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ABSTRACT

Vision-language (VL) learning requires extensive visual perception capabilities,
such as fine-grained object recognition and spatial perception. Recent works typ-
ically rely on training huge models on massive datasets to develop these capabil-
ities. As a more efficient alternative, this paper proposes a new framework that
Transfers the knowledge from a hub of Vision Experts (ToVE) for efficient VL
learning, leveraging pre-trained vision expert models to promote visual percep-
tion capability. Specifically, building on a frozen CLIP encoder that provides vi-
sion tokens for image-conditioned language generation, ToVE introduces a hub of
multiple vision experts and a token-aware gating network that dynamically routes
expert knowledge to vision tokens. In the transfer phase, we propose a “resid-
ual knowledge transfer” strategy, which not only preserves the generalizability of
the vision tokens but also allows detachment of low-contributing experts to im-
prove inference efficiency. Further, we explore to merge these expert knowledge
to a single CLIP encoder, creating a knowledge-merged CLIP that produces more
informative vision tokens without expert inference during deployment. Experi-
ment results across various VL tasks demonstrate that the proposed ToVE achieves
competitive performance with two orders of magnitude fewer training data.

1 INTRODUCTION

The integration of visual perception with language processing, referred to as vision-language (VL)
learning, is a critical frontier in multi-modal research. Compared to standalone language processing,
it is a comprehensive super-set that necessitates additional visual perception capability. Many VL
tasks, such as image captioning (Lin et al., 2014) and visual question answering (VQA) (Antol
et al., 2015), require the model to be capable of content understanding, fine-grained recognition,
and spatial perception. Recent works have predominantly relied on massive datasets (sometimes
over billions of image-text pairs) with large-scale model architectures (Wang et al., 2022a; Li et al.,
2023a; Wang et al., 2023) to develop these capabilities from scratch. However, the dependency on a
massive dataset presents significant challenges, particularly in specialized domains such as medical
imaging where acquiring vast amounts of data is not feasible.

To achieve efficient VL learning, one direct approach is to train from scratch using a small-scale
dataset and model architectures. However, the overall visual perceptual capabilities of these mod-
els exhibits a significant degradation due to insufficient learning of diverse visual perceptual skills.
Although some studies (Dai et al., 2022; Liu et al., 2024b) have attempted to address this issue by
transferring the image-text pre-trained CLIP (Radford et al., 2021) to VL tasks, recent findings indi-
cate that CLIP’s visual perception capability is also limited (Li et al., 2022a; Tong et al., 2024). As
illustrated in Figure 1, the recent advanced efficient Vision-Language Model (VLM) equipped with
CLIP, Prismer-Z (Liu et al., 2024b), struggles with spatial reasoning and fine-grained perception,
often misinterpreting spatial relationships and failing to differentiate between visually distinct ob-
jects. Moreover, in tasks such as image captioning, this model is prone to visual hallucinations,
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Normal CLIP DINO

Question: Is the car below the
parking meter ?

Answer:
Prismer-Z: Yes. % ToVE: No.

Prismer-Z: A white cake with
penguins on top of it. (&)
ToVE: A three tiered cake with
a bunch of little figurines on
top of it. (9

Figure 1: The comparison between Figure 2: Different vision experts can provide rich visual
Prismer-Z and the proposed ToVE prior knowledge, which can be transferred to VL learning,
on Novel Object Caption and Vision and efficiently improve visual perception capability with
Spatial Reasoning. limited, small-scale data.

wherein it incorrectly imagines details about an image. Given the availability of numerous pre-
trained vision models from public repositories, our intuition is that “why not fully utilizing these
vision experts and transfer their knowledge to enhance the visual perception capability?” As
shown in Figure 2, different experts exhibit distinct vision properties for the same inputs, and each
can contribute uniquely when their knowledge is transferred to VL learning (Geman et al., 1992).

To this end, we propose a VLM that Transfers the knowledge from a hub of Vision Experts (ToVE)
for efficient VL learning. Building on recent VLM designs (Liu et al., 2024b; Li et al., 2023a), where
a frozen CLIP image encoder provides vision tokens for image-conditioned language generation, we
establish a model hub that includes multiple domain-specific vision experts and a token-aware gat-
ing network that dynamically routes “expert knowledge” into every vision token. To preserve the
generalizability of the vision tokens from CLIP, we develop a “residual knowledge transfer” strategy
when transferring the knowledge to vision tokens. Since the experts are not coupled in the ToVE
framework, we can selectively detach experts with minimal contributions to enhance inference effi-
ciency based on their average gating weights during the training stage. Further, since the knowledge
from vision experts acts as a complement or calibration for the vision tokens, we merge the expert
knowledge to the vanilla CLIP vision encoder via the proposed “knowledge merging” approach. This
approach eliminates the need for expert inference, significantly boosting inference efficiency while
maintaining robust vision perception capabilities in VL tasks. In summary, our main contributions
are as follows:

* Token-aware Knowledge Transfer from Vision Experts. Compared with previous works relying
on large-scale models and datasets to develop the vision capabilities required by VL tasks from
scratch, we construct a model hub from readily available vision experts, transferring their knowledge
to VL tasks for efficient learning. The proposed ToVE can dynamically route the optimal vision
knowledge to respective vision tokens and adopts a residual transfer strategy to enhance the original
vision tokens while maintaining their generalizability. Consequently, ToOVE can achieve competitive
performance with two orders of magnitude less training data.

* Pluggable Vision Experts and Knowledge Merging. Since the vision experts in TOVE are not
coupled and their knowledge serves to complement or calibrate each vision token, this allows us to
selectively detach the low-contributing experts to improve inference efficiency. Furthermore, with
the vision tokens enriched with expert knowledge, we introduce a “knowledge merging” approach
to adapt this knowledge into a single vision encoder. This approach eliminates the need for vision
expert inference while achieving promising performance without any vision experts.

2 RELATED WORK

Vision-language Learning. Vision-language (VL) learning represents the integration of visual and
language processing capabilities. This field typically follows a dual-phase approach: pre-training



Published as a conference paper at ICLR 2025

and task-specific fine-tuning. During the pre-training phase, models are trained on image-text pairs,
enabling them to learn visual perception aligned with the texts, thereby enhancing performance in
downstream VL tasks. Fine-tuning involves transferring this model knowledge to specific VL tasks,
such as image captioning (Lin et al., 2014) and visual question answering (VQA) (Antol et al.,
2015). Notably, the pre-training phase is data-intensive, often requiring billions of image-text pairs
to achieve satisfactory performance (Wang et al., 2022a; Alayrac et al., 2022; Wang et al., 2023).
Recent advancements have seen some studies propose efficient training methods that offer improved
performance even with smaller models and fewer data requirements, such as Prismer (Liu et al.,
2024b), MAMO (Zhao et al., 2023), and EVE (Chen et al., 2024a). The work closest to ours is Pris-
mer (Liu et al., 2024b), which requires more data and additional training of a “Resampler” (Alayrac
et al., 2022) to learn to implicitly synthesize expert knowledge into auxiliary vision tokens. In con-
trast, we aim to transfer the vision knowledge from the vision experts to the original vision tokens.
The transfer phase is explicit and interpretable, with a token-aware gating network that dynamically
routes expert knowledge to these vision tokens.

Conditional Computation. The process of knowledge transfer from vision experts is close to con-
ditional computation (Yang et al., 2019; Chen et al., 2020; Han et al., 2021). Recent works intro-
duce the idea into mixture-of-experts (MoE) (Riquelme et al., 2021; Fedus et al., 2022; Wang et al.,
2024) within Transformer architectures (Vaswani et al., 2017), where multiple Feed Forward Net-
works (FFNs) serve as experts and a gating network selectively activates these experts to process
the given input tokens. Different from these models which create mixture-of-experts from learnable
FFNs with random initializations, we seek to transfer the knowledge from diverse, pre-trained vision
experts to VL learning. Furthermore, MoE models typically prioritize load balancing (Fedus et al.,
2022) to ensure the full utilization of each expert, while our approach focuses on adaptively learning
the optimal assignment of experts to efficiently transfer the vision knowledge for various VL tasks.

Learning from Models. Given the abundance of pre-trained models (referred to as experts) trained
on diverse datasets, learning from models aims to leverage the knowledge gained from existing
models to enhance model performance, rather than training from scratch with raw data. Traditional
methodologies, such as fine-tuning and knowledge distillation, are frequently used but often fail
to fully utilize the knowledge from existing models. To address their limitations, various model
merging techniques have been developed to amalgamate or edit the weights from different homoge-
neous models, such as model soup (Wortsman et al., 2022), task arithmetic (Ilharco et al., 2022), and
DARE (Yu et al., 2023). Recent efforts have also explored the ensemble of multiple heterogeneous
models to tackle tasks such as classification (Shu et al., 2022), domain adaptation (Li et al., 2022c¢),
and language generation (Jiang et al., 2023). These approaches typically collect models from sim-
ilar tasks and ensemble them at the task level. In contrast, we leverage vision experts from distinct
domains, transferring their extensive and diverse vision knowledge to VL learning. In ToVE, we
develop a “residual knowledge transfer” strategy to dynamically transfer optimal expert knowledge
for each vision token, thereby enhancing vision token representations.

3 METHODOLOGY

3.1 THE OVERALL FRAMEWORK

The ToVE framework, as illustrated in Figure 3, integrates a CLIP (Radford et al., 2021) vision
encoder Ey;, a fine-grained gating network G, a model hub with K vision experts {Eq, E,, ..., E .}
sourced from public repositories, and a language decoder Dy, For each image, its vision tokens are
encoded by E;s, and are then sent to the gating network G to obtain the optimal assignment of expert
knowledge at the token level. The expert knowledge is fused and transferred to the vision tokens
via the proposed residual knowledge transfer strategy. After that, the knowledge-enhanced vision
tokens are sent to the language model through cross-attention to condition the language generation.

3.2 TRANSFER KNOWLEDGE FROM A HUB OF VISION EXPERTS

Expert Token Projector. Since the vision experts vary in all the aspects including tasks, datasets,
learning paradigms, and the network architectures, expert token projectors are required to align these
experts within a unified embedding space before the knowledge transfer phase. The projector is a
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Figure 3: The overall framework of ToVE. The vision tokens processed by the vision encoder
E,;s are assigned expert knowledge through the gating network, then enhanced with a “residual
knowledge transfer” strategy before interacting with the language model. For the gating network, it
dynamically assigns the optimal expert knowledge to each vision token for VL learning.

multi-layer perceptron network (MLP) with a GeLU (Hendrycks & Gimpel, 2016) non-linearity,
where the first layer is expert-specific and the second layer is shared among all vision experts.
Specifically, given the k-th (k < K) vision expert Eg, its projector is parameterized as: v, =
[)%: )], where /¥ denotes the weights of the first layer specific to Ej, and ¥, denotes the weights
of the second layer shared across experts. The projection function of can be delineated as H,, <
A R% — R where dj, is the token dimension of the expert By, and djay, is the token dimension
of the language model Di,pg.

Token-aware Expert Knowledge Ensemble. The representation of each vision token is distinct,
carrying distinct knowledge (e.g., foreground objects, depth, spatial positions) for complex VL
tasks. This necessitates a specialized strategy to transfer unique expert knowledge to each to-
ken. To achieve this, we introduce a token-aware gating network parameterized as 6, with a routing
function defined as Gy € A : R% — RE where d,;; denotes the length of the vision tokens.
For each vision token ti. € R®%¥, the gating network takes it as input and computes its routing
score 7; = [r1,72,...,Tk] € R¥ for each expert. Different from previous MOE works (Riquelme
et al., 2021; Fedus et al., 2022) that activates the expert with the top-1 routing score, we argue that
knowledge from a single expert domain is insufficient, and, in fact, the gating network can adap-
tively learn the assignment of these experts. Therefore, we propose to apply an ensemble of the
tokens ti derived from the K vision experts to produce the expert knowledge for each vision to-
ken. Specifically, for the vision token ¢, ., we normalize its routing score 7; by softmax function
Softmax(r),; = e’/ Zszl e"*, imposing a relative competition among the vision experts. That
is, the final ensemble weight of expert knowledge is computed as w; = Softmax(r; + €), where
we empirically add a small noise ¢ sampled independently ¢ ~ N(0, %) entry-wise to improve
the exploratory behavior of the gating network and the robustness of the model. Finally, the expert
knowledge token for ¢’; can be computed as:

K
tho = [wr-Hy, ()], fori=12... N, (1)
k=1
where N is the total number of vision tokens.

Residual Knowledge Transfer. Transferring expert knowledge into vision tokens can be achieved
through two straightforward strategies: (a) directly integrating ., into vision token via addition;
(b) appending t.., as the auxiliary vision tokens; The former strategy (a) preserves the count of
vision tokens but may lead to an over-reliance on expert knowledge, potentially overwhelming the
generalizable vision tokens from CLIP. In contrast, the latter strategy (b) introduces additional com-
putational burden and increases the complexity of learning from these auxiliary expert tokens. To
address the above limitations, we introduce a residual knowledge transfer method, inspired by the
residual architectures employed in modern foundation models (He et al., 2016; Devlin et al., 2018).
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For each vision token ¢/, its expert knowledge tixp is transferred via a residual addition, which is
defined as follows: B _ _

tf/is - tz/is + A x M¢(téxp)7 (2)
where M (-) denotes a two-layer MLP function : A : Rwe — R%we parameterized by ¢ =
[01; P2]. Here, A is the coefficient to reconcile the proportion of expert knowledge transferred into
original vision tokens. By incorporating expert knowledge as a residual addition term adjusted by A
and an MLP function, rather than a direct alteration of the existing CLIP vision tokens, this strategy
seamlessly integrates expert knowledge into the vision-language learning process, maintaining both
the generalizability of the CLIP vision tokens and computational efficiency of the model.

Pluggable Vision Experts. From our analysis in Section 4.4, there is a positive correlation between
the average ensemble scores w and the experts’ contributions. Since ToVE does not couple expert
knowledge in the transfer phase, it is easy to detach low-contributing experts from the architecture
to improve the inference efficiency. Suppose we choose the top-k contributing experts € (|€| < K)
for inference, the routing scores r; of the detached vision experts are set to —oo:

Gg(ti~ )k ifE, €&

vis (3)

_ ¢k i k i _
r, = flopk (G9 (tvis)) 7Where flopk (G9 (tvis))k - {—OO otherwise .
After applying the softmax function, only the ensemble weight of top—l% contributing experts will
be maintained and reconciled. Experts not included in £ do not need to participate in the inference
process. This operation allows the flexibility to detach any number of experts without additional
training, achieving a balance between computational resources and model performance.

3.3 VISION-LANGUAGE LEARNING OF TOVE

Language Modeling Pre-training. Based on an image-text pair dataset {I, T} € D, ToVE is
pre-trained with a unified language modeling loss without image-text contrastive and image-text
matching losses commonly employed in other works (Li et al., 2021; 2022b). The loss of ToVE is
formulated as follows:

ﬁlm(¢a o, 0) = E(I,T)ND 14 (Dlang(iviSa p)7 T) ’ 4

where £, is the knowledge-transferred vision tokens of image I, ¢ is the cross-entropy function
between the predictions from the language decoder and the actual text description (i.e., caption) of
the images, and p is the prompt (i.e., prefix) of the language model. L), ensures the alignment
between the knowledge-transferred vision tokens and text generation, leading the framework to
explore optimal fusion configurations across diverse vision experts.

Enhancing Exploration of Vision Experts.
When optimizing solely with L, the gating Image-conditioned generation
network Gy (-) is prone to overfit and fall into a
local minimum by trivially assigning ensemble
weights to a few specific vision experts. One
main reason is that different experts have dis-  Vision Encoder
tinct domain knowledge, and vary in the dif-

distillation A cat sits on a desk next
to a keyboard. </s>

text output {}

’

ficulty of transferring their knowledge to the CUP@ MLPs — 1, | Language HAdapteri
vision tokens through Hy,. This issue makes s S
ToVE difficult to explore other potentially valu- .. 4 merge aﬁenﬁoncfs::kl

able vision knowledge. Thus, to ensure the = MLPs S
sufficient learning of H,, before exploring the to a keyboard.

optimal routing of the vision experts, we em-

ploy an auxiliary load balancing loss £,,x(f) on Figure 4: The overview of expert knowledge
the gating network Gy, followed by (Shazeer merging. The CLIP vision encoder enables the
et al., 2017; Lepikhin et al., 2020; Fedus et al., merging of expert knowledge into itself by pre-
2022). The specifics of this implementation are  dicting the knowledge-transferred vision tokens as
detailed in Appendix A.3. During the train- an auxiliary learning target.

ing phase, the vision experts can gradually pro-

vide effective knowledge to vision tokens, hence, we set a relaxing coefficient o with a co-
sine schedule to progressively reduce L,,x to learn the optimal routing of vision experts: oy =
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Model P;e-tl:ain CIDEr SPICE Models | VSR | POPE-R POPE-A
(# pairs) MiniGPT-4 507 | 789 71.4
SimVLMyuce 1.8B (600 %) 101.4 - LLaVA 56.3 68.7 67.0
BLIPf 129M (43 x) 113.2 14.8 BLIP-2y- 75 50.0 - -
BLIP-z;Pszb 4M (1.3x%) 111.9 14.5 InstructBLIPy_+5 54.3 89.3 78.5
Prismerrazce 127M (4.2x) | 1079  14.8 Prismer-Z (12.7M) | 632 | 849 81.2
Prismerzass 12.7M (4.2x) | 87.5 13.0 Prismer-Z* (3M) 55.3 81.7 80.5
VinVL' 57M(1.9%) | 955 135 ToVE-Lite 3M) | 659 | 86.6 81.9
OSCAR' 4M (1.9%) 80.9 11.3 ToVE (3M) 67.7 87.4 82.5
ToVE (no experts) | 3M 92.1 13.3
ToVE-Lite 3M 1041 144 Table 2: Zero-shot performance on VSR and
ToVE 3M 1102 14.9 POPE. Both Prismer-Z and ToVE are fine-

tuned on VQAv2, and tested in a zero-shot
Table 1: Zero-shot caption performance on manner. *: the results are reproduced by us (us-
Novel Object Caption (NoCaps). “7: the model ing the same dateset as ToVE). V-7B: Vicuna-
is fine-tuned on COCO caption dataset, and then 7B (Zheng et al., 2024); Accuracy is adopted
conduct zero-shot caption test on NoCaps. on VSR, and F1-score is adopted on POPE.

ap % 0.5 x (14 cos (m x %)), where o represents the coefficient at any given training epoch ¢, T’

is the total training epochs, and «y is the initial coefficient at the training start.

Learning Objective. With the incorporation of language modeling loss and the load balancing loss,
the final optimization problem becomes:

arg min) Lim + @ - Laux- (®)]
Our ToVE framework simultaneously explores the knowledge transfer to vision tokens and vision-
language learning, which can be trained in an end-to-end manner.

3.4 REDUCE ALL EXPERTS INTO ONE

As more experts are integrated into the model hub, the computation load is increasingly intensi-
fied. Therefore, inspired by distillation techniques that bridge the gap between training and infer-
ence (Gou et al., 2021), we propose to merge the expert knowledge to the CLIP vision encoder,
dubbed “expert knowledge merging”. The proposed “residual knowledge transfer” strategy is es-
sential for effective knowledge merging, as it transfers the expert knowledge to the vision tokens
without significantly altering the original representations. That is, there is a small representation
gap g := t,is — t.is between the original vision tokens and the knowledge-transferred vision token,
and the learning target of “expert knowledge merging” is to minimize this gap g. As depicted in Fig-
ure 4, we maintain the language modeling loss while simultaneously merging the expert knowledge
to the vision encoder through the 12-norm loss:

Licanster = IE(I,T)ND [E (Dlang(tvisvp)a T) + H Evis — tyis ”2] ; (6)
g

where £, and t.;s denote the original and the knowledge-transferred vision tokens, respectively.
In this transfer stage, only the CLIP vision encoder with its MLPs are online updated, while other
components in TOVE remain frozen. In inference stage, only the knowledge-merged CLIP provides
the vision token for language generation.

4 EXPERIMENTS

4.1 IMPLEMENT DETAILS

ToVE utilizes ViT (Dosovitskiy et al., 2020) pre-trained by CLIP (Radford et al., 2021) as the frozen
vision encoder, and RoBERTa (Liu et al., 2019) as the frozen language decoder, following the prac-
tice in (Liu et al., 2024b). Both of them have 12 (base-size) Transformer blocks. In the pre-training
stage, the image resolution is set to 256 x 256. We use random resized cropping and horizontal
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Pre-train COCO NoCaps Pre-train

Model (# pairs) [B@4 S | Out Overall Model (# pairs) fest-dey  test-std
LEMON 200M 40.3 23.3|107.9 106.8 BEiT3 3.1B 71.7 -
BLIP 129M 394 - |1057 110.0 BLIP 129M 78.2 78.2
BLIP 14M 386 - |1024 105.1 Prismer 12.7M 76.8 77.0
Prismer-Z 127M | 39.7 24.1|105.8 107.5 OSCAR 8.9M 73.2 73.4
Prismer 127M | 40.1 24.1 | 111.7 109.1 MAMO 4M 76.1 76.2
GIT 10M 40.4 23.0| 89.6 96.6 MaskVLM 4M 75.5 -
VinVL 8.9M 382 236 83.8 94.3 ALBEF 4M 74.5 74.7
OSCAR 6.5M 36.5 23.1| 77.6 81.1 Triple 4M 74.9 74.9
ToVE-Lite 3M 39.5 24.1|108.2 106.7 ToVE-Lite 3M 74.1 74.0
ToVE 3M 40.3 24.5| 1131 1125 ToVE 3M 75.4 75.8

Table 3: Fine-tuned caption performance on Table 4: Fine-tuned VQA performance on
COCO (Karpathy split) and NoCaps (validation VQA v2 (test set). These are all base-size
set). These are all base-size models. CIDEr is VLM models. Accuracy is adopted to evalu-
adopted on NoCaps. B@4: BLEU-4; S: SPICE. ate the VQA performance.

flipping for data augmentation. The pre-training dataset is composed of two in-domain datasets
(i.e., COCO (Lin et al., 2014) and Visual Genome (Krishna et al., 2017)) and one web dataset (i.e.,
CC3M (Sharma et al., 2018)). The web dataset is filtered and re-captioned by a pre-trained image
captioner (Li et al., 2022b). In the fine-tuning stage, the image resolution is increased to 480 x 480,
and the load balancing loss is not employed to further exploit the optimal expert assignment to spe-
cific VL tasks. To enhance the model’s capability to process knowledge-transferred vision tokens,
lightweight MLP adaptors (Houlsby et al., 2019) are integrated within each transformer layer of the
language model. More training details are provided in Appendix A.8.

4.2 VISION EXPERTS IN THE MODEL HUB

Low-level Vision Experts. ToVE is equipped with three low-level vision experts from the domains
of depth (Ranftl et al., 2021), surface normal (Bae et al., 2021), and edge (Poma et al., 2020). These
predicted labels are conducted patch embedding operations through randomly initialized convolu-
tional layers. Specifically, we employ five convolutional layers with a small [3 x 3] kernel to encode
their respective expert knowledge. The details of these vision experts and encoding convolution
layers can be viewed in Appendix A.2.

Embedding Vision Experts. We include two embedding vision experts, i.e., DINO (Caron
et al., 2021) and EVA (Fang et al., 2023), trained from self-supervised and image-text contrast-
ing paradigms, respectively. Compared to the low-level vision experts, we utilize their patch tokens
as the vision knowledge. To align the number of tokens with the vision encoder (i.e., CLIP) for
knowledge transfer, we apply an interpolation operation to their patch tokens. The details of these
vision experts can be viewed in Appendix A.2.

4.3 RESULTS ON VISION-LANGUAGE TASKS

Zero-shot Performance on Novel Object Captioning. By adopting a unified language model-
ing objective to pre-train ToVE, it can naturally generate descriptions for images without requiring
fine-tuning, thereby enabling zero-shot generalization. In Table 1, we compare ToVE against sev-
eral prior arts, including SimVLM (Wang et al., 2022b), BLIP/BLIP2 (Li et al., 2022b; 2023a),
VinVL (Zhang et al., 2021), OSCAR (Li et al., 2020), and Prismer (Liu et al., 2024b). Despite using
fewer data pairs and smaller models, ToVE consistently demonstrates superior zero-shot captioning
abilities. For instance, under a model scale similar to PrismerBASE, ToVE achieves a CIDEr score
of 110.2 and a SPICE score of 14.9, surpassing PrismerBASE by a large margin (+22.7 in CIDEr)
while utilizing an approximately 4 X smaller pre-training dataset. For the variant of ToVE after
expert knowledge merging, dubbed “ToVE-Lite”, it outperforms the baseline model without any ex-
pert participation by a CIDEr score of +12.0, attaining 95.6% of the original ToVE’s performance.
Additionally, the zero-shot performance of TOVE models often exceeds the fine-tuned performance
of certain other VLMs, such as LEMON and BLIP. More results can be viewed in Appendix A.5.
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Fine-tuned Performance on COCO Caption, NoCaps, and VQAv2. We summarize the fine-
tuned captioning and VQA evaluations in Table 3 and Table 4, respectively. With a smaller training
dataset, TOVE demonstrates strong results for both COCO and NoCaps benchmarks while using
fewer image-text pairs. Especially for NoCaps, with out-domain samples with novel objects, we
make significant improvements over the prior arts, with a CIDEr of 113.1. In VQA, We additionally
compare ToVE against several prior arts, BEiT3 (Wang et al., 2023), MAMO (Zhao et al., 2023),
MaskVLM (Kwon et al., 2023), (Lietal., 2021), and Triple (Yang et al., 2022). ToVE also achieves
comparable performance with the prior arts. This indicates that the knowledge transfer from various
vision experts is primarily responsible for good robustness and generalization.

Vision Perception Capabilities. We evaluate the VLM’s vision capabilities using the Visual Spa-
tial Reasoning (VSR) (Liu et al., 2023) and POPE (Li et al., 2023b) benchmarks. VSR evaluates the
reasoning about the relative positions of different objects, while POPE evaluates the “object hallu-
cination” issue. From Table 2, when the dataset is scaled down from 12.7M to 3M, we can observe
the recent efficient VLM, Prismer-Z (Liu et al., 2024b), shows a marked decline (-7.9% in VSR) in
visual perception capabilities with smaller datasets, with a more severe issue of object hallucination.
Conversely, when transferring the knowledge from vision experts to VL, ToVE significantly out-
performs Prismer-Z with the same 3M dataset (+12.4% in VSR), with improvements in mitigating
object hallucination (+2.0% in POPE-A). Additionally, our comparison with recent multi-modal
large language models (including MiniGPT-4 (Zhu et al., 2023), LLaVA (Liu et al., 2024a), and
InstructBLIPy,_;5 (Dai et al., 2024)) demonstrates that VLMs with large-scale pre-training generally
has better visual perception capabilities. Notably, TOVE shows a substantial advantage over current
MLLMs, especially in vision spatial reasoning.

4.4 ANALYSIS OF TOVE
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Visualization of the routing maps from the Gating Net-
work G. As presented in Figure 6, we visualize the routing
maps of the images from the COCO caption dataset as de-
termined by ToVE’s gating network. It showcases the gat-
ing network’s adeptness in learning instance-dependent fu-
sion weights at the patch level, crucial for transferring the
most beneficial vision knowledge from the vision experts to
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This pattern indicates that these experts significantly enrich
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contrast, for the embedding experts (columns 5-6), we notice
distinct patterns in knowledge contributions: DINO primar-
ily enhances the patch tokens associated with the main ob-
Jjects in the captions, whereas EVA contributes significantly
to the understanding of the image backgrounds. More rout-
ing maps can be viewed in Appendix A 4.

100 collapse

ensemble weight
coco Nocaps

None Edge Depth Normal DINO EVA
Removed Experts

Figure 5: Impact of iteratively re-
moving vision experts on zero-shot
caption performance.

Pluggable Vision Experts. In Section 3.2, we explore the strategy of detaching less-contributing
experts to enhance inference efficiency. It is built on a positive correlation between the ensemble
scores w and the performance benefits contributed by these vision experts. Based on the average
ensemble scores, interpreted as “contribution”, counted during the training phase, we iteratively
remove experts in descending order of their average contributions. As depicted in Figure 5, it is
observed that the performance declines noticeably as experts with increasingly significant contribu-
tions are removed. The model exhibits higher sensitivity to the in-domain dataset, COCO caption,
compared to that on a hold-out dataset, NoCaps. Upon the complete removal of all experts, we notice
a model collapse where the model fails in normal language generation. We attribute this collapse to
the substantial discrepancy between the vision tokens without expert knowledge and the input space
of the language model. We also conduct a similar experiment on the VQAv2 benchmark, the results
can be viewed in Appendix A.6.
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Normal

Figure 6: Visualization of ToVE’s routing maps and the corresponding caption results on COCO
caption without fine-tuning. Brighter patches indicate higher activation of the corresponding expert.

Caption Results

GT: A man flying through the
air while riding a skateboard.
FOVE: A snowboarder gliding
down a snowy slope. @h

GT: The infamous big ben clock
tower underneath a cloudy sky.

FOVE: A clock tower
underneath a cloudy sky.

GT: A red bird being fed from
a person's hand.

b FoVE: A person is holding a
red bird. =

Tasks | Baseline | Depth Edge Normal DINO EVA | ToVE 1828 1204 137,
COCO 116.8 120.7 121.1 1203 1289 130.6| 132.8 120
NoCaps | 92.1 ‘ 982 963 987 1051 109.1|110.2 .

Baseline
VQAv2 70.0 70.2  70.1 70.1 729 744 | 75.8 gao 748 92.1
VSR 54.8 59.8  60.1 61.0 653 63.8 | 67.7 ©
POPE-R 80.7 859 864 86.3 85.8 857 | 874 Bl
POPE-A| 80.3 | 807 808 812 8.0 808 | 825 a0 roms 250

coco

Table 5: VL performance of the variants equipped with different 01 03 05 07
vision experts. Baseline: the ablated variant without transferring lambda
any vision experts to VL learning. Figure 7: Ablation study on A.

5 ABLATION STUDIES

Different Vision Experts Transferred to VL. Learning. We evaluate the performance of each vi-
sion expert transferred to VL tasks. As shown in Table 5, we observe that each vision expert yields
performance gains compared to the baseline without any vision experts. Specifically, the low-level
experts significantly enhance visual perception capabilities, although their improvement in VQA,
which requires strong multi-modal reasoning, is relatively marginal. On the other hand, the embed-
ding experts contribute more substantially across all VL tasks, consistent with our average ensemble
scores shown in Figure 5. DINO improves visual perception capabilities, demonstrating significant
gains in VSR and POPE. Conversely, EVA promotes content understanding, showing notable per-
formance improvements in captioning and VQA tasks. Also, we further compare the results of using
EVA as the base vision encoder, the discussions can be viewed in Appendix A.10. After transferring
the knowledge from all experts, TOVE can achieve significant performance enhancements across all
VL tasks compared to the baseline without any experts, possessing both stronger visual perception
and content understanding capabilities.

A in Residual Knowledge Fusion. ) controls the proportion of transferring vision expert knowledge
to the vision tokens. As depicted in Figure 7, our experiments demonstrate that a relatively small
A results in superior performance compared to a larger one. For in-domain COCO captions, the
proportion of expert knowledge fusion yields a relatively marginal impact. However, for NoCaps,
which requires the model’s generalizability on the novel objects, the model performance sharply
declines (from 110.2 to 35.9) as A increases beyond 0.1. This underscores the inherent strong gen-
eralization capabilities of CLIP for VL tasks. An excessive fusion of expert knowledge, in turn,
diminishes its generalizability. Therefore, only a modest complement of expert knowledge is req-
uisite for achieving satisfactory results.
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Knowledge Transfer and Merging. In knowledge transfer strategies, we evaluate three approaches:
(A1) direct addition of the expert knowledge tokens to the vision tokens, (A2) concatenation with
the vision tokens, and (A3) residual addition to the vision tokens (ours). We observe that A1 results
in poor performance on NoCaps, which can be considered a special case where A is set to 1.0, as
discussed in “\ in residual knowledge fusion”. While A3 slightly underperforms in comparison to
residual addition (A3), it does not deteriorate the generality of the CLIP model as A1 does.

In knowledge merging strategies, we evaluate

three approaches: (B1) direct distillation be- Ablation | Strategies |[NoCaps COCO
tween the original vision tokens and the to- Direct addition 26.8 126.3
kens with fused expert knowledge using L2- Transfer | Concatenation 1082 1304
norm loss, (B2) language modeling to ?lign Residual addition| 110.2 132.8
the vision tokens with the input space of the

language model that accepts the knowledge- . L.2-norm 10.5 45.6

transferred vision tokens, and (B3) a combina- Merging |LM 96.2 118.7
tion of language modeling and L2-norm dis- LM + L2-norm 106.7 128.6

tillation (ours). The results manifest that B1 )

yields poor distillation performance, indicating Table 6: f“blatlon su{dy on knowledge transfer
a significant gap between the language model ~and merging strategies.

and the distilled CLIP. Although B2 can di-

rectly optimize the gap between the distilled CLIP and the language model, we can observe that
combining language modeling with L2-norm (B3) achieves the optimal performance.

6 CONCLUSION

This paper proposes the ToVE framework for efficient vision-language learning by transferring
knowledge from a hub of pre-trained vision experts. It utilizes a gating network with a resid-
ual knowledge transfer strategy to dynamically route expert knowledge to vision tokens, ensuring
enhanced visual perception while preserving generalizability through residual knowledge transfer.
This method allows for the selective detachment of low-contributing experts to improve inference
efficiency. Additionally, we introduced a knowledge merging approach to merge expert knowledge
into a single vision encoder. Experiments across various VL tasks demonstrate ToVE’s competi-
tive performance with significantly less training data, excelling in zero-shot captioning and visual
spatial reasoning tasks. The visualization of gating network outputs and the analysis of pluggable vi-
sion experts highlight the effectiveness of transferring diverse vision knowledge to VL tasks, which
presents a promising alternative to large-scale models and datasets.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716—
23736, 2022.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zit-
nick, and Devi Parikh. Vqa: Visual question answering. In Proceedings of the IEEE international
conference on computer vision, pp. 2425-2433,2015.

Gwangbin Bae, Ignas Budvytis, and Roberto Cipolla. Estimating and exploiting the aleatoric uncer-
tainty in surface normal estimation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 13137-13146, 2021.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650-9660, 2021.

Junyi Chen, Longteng Guo, Jia Sun, Shuai Shao, Zehuan Yuan, Liang Lin, and Dongyu Zhang.

Eve: Efficient vision-language pre-training with masked prediction and modality-aware moe. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 1110-1119, 2024a.

10



Published as a conference paper at ICLR 2025

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
Wang, Yu Qiao, Dahua Lin, et al. Are we on the right way for evaluating large vision-language
models? arXiv preprint arXiv:2403.20330, 2024b.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dynamic
convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11030-11039, 2020.

Wenliang Dai, Lu Hou, Lifeng Shang, Xin Jiang, Qun Liu, and Pascale Fung. Enabling multimodal
generation on clip via vision-language knowledge distillation. arXiv preprint arXiv:2203.06386,
2022.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-
language models with instruction tuning. Advances in Neural Information Processing Systems,
36, 2024.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue Cao. Eva-02: A
visual representation for neon genesis. arXiv preprint arXiv:2303.11331, 2023.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of Machine Learning Research, 23(120):1-39,
2022.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, et al. Mme: A comprehensive evaluation benchmark for multimodal
large language models. arXiv preprint arXiv:2306.13394, 2023.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
Neural computation, 4(1):1-58, 1992.

Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789-1819, 2021.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11):
7436-7456, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International conference on machine learning, pp. 2790-2799. PMLR, 2019.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

11



Published as a conference paper at ICLR 2025

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting lan-
guage and vision using crowdsourced dense image annotations. International journal of computer
vision, 123:32-73, 2017.

Gukyeong Kwon, Zhaowei Cai, Avinash Ravichandran, Erhan Bas, Rahul Bhotika, and Stefano
Soatto. Masked vision and language modeling for multi-modal representation learning. In The
Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Juncheng Li, Xin He, Longhui Wei, Long Qian, Linchao Zhu, Lingxi Xie, Yueting Zhuang, Qi Tian,
and Siliang Tang. Fine-grained semantically aligned vision-language pre-training. Advances in
neural information processing systems, 35:7290-7303, 2022a.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694-9705, 2021.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888-12900. PMLR, 2022b.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730-19742. PMLR, 2023a.

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong
Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language
tasks. In Computer Vision—-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28,
2020, Proceedings, Part XXX 16, pp. 121-137. Springer, 2020.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models. arXiv preprint arXiv:2305.10355, 2023b.

Ziyue Li, Kan Ren, Xinyang Jiang, Yifei Shen, Haipeng Zhang, and Dongsheng Li. Simple: Special-
ized model-sample matching for domain generalization. In The Eleventh International Conference
on Learning Representations, 2022c.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision—-ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740-755. Springer, 2014.

Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. Transactions of the Associ-
ation for Computational Linguistics, 11:635-651, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36, 2024a.

Shikun Liu, Linxi Fan, Edward Johns, Zhiding Yu, Chaowei Xiao, and Anima Anandkumar. Pris-
mer: A vision-language model with multi-task experts. Transactions on Machine Learning Re-
search, 2024b. ISSN 2835-8856.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

12



Published as a conference paper at ICLR 2025

Xavier Soria Poma, Edgar Riba, and Angel Sappa. Dense extreme inception network: Towards
a robust cnn model for edge detection. In Proceedings of the IEEE/CVF winter conference on
applications of computer vision, pp. 1923-1932, 2020.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.

8748-8763. PMLR, 2021.

René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vision transformers for dense prediction.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 12179-12188,
2021.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583-8595, 2021.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the 56th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2556-2565, 2018.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Yang Shu, Zhangjie Cao, Ziyang Zhang, Jianmin Wang, and Mingsheng Long. Hub-pathway: trans-
fer learning from a hub of pre-trained models. Advances in Neural Information Processing Sys-
tems, 35:32913-32927, 2022.

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
shut? exploring the visual shortcomings of multimodal llms. arXiv preprint arXiv:2401.06209,
2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Kom-
pella, Zhangyang Wang, et al. Graph mixture of experts: Learning on large-scale graphs with
explicit diversity modeling. Advances in Neural Information Processing Systems, 36, 2024.

Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
and Lijuan Wang. Git: A generative image-to-text transformer for vision and language. arXiv
preprint arXiv:2205.14100, 2022a.

Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhiliang Peng, Qiang Liu, Kriti Aggarwal,
Owais Khan Mohammed, Saksham Singhal, Subhojit Som, et al. Image as a foreign language:
Beit pretraining for vision and vision-language tasks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 19175-19186, 2023.

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlim: Simple
visual language model pretraining with weak supervision. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965-23998. PMLR, 2022.

Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. Condconv: Conditionally parame-
terized convolutions for efficient inference. Advances in neural information processing systems,
32,2019.

13



Published as a conference paper at ICLR 2025

Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul
Chilimbi, and Junzhou Huang. Vision-language pre-training with triple contrastive learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
15671-15680, 2022.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. arXiv preprint arXiv:2311.03099,
2023.

Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and
Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language models. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5579-5588, 2021.

Zijia Zhao, Longteng Guo, Xingjian He, Shuai Shao, Zehuan Yuan, and Jing Liu. Mamo: Fine-
grained vision-language representations learning with masked multimodal modeling. In Proceed-
ings of the 46th International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 1528-1538, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36, 2024.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

14



Published as a conference paper at ICLR 2025

A APPENDIX

A.1 MODEL ARCHITECTURE

Table 7 provides an overview of the architecture details for both ToVE-Lite and ToVE models. The
vision encoder in both models utilizes a ViT-B/16 backbone with 12 layers. The language decoder
is based on RoBERTagasg, also with 12 layers and a width of 768. For the ToVE-Lite model, the
total number of trainable parameters is 91 million, with a total parameter count of 260 million when
including non-trainable parameters. The ToVE model, which incorporates five vision experts, has
103 million trainable parameters. The total parameter count for the TOVE model, including the
combined 1 billion parameters from the vision experts, sums up to 1.2B. These details illustrate
the comprehensive design and the scalable nature of our models, accommodating varying levels of
complexity and inference capabilities.

Vision Encoder Language Decoder Trainable Total
Model Type
Backbone Layers Backbone Layers  Width Params. Params.
ToVE-Lite ViT-B/16 12 RoBERTa gase 12 768 91M 260M
ToVE ViT-B/16 12 RoBERTa gase 12 768 103M 1.2B

Table 7: ToVE-Lite and ToVE architecture details. We detail the backbone, number of layers, and
width for each architecture size, as well as the trainable and total parameters. For data inference, we
include the total parameters, which encompass five vision experts with a combined parameter size
of 1B in our ToVE model.

A.2 VISION EXPERTS

The details of the vision experts are provided in Table 8. For low-level vision experts, the expert
labels are initially processed using randomly initialized convolutional layers to encode their respec-
tive vision knowledge. Specifically, we employ five convolutional layers with a small [3 x 3] kernel,
which demonstrates superior performance compared to a single layer with a larger kernel, as evi-
denced in the Vision Transformer (Dosovitskiy et al., 2020). For embedding experts, we select their
large-size models. They have a patch size of 14, with input images sized at 224, producing 256 patch
tokens. To achieve the residual knowledge transfer, their token quantity matches that of the vision
encoder, which uses the Base-size model with a patch size of 16 and input images sized at 256.

Task Dataset Model Params. | Post-Processing

Depth Estimation MIX-6 DPT (Ranftl et al., 2021) 123M Re-normalised to [1, 1] and
Surface Normal ScanNet ~ NLL-AngMF (Bae et al., 2021) ~ 72M | use convolution layers to
de the vision k led
Edge Detection | BIPED DexiNed (Poma et al., 2020)  35M | S1e0e e vision knowledge

: T'he input image size is
Self-su d | LVD-142M R ) 304M p g
elf-supervise DINO-v2 (Caron et al., 2021) resized t0 224 x 224 a

MIM + CLIP | Merged-38M EVA-CLIP 02 (Fang et al., 2023) 430M | encoded to 256 tokens.

Table 8: Selected Tasks and Vision Experts with Parameters and Post-Processing Techniques.

A.3 LOAD BALANCING LOSS

To encourage a balanced assignment of vision tokens across different experts, we incorporate an
auxiliary loss into the gating network. This auxiliary loss is beneficial to ensure the sufficient
learning of H,, before exploring the optimal routing of the vision experts. Its consists of two
parts: Importance loss and Load loss. The importance of the k-th expert is defined as the normalized
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gating routing scores corresponding to the k-th expert, summed over the vision tokens ;s of an
image I:

Imp, (tyis) = Z softmax((Ge(tiy))k- @)

t\?lhet”\
The importance loss over the vision tokens t,;; from an input image I is defined as:

std(Imp(tyis)) 2
)

mean(Imp(t;s)

£imp(tvis) = ( (8)

In addition to the importance loss, we also introduce a load loss to ensure balanced routing results.
The load of an expert k given a vision token t,;; € t.; is defined as the probability (frequency) of
routing to expert k, summed over the vision tokens ;s of image I:

Loady(ts) = Y pr(thy), ©)
tzisetv'is
Pr(tls) 2 P((Go(tly))k > threshold,(Ge(tl)). (10)

The load loss over the vision tokens £, from an input image I is defined as:

std(Load(tyis)) \°
Lioad(tvis) = | ———+= | - 11
toad (Evi) <mean(Load(tvis)) an
The total auxiliary loss of the gating network is then given by:
1
Acaux = 5 (Eimp + ACload) . (12)

A.4 ROUTING OF THE GATING NETWORK

Figure 6 provides additional visualizations of the routing maps generated by ToVE’s gating network
for images from the COCO caption dataset. These maps highlight how the gating network assigns
expert knowledge at the patch level. Low-level experts (Depth, Normal, Edge) predominantly en-
hance object-related areas, enriching the CLIP tokens with essential visual information. Embedding
experts (DINO, EVA) show distinct contributions, with DINO focusing on main objects and EVA en-
hancing background understanding. These visualizations demonstrate the gating network’s adaptive
capability in optimizing vision token enhancement.

A.5 VISUALIZATION OF CAPTION AND VQA RESULTS 76 50
75.4

74.9

Figure 10 illustrates the performance of TOVE and ToVE-Lite
on zero-shot image captioning tasks using the NoCaps dataset e 1ag a0
and fine-tuned VQA tasks on VQAv2. Both models perform 734
well, but TOVE consistently provides more detailed and con-
textually rich descriptions. For instance, ToVE specifies “hot
chocolate” instead of just “coffee” and adds context like “be-
ing loaded onto a flatbed trailer.” In VQA tasks, ToVE con-
sistently delivers accurate and concise answers, demonstrat-
ing superior visual and language understanding capabilities. 70
However, it is important to note that ToVE requires higher in-
ference costs due to the integration of multiple vision experts. \e/’(‘;:‘zb'e weight
In contrast, ToVE-Lite, while slightly less detailed, still per- 68 0
forms admirably with lower computational overhead. This None Edge Depth Normal DINO EVA
trade-off between performance and inference cost should be Removed Experts
considered when choosing between the two models based on  Figure 8: Impact of sequentially re-

the specific requirements of the application. moving vision experts on VQA.

w
S

72.4
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Figure 9: Visualization of ToVE’s routing maps and the corresponding caption results on COCO
caption without fine-tuning. Brighter patches indicate higher activation of the corresponding expert.

A.6 PLUGGABLE VISION EXPERTS ON VQA

In further analysis, we investigate the impact of sequentially detaching experts on the visual question
answering task using the VQAv2 dataset. The green line in Figure 8 illustrates the performance
trajectory as vision experts are iteratively removed in descending order of their average ensemble
weight, interpreted as their relative contribution. This trend mirrors the observations made on the
image captioning task, underscoring the positive correlation between an expert’s ensemble weight
and its performance utility across diverse vision-language tasks. Notably, the degradation appears
even more severe for VQAv2 compared to the COCO caption benchmark, implying a heightened
reliance on the visual experts for this question answering challenge.

A.7 LOAD BALANCING LOSS AND NOISE €

In our exploration of strategies to enhance the effec-
tive use of vision experts, we evaluate the impact of ~ Ablations ‘ NoCaps COCO
load balancing loss and the introduction of noise e ;

in Table 9. Tﬁe results show that both load balanc- Loa}d Balancing 109.9°132.1
ing loss alone (C1) and noise € alone (C2) improve Noise 1094 1309
performance. Load balancing loss enhances perfor-  Load Balancing + Noise| 110.2  132.8
mance on NoCaps to 109.9 and COCO to 132.1 by
promoting balanced expert utilization. Noise € im-  Table 9: Ablation study on Load Balancing
proves performance to 109.4 on NoCaps and 130.9 [,oss and noise e.

on COCO by preventing overfitting to specific ex-
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ToVE-Lite:

The car is on a flatbed trailer.
ToVE:

A silver car being loaded onto
a flatbed trailer.

ToVE-Lite: A cup of coffee
with whipped cream on top.

ToVE: A cup of hot chocolate
with whipped cream on top.

ToVE-Lite: A military tank
driving down the road.

ToVE: A military tank driving
down a street next to trees.

Q: What does the dispenser on
the wall give? ToVE: Toilet paper.

Q: What colors are the tile on
the wall? ToVE: Black and white.

Q: What is the players number?
ToVE: 22.

Q: Did he hit the ball?
ToVE: Yes.

Q: Can the dog drive?
ToVE: No.

Q: What breed is the black dog?

ToVE: Pug.

ToVE-Lite: A table with a bunch
of drinks and a box of coke.

Q: Where is this animal
commonly found?

ToVE: Farm.

Q: What color is it's nose?
ToVE: Black.

ToVE: A table topped with a
cup of coffee and a pack of
starbucks energy drinks.

Figure 10: Visualisation of zero-shot image captioning on NoCaps and fine-tuned VQA results
on VQAv2. ToVE can produce more detailed and semantically coherent captions than ToVE-Lite.
We show a failure case (yellow box) of Nocaps dataset.

perts. Combining both strategies (C3) yields the best results, with 110.2 on NoCaps and 132.8 on
COCO. Without load balancing, the gating network quickly converges to a trivial solution, predomi-
nantly routing to the EVA expert, making results similar to using EVA alone. Thus, the combination
of load balancing and noise ensures a more effective and comprehensive integration of diverse expert
knowledge, leading to more robust and generalized vision-language representations.

A.8 TRAINING DETAILS

All our models are trained using the AdamW optimizer with a weight decay of 0.05. Automated
data augmentation (AutoAug) is applied during both the pre-training and fine-tuning stages. For
pre-training, the learning rate is set to 3e-4 with a total of 10 epochs. During fine-tuning for VQA,
we use a learning rate of le-5 and train for 10 epochs. For fine-tuning the captioning model, the
learning rate is le-5 with a total of 3 epochs.

A.9 ToOVE wiITH LLMs

With the rapid advancements in LLMs, numerous LLM-based Vision-Language Models (LVLMs)
have emerged. In this work, we also extend ToVE to language models to explore its potential in the
LVLM domain. Specifically, we implemented ToVE within the LLaVA-1.5 framework (Liu et al.,
2024a) (dubbed as “ToVE_Vicuna”) with LLaVA’s training data. During our implementation, we
randomly sampled three-quarters of the dataset and utilized the entire instruction-tuning dataset. In
the ToVE design, we integrated two domain experts—DINO (Caron et al., 2021) and Depth (Ranftl
et al., 2021)—and employed QLoRA (Dettmers et al., 2024) to reduce computational overhead. To
evaluate ToVE_Vicuna, we conducted experiments on the MME (perception) (Fu et al., 2023) and
MMStar (perception) (Chen et al., 2024b) benchmarks to validate the improvement in visual capa-
bilities brought by expert knowledge. As shown in Table 10, the results demonstrate a significant
enhancement in perception capabilities through knowledge transfer. For instance, the MME percep-
tion score increased from 1434.5 to 1523.1, while the fine-grained perception subset of MMStar saw
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Models (QLoRA) MME_p MMStar (Overalll MMStar (Coarse) MMStar (Fine-grained)

LLaVA-1.5-7B 1434.5 34.6 61.6 27.6
ToVE_Vicuna 1523.1 35.8 64.0 31.2

Table 10: Performance comparison of TOVE_Vicuna and LLaVA baseline on MME and MMStar.

an improvement of 3.6 points. These findings support the potential of ToVE in the LVLM domain.
In the future, we will conduct further exploration in this direction.

Benchmark  CLIP as Encoder EVA as Encoder CLIP + EVA expert

NoCaps 92.1 95.7 109.1
VQAv2 70.0 70.5 74.4
VSR 54.8 51.7 63.8

Table 11: Comparison of performance using different encoders.

A.10 COMPARISON OF BASE VISION ENCODERS

We compared the performance of ToVE when using CLIP and EVA as the base vision encoders, with
results summarized in Table 11. As shown, the two models exhibit comparable performance. Inter-
estingly, we observed a notable improvement when combining CLIP as the vision encoder and EVA
as the expert. We reckon that this enhancement can be attributed to EVA’s capability to effectively
process background representations, as evidenced by Figures 6 and 9. The visualizations illustrate
the gating maps for each vision expert, revealing that EVA’s gating activations predominantly oc-
cur in background regions, while showing minimal activation in subject areas. This observation
suggests that, while low-level experts and DINO primarily focus on visual perceptual knowledge
(as supported by their performance in visual perception tasks), their contributions to understanding
background context remain limited. In contrast, EVA significantly improves semantic comprehen-
sion of these regions for the base vision encoder, thereby enhancing overall model performance.

A.11 LIMITATIONS

Despite its advancements, the ToVE framework has several limitations. It heavily depends on the
availability and quality of pre-trained vision experts, which may not always be available for certain
domains or tasks. The initial integration and training with multiple experts can be computationally
intensive, posing challenges in resource-constrained environments. Estimating the contribution of
each expert relies on empirical methods that might not always yield optimal configurations, poten-
tially affecting performance. While ToVE demonstrates robust generalization within its pre-training
datasets, its effectiveness on completely unseen domains may vary, necessitating additional fine-
tuning. Furthermore, the complexity of integrating multiple experts and dynamic mechanisms adds
to the implementation and debugging challenges, especially for practitioners with limited experience
in multi-modal learning frameworks. Addressing these limitations in future work could involve de-
veloping more adaptive methods for expert integration, optimizing computational efficiency, and
enhancing generalization across diverse tasks and domains.
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