4% compared to SFT on the
four datasets. It also achieves higher fine-tuning accuracies,
demonstrating its effectiveness and superiority.

Under the full train setting during HFT, baseline methods
perform poorly on the more complex fine-tuning datasets
like GSM8k and AlpacaEval. RepNoise and Booster show
no significant reduction in harmful scores on GSM8k, and
even increases the harmful score on AlpacaEval. While
these methods aim to prevent HFT from effectively learning
harmful data, they struggle when harmful data is mixed
with more complex task data. They lack the robustness
to handle the complex structures and patterns present in
such tasks, which can result in a failure to reduce harmful
scores. In contrast, by focusing on the inherent vulnerability
of the data and reinforcing the more fragile parts during
alignment, our method strengthens the overall robustness of
the alignment process. As a result, our method effectively
reduces harmful scores on both datasets, demonstrating its
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Table 1: Performance for different fine-tuning datasets. The best and second-best performances are highlighted in bold and
underlined, respectively.

Methods SST2 AGNEWS GSM8K AlpacaEval Average

HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑ HS ↓ FA ↑
SFT 32.87 91.00 33.07 87.40 41.63 6.80 30.48 39.73 34.51 56.23
RepNoise 27.89 90.40 27.29 84.00 41.83 6.60 34.66 36.21 32.92 54.30
Vaccine 27.69 89.40 30.28 85.60 34.66 6.20 32.47 38.62 31.28 54.96
Booster 25.90 91.80 31.87 87.00 41.04 6.40 40.24 39.41 34.76 56.15
VAA 20.00 91.00 21.12 87.40 31.08 8.60 27.09 40.06 24.82 56.77

Table 2: Performance analysis for different harmful ratio.

Methods Harmful Score ↓ Finetune Accuracy ↑
p=0% p=10% p=20% Average p=0% p=10% p=20% Average

SFT 23.11 32.87 38.84 31.61 91.80 91.00 90.00 90.93
RepNoise 22.91 27.89 35.26 28.69 90.20 90.40 90.60 90.40
Vaccine 21.31 27.69 36.65 28.55 90.40 89.40 90.00 89.93
Booster 14.54 25.90 30.28 23.57 90.20 91.80 90.40 90.80
VAA 12.35 20.00 25.30 19.22 90.60 91.00 91.20 90.93

generalizability in handling complex fine-tuning tasks.

Robustness to harmful ratio. We evaluate the robustness
of VAA under different harmful ratios. Table 2 shows that,
compared to SFT, VAA achieves an average of 12.4% lower
harmful scores while maintaining fine-tuning accuracy on
downstream tasks. VAA consistently outperforms the base-
lines in reducing harmful scores across different harmful
ratios. Specifically, when the harmful ratio is 0%, VAA
significantly reduces harmful scores, demonstrating the gen-
eralizability of VAA. It not only defends against HFT at-
tacks but also mitigates forgetting caused by benign data
fine-tuning. However, we observe that the harmful score
increases as the harmful data ratio rises, which is a common
weakness of alignment-stage solutions.

Robustness to harmful fine-tuning epochs. We show in
Table 3 how HFT epochs affect model safety. The results
show that as the number of HFT epochs increases, harm-
ful scores rise while fine-tuning accuracy stabilizes. This
indicates that more extensive fine-tuning on harmful data
increases the risk of harmful outputs. VAA demonstrates
the best robustness, maintaining the lowest harmful score
and high fine-tuning accuracy across all epoch settings.

Generalization to different LLMs. Table 4 demonstrates
that our proposed method generalizes effectively to the state-
of-the-art Qwen2.5-7B model. Importantly, the group as-
signments used for VAA training on Qwen2.5 were derived
from grouping estimations performed on LLaMA2, with-
out re-clustering on the Qwen2.5 model itself. Despite this

cross-model transfer, VAA consistently achieves the best
performance, maintaining the lowest harmful scores and
high fine-tuning accuracies across all epochs.

These results provide strong empirical support for our hy-
pothesis: a subset of alignment examples exhibits consis-
tent vulnerability across different model architectures. Our
method successfully identifies these transferable vulnerable
samples and leverages them to enhance robustness, even
when applied to a different LLM family.

4.3. Discussion

We conduct experiments to analyze the impact of example
grouping and sampling strategies on model performance.

Example Grouping. We perform two experiments to evalu-
ate the effectiveness of our example grouping strategy. First,
we compare our method with a variant that does not perform
example grouping. Second, we evaluate the robustness of
VAA to noisy groups by randomly swapping 10% of exam-
ples between the ”vulnerable” and ”invulnerable” groups.
As shown in Table 5, we observe that removing grouping
significantly degrades performance, highlighting the impor-
tance of incorporating vulnerability priors into our method.
Furthermore, VAA demonstrates robustness to group noise,
as the performance degradation under the noisy grouping
setting is moderate rather than severe. We attribute this
to the inherent robustness of the GDRO framework when
handling imperfect group assignments (Sagawa et al., 2020).

Sampling Strategy. To analyze the impact of sampling
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Table 3: Performance analysis for different harmful fine-tuning epochs.

Methods Harmful Score ↓ Finetune Accuracy ↑
epoch=1 epoch=3 epoch=5 Average epoch=1 epoch=3 epoch=5 Average

SFT 27.69 31.67 32.87 30.74 90.00 91.00 91.00 90.67
RepNoise 27.89 30.88 27.89 28.89 90.20 91.20 90.40 90.60
Vaccine 25.30 29.08 27.69 27.36 84.00 88.80 89.40 87.40
Booster 29.08 24.10 25.90 26.36 89.20 88.80 91.80 89.93
VAA 14.60 19.20 20.00 17.93 90.00 91.40 91.00 90.80

Table 4: Performance analysis for different harmful fine-tuning epochs on Qwen2.5-7B.

Methods Harmful Score ↓ Finetune Accuracy ↑
Ep1 Ep2 Ep3 Ep4 Ep5 Ep1 Ep2 Ep3 Ep4 Ep5

SFT 26.89 31.47 31.08 33.27 33.07 84.80 76.80 86.80 87.20 86.40
RepNoise 22.31 25.10 26.49 30.68 30.88 83.00 81.60 88.80 87.20 88.00
Vaccine 29.88 29.28 28.88 30.48 29.48 82.60 84.20 83.20 85.40 85.60
Booster 19.92 21.91 25.10 26.29 30.28 85.20 84.80 87.40 87.60 88.00
VAA 17.73 18.33 20.12 21.91 22.11 86.20 86.40 85.40 87.60 88.60

strategies, we compare our method with three heuristic sam-
pling baselines. The first strategy samples exclusively from
the ”vulnerable” group, while the second samples exclu-
sively from the ”invulnerable” group. The third baseline
employs a commonly used importance sampling strategy
(Buda et al., 2018) in imbalance learning, which sets the
sampling probability the inverse training frequency of each
group. As shown in Table 6, we find that sampling only
from the ”vulnerable” group leads to better performance
than sampling only from the ”invulnerable” group, suggest-
ing that the ”vulnerable” group contains more informative
examples. However, focusing solely on one group results
in information loss and suboptimal performance. Although
importance sampling outperforms single-group sampling, it
still falls short compared to our dynamic sampling method,
which is adaptively optimized during training.

Table 5: Impact of examples grouping.

Strategy HS ↓ FA ↑

VAA 20.00 91.00
- w/o group 26.42 90.08
- w noisy group 21.08 91.20

Table 6: Impact of sampling strategies.

Strategy HS ↓ FA ↑

VAA 20.00 91.00
- Vuln. group only 29.26 90.15
- Invuln. group only 33.98 91.20
- Imp. sampling 28.64 90.35

Computational Overhead. We analyze the computa-
tional efficiency of VAA relative to existing baselines
by comparing the number of backpropagation (BP) steps,
which constitute the dominant training cost. While all meth-
ods share the same asymptotic complexity of O(BP), we
report their relative training cost as a multiplicative factor
over standard SFT. Vaccine and Booster require approxi-
mately 2 × BP and 3 × BP, respectively, due to repeated
perturbation steps. In contrast, VAA requires only 1.5×BP
on average.

This efficiency is achieved through a curriculum learning
strategy that gradually increases the perturbation probability
from 0% to 100%, avoiding full perturbation in the early
training stages and reducing unnecessary computation. As
a result, VAA saves approximately 0.5 × BP compared
to the fastest robust baseline (Vaccine), while delivering
significantly better safety performance.

In practice, full training on a 7B-parameter model completes
in under one hour, making the modest additional cost of
VAA acceptable given its substantial gains in robustness.

5. Related Work
Harmful Fine-tuning. Harmful Fine-tuning (HFT) poses
a significant threat to the safety of Large Language Mod-
els (LLMs). To mitigate this, various methods have been
proposed, categorized into three types: (1) alignment-stage
methods (Huang et al., 2024d; Rosati et al., 2024a;b), (2)
fine-tuning-stage methods (Mukhoti et al., 2023; Huang
et al., 2024c; Lyu et al., 2024), and (3) post-fine-tuning-
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stage methods (Hsu et al., 2024; Yi et al., 2024; Huang
et al., 2024a). Among these, alignment-stage methods are
particularly advantageous as they enhance robustness by
optimizing the model’s safety alignment, strengthening the
model’s safety foundation and reducing subsequent security
risks.

There are two directions to mitigate HFT risks during align-
ment. One direction is learning robust representations from
alignment data, such as Vaccine (Huang et al., 2024d),
which enhances the model’s resistance to HFT by adding
perturbations to the hidden embeddings, thereby reducing
embedding drift. The other direction involves making harm-
ful data unlearnable to minimize its impact. For example,
RepNoise (Rosati et al., 2024a) optimizes the model’s rep-
resentation using harmful data to improve robustness, while
Booster (Huang et al., 2024b) employs a regularizer to re-
duce the harmful loss reduction rate after harmful perturba-
tion. The method introduced in this paper belongs to the
alignment-stage category. We propose a novel approach that
investigates the vulnerability patterns of alignment data—an
aspect overlooked by previous work—and incorporates this
prior knowledge into the algorithm design.

Analysis of the Causes of Alignment Breakdown. While
existing methods have been proposed to mitigate the HFT
issue, their performance is still far from satisfactory. Some
works have attempted to analyze the root cause of alignment
breakdown. For example, Vaccine (Huang et al., 2024d)
uncovers that the alignment breakdown is caused by the
drift of hidden embeddings during fine-tuning, leading to
the forgetting of alignment knowledge. Booster (Huang
et al., 2024b), on the other hand, analyzes loss changes
in models during fine-tuning and points out that HFT can
reduce the loss of harmful data, thereby ’activating’ harmful
knowledge. Additionally, (Peng et al., 2024) introduces
the concept of a ’safety basin,’ arguing that HFT drags the
model’s weights out of this basin. In this work, we are
the first to approach the problem from a data perspective
and reveal that the forgetting behavior in HFT is highly
data-dependent.

Distributionally Robust Optimization. Distributionally
robust optimization (DRO) optimizes the objective function
over ambiguity sets, often defined as balls centered on the
empirical distribution (Ben-Tal et al., 2013; Lam & Zhou,
2015; Duchi et al., 2016; Miyato et al., 2018). Prior applica-
tions of DRO have addressed distributional shifts, including
covariate shift (Oren et al., 2019; Chen et al., 2025), label
shift (Hu et al., 2018), and group shift (Sagawa et al., 2020).
To the best of our knowledge, we are the first to apply DRO
to defend against the harmful fine-tuning problem by en-
couraging LLMs to learn equally well and robustly on both
vulnerable and non-vulnerable examples.

6. Conclusion
This paper investigates vulnerability patterns in alignment
data and proposes Vulnerability-Aware Alignment, a novel
defense method addressing previously overlooked data-
dependent vulnerabilities. Our findings reveal that certain
alignment data subsets are consistently more susceptible to
compromise across different fine-tuning tasks, stemming
from imbalanced learning during standard alignment. By
implementing group distributionally robust optimization
that promotes balanced learning across data subsets, our
method effectively reduces performance disparities while
maintaining model utility. Experiments on four fine-tuning
tasks demonstrate the effectiveness of our approach in mit-
igating harmful behaviors while preserving downstream
performance.

Our work highlights the potential of mitigating harmful
fine-tuning from a data perspective. By focusing on the
inherent vulnerability of data, we have shown that address-
ing data-dependent vulnerabilities can significantly improve
the safety and reliability of large language models. Future
research could explore more nuanced ways to categorize
data, such as utilizing a continuous spectrum of vulnerabil-
ity rather than a binary classification of vulnerable versus
invulnerable. Additionally, our method is orthogonal to
other alignment-stage methods, and combining VAA with
these existing methods could offer even more robust pro-
tections against harmful fine-tuning. Ultimately, our work
paves the way for more comprehensive and robust solutions
to alignment breakdowns in the future.

Impact Statement
This paper presents work intended to advance the field of
Machine Learning, particularly in the area of model align-
ment. We believe our findings may positively contribute
to the safety and robustness of language models. We do
not anticipate any direct societal risks, but we recognize
the importance of continued dialogue around the broader
implications of alignment techniques.
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