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ABSTRACT

Unsupervised disentanglement of content and transformation is significantly im-
portant for analyzing shape focused scientific image datasets, given their efficacy
in solving downstream image-based shape-analyses tasks. The existing relevant
works address the problem by explicitly parameterizing the transformation latent
codes in a generative model, significantly reducing their expressiveness. More-
over, they are not applicable in cases where transformations can not be readily
parametrized. An alternative to such explicit approaches is contrastive meth-
ods with data augmentation, which implicitly disentangles transformations and
content. However, the existing contrastive strategies are insufficient to this end.
Therefore, we developed a novel contrastive method with generative modeling,
DualContrast, specifically for unsupervised disentanglement of content and trans-
formations in shape focused image datasets. DualContrast creates positive and
negative pairs for content and transformation from data and latent spaces. Our
extensive experiments showcase the efficacy of DualContrast over existing self-
supervised and explicit parameterization approaches. With DualContrast, we dis-
entangled protein composition and conformations in cellular 3D protein images,
which was unattainable with existing disentanglement approaches.

1 INTRODUCTION

Figure 1: (a) The concept of content-transformation disentanglement, whereas changing the content
changes the protein identity, and changing transformation changes the state of the protein. Explicit
methods (b) use the transformation space to infer a fixed parameter set, whereas our implicit method
(c) do not restrict the transformations to a fixed set of parameters. Figure uses toy protein images
for visualization, they are not used for experiments in this form.

In many real-world image datasets, particularly in scientific imaging domains, the object shapes be-
ing visualized may undergo multiple transformations (Skafte & Hauberg, 2019; Bepler et al., 2019).
These shape focused image datasets can thus be regarded as samples generated from two indepen-
dent factors, one representing the semantic attribute termed content and the other representing the
transformations. Content is regarded as the form of an object being visualized in the image (Skafte
& Hauberg, 2019) that is unaltered after applying any nuisance transformation. On the other hand,
transformation dictates the specific state or realization of that form of the object. Taking proteins
inside the cells as an example, changing the transformation factor changes the conformation of the
protein where the protein identity (i.e. , protein composition) does not change (Fig. 1). On the other
hand, changing the content factor is analogous to changing the proteins from one identity to another
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through compositional change. Such a phenomenon holds for many shape focused image datasets.
Disentangling content and transformation factors of images can significantly facilitate several down-
stream shape analysis tasks, including shape clustering (Levy et al., 2022b), alignment (Uddin et al.,
2022; Bepler et al., 2019), zero-shot transfer (Zhou et al., 2020), bias removal (Ngweta et al., 2023;
Lee et al., 2021), cross-domain retrieval (Kahana & Hoshen, 2022; Piran et al., 2024), etc. (Liu
et al., 2022).

A number of works have been done to directly or indirectly solve the content-transformation disen-
tangling problem (Jha et al., 2018; Kahana & Hoshen, 2022; Cosmo et al., 2020; Skafte & Hauberg,
2019; Uddin et al., 2022; Bepler et al., 2019), whereas many of them use annotated factors for train-
ing. However, such annotation is hard to obtain, and thus, unsupervised disentanglement methods
are desired. Only a few works (Skafte & Hauberg, 2019; Bepler et al., 2019; Uddin et al., 2022)
have addressed the problem in a completely unsupervised setting. Among them, (Skafte & Hauberg,
2019) performed explicit parameterization of transformation codes as diffeomorphic transformations
and achieved noteworthy disentanglement of content and transformation in several image datasets.
(Bepler et al., 2019) and (Uddin et al., 2022) focus on representing known transformation types as
transformation codes. (Bepler et al., 2019) performed disentanglement of two-dimensional trans-
lation and rotation, whereas (Uddin et al., 2022) demonstrated disentanglement of a broader set of
transformations that can be explicitly parameterized.

Though these unsupervised explicit parameterization methods have demonstrated several successes,
they have several major limitations in general: (1) These method uses the transformation codes
to generate only a few parameterized transformations. In reality, many transformations do not
have a well-defined parameterized form, e.g., protein conformation changes, viewpoint change
(LineMod), etc. These explicit methods can not disentangle such transformation by design. (2)
They use Spatial Transformer Networks (STN) (Jaderberg et al., 2015) for inferring the transforma-
tion codes, which requires a continuous parameterization of the transformation to be disentangled.
The continuity of many transformations (e.g. , SO(3) rotation) in neural networks is often a concern
(Zhou et al., 2019). Moreover, (3) these methods infer spurious contents during disentanglement
in real scenarios where transformations not predefined are present in the dataset (Fig. 3). Due
to these limitations, an unsupervised content-transformation disentangling method without explicit
transformation representation is much desired.

Consequently, in this work, we focused on the more generalized and unique setting of unsupervised
content-transformation disentanglement without any explicit parameterization of the transformation
code. Previously, a theoretical study by Von Kügelgen et al. (2021) showed that standard Contrastive
Learning (CL) methods, e.g., SimCLR (Chen et al., 2020), can disentangle content from style, where
style can be regarded as the transformations used for data augmentation. However, these popular
CL methods (Chen et al., 2020) have rarely achieved any disentanglement in practice (Ngweta et al.,
2023), and their ability in disentangling transformations other than those used for augmentation is
not well-explored. Moreover, we found that SimCLR with geometric data augmentation can not
disentangle any transformation well in our shape focused image datasets of interest (Table 1).

To this end, we develop a novel generative contrastive learning method for implicit content-
transformation disentanglement, termed “DualContrast” (Fig. 2). Unlike existing contrastive strate-
gies, it creates “positive” and “negative” contrastive pairs w.r.t. both content and transformation la-
tent codes. We found that several shape transformations in image datasets lie closely in the normally
distributed latent space that is designed to capture in-plane rotation information in a contrastive man-
ner. Consequently, we create negative pairs w.r.t. transformation and positive pairs w.r.t. content by
simply rotating the samples. Without prior knowledge, creating positive pairs w.r.t. the transforma-
tion codes directly from the input samples is not possible. To this end, we generate samples from an
identical distribution of the transformation representations in the embedding space and treat them as
positive pairs for the transformation codes. Given our observation, this encourages the disentangle-
ment of several shape transformations other than rotation in our dataset. In addition, we randomly
permute the samples in the batch to create a negative pair for a batch of samples w.r.t. content.
Upon creating both “positive” and “negative” pairs w.r.t. both codes, we penalize similarity between
negative pairs and distance between positive pairs for each code. Finally, we incorporate these con-
trastive losses in a Variational Autoencoder (VAE) based architecture with VAE reconstruction loss
and train the model in an end-to-end manner.
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(a) Variational inference of content
and transformation latent codes

Text

Contrastive
Pair Creation

(b) Contrastive pair creation for content and
transformation

(c) Contrastive Learning with positive and negative pairs
w.r.t. both content and transformation

Permute
Permute

Decoder

Encoder

Transform. code

Content code

Transformation 
function

Creation of positive and negative pair w.r.t content,
and negative pair w.r.t. transformation Creation of positive contrastive pair w.r.t. transformation

Figure 2: Our proposed contrastive learning-based unsupervised content-transformation disentan-
glement pipeline. (a) The variational inference of content and transformation codes with LVAE. (b)
Contrastive pair creation strategy for content and transformation codes. The process is delineated
in the bottom panel. Additional visualization available in Appendix Fig. 9. (c) Contrastive losses.
In DualContrast, the contrastive pair creations and reconstruction happen simultaneously, and the
encoder and decoder network are optimized with both contrastive and reconstruction losses in each
iteration.

With such a strategy, by just performing simple rotation to create contrastive pairs, DualContrast
disentangles a much wider range of transformations caussing subtle changes in the pixel space,
e.g., viewpoint in Linemod, several writing styles in MNIST, etc. With DualContrast, we, for the
first time, solved the scientific problem of disentangling protein identities from protein conforma-
tions (defined as subtle changes) in simulated 3D protein images (Fig. 5 and Fig. 6) inside the cell,
known as cellular cryo-ET subtomograms. DualContrast could successfully disentangle the pro-
tein identities as content and protein conformations as transformation in simulated subtomograms,
which is not achievable with previous methods. Overall, our qualitative and quantitative experimen-
tal results show the efficacy of DualContrast in isolating content from transformation compared to
existing relevant methods.

A summary of our contributions is as follows:

• We develop a novel contrastive generative modeling strategy that creates positive-negative
pairs for both content and transformation latent codes. We introduced a novel way of
designing contrastive pairs for transformation from both data and latent space.

• We show that DualContrast is effective in disentangling a wide range of transformations
that causes subtle changes in pixel space, from the content in various shape focused image
datasets.

• Leveraging DualContrast, we, for the first time, disentangled protein identities (i.e. compo-
sition) from protein conformations in simulated 3D cellular cryo-ET subtomograms, as a
proof of principle. DualContrast is the first method that can identify distinct conformations
of proteins from protein mixture subtomogram datsets.

2 RELATED WORKS

Unsupervised Content-Transformation Disentanglement: There are a few (Skafte & Hauberg,
2019; Uddin et al., 2022; Bepler et al., 2019; Von Kügelgen et al., 2021) approaches that deal with
the unsupervised disentanglement of content and transformation. However, these methods perform
explicit parameterization of the transformation codes as affine or some specific parameterized trans-
formation. In contrast, our method does not impose any explicit parameterization on the transfor-
mation latent codes and does not face the issues of the explicit methods (Section 1).

Contrastive Learning based Disentanglement: Contrastive learning is the primary building block
of our method. Contrastive Learning with data augmentation with existing approaches, e.g. , In-
foNCE loss-based SimCLR (Chen et al., 2020), etc., has been previously used by (Von Kügelgen
et al., 2021; Kahana & Hoshen, 2022) to isolate content from style. Though in several scenarios,
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style in shape focused images can be referred to as transformations, these works do not specifically
focus on shape focused real-world images. Moreover, our experiments demonstrate that SimCLR
with rotation augmentation in a standard encoder-decoder framework leads to very poor disentan-
glement of content and transformation (Table 1). Also, (Von Kügelgen et al., 2021) only creates
positive pairs w.r.t content and negative pair w.r.t. style with data augmentation in SimCLR. We
have observed this scheme does not work well in our scenario. Unlike these works, our approach
uses a novel strategy to create “negative” and “positive” pairs for both content and transformation
of latent codes without any InfoNCE loss.

Unsupervised Content-style disentanglement: Apart from (Von Kügelgen et al., 2021), several
methods (Ngweta et al., 2023; Ren et al., 2021b;a; Liu et al., 2021; Kwon & Ye, 2021; Wang et al.,
2023) exist that perform unsupervised content-style disentanglement, focusing on natural images.
Unlike these methods, our work primarily focuses on disentangling content and transformation in
shape focused image datasets. Moreover, we do not depend on any ImageNet pretrained models as
our images of interest differ greatly from the natural images of ImageNet. The very recent work
by Ngweta et al. (2023) assumes access to the style factors to disentangle that style from content in
feature outputs from pretrained models. Unlike this work, we do not assume access to the transfor-
mations beforehand for disentanglement.

Protein Composition-Conformation Disentanglement: One of the major contributions of our
work is disentangling protein identity characterized by large compositional variability as the content
codes and protein states characterized by conformational variability or subtle compositional vari-
ability as transformation codes from 3D cellular cryo-electron tomography (cryo-ET) subimages or
subtomograms. Previously, Harmony (Uddin et al., 2022) was used to disentangle large composi-
tional variability in cellular subtomograms. HEMNMA-3D (Harastani et al., 2021) and TomoFlow
(Harastani et al., 2022) were used to disentangle subtle compositional or conformational variability
in subtomograms using known templates. SpatialVAE (Bepler et al., 2019) disentangled subtle con-
formational variability from 2D cryo-EM images. Ours is the first work to deal with both large and
subtle compositional variability in two different latent spaces for 3D cryo-ET subtomograms.

Further discussions on the related works can be found in Appendix. Section A.1.

3 METHOD

3.1 DISENTANGLING CONTENT AND TRANSFORMATION

Disentangling content and transformation refers to learning one mapping h : X → C × Z , where
X is an input space, C and Z are the intermediary content and transformation representation spaces
respectively. Here, h can be decomposed as hc : X → C and hz : X → Z representing the con-
tent and transformation mapping, respectively. In an unsupervised setting, distinguishing between
content and transformation can be tricky. In this paper, we distinguish between content and trans-
formation with respect to a family of transformations T : X → X such that the following two
conditions hold:

• Condition 1: ∀ T ∈ T and ∀ x ∈ X , hc(T (x)) = hc(x).

• Condition 2: ∃ T ∈ T and ∀ x(1),x(2) ∈ X , hz(T (x(1))) = hz(x
(2)).

Condition 1 defines content space which is invariant w.r.t. T . On the other hand, condition 2 states
that there is a T ∈ T that can make the transformation of any two samples equal when applied to
any one of them. Thus it defines transformation space which is informative of T .

For content-transformation (c-z) disentangling, changes in C must be unaffected by changes in Z
and vice versa. In our problem setting, no labels associated with content space C or transformation
space Z are known. The exact family of transformation T is also not known beforehand. Thus, we
aim to simultaneously learn the family of transformations T and the content factors unaltered by T .

3.2 METHOD OVERVIEW AND NOTATION

Our method is built upon a variational auto-encoder (VAE) based architecture (Fig. 2), where we
perform inference of the content and transformation factors in the data. Consider, a sample space
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X , two latent distribution spaces ΦZ and ΦC , two latent spaces Z and C. We apply an encoder
network qψ : X → C × Z on a sample space bx ∈ X to encode content distribution ϕc ∈ Φc and
transformation distribution ϕz ∈ Φz , where (ϕc, ϕz) = qψ(x). Latent parameters c ∈ C, z ∈ Z
are drawn from distributions ϕc and ϕz respectively. These parameters are then decoded using a
decoder network pθ : C × Z → X to produce xrecon = pθ(c, z).

3.3 VARIATIONAL INFERENCE OF CONTENT AND TRANSFORMATION CODES

Similar to a variational auto-encoder (VAE) setting, the encoder and decoder network parameters
are simultaneously optimized to maximize the variational lower bound to the likelihood p(x) called
the evidence lower bound (ELBO). ELBO maximizes the log-likelihood of the data and minimizes
the KL divergence between latent distributions and a prior distribution. The objective function for
this can be written as:

p(x) ≥Eqψ(c,z|x)[log
pθ(x, c, z)

qψ(c, z|x)
]

= Eqψ(c,z|x) log pθ(x|c, z)−KL(qψ(c|x)||p(c))−KL(qψ(z|x)||p(z)).
(1)

The log-likelihood term is maximized using a reconstruction loss Lrecon. The prior for c and z, p(c)
and p(z) respectively are assumed to be standard normal distribution. In short, we write the KL
terms as LKL(c) and LKL(z). To regularize the effect of prior on the final objective separately for
two latent codes, we scale the two losses with two hyperparameters γc and γz . Our loss function for
variational inference becomes:

Lvae = Lrec + γcLKL(c) + γzLKL(z). (2)

We observe that by deactivating the KL term associated with any one of the codes, the likelihood
tends to be optimized through the other latent code. For instance, if γc is set as 0 and γz has a large
value, then the Lrec is optimized through c only. As a consequence, c captures all the information in
x, whereas z becomes totally independent of the data. In such a scenario, z will be a random code
with no relation to the transformation of the data, which is not desirable.

3.4 CREATING CONTRASTIVE PAIR WITH RESPECT TO CONTENT

We adopt a contrastive strategy for c-z disentanglement. We first develop a strategy to impose a
structure to the content latent code with contrastive learning. To this end, we create negative and
positive pairs for each data sample w.r.t. the content code. Hence, we randomly pick two samples x
and xneg(c), where x,xneg(c) ∈ X and regard them as negative pairs of each other w.r.t the content
code. Such strategy is commonly used in traditional self-supervised learning approaches (Chen et al.,
2020; He et al., 2020). Considering the high heterogeneity present in the dataset, evidenced by a
large number of classes, this approach accounts for the likelihood that any two randomly selected
samples will have different content. To generate positive pairs w.r.t. the content code, we pick any
sample x and transform it with a transformation T ∈ T to generate xpos(c). We use the encoder
qψ to generate content codes c, cpos, and cneg respectively from x, xpos(c), and xneg(c). We use
a contrastive loss to penalize the distance between c and cpos and the similarity between c and
cneg. Our contrastive loss for content latent code can be written as: Lcon(c) = Ldist(c, cpos) +
Lsim(c, cneg). To implement Ldist and Lsim, we use mean absolute cosine distance and mean absolute
cosine similarity, respectively.

3.5 CREATING CONTRASTIVE PAIR WITH RESPECT TO TRANSFORMATION

Imposing contrastive loss on the content code satisfies condition 1 of the c-z disentanglement (Sec-
tion 3.1). However, the c-z disentanglement remains only partial since it does not satisfy condition
2. To solve this issue, we design another contrastive loss w.r.t. the transformation code. Designing a
contrastive loss that explicitly enforces condition 2 is not possible, given the transformation code that
may equalize the transformation of two samples can not be approximated. To this end, we design
a contrastive loss that implicitly encourages condition 2. We validated the design experimentally in
Section 4.
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The negative pair of a sample x ∈ X w.r.t. transformation is generated while creating a positive
pair of it w.r.t content. This is because a transformation T on x alters its transformation, but not
its contents. So, we regard xpos(c) as xneg(z). However, creating positive pairs of samples w.r.t.
transformation is very challenging as they can not be created in the input space, unlike others.
To this end, we adopted a strategy of creating pairs of samples from the same distribution in the
transformation embedding space. We randomly sample z(1) and z(2) from N (0, 1) and use the
decoder pθ to generate samples x(1)

pos(z) and x
(2)
pos(z) from them (Fig. 2 (c)). In the decoder, as content

input, we use content codes c(1) and c(2) obtained by encoding two random samples x(1) and x(2).
Consequently, x(1)

pos(z) = pθ(c
(1), z(1)) and x

(2)
pos(z) = pθ(c

(2), z(2)) serve as the positive pairs w.r.t.

transformation. We then use the encoder qψ to generate z, zneg, z(1)pos , and z
(2)
pos from x, xneg(z),

x
(1)
pos(z), and x

(2)
pos(z) respectively. We use a contrastive loss to penalize the distance between z

(1)
pos and

z
(2)
pos and similarity between z and zneg. Our contrastive loss for transformation can be written as:

Lcon(z) = Ldist(z
(1)
pos , z

(2)
pos) + Lsim(z, zneg). Similar to Lcon(c), we use mean absolute cosine distance

and mean absolute cosine similarity to implement Ldist and Lsim, respectively.

Why rotation?: We used rotation as a transformation to create contrastive pairs because only rota-
tion provided generalization to other shape-based transformations in the dataset, compared to other
transformations such as translation, scale, blur, or color-based transformations (Details in Appendix
A.2.3).

Objective Function: In summary, we train the encoder and decoder networks by simultaneously
minimizing the loss components. Our overall objective function to minimize is:

L = Lvae + Lcon(c) + Lcon(z) (3)

We optimize Lvae for both x and the transformed image xpos(c) (same as xneg(z)), which yielded
better experimental result.

4 EXPERIMENTS & RESULTS

Table 1: Quantitative Results of unsupervised Content-Transformation Disentangling Methods.
Among these methods, SpatialVAE and Harmony put constraints on the z code dimension given
their explicit parameterization, others do not. The std. dev. over model training by setting 3 differ-
ent random seeds remains within ±0.04. Dscore is written as D. For D(c|c) and D(z|z), higher is
better. For D(c|z) and D(z|c), lower is better. For SAP (c) and SAP (z), higher is better.

MNIST LineMod Protein Subtomogram
Method D(c|c) D(c|z) SAP (c) D(c|c) D(c|z) SAP (c) D(c|c) D(c|z) SAP (c) D(z|z) D(z|c) SAP (z)

SpatialVAE 0.81 0.28 0.53 0.95 0.32 0.63 0.69 0.93 0.24 0.71 0.57 0.14
Harmony 0.82 0.31 0.51 0.90 0.56 0.34 0.95 0.01 0.94 0.52 0.90 0.38

SimCLR (Discriminative) 0.58 0.60 0.02 0.62 0.40 0.22 0.39 0.69 0.30 0.51 0.52 0.01
SimCLR (Generative) 0.53 0.67 0.14 0.61 0.79 0.18 0.53 0.59 0.06 0.55 0.54 0.01

VAE with 2 latent space 0.63 0.63 0.0 0.87 0.87 0.0 0.79 0.82 0.03 0.85 0.85 0.0
VITAE 0.77 0.32 0.45 0.92 0.90 0.02 - - - - - -

DualContrast (w/o Lcon(c)) 0.87 0.21 0.66 0.86 0.31 0.55 0.93 0.81 0.13 0.78 0.81 0.03
DualContrast (w/o Lcon(z)) 0.79 0.85 0.06 0.79 0.86 0.07 0.99 0.86 0.13 0.86 0.63 0.23

DualContrast 0.89 0.31 0.58 0.95 0.48 0.47 1.00 0.56 0.44 0.86 0.64 0.22

Benchmark Datasets: We report results on MNIST (LeCun, 1998), LineMod (Hinterstoisser et al.,
2013), and a realistically simulated protein subtomogram dataset. Only LineMod features RGB
images among these datasets, while the others consist of grayscale images. The subtomogram is a
3D volumetric dataset, whereas the others are 2D images. For a detailed discussion of the datasets,
we refer to the Appendix.

Baselines: We used the unsupervised c-z disentanglement methods, SpatialVAE (Bepler et al.,
2019), Harmony (Uddin et al., 2022), VITAE (Skafte & Hauberg, 2019) with explicit parameteriza-
tion and InfoNCE loss based standard self-supervised learning method with rotation augmentation
(Von Kügelgen et al., 2021) as baseline approaches. Several generic disentangled representation
learning methods, such as beta-VAE, Factor-VAE, beta-TCVAE, DIP-VAE, etc., are available that
do not aim to disentangle specific factors such as content or transformation in the data but rather
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aim to disentangle all factors of variation. However, previous studies (Bepler et al., 2019; Skafte &
Hauberg, 2019) have shown that such methods perform worse than methods specifically aiming to
disentangle content and transformation. Therefore, we did not use these methods as baselines in our
experiments.

Implementation Details: We implemented the encoder using a Convolutional Neural Network
(CNN) and the decoder using a Fully Connected Network (FCN). Our experiments used the same
latent dimension for content and transformation codes, except for Harmony (Uddin et al., 2022) and
SpatialVAE (Bepler et al., 2019), where a specific dimension needs to be used for transformation
codes. We train our models for 200 epochs with a learning rate of 0.0001 in NVIDIA RTX A500
GPUs and AMD Raedon GPUs. We optimize the model parameters with Adam optimizer.

The hyperparameters γz and γc controls how close the z and c distribution will be to N (0, I). We
found setting a small value ≈ 0.01 for both provides optimal results in our experiments. Further
details of the overall implementation are provided in the Appendix A.3.

Evalutation: We evaluate the methods based on two criteria: (1) the informativeness of the pre-
dicted c and z codes w.r.t the ground truth c and z factors, (2) the separateness of of the predicted c
and z codes. We performed these evaluations both quantitatively and qualitatively.

For quantitative evaluations, there exists several metrics, e.g. , MIG score, Dscore, SAP score, etc.
Locatello et al. (2019) demonstrated that these metrics are highly correlated. To this end, we only
used Dscore and SAP score to measure the disentanglement. Dscore is simply a measurement of
how well the ground truth (gt) factors can be predicted from the corresponding latent codes. In our
scenario, there are four such quantities - (a) predictivity of content gt given c code Dscore(c|c) or z
code Dscore(c|z) (b) predictivity of transformation gt given c code Dscore(z|c) or z code Dscore(z|z).
For MNIST and LineMod, we do not have any transformation gt, so we only reported values for
(a). Similar to (Von Kügelgen et al., 2021), we use linear Logistic Regression Classifiers to measure
predictivity (Dscore). The higher the Dscore, the more informative is the latent code w.r.t. the gt. SAP
score for a gt factor is defined as the difference between the highest and second highest predictivities
for it given any latent codes. In our case, SAP(c) can be defined as |Dscore(c|c) − Dscore(c|z)| and
SAP(z) as |Dscore(z|z)−Dscore(z|c)|. The higher the SAP score, higher the separateness of the latent
codes. For qualitative evaluations, we performed downstream tasks like generating images through
unsupervised content-transformer transfer and latent space visualization. For protein subtomograms,
we performed subtomogram averaging Chen et al. (2019) to identify proteins resulting from the
latent space clusters.

4.1 DUALCONTRAST DISENTANGLES SEVERAL WRITING STYLES FROM MNIST IMAGES

(a) Harmony (b) SpatialVAE

(c) VITAE (d) DualContrast

z
c

Figure 3: Qualitative Results of Unsupervised c-z Disentanglement on MNIST obtained by (a)
Harmony, (b) SpatialVAE, (c) VITAE, and (d) DualContrast, respectively. Images are generated
by the Decoders given content (c) code from the leftmost column images and transformation (z)
code from the topmost row images.

Similar to the related works, we start our experiments with the MNIST dataset of handwritten digits.
We performed a quantitative comparison between DualContrast and the baseline approaches, as
shown in Table 1. We observed that DualContrast achieves higher Dscore(c|c) compared to other
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explicitly parameterized approaches (Uddin et al., 2022; Bepler et al., 2019; Skafte & Hauberg,
2019).

However, since transformation labels are not present for MNIST, relying entirely on the content
prediction performance for disentanglement might be misleading. To this end, we report qualitative
results for baseline methods and our approach DualContrast (Fig. 3 and Appendix Fig. 10). In
generating images with varying c and z codes, we observe that Harmony, SpatialVAE, and C-VITAE
generate many images with erroneous content and transformations. On the other hand, DualContrast
does not make such mistakes. This again suggests better c-z disentanglement with our approach than
existing explicit parameterization approaches.

Moreover, DualContrast disentangles more than in-plane rotation for MNIST. For the digit 0 marked
with green box in Fig. 3, Harmony and SpatialVAE simply rotate the image, not capturing the actual
writing style of the digit 2 in the top row. VITAE somewhat represented the transformation with
its explicit modeling of piecewise linear transformation. On the other hand, DualContrast properly
captured the writing style of above digit 2.

We included additional qualitative results, including the c and z latent space visualization, in the
Appendix A.4.

4.2 DUALCONTRAST DISENTANGLES VIEWPOINT FROM LINEMOD OBJECT DATASET

(a) Harmony (b) SpatialVAE

(c) VITAE (d) DualContrast

z
c

Figure 4: Qualitative Results of Unsupervised c-z Disentanglement on LineMod obtained by (a)
Harmony, (b) SpatialVAE, (c) VITAE, and (d) DualContrast, respectively. Images are generated
by the Decoders given c code from the leftmost column images and z code from the topmost row
images. Additional content-transformation transfer results are available on Appendix Fig. 12.

LineMod is an RGB object recognition and 3D pose estimation dataset (Hinterstoisser et al., 2013)
with 15 unique object types. The objects are segmented from real-world scenes, and the segmented
images visualize the objects from different viewpoints. The entire dataset has 1, 313 images per
object category. We used 1, 000 images per category for training and the remaining for testing.

We evaluated the scores Dscore (Table 1) for DualContrast and baseline approaches, where DualCon-
trast clearly shows the best performance. During evaluation, we used the object identities as ground
truth content factors.

We also performed qualitative measurement similar to MNIST and provided the results in Fig. 4
and Appendix 12. We observe that VITAE distorts the images significantly while performing image
generation with c-z transfer. On the other hand, DualContrast does not face such issues. SpatialVAE
and Harmony only disentangles in-plane rotation given their design; so changing the z code in
these methods only rotates the content sample. However, DualContrast can disentangle different
viewpoints of the objects as the z code and changing z changes the viewpoint of objects- reflecting
the actual transformation present in the dataset.

4.3 DUALCONTRAST DISENTANGLES PROTEIN COMPOSITION FROM CONFORMATIONS IN
CRYO-ET SUBTOMOGRAMS AND ENABLES THEIR PRECISE IDENTIFICATION

We created a realistically simulated (Liu et al., 2020) cellular cryo-ET subtomogram dataset of
18,000 samples belonging to 3 different protein identities - Nucleosome, Sars-Cov-2 spike protein,
and Fatty Acid Synthase (FAS) unit. We collected 6 different conformations or compositional states
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for each protein identity from RCSB PDB (RCSB, 2000). Among them, only nucleosome composi-
tion has subtly visible differences across all the 6 states. For each conformation per protein identity,
1,000 subtomograms were generated. Each subtomogram is of size 323 and contains a protein in
random orientation and shift with a very low signal-to-noise ratio (Fig. 5). Further details on the
dataset properties are provided in the Appendix A.4.

Nucleosome (2pyo) Nucleosome (7kbe)

Spike Protein (6vxx) FAS Unit  (8psm)

(a) (b) (c)

(d) (e) (f)

Figure 5: Disentanglement of composition and conformations in cellular subtomogram dataset with
slice-by-slice visualization of 4 sample subtomograms. UMAP embedding of c codes in (a) Spatial-
VAE, (b) Harmony, and (c) DualContrast. (d) Slice-by-slice visualization of x-y slices in 4 sample
subtomograms. (e) UMAP embedding of c codes in Harmony trained only nucleosome subtomo-
grams. (f) UMAP embedding of z codes in Harmony trained with all subtomograms.

(a) SpatialVAE content code + GMM + RELION refine

(b) Harmony content code + GMM + RELION refine

(c) DualContrast content code + GMM + RELION refine

(d) Harmony content code for nucleosome cluster + GMM + RELION refine

(e) Dualcontrast transformation code + GMM + RELION refine

Figure 6: (a,b,c) Structures obtained with RELION refinement for each (4) cluster of subtomograms,
whereas the clustering is performed using Gaussian Mixture Modeling (GMM) on c codes, predicted
by (a) SpatialVAE (b) Harmony, and (c) DualContrast. (d, e) Structures obtained with RELION
refinement for the nucleosome subtomograms (identified with previous step) using GMM on (d)
Harmony content (c) codes, and (e) DualContrast transformation (z) codes.
We trained DualContrast and baseline approaches (except VITAE since it could not be trained with-
out designing a 3D CPAB transformation) against the protein subtomogram dataset. We provided
the quantitative results in Table 1 and qualitative results in Fig. 5 and Fig. 6 respectively.

For qualitative results, we first perform UMAP visualization of the latent codes obtained by the
models. We observed that the UMAP of c codes in DualContrast perfectly clustered the protein
identities from the dataset, profoundly disentangling the transformations (Fig. 5(c)). We do not see
such clustering for Harmony (Fig. 5(b)); rather, protein identities with very different compositions
get mixed up due to their conformational variation. SpatialVAE latent code UMAP could not cluster
the proteins at all (Fig. 5(a)). We further observe that DualContrast z code UMAP clusters have
similar nucleosome conformations, showing disentanglement of conformation from protein identity.
On the other hand, in Harmony, the transformation factor only represents rotation and translation

9
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by design and can not capture nucleosome conformations. Moreover, even its c code for manually
selected (not through automatic clustering) nucleosome subtomograms can not show good clustering
of conformations (Fig. 5(b)).

To further demonstrate the application of such disentanglement, we perform downstream subtomo-
gram averaging to identify the structures from latent space clusters. Subtomogram averaging obtains
readily identifiable high SNR structures from multiple low SNR subtomograms through iterative
alignment and averaging Chen et al. (2019). In our experiments, Gaussian Mixture Models (GMM)
were applied to content (c) codes predicted by models, generating clusters of subtomograms that
were averaged using RELION Zivanov et al. (2018) (Fig. 6). SpatialVAE failed to identify proteins,
while Harmony identified the FAS, nucleosome, and 2 spike proteins, though 1 spike protein ap-
peared as an unrealistic mixture of FAS and spike protein. DualContrast successfully identified the
FAS, nucleosome, and 2 distinct spike protein compositions. For nucleosome conformations, GMM
clustering of Harmony’s c codes for nucleosome cluster subtomograms revealed only 1 nucleosome
conformation but mistakenly included a spike protein. In contrast, clustering DualContrast’s z codes
followed by RELION averaging identified 4 distinct nucleosome conformations with subtle struc-
tural changes, showcasing its ability to disentangle protein composition and conformation, which is
unattained by the other existing methods.

(a)

(b)

z
c

Figure 7: Content-transformation transfer re-
sults from ablation analysis. (a) and (b)
shows the results when the model is trained
with LVAE + Lcon (z) and LVAE + Lcon (c) re-
spectively.

Ablation Study: To evaluate the individual con-
tribution of the contrastive losses, we conduct both
quantitative and qualitative ablation analyses of Du-
alContrast. We trained (1) DualContrast without
any contrastive loss, which is basically a VAE with
two latent spaces, (2) DualContrast with only L =
LVAE+Lcon (z), and (3) L = LVAE+Lcon (c). We qual-
itatively and quantitatively evaluated each model.
We show the quantitative results in Table 1 and qual-
itative results of MNIST in Fig. 7. We provide qual-
itative results and a detailed discussion on the abla-
tion in the Appendix A.4.4.

5 DISCUSSIONS & LIMITATIONS

We introduced an unsupervised content-
transformation disentanglement method that,
for the first time, does not rely on labels or explicit
parameterization of transformations. Our method
successfully disentangled transformations that cause
subtle pixel-space changes, such as variations in writing styles (MNIST), viewpoint changes
(LineMod), and, most importantly, conformational changes in proteins from protein-mixture
cryo-ET subtomogram datasets. However, it is not guaranteed to disentangle all transformations,
particularly those causing large changes in the pixel space. Instead, the method may classify
transformations causing large pixel-space changes as content. Nonetheless, this aligns with
scientific imaging, where large changes often reflect compositional shifts and subtle changes
represent conformational variations. Disentangling transformations with large pixel-space changes
in the pixel space without any explicit parameterization is extremely challenging and might not be
practically achievable, but it remains an avenue for future research.

6 CONCLUSION

This work focuses on a challenging setting of the unsupervised content-transformation disentangle-
ment problem in scientifically important shape focused image datasets, where the transformation
latent code is not explicitly parameterized. To tackle this problem, we propose a novel method
termed DualContrast. DualContrast employs generative modeling with a novel contrastive learning
strategy that creates positive and negative pairs for content and transformation latent codes. Our
extensive experiments show DualContrast’s effective disentanglement of challenging transforma-
tions across various shape-based image datasets; including simulated cellular subtomograms, where
it solved the unexplored problem of isolation of protein conformations from protein identities, as
proof of principle.
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A APPENDIX

OVERVIEW

• Appendix A.1 contains additional discussion on related works.

• Appendix A.2 contains an additional mathematical explanation of DualContrast and Base-
line methods.

• Appendix A.3 contains additional details on the experiments.

• Appendix A.4 contains additional results and description on the datasets.

A.1 DETAILED RELATED WORKS

Disentangled Representation Learning: PCA (Halko et al., 2011) and ICA (Hyvärinen & Oja,
2000) can be regarded as very preliminary work in the domain of disentangled representation learn-
ing. However, these methods assume linear subspace and do not work well for non-linear high-
dimensional datasets. Deep learning-based approaches like Info-GAN (Chen et al., 2016), β-VAE
(Higgins et al., 2016), and their variants (Chen et al., 2018; Kim & Mnih, 2018; Kumar et al., 2018;
Kim et al., 2019) have recently gained wide attention as generic approaches for learning disentangled
representations. Most of these works manipulated the variational bottleneck to achieve disentangle-
ment of the latent codes. However, these works do not aim toward disentangling any specific factor,
e.g. , content, group, style, transformation, etc., from the latent codes. Instead, they generate a se-
ries of images by traversing through each dimension of the latent space while keeping the remaining
dimensions fixed. Thus, they infer the semantic meaning of each dimension of the learned latent
factor. Consequently, these methods do not perform well in disentangling any specific generative
factor compared to those that aim to disentangle several (two in most cases) specific generative fac-
tors (Uddin et al., 2022; Skafte & Hauberg, 2019; Bepler et al., 2019). Unlike these methods, our
method specifically disentangles the content and transformation factors of data samples, whereas the
content and transformation are defined in Section 3.1.

cryo-EM Heterogeneous Reconstruction: There exists several works on single particle cryo-EM
and cryo-ET reconstruction, e.g. , cryoDRGN2 (Zhong et al., 2021), cryoFIRE (Levy et al., 2022b),
cryoAI (Levy et al., 2022a), etc. that performs amortized inference of transformation (SO(3)× d2)
and latent space representing content. However, these works mainly focus on 2D-to-3D recon-
struction instead of content-transformation disentanglement. Our work, on the contrary, focuses on
content-transformation disentanglement. Though we use reconstruction loss to maximize informa-
tiveness of content and transformation factors, our reconstruction is 2D-to-2D or 3D-to-3D, unlike
the aforementioned works. Also, our transformation factor is implicit and not explicitly limited to
SO(3)× d2.
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Shape Analysis: Disentangling content and transformation latent factors have special significance in
the domain of shape analysis. Consequently, shape representation learning, modeling, and analysis
(Monti et al., 2017; Tan et al., 2018; Palafox et al., 2021; Zhou et al., 2020; Huang et al., 2021;
Cosmo et al., 2020) are closely related to our work. Even for shape analysis, PCA can be regarded
as one of the primitive methods. Even now, PCA is widely used in the shape analysis of protein
complexes (Bakan et al., 2011). Recently, Huang et al. (Huang et al., 2021) demonstrated that
PCA with two components on the latent factor learned by an auto-encoder corresponds to content
(shape) and style (pose) in 3D human mesh datasets. Nevertheless, PCA is a linear method assuming
linear subspaces, which often does not hold true. A line of shape analysis research (Cosmo et al.,
2020; Aumentado-Armstrong et al., 2019; Tan et al., 2018; Zhou et al., 2020) has been performed
for non-linear disentanglement of content and style factors in 3D mesh or point cloud datasets.
The goal of these works is to reduce per-vertex reconstruction loss of 3D meshes or point clouds
for content-style-specific generation. These works claim unsupervised disentanglement as they do
not require ground truth factors. However, they use the identity information of meshes, which is
directly associated with content code. In contrast, our method does not require identity information
apriori to learn latent codes specific to shape and code. Moreover, the mentioned works specifically
investigate mesh-specific geodesic losses to achieve minimal per-vertex mesh reconstruction. On
the other hand, we do not specifically aim to design mesh-specific losses in this work, rather, we
propose a generic content-transformation disentanglement approach that can be applied to 3D mesh
datasets with necessary modification in the model architecture.

A.2 METHOD

A.2.1 CONTENT-TRANSFORMATION DISENTANGLEMENT WITH VARIATIONAL
AUTOENCODERS (VAE)

A standard Variational Autoencoder (VAE) presumes data x to be generated by latent variable z,
whereas a standard Gaussian prior is assumed for z.

p(x) =

∫
p(x|z)p(z)dz

p(z) = N (0, Id)

We extended the standard VAE to a two-latent variable setting. We assume latent variables z and c
to generate the data x.

p(x) =

∫∫
p(x|z, c)p(z)p(c)dc

This setting is similar to VITAE (Skafte & Hauberg, 2019), SpatialVAE (Bepler et al., 2019), and
Harmony (Uddin et al., 2022). However, in SpatialVAE (Bepler et al., 2019) and Harmony (Uddin
et al., 2022), latent factor z is restricted as rotation and parameterized transformations, respectively.
In SpatialVAE,

p(z) = Unif(a, b) (4)
θ ∼ p(z|x) (5)

xcord = R([−1, 1]d×d; θ) (6)

p(x) =

∫
p(x|c,xcord)p(c)dc (7)

where a and b are specified constants, θ are transformation (2D rotation and translation) parameters,
R is the corresponding transformation operator.

On the other hand, in Harmony,
θ = I(z|x)
x′ = T (x; θ)

p(x′) =

∫
p(x′|c)p(c)dc
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where I is an identity function, θ are transformation parameters and T is the corresponding trans-
formation operator.

Unlike these two methods, in VITAE (Skafte & Hauberg, 2019) and our proposed DualContrast, we
use standard Gaussian priors for latent codes z and c.

p(z) = N (0, Id)

p(c) = N (0, Id)

However, in VITAE (Skafte & Hauberg, 2019), z is used to explicitly sample continuous piecewise
affine velocity (CPAB) transformation parameter θ, and c is used to sample appearance samples x′.

θ ∼ p(x|z)
x′ ∼ p(x|c)
x = T (x′; θ)

where T is the transformation operator for CPAB transformation. CPAB transformation parameter
is highly expressive compared to affine transformation parameters used in spatialVAE.

Contrary to VITAE (Skafte & Hauberg, 2019), we do not use z to sample any transformation
parameters explicitly; rather use both z and c to generate x. To this end, we use a contrastive
learning strategy that is described in Section 3 of the main paper. Without explicitly sampling any
transformation parameter, we improve the expressiveness of our transformation latent factor z even
more than the CPAB transformation used in VITAE (Skafte & Hauberg, 2019).

A.2.2 FEATURE SUPPRESSION OF SIMCLR AND MOCO CONTRASTIVE LOSSES:

The contrastive losses used in popular self-supervised learning methods SimCLR (Chen et al., 2020)
or MoCo (He et al., 2020) as did not help much in disentangling content and transformation in our
experiments. It has been demonstrated that these methods often learn nuisance image features or
noise to obtain a shortcut solution to the contrastive objective (Kahana & Hoshen, 2022). This
phenomenon is referred to as feature suppression of contrastive objectives. We found that using
reconstructive loss was necessary to prevent the feature suppression problem.

A.2.3 CHOICE OF TRANSFORMATION TO CREATE CONTRASTIVE PAIRS

T(x)

Rotation

Translation

Scale

Blur

Saturation

Hue

z
c

Figure 8: Content-transformation transfer based image generation results using different transfor-
mation functions (T (x)) to create contrastive pairs. Only rotation ensures transformation factor z to
capture object viewpoints- the transformation factor present in the original dataset.

We leveraged different transformation functions T (x) to create contrastive pairs in DualContrast for
LineMod RGB object dataset. We used rotation, translation, scaling, blur, saturation, and hue as
T (x). We performed both qualitative (Table 2) and quantitative analysis on the effect of different
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T (x) for content-transformation disentanglement in DualContrast. We observe that using Scale or
Blur makes the transformation factor z uninformative of the data and it does not capture anything at
all. Consequently, changing this z factor while generating images does not change the image at all for
these two codes (Figure 8). On the other hand, using translation shows small negligible differences
in the c-z transfer-based image generation. Color-based transformations like saturation and Hue only
change the color of the generated image, instead of affecting its shape-based transformation. Only
rotation provides generalization of z and enables z to capture viewpoint transformations present in
the dataset.

Table 2: Transformation Factors and Corresponding Dscore(c|z) and Dscore(c|c) values.

Transformation Factor Dscore(c|z) Dscore(c|c)
Rotation 0.48 0.95
Translation 0.65 0.98
Scale 0.52 0.91
Contrast 0.51 0.93
Saturation 0.71 0.86
Hue 0.61 0.88
Blur 0.47 0.92

A.3 EXPERIMENTS

A.3.1 IMPLEMENTATION DETAILS

Figure 9: Visualization of the creation of contrastive pairs for MNIST. (a) Creating positive pair
with respect to (w.r.t) content factor and negative pair w.r.t. transformation. (b) Creating negative
pair w.r.t. content. (c) Creating positive pair w.r.t. transformation. We show the processes for a
batch of MNIST digits with a batch size of 5.

We implemented our model in Pytorch (version 1.9.0). We used a convolutional neural network
(CNN) (3 convolutional layers for MNIST, 4 for others) to implement the encoder and a fully con-
nected network (FCN) (5 layers) to implement the decoder. For subtomograms, we used a 3D
convolutional network for the encoder. We do not use any pooling layers in our networks.

While training the models, we use a batch size of 100 and an Adam optimizer with a learning rate
of 0.0001. We used a linear learning rate scheduler that decays the learning rate of each parameter
group by 0.1 every 50 epochs. We trained our models for 200 epochs. We used the same setting
for our models and the baseline models. We used NVIDIA RTX A500 and AMD Radeon GPUs to
train the models.

Choice of latent dimension: For Harmony (Uddin et al., 2022) and SpatialVAE (Bepler et al.,
2019), the transformation latent factor is restricted to dimension 3. For VITAE (Skafte & Hauberg,
2019), SimCLR (Von Kügelgen et al., 2021), and our DualContrast, there is no such restriction on
the transformation latent factor dimension and same dimension was used as the content factor. For
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(a)

c
z

(b)

(c) (d)

Figure 10: Content-transformation transfer results from ablation analysis (a), (b), (c), and (d) shows
the results with Harmony (Uddin et al., 2022), Spatial-VAE (Bepler et al., 2019), VITAE (Skafte &
Hauberg, 2019), and DualContrast respectively. When generating image grids, the transformation
factor is uniform across rows, and the content factor is uniform across columns. Erroneous genera-
tions (both in terms of content and transformation) are marked within red boxes.

all the methods, the dimension of the content factor was set as 10 for MNIST, 50 for subtomogram
dataset. For hyperparameters γc and γz, we set a small value (≈ 0.01) in our experiments. The
values determine how strictly the content factor and the transformation factor should mimic the
prior standard multivariate gaussian distribution.

A.4 ADDITIONAL RESULTS

A.4.1 MNIST

We use the commonly used MNIST dataset to initialize our experiments. MNIST is a dataset in
the public domain that the research community has extensively used. It contains grayscale images
of handwritten digits. Each image is of size 28 × 28. The training set contains 60,000 images,
whereas the test set contains 10,000. We use the same train test split for our experiments. We show
a full visualization of content-transformation transfer based image generation of Figure 3 in Figure
10. We also include tSNE embedding of the content codes inferred by the models on the MNIST
test dataset associated with class labels (Figure 11). On the embedding space, DualContrast clearly
shows superior clustering performance.
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Figure 11: tSNE embedding plots of content latent factor learned by the unsupervised content-
transformation disentanglement methods. (a), (b), (c), and (d) shows the results for Harmony (Uddin
et al., 2022), Spatial-VAE (Bepler et al., 2019), C-VITAE (Skafte & Hauberg, 2019), and DualCon-
trast respectively. Overall, DualContrast shows superior performance.

A.4.2 LINEMOD

LineMod (Hinterstoisser et al., 2013) dataset is originally designed for object recognition and 6D
pose estimation. It contains 15 unique objects: ‘ape’, ‘bench vise’, ‘bowl’, ‘cam’, ‘can’, ‘cat’, ‘cup’,
‘driller’, ‘duck’, ‘eggbox’, ‘glue’, ‘hole puncher’, ‘iron’, ‘lamp’ and ‘phone’, photographed in a
highly cluttered environment. We use a synthetic version of the dataset (Wohlhart & Lepetit, 2015),
which has the same objects rendered under different viewpoints. The dataset is publicly available at
this url. The dataset is publicly available under MIT License.

This dataset has 1, 313 images per object category. We used 1, 000 images per category for training
and used the remaining for testing. For many objects, the object region covers only a tiny part
of the original image. To this end, we cropped the object region from the original image using
the segmentation masks provided with the original dataset. After cropping the object regions, we
padded 8 pixels to each side of the cropped image and then reshaped the padded image to the
size of (64, 64, 3). Thus, we prepared the training and testing datasets for content-transformation
disentanglement in LineMod. We used the same dataset and train-test splits for our model and the
baseline models. The associated processing codes are provided in the supplementary material.

We trained our proposed DualContrast, VITAE (Skafte & Hauberg, 2019), SpatialVAE (Bepler et al.,
2019), and Harmony (Uddin et al., 2022) on the LineMod dataset. We provide qualitative results
of image generation with content-transformation transfer in Fig. 12 obtained with each method.
It is noticeable that both Harmony (Uddin et al., 2022) and SpatialVAE (Bepler et al., 2019) have
shown good performance when it comes to reconstruction. However, these two methods can only
perform rotation and translation of the objects with explicitly defined transformations and can not
capture complex transformations, e.g., projection, viewpoint change, etc. Compared to SpatialVAE
and Harmony, VITAE (Skafte & Hauberg, 2019) can perform better transformation transfer but per-
forms poor reconstruction. Nevertheless, DualContrast stands out for its superior ability to perform
transformation transfer while ensuring optimal performance in reconstruction.
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(a) (b)

(c) (d)

Figure 12: Qualitative results of image generation with content-transformation transfer obtained
by (a) Harmony (Uddin et al., 2022), (b) SpatialVAE (Bepler et al., 2019), (c) VITAE (Skafte &
Hauberg, 2019), and (d) DualContrast respectively. Harmony and SpatialVAE perform well in re-
construction. but can only perform rotation and translation with its explicitly defined transforma-
tions. On the other hand, VITAE can comparatively perform better disentanglement with very poor
reconstruction results, distorting the images. On the other hand, DualContrast provides superior
content-transformation transfer with optimal performance in reconstruction.

A.4.3 PROTEIN SUBTOMOGRAM DATASET

We created a realistic simulated cryo-ET subtomogram dataset of 18,000 subtomograms of size
323. The dataset consists of 3 protein classes of similar sizes- Nucleosomes, Sars-Cov-2 spike
protein, and Fatty Acid Synthase Unit. These proteins are significantly different in terms of their
composition, which determines their different identities. Moreover, structures for all of these three
types of proteins have been resolved in cellular cryo-ET (Klein et al., 2020; Harastani et al., 2022;
de Teresa-Trueba et al., 2023), which makes it feasible to use them for our study. Moreover, cellular
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cryo-ET is the primary method to capture these proteins inside the cells in their native state (Doerr,
2017).

]

Figure 13: 3D slice-by-slice visualization of Nucleosome subtomograms. Each subtomogram is
associated with the PDB ID of the original structure.

Figure 14: Isosurface visualization of Nucleosome Density Maps. Each density map slightly varies
in terms of conformation. They are associated with the PDB IDs in the figure.
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Figure 15: 3D slice-by-slice visualization of Spike Protein Subtomograms. Each subtomogram is
associated with the PDB ID of the original structure.

For each protein class, we collected 6 different protein structures from the RCSB PDB website
(RCSB, 2000). RCSB PDB is a web server containing the structure of millions of proteins. For
nucleosomes, we collected PDB IDs ‘2pyo’, ‘7kbe’, ‘7pex’, ‘7pey’, ‘7xzy’, and ‘7y00’. All of
these are different conformations of nucleosomes that slightly vary in composition (Figure 14). For
sars-cov-2 spike proteins, we collected PDB IDs ‘6vxx’, ‘6vyb’, ‘6xr8’, ‘6xra’, ‘6zox’, and ‘6zp0’.
Among them, only ‘6xra’ shows much variation in structure from the other ones, and the rest of
the PDB IDs are very similar in structure. For Fatty Acid Synthase (FAS) Unit, we used PDB IDs
‘8prv’, ‘8ps1’, ‘8ps9’, ‘8psj’, ‘8psm’, ‘8psp’. They also vary very slightly in terms of the structure.

After collecting these 18 PDB structures as PDB files, we used EMAN PDB2MRC (Tang et al.,
2007) to create density maps (as MRC file extension) from the PDB files. We create density maps of
size 323 with 1 nm resolution. We then randomly rotate and translate each density map and create
1000 such copies. We then convolve the density maps with CTF with CTF parameters common in
experimental datasets (Defocus -5 nm, Spherical Abberation 1.7, Voltage 300 kV). Afterward, we
add noise to the convolved density maps so that the SNR is close to 0.1. Thus, we prepare 18, 000
realistic subtomograms with 3 different protein identities, each with 6 different conformations. We
uploaded the entire dataset anonymously at https://zenodo.org/records/11244440 un-
der CC-BY-SA license. Sample subtomograms for nucleosomes, spike proteins, and FAS units are
provided in Figure 13, Figure 15, and Figure 16 respectively. The figures show 3D slice-by-slice
visualization for each conformation of the corresponding protein.

We could not train VITAE (Skafte & Hauberg, 2019) on subtomogram datasets since it did not de-
fine any transformation for 3D data. Designing CPAB transformation for 3D data by ourselves was
challenging. However, we trained SpatialVAE and Harmony as baselines against our subtomogram
dataset. Between these two, spatialVAE could not distinguish the protein identities with high het-
erogeneity at all, which is evident by its embedding space UMAP (Figure 5). Only Harmony and
DualContrast showed plausible result, where DualContrast showing much superior disentanglement
than Harmony (Figure 5).
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Figure 16: 3D slice-by-slice visualization of FAS subtomograms. Each subtomogram is associated
with the PDB ID of the original structure.

A.4.4 ABLATION STUDY

To evaluate the individual contribution of the contrastive losses, we conduct both quantitative and
qualitative ablation analyses of DualContrast. We trained (1) DualContrast without any contrastive
loss, which is basically a VAE with two latent spaces, (2) DualContrast with only L = LVAE+Lcon (z),
and (3) L = LVAE + Lcon (c). We qualitatively and quantitatively evaluated each model.

For (1), the Dscore is almost the same for both c and z codes, indicating equal predictivity of the digit
classes by both codes. This is obvious given that the model has no inductive bias to make different
codes capture different information. In model (2), using contrastive loss w.r.t. only z factor makes
it uninformative of the data. Thus, it provides a small D(c|z) score as desired, but the changing z
does not affect the image generation (Fig. 7). On the other hand, in the model (3), using contrastive
loss w.r.t. only c gives a less informative c factor, a lower D(c|c) score, and a higher D(c|z) score,
contrary to what is desired. These results indicate that contrastive loss w.r.t to both codes is crucial
for the desired disentanglement.

Furthermore, we investigated whether using only positive pairs or negative pairs for both codes is
sufficient for disentanglement. Nevertheless, we found that both leads to suboptimal disentangle-
ment. If only negative pairs are used, only rotation is disentangled. If only positive pairs are used,
then the transformation code becomes uninformative of the data, similar to the degenerate solution.

We provide further quantitative results on the ablation study in Figure 17. The image grids show
decoder-generated images where the content factor is used from the corresponding topmost row, and
the transformation factor is used from the corresponding leftmost column image.
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(a) (b)

(c) (d)

Figure 17: Content-transformation transfer results from ablation analysis. (a), (b), (c), and (d) show
the results when the model is trained with LVAE, LVAE + Lcon (z), LVAE + Lcon (c) and full objective
respectively.
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