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Abstract
This article introduces a novel structured random
matrix composed blockwise from subsampled
randomized Hadamard transforms (SRHTs). The
block SRHT is expected to outperform well-
known dimension reduction maps, including
SRHT and Gaussian matrices on distributed ar-
chitectures. We prove that a block SRHT with
enough rows is an oblivious subspace embed-
ding, i.e., an approximate isometry for an arbi-
trary low-dimensional subspace with high prob-
ability. Our estimate of the required number of
rows is similar to that of the standard SRHT. This
suggests that the two transforms should provide
the same accuracy of approximation in the algo-
rithms. The block SRHT can be readily incorpo-
rated into randomized methods for computing a
low-rank approximation of a large-scale matrix,
such as the Nyström method. For completeness,
we revisit this method with a discussion of its im-
plementation on distributed architectures.

1. Introduction
Randomization has become a powerful tool for tack-
ling massive problems in numerical algebra and data sci-
ence (Mahoney et al., 2011; Woodruff et al., 2014; Ver-
shynin, 2018; Martinsson & Tropp, 2020). Modern ran-
domized methods can, in particular, provide solutions to
problems of dimensions beyond the reach of determinis-
tic methods, and allow effective use of computational re-
sources. Recent significant development has made them
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very reliable, and not just used as a last resort, as it was not
so long ago. Along with increased efficiency, they can now
provide strong accuracy guarantees with a user-specified
failure probability that can be chosen extremely low, say
10−10, without much impact on computational costs.

This article is concerned with randomized methods that
are based on a dimension reduction, called sketch-
ing (Woodruff et al., 2014), with oblivious ℓ2-subspace em-
beddings (OSEs) defined below.

Definition 1.1. Let 0 ≤ ε < 1 and 0 < δ < 1. A random
matrix Ω ∈ Rl×n is said to be a (ε, δ, d) OSE, if for any
fixed d-dimensional subspace V ⊆ Rn,

∀x ∈ V, |∥x∥22 − ∥Ωx∥22| ≤ ε∥x∥22 (1)

holds with probability at least 1− δ.

It is a consequence of the Johnson-Lindenstrauss
lemma (Johnson & Lindenstrauss, 1984) that there
exist (ε, δ, d) OSEs of sizes l = O(ε−2(d + log 1

δ ). The
fact that n does not appear in the right-hand-side and the
logarithmic dependence on the probability of failure δ
shows the potential of a dimension reduction with such
embeddings. There are several distributions that are known
to satisfy the OSE property with the optimal or close
to optimal l. The Gaussian, Rademacher distributions,
sub-sampled randomized Hadamard transform (SRHT),
sub-sampled randomized Fourier transform, and CountS-
ketch matrix are ones of the most popular distributions.
The random sketching matrix in the algorithm should
be chosen depending on the computational architecture
to yield the most benefit. For instance, the SRHT is
a structured matrix that can be efficiently applied to a
vector in a sequential computational environment, while
the application of a Rademacher matrix is efficient in a
highly parallel environment. In this paper we propose a
novel OSE, called block SRHT, which should be superior
to all currently existing ones, including the recent (Teng
et al., 2020; Charalambides et al., 2022), on a distributed
computational architecture, with not too many processors.

The OSEs are used in a variety of randomized methods for
machine learning, scientific computing, and signal process-
ing. Perhaps one of the most representative applications is
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the linear regression problem. Suppose that we seek a vec-
tor x ∈ Rd that minimizes ∥Ax − b∥2, where A ∈ Rn×d

is a large-scale dense matrix, b ∈ Rn is a large-scale vec-
tor, and d ≪ n. It follows that the solution to this problem
can be approximated by a minimizer of ∥Ω(Ax − b)∥2
requiring considerably lower computational cost. The ac-
curacy of such an approximation is guaranteed, given that
Ω is (ε, δ, d + 1) OSE. Besides the linear regression prob-
lem, the sketching technique with OSEs has been suc-
cessfully applied to the nearest neighbors problem (Ailon
& Chazelle, 2006), approximation of products of matri-
ces (Sarlos, 2006), computation of low-rank approxima-
tions of matrices (Halko et al., 2011) and tensor decom-
positions (Sun et al., 2020), dictionary learning (Anaraki
& Hughes, 2013), solution of parametric equations (Bala-
banov & Nouy, 2019), and solution of linear systems and
eigenvalue problems (Balabanov & Grigori, 2022; Nakat-
sukasa & Tropp, 2021).

In this paper the potential of the block SRHT is realized
on the low-rank approximation problem. Such problems
are ubiquitous, for instance, in the principal component
analysis of large data sets and kernel ridge regression. A
randomized low-rank approximation for machine learning
tasks was addressed in e.g. (Bach, 2013; Alaoui & Ma-
honey, 2015; Derezinski et al., 2020). In (Zhang et al.,
2013; Calandriello et al., 2016; Rudi et al., 2017; Meanti
et al., 2020; Yin et al., 2021) a particular focus was given
to make the methods suited to modern architectures. In de-
tails, given a large matrix A ∈ Rm×n with rapidly decay-
ing spectrum, we seek a matrix Bk preferably in an SVD
form, of rank at most k ≪ min(m,n), that approximates
well A. The matrix Bk can be obtained by first restricting
its range to a subspace that captures the most of the action
of A, and then minimizing the chosen error measure, say
the spectral error ∥A − Bk∥2. As shown in (Halko et al.,
2011), the most of A’s action can be well captured by the
range of AΩT, which constitutes the core of state-of-the-
art RSVD algorithm. Over the past years more sophisti-
cated randomized low-rank approximation methods have
been developed such as the Nyström method for spd ma-
trices (Gittens & Mahoney, 2013; Tropp et al., 2017a), and
the single-view approximations for general matrices (Kan-
nan et al., 2014; Upadhyay, 2016; Tropp et al., 2019). In
this work, we chose the Nyström method as a representa-
tive.

The paper is organized as follows. The rest of Section 1 dis-
cusses contributions and relation to prior work. Section 2
introduces a block SRHT matrix and discusses its proper-
ties. In Section 3 we present Nyström algorithm for com-
puting a low-rank approximation based on oblivious em-
beddings. Section 4 contains some computational aspects
and experimental results. The proof of the main theoretical
result is given in Section 5. Section 6 concludes this work.

Contributions

The proposed block SRHT matrix has the potential to com-
bine the benefits of both structured OSEs, such as SRHT,
and unstructured OSEs, such as Gaussian matrices, in terms
of complexity and performance. Recent works in this di-
rection include (Teng et al., 2020; Charalambides et al.,
2022). The OSE from (Charalambides et al., 2022) gen-
eralizes the regular SRHT by sampling blocks instead of
rows, which can improve efficiency in asynchronous sys-
tems. However, this approach requires communication-
expensive computation of a global Hadamard transform
and a global permutation. The OSE from (Teng et al., 2020)
has a high relation to our proposed block SRHT matrix.
It also uses local Hadamard transforms to reduce commu-
nication costs. However, it involves a global permutation
on the right and samples rows locally without aggregating
the contributions. Because of these differences, our block
SRHT should be more efficient on distributed architectures
and have greater ability for dimensionality reduction. In
fact, we demonstrate that the block SRHT matrix of size
l = O(ε−2(d + log n

δ ) log
d
δ ) satisfies the (ε, δ, d) OSE

property. In contrast, the required size for the OSE in (Teng
et al., 2020) can be up to p times larger, where p denotes
the number of processors (see Theorem 4 in (Teng et al.,
2020)). Notably, our bound for l is close to that for the
regular SRHT from the literature (Tropp, 2011; Boutsidis
& Gittens, 2013). This result does not simply follow from
the analysis in (Tropp, 2011; Boutsidis & Gittens, 2013),
and particularly requires incorporation of a useful techni-
cal trick that, to the best of our knowledge, was not em-
ployed before in the randomized numerical linear algebra
community.

We also describe important aspects of implementation of
the Nyström approximation on distributed architectures,
using the suitability of block SRHT for these architectures,
and provide a rigorous characterization of the accuracy of
Nyström method based solely on OSEs property.

2. Block SRHT
For n being a power of two, an SRHT matrix can be defined
as follows:

Ω =
√

n
l RHD, (2)

where R is a l × n uniform, with or without replacement,
random sampling matrix, H is a n × n Walsh-Hadamard
matrix rescaled by 1√

n
, and D is a diagonal matrix with

i.i.d. Rademacher random variables ±1 on the diago-
nal. The properties of SRHT were thoroughly described
in (Tropp, 2011) with a follow up analysis in (Boutsidis
& Gittens, 2013). SRHT matrices are commonly used in
randomized algorithms as they can be applied to vectors
using only n log2 n flops, while general unstructured ma-
trices require 2nl flops. At the same time, they satisfy the
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(ε, δ, d) OSE property, if (Balabanov & Nouy, 2019)

l ≥ 3ε−2(
√
d+

√
8 log 6n

δ
)2 3d

δ
, (3)

which is only by a logarithmic factor in δ and n larger than
the optimal bound. For a general n, a partial SRHT can
be used that is defined as the first n columns of an SRHT
matrix. Using a partial SRHT is equivalent to padding the
input data with zeros to make its dimension a power of two.

Unfortunately, products with SRHT matrices are not well
suited to distributed computing limiting the benefits of
SRHT on modern architectures (see e.g. (Yang et al.,
2015)). This happens majorly due to computing products
with H in tensor form

H = 1√
n

[
1 1
1 −1

]
⊗

[
1 1
1 −1

]
⊗ . . .⊗

[
1 1
1 −1

]
,

requiring cumbersome reduction operator such as a se-
quence of arrays of butterflies, rather than a simple addi-
tion, which we have with Gaussian matrices. This article
attempts to alleviate this problem by constructing Ω block-
wise as follows

Ω = [Ω(1) Ω(2) . . . Ω(p)], (4)

where Ω(i) =
√

r
l D̃

(i)RHD(i) are l × r SRHT matrices
related to a unique sampling matrix R and different (inde-
pendent from each other) diagonal matrices D(i) with i.i.d.
Rademacher entries ±1, multiplied from the left by another
diagonal matrices D̃(i) with Rademacher entries, r = n

p ,
1 ≤ i ≤ p. As in the standard SRHT, the condition that r
is a power of two can be achieved by zero padding of the
input data. The advantage of Ω defined by (4) is that it can
be multiplied by an n × d matrix V distributed between p
processors with rowwise partitioning, as

ΩV =
∑

1≤i≤p

Ω(i)V(i), (5)

where V(i) are the corresponding local blocks of rows of
V. In this way, to obtain ΩV one can compute the local
contributions Ω(i)V(i) on each processor and then sum-
reduce them to the master processor. This makes block
SRHT matrices have the same application cost in terms of
communication as Gaussian matrices. Thus, they should
yield much better scalability of computations than standard
SRHT (Yang et al., 2015). The sum-reduce operation re-
quires exchanging O(log p) messages and O(dl log p) per-
processor communication volume that can be by a factor
O( rl ) less than the volume of communication used by stan-
dard SRHT (if l ≤ r). At the same time, block SRHT
require less flops per processor than Gaussian matrices. To
be more specific, the application cost of block SRHT us-
ing (5) is only O(rd log r + dl log p) flops per processor,
while Gaussian matrices require O(rdl + dl log p) flops

per processor. It is deduced that block SRHT matrices are
both well-suited to distributed computing and efficient in
terms of flops. They are expected to outperform all exist-
ing oblivious embedding when the local dimension r and
the sampling dimension l are large enough.

The procedure for application of the block SRHT can be
easily extended to the case when V is distributed with a
2D partitioning. Namely, to multiply Ω by n × n ma-
trix V distributed over a grid of p × p processors, we
first compute the local contributions X(i,j) = Ω(i)V(i,j)

on each processor, and then sum-reduce the contributions
from the j-th column of blocks to the processor (1, j),
1 ≤ j ≤ p. Note that in this case the resulting matrix
YT = ΩA is distributed with rowwise partitioning over
processors (1, 1), (1, 2), . . . , (1, p). This provides the abil-
ity to efficiently compute the sketch ΩY, or to orthogonal-
ize Y with a routine suited for distributed computing, with
no need to reorganize Y. This can be particularly handy in
the low-rank approximation algorithm from Section 3.

We will assume that R in (4) samples rows uniformly at
random and with replacement. Interestingly, in this case
the block SRHT can be viewed as a generalization of the
SRHT with replacement and the Rademacher embedding,
as it reduces to these maps when p = 1 and p = n, re-
spectively. Sampling with replacement can be important,
for instance, when r = n

p is smaller than the dimension of
the embedded subspace.

Theorem 2.1 is the main result of the article. It implies
the compatibility of the block SRHT with all randomized
methods that rely on OSEs, including the methods in Sec-
tion 3. The estimate of l in Theorem 2.1 is similar to (3) for
the standard SRHT matrix, and in particular depends only
logarithmically on n and δ.

Theorem 2.1 (Main Theorem). Let 0 < ε < 1 and 0 <
δ < 1. Let Ω ∈ Rl×n be defined by (4). If,

n ≥ l ≥ 3.7ε−2(
√
d+ 4

√
log n

δ
+ 6.3)2 log 5d

δ
,

then Ω is an (ε, δ, d) OSE.

For better presentation the proof of Theorem 2.1 is deferred
to the end of the article (see Section 5).

3. Application to the Nyström method
This section addresses the problem of efficient computation
of a rank-k approximation of a large positive semi-definite
matrix A ∈ Rn×n with rapidly decaying spectrum, with
the Nyström method. A particular focus is given to the
scenario where A is (uniformly) distributed over a 2D grid
of processors.
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3.1. Nyström method

It is a well-known fact that the best rank-k approximation
of A in terms of the spectral, trace and Frobenius error is
given by [[A]]k := UkΣkU

T
k , where Σk is a diagonal ma-

trix of k dominant singular values of A, and Uk contains
the associated singular vectors. In other words, we have

[[A]]k = arg min
rank(B)=k

∥A−B∥ξ, (6)

where ξ = 2, ∗ or F.

Obtaining the best rank-k approximation can be computa-
tionally expensive and often becomes the bottleneck of an
algorithm. In such case, one has to turn to alternative meth-
ods for computing a low-rank approximation, such as the
Nyström method described below.

We first notice that a low-rank approximation of A can
be interpreted as reduction of the range of A to a low-
dimensional subspace Q capturing the most of A’s ac-
tion. The SVD approximation [[A]]k corresponds to tak-
ing Q as range(Uk). A more efficient way is to take
Q = range(AΩT), where Ω ∈ Rl×n is an OSE (Halko
et al., 2011; Woodruff et al., 2014). Furthermore, it can be
computationally beneficial to change the norm ∥ · ∥ξ in (6)
to its sketched estimate ∥Ω · ΩT∥ξ. The accuracy of such
an estimation can be guaranteed thanks to the fact that Ω
is an OSE. This leads to Nyström approximation [[A]](Nyst)

given below

[[A]](Nyst) := arg min
range(B)⊆Q

∥Ω(A−B)ΩT∥ξ, (7)

or in a more usual form (Drineas et al., 2005; Gittens & Ma-
honey, 2013; Chiu & Demanet, 2013; Alaoui & Mahoney,
2015; Tropp et al., 2017a):

[[A]](Nyst) = (ΩA)T(ΩAΩT)†(ΩA),

where (ΩAΩT)† denotes the pseudo-inverse of ΩAΩT.
Then a rank-k approximation of A can be obtained by
an SVD of [[A]](Nyst), which leads to the approximation
[[A]](Nyst)

k := [[[[A]](Nyst)]]k. This way of obtaining a rank-
k approximation from [[A]](Nyst) is referred to as the mod-
ified fixed-rank Nyström via QR (Tropp et al., 2017a;
Pourkamali-Anaraki et al., 2018; Pourkamali-Anaraki &
Becker, 2019).

Algorithm 1 describes a way for computing [[A]](Nyst)

k suited
for distributed computing under 2D partitioning of A. The
matrices Y and ΩY can be computed with the procedure
from Section 2 using the block structure of Ω. The QR
factorization Z = QR in step 4 can be computed with
TSQR (Demmel et al., 2012) or other methods having low
communication cost. Note that in step 6, instead of comput-
ing Ûk as (YṼk)Σ̃

−1
k we could use Ûk = QŨk, which

would provide more numerical stability but entail a larger
computational cost.

Algorithm 1 needs only one pass over the matrix A, and
does not involve any high-dimensional operations on A ex-
cept the computation of the sketch Y = AΩT, which im-
plies its superiority over the standard SVD as well as ran-
domized SVD (Halko et al., 2011; Tropp et al., 2017a). In
fact, the dominant computational cost of Algorithm 1 is as-
sociated with computing Y and ΩY in steps 1 and 2, when
r is sufficiently large, the efficiency of which is ensured by
the block SRHT.

Algorithm 1 Randomized Nyström approximation

Require: matrix A, OSE Ω, target rank k.
1: Compute Y = AΩT.
2: Obtain a Cholesky factor C of ΩY.
3: Compute Z = YC−1 with backward substitution.
4: Obtain the R factor R of Z with TSQR or similar.
5: Use SVD to compute the best rank-k approximation

ŨkΣ̃kṼ
T
k of R.

6: Compute Ûk = (YṼk)Σ̃
−1
k .

7: Output factorization [[A]](Nyst)

k = ÛkΣ̃
2
kÛ

T
k .

Remark 3.1. The matrix ΩAΩT can be rank-deficient, for
instance, if A or Ω have lower rank than l, which will cause
a problem for obtaining a Cholesky factorization in step 2.
In this case, a remedy can be to compute an SVD instead
of the Cholesky factorization, and take C as a square root
of ΩY in SVD form, that then can be used for the pseudo-
inversion in step 3. Another possibility is to make A full-
rank by using shifting as in (Li et al., 2017; Tropp et al.,
2017a).

The accuracy of the Nyström approximation can be guar-
anteed with high probability if Ω is an OSE of suffi-
ciently large dimension. Such a guarantee is derived in Ap-
pendix A.

4. Numerical experiments
The validation of block SRHT is done through comparison
with Gaussian embeddings. In the plots, BSRHT refers to
block SRHT. The comparison with standard SRHT is im-
pertinent since SRHT matrices are not that well scalable as
Gaussian matrices and have no better accuracy (Yang et al.,
2015).

4.1. Nyström approximation

This experiment was executed with Julia programming
language version 1.7.2 along with the Distributed.jl and
DistributedArrays.jl packages for parallelism. We used 2
nodes Intel Skylake 2.7GHz (AVX512) having 48 avail-
able cores and 180 MB of RAM each. In this experi-
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ment we used only 32 cores on each node. The code is
available at https://github.com/matthiasbe/
block_srht. As input data we took the MNIST
or YearPredictionMSD datasets (Lecun et al., 1998;
Bertin-Mahieux et al., 2011). The radial basis function
e−∥xi−xj∥2/σ2

was used to build a dense positive definite
matrix A of size n× n from n rows of the input data. The
parameter σ was chosen as 100 for the MNIST dataset and
104 as well as 105 for the YearPredictionMSD dataset. The
dimension n was taken as 65536. The matrix A has been
uniformly distributed on a square grid of 8× 8 processors.
In all the experiments, the local matrices Ω(i) on each pro-
cessor were generated with a seeded random number gen-
erator with a low communication cost. Figure 1 depicts the
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Figure 1: Trace error ∥A− [[A]](Nyst)

k ∥∗/∥A∥∗ using BSRHT.

convergence of the error of the low-rank approximation ob-
tained with Algorithm 1 taking Ω as a block SRHT. The re-
sults for Gaussian Ω are practically identical and therefore
are not displayed. In this numerical experiment, the error is
measured with the trace norm. Different sketching sizes l
were tested. For each pair of parameters (l, k) 20 different
approximations were computed for each type of Ω, in or-
der to have the 95% confidence interval. Nevertheless this
interval is not displayed as it is too small to be visible. Fig-
ure 2 gives runtime characterization. In particular we de-
pict the runtime spent on computing Y = AΩT and ΩY

in steps 1 and 2 of Algorithm 1. These operations will dom-
inate the overall computational cost, when the block size is
large enough. Nevertheless the reader should be aware that
TSQR and the SVD of R (step 4 and 5) are also important,
especially when the sampling size is close to the block size.
The parameter k is not involved in steps 1 and 3 hence not
mentioned in Figure 2.
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Figure 2: Runtimes of computing Y = AΩT and ΩY in Algo-
rithm 1 for different sampling sizes.

According to Figure 2, the runtime of the Gaussian sam-
pling is up to 2.5 times higher and grows faster with l
than the runtime taken by block SRHT. Note that for block
SRHT the local computation cost is independent of l, hence
the slope comes only from the reductions in steps 1 and 2.
On the other hand, the Gaussian sampling involves local
computations with linear dependency in l, in addition to
these reductions.

4.2. Cost of application to tall-and-skinny matrix

Next we investigate the performance of block SRHT on
larger scale. For this we consider a product of Ω with a tall-
and-skinny matrix V, for instance in the context of solv-
ing an overdetermined least-squares problem. The same
computing environment is used as in the previous experi-
ment, involving now up to 32 nodes and using C99/MPI
instead of Julia. The code was compiled using IntelMPI C
compiler version 20.0.2 and sequential MKL 20.0.2 with
option ILP64. The library FFTW3 used has Intel-specific
routines. There is therefore up to 1536 cores available. In
this way we generated a random matrix V with d = 200
columns and a varying number n of rows. This matrix was
distributed among a varying number p of processors with
block rowwise partitioning. Then V was multiplied by ei-
ther a Gaussian or block SRHT matrix Ω with l = 2000
rows using (5). In all experiments, the local Ω(i) ma-
trices on each processor were generated with a seeded
random number generator with negligible communication
cost. Figure 3 presents a strong scalability test for n = 107.
We see that the block SRHT provides an overall speedup
by a factor of more than 2.5 over the Gaussian matrices,
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while demonstrating as good scalability when p ≤ 384. For
larger p, however, the reduction operation starts to domi-
nate, which reduces the gain in efficiency. We observe a
variability in the MPI Allreduce operation on larger num-
ber of processors for both Gaussian and block SRHT al-
gorithms. However the compute times for both algorithms
scale well when increasing the number of processors up to
p = 1536. Figure 4 shows a strong scalability test for a
higher dimension n = 108. Again we see a great scalabil-
ity of block SRHT for p ≤ 384. For Gaussian matrices, on
the other hand, we revealed issues with reaching the mem-
ory limit needed to store Ω(i) which made its application on
p ≤ 384 processors infeasible. In principle, this problem
can be overcome by generating Ω(i) blockwise and apply-
ing the blocks to V(i) “on the fly”. This however entails
a dramatic increase in runtime and therefore is omitted in
comparison. On the other hand, for block SRHT we do not
have any memory problems1. To quantify the advantage
of block SRHT in such context, in Figure 5 we provide
the memory consumption of the Gaussian and block SRHT
matrix. We see that in this sense the reduction in compu-
tational cost is indeed drastic. Finally, Figure 6 provides
a weak scalability test using n = rp where r = 105. We
again see a reduction in runtime of about 2.5 and good scal-
ability for block SRHT up to using p = 1536 processors,
similar as in the strong scalability test.

12 48 192 1,536

0.1

1

10

# MPI process

Gauss. total
BSRHT total
Gauss. local
BSRHT local

Figure 3: Strong scalability runtimes associated with comput-
ing ΩV with n = 107 and l = 2000, versus p. “Gauss.
total” and “BSRHT total” correspond to the overall runtimes,
whereas “Gauss. local” and “BSRHT local” stand for the max
per-processor runtimes taken by local multiplications.

5. Proof of the main theorem
Before providing the proof for Theorem 2.1, let us first
motivate the chosen proof path. Le V be a fixed n × d
matrix with orthonormal columns, partitioned using block
rowwise partitioning with p blocks V(i) of size r × d.
The statement of the theorem can then be proven by show-
ing that the singular values of ΩV belong to the interval

1To reduce the memory consumption, local matrices V(i) are
multiplied by Ω(i) in blocks of 20 columns.
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Figure 4: Strong scalability runtimes associated with comput-
ing ΩV with n = 108 and l = 2000, versus p. “Gauss.
total” and “BSRHT total” correspond to the overall runtimes,
whereas “Gauss. local” and “BSRHT local” stand for the max
per-processor runtimes taken by local multiplications.
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Figure 5: Max per-processor memory needed for computing ΩV
with n = 108 and l = 2000, versus p.

[
√
1− ε,

√
1 + ε] with probability at least 1− δ.

Assume for a moment, that R in (4) is a uniform sampling
matrix without replacement. Notice that the random sam-
pling of rows without replacement and then flipping their
signs is equivalent to first flipping the signs and then sam-
pling. By using this consideration, the expression (5) can
be developed further as ΩV =√

r

l

p∑
i=1

(
D̃(i)RHD(i)V(i)

)
=

√
r

l

p∑
i=1

(
RD̂(i)HD(i)V(i)

)
=

√
r

l
R

p∑
i=1

(
D̂(i)HD(i)V(i)

)
=

√
r

l
RWV,

(8)

where D̂(i) are r × r diagonal matrices with Rademacher
random variables ±1 on the diagonal, and W =[
D̂(1)HD(1), D̂(2)HD(2), . . . , D̂(l)HD(l)

]
.

Looking at (5), one can detect many similarities of Ω with
standard SRHT matrix. Consequently, in order to argue
that ΩV is approximately orthonormal, the first thing to
try should be to follow the steps from (Tropp, 2011) in the
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Figure 6: Weak scalability runtimes associated with computing
ΩV with n = 105 × p and l = 2000, versus p. “Gauss.
total” and “BSRHT total” correspond to the overall runtimes,
whereas “Gauss. local” and “BSRHT local” stand for the max
per-processor runtimes taken by local multiplications.

analysis of the original SRHT. In this case the proof recipe
would be as follows. First, it could be shown that the ma-
trix W with high probability homogenizes the rows of V.
This result then would allow the Matrix Chernoff concen-
tration inequality from (Tropp, 2011) to be applied to show
that WV and

√
r
lRWV have approximately equal min-

imal and maximal singular values. With these results, it
would remain to show that with high probability WV is
approximately orthonormal. This, however, can be cum-
bersome or even impossible in some situations. Think, for
example, of the situation when r < d. Therefore, we will
assume that R is a uniform sampling matrix with replace-
ment and use the following trick. For better presentation
define parameters ε∗ = 15

16ε and δ∗ = δ
5 .

Recall that the sampling matrix R restricts a vector x =
(x1, . . . , xr) to l coordinates, i.e., we have

Rx = (xi1 , . . . , xil), with 1 ≤ i1, . . . , il ≤ r.

The (multi-)set of indices {i1, . . . , il} is a uniform ran-
dom sample of {1, . . . , r} with replacement. No-
tice that such sampling of indices is equivalent to the
sampling uniformly at random with replacement from
{1, . . . , 1, 2, . . . 2, . . . , r, . . . , r} containing K = ⌈104 n2

rδ∗ ⌉
copies of each index. This observation implies that
the sampling matrix R satisfies the identity RH =
R̂[H H . . .H]T = R̂Ĥ, where R̂ is uniform sampling,
with replacement, matrix of size l × rK, and Ĥ is a block
matrix with K blocks of rows, each being equal to H. For
a vector x = (x1, . . . , xrK), matrix R̂ satisfies

R̂x = (xi1 , . . . , xil), with 1 ≤ i1, . . . , il ≤ rK, (9)

where the indices {i1, . . . , il} are drawn uniformly at ran-
dom with replacement from {1, . . . , rK}. Let S denote the
event when i1, . . . , il in (9) are all disjoint indices.

Lemma 5.1. S occurs with probability at least 1− δ∗.

Proof. There are in total (rK)l

l! ways to select l elements
from a (rK)-element set and

(
rK
l

)
= rK(rK−1)...(rK−l+1)

l!
ways to select l disjoint elements. Consequently, we have

P(S) =
l∏

i=1

(1− i− 1

rK
) ≥ (1− l

rK
)l ≥ 1− l2

rK
≥ 1− δ∗.

The goal will be to bound the singular values of ΩV under
the condition S. The overall probability of success, then
will follow by the union bound argument. Next is assumed
that S is occurring. Notice that, in this case, matrix R̂ is
equivalent to the matrix that samples the entries uniformly
at random and without replacement. Then, using the same
arguments as in (8), we have the following expression for
the product ΩV:

ΩV =

√
r

l

p∑
i=1

(
D̃(i)R̂ĤD(i)V(i)

)
=

√
r

l
R̂ŴV, (10)

where Ŵ is a block matrix composed of K × p blocks,
with the (j, i)-th block being D̂(i,j)HD(i), where D̂(i,j)

are diagonal matrices with entries i.i.d. Rademacher ran-
dom variables ±1. Unlike WV, the matrix ŴV (rescaled
by 1/

√
K) for sufficiently large K can be proven to be

approximately orthonormal with high probability. We are
ready to establish the proof of Theorem 2.1.

Notice that the condition in Theorem 2.1 implies that

n ≥ l ≥ 3.2ε∗
−2

(
√
d+

√
8 log(rK/δ∗))2 log(d/δ∗). (11)

In Proposition 5.2 is shown that, given S, the matrix ŴV
has rows with equilibrated norms.

Proposition 5.2. Given S. The rows φ(j) of ŴV satisfy

P
(

max
j=1,...,rK

∥φ(j)∥2 ≤
√

d
r +

√
8 log(rK/δ∗)

r

)
≥ 1− δ∗.

Proof. Notice that, each row of Ŵ has entries that are i.i.d
Rademacher random variables rescaled by 1/

√
r. Conse-

quently, we have

φ(j) = ξ(j)
T
V/

√
r,

where ξ(j) is a Rademacher vector. Define convex func-
tion f(x) = ∥xTV/

√
r∥2. Observe that f(x) satisfies the

Lipschitz bound:

∀x,y, |f(x)− f(y)| ≤ ∥x− y∥2∥V/
√
r∥2 = ∥x− y∥2/

√
r.

This allows to apply the Rademacher tail bound: ∀t ≥ 0,

P
(
f(ξ(j)) ≥ Ef(ξ(j)) + t/

√
r
)
≤ exp(−t2/8). (12)

7
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Observe that E(f(ξ(j))) ≤ (E(f(ξ(j))2))
1
2 = ∥V/

√
r∥F ≤√

d/r . The statement of the lemma follows by combining

this relation with (12) with t =
√
8 log 1

δ and using the
union bound argument.

In Proposition 5.3 is proven that 1√
K
ŴV with high prob-

ability has singular values close to 1.

Proposition 5.3. Given S. The singular values of 1√
K
ŴV

with probability at least 1 − δ∗ lie inside the interval
[
√
1− ε∗/30,

√
1 + ε∗/30].

Proof. Define τ = ε∗/30. Notice that

K ≥ 104l ≥ 7.87τ−2(6.9d+ log(r/δ∗)).

We have, for any x ∈ Rd,

∥ŴVx∥22 =

K∑
j=1

∥
r∑

i=1

D̂(i,j)HD(i)V(i)x∥22. (13)

Denote by d(k,j) a vector with i-th entry equal to the (k, k)-
th entry of matrix D̂(i,j), 1 ≤ k ≤ r. Denote by Z(k)

the matrix with i-th row equal to the k-th row of matrix
HD(i)V(i), 1 ≤ k ≤ r. Notice the following relation:

∥
r∑

i=1

D̂(i,j)HD(i)V(i)x∥22 =

r∑
k=1

⟨d(k,j),Z(k)x⟩2, (14)

with 1 ≤ j ≤ K, and
r∑

k=1

∥Z(k)x∥22 = ∥Vx∥22. (15)

We have 1
K

∑K
j=1⟨d(k,j),Z(k)x⟩2 = ∥ΘZ(k)x∥22, where

Θ is a K × l rescaled Rademacher matrix. By Proposition
3.7 from (Balabanov & Nouy, 2019), Θ is an (τ, δ∗/r, d)
OSE, which implies that

∀x ∈ Rd,
1

K

K∑
j=1

⟨d(k,j),Z(k)x⟩2 = (1± τ)∥Z(k)x∥22,

holds with probability at least 1 − δ∗/r. By the summa-
tion over k and the union bound argument we conclude that
∀x ∈ Rd,

1

K

K∑
j=1

r∑
k=1

⟨d(k,j),Z(k)x⟩2 = (1± τ)

r∑
k=1

∥Z(k)x∥22, (16)

holds with probability at least 1 − δ∗. By straightforward
substitution of the expressions (14) and (15) into (16), and
using (13), we conclude that with probability at least 1−δ∗,

∀x ∈ Rd,
1

K
∥ŴVx∥22 = (1± τ)∥Vx∥22,

which is equivalent to the statement of the proposition.

Proposition 5.4 presents a corollary of the Matrix Chernoff
inequality from (Tropp, 2011), used to show that M =
1√
K
ŴV and

√
rK
l R̂M = ΩV have approximately equal

maximal and minimal singular values.

Proposition 5.4 (Corollary of Theorem 2.2 in (Tropp,
2011)). Let M be some rK × d matrix. Let 0 < ε∗ < 1
and 0 < δ∗ < 1. Let m(j) denote the rows of M and let
M := rKmaxj=1,...,rK ∥m(j)∥22 and N ≥ σmin(M)−2.
Draw at random a sampling matrix R̂ in (9) with

l ≥ 2(ε∗2 − ε∗3/3)−1MN log(d/δ∗).

Given S, then with probability at least 1− 2δ∗,

√
1− ε∗σmin(M) ≤ σmin(

√
rK

l
R̂M)

≤ σmax(

√
rK

l
R̂M) ≤

√
1 + ε∗σmax(M).

(17)

Proof. For any symmetric matrix X, let λmin(X) and
λmax(X) denote the minimal and the maximal eigenval-
ues of X. To prove Proposition 5.4 we will use the matrix
Chernoff tail bounds from (Tropp, 2011) presented in The-
orem 5.5.

Define X := {m(j)(m(j))T}nj=1. Consider the matrix

X := (R̂M)TR̂M =
∑
j∈T

m(j)(m(j))T,

where T is a set, with #T = l, of elements of
{1, 2, . . . , rK} drawn uniformly and without replacement.
The matrix X can be written as X =

∑l
i=1 Xi, where

{Xi}li=1 is a uniformly drawn, without replacement, ran-
dom subset of X . We have E(X1) =

1
rKMTM. Further-

more,

λmax(m
(j)(m(j))T) = ∥m(j)∥2 ≤ M

rK
, 1 ≤ j ≤ rK.

By applying Theorem 5.5 and some algebraic operations,
we obtain

P(λmin(X)≤ (1− ε∗)λmin(M
TM) l

rK
)

≤ d
(

e−ε∗

(1−ε∗)1−ε∗

)λmin(MTM)l/M

≤ d e−(ε∗2/2−ε∗3/6)(MN)−1l ≤ δ,

P(λmax(X)≥ (1 + ε∗)λmax(M
TM) l

rK
)

≤ d
(

eε
∗

(1+ε∗)1+ε∗

)λmax(MTM)l/M

≤ d e−(ε∗2/2−ε∗3/6)(MN)−1l ≤ δ.

The statement of the lemma follows by a union bound ar-
gument.
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Theorem 5.5 (Matrix Chernoff tail bounds from (Tropp,
2011)). Consider a finite set X of symmetric positive
semi-definite matrices of size d × d. Define the constant
L := maxXj∈X λmax(Xj). Let {Xi}li=1 be a uniformly
sampled, without replacement, random subset of X and
X :=

∑l
i=1 Xi. Then

P (λmin(X) ≤ (1− ε)µmin) ≤ d
(

e−ε

(1−ε)1−ε

)µmin/L

P (λmax(X) ≥ (1 + ε)µmax) ≤ d
(

eε

(1+ε)1+ε

)µmax/L

where µmin = lλmin(EX1) and µmax = lλmax(EX1).

By plugging Proposition 5.2 and the result of Proposi-
tion 5.3 into Proposition 5.4 and taking M = 1√

K
ŴV,

M = (
√
d +

√
8 log rK/δ∗)2, N = 1.07, along with the

union bound argument, we deduce that,
√
1− ε∗

√
1− ε∗/30 ≤ σmin(ΩV)

≤ σmax(ΩV) ≤
√
1 + ε∗

√
1 + ε∗/30

holds with probability at least 1 − 4δ∗ under the con-
dition S. Finally by few algebraic operations, we con-
clude that, given S, the singular values of ΩV belong to
[
√
1− ε,

√
1 + ε] with probability at least 4δ/5. The proof

of the main theorem is finished by reminding that S occurs
with probability at least 1− δ∗, the union bound argument
and few additional algebraic operations.

6. Conclusion
The proposed block SRHT can combine the advantages of
structured and unstructured sketching matrices, such as low
application complexity and suitability for distributed com-
puting. It should outperform all known embeddings in a
distributed architecture with not too large number of pro-
cessors. At the same time it yields the same approximation
guarantees as standard SRHT.
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Appendix

A. Characterization of the accuracy of Nyström approximation
We here provide a characterization of the accuracy of Nyström approximation from Section 3.

Notice the following identity (Gittens, 2011):

A− [[A]](Nyst) = (A
1
2 −ΠXA

1
2 )T(A

1
2 −ΠXA

1
2 ),

where ΠX denotes the orthogonal projector onto the range of X = A
1
2ΩT. Thus, to show that [[A]](Nyst) approximates

well A, it suffices to show that ΠX captures well the action of A
1
2 . In particular, by assuming that for some d ≥ k and

ε∗ ≤ 1
2 it holds that

∥A 1
2 −ΠXA

1
2 ∥2F ≤ (1 + ε∗)∥A 1

2 − [[A
1
2 ]]d∥2F, (18)

we can obtain

∥A− [[A]](Nyst)∥∗ = ∥A 1
2 −ΠXA

1
2 ∥2F ≤ (1 + ε∗)∥A 1

2 − [[A
1
2 ]]d∥2F = (1 + ε∗)∥A− [[A]]d∥∗. (19)

It is then noticed that (18) also implies the accuracy of the truncated approximation [[A]](Nyst)

k due to the following conse-
quence of the triangle inequality (see for instance Proposition A.6 in (Tropp et al., 2017b)):

∥A− [[A]](Nyst)

k ∥ξ ≤ ∥A− [[A]]k∥ξ + 2∥A− [[A]](Nyst)∥ξ, (20)

where ξ = 2 or ∗, so that we have by (19),

∥A− [[A]](Nyst)

k ∥ξ ≤ ∥A− [[A]]k∥ξ + 3∥A− [[A]]d∥∗. (21)

This result guarantees, under the condition (18), the quasi-optimality of [[A]](Nyst)

k with respect to the trace norm. Further-
more, if A has a fast enough singular value decay and d is large enough, so that the tail after d-th singular value of A,
i.e.

∑n
i=d+1 σi = ∥A− [[A]]d∥∗ is small compared to the k + 1-th singular value σk+1 = ∥A− [[A]]k∥2 then [[A]](Nyst)

k is
almost as accurate as [[A]]k with respect to both the trace norm and the spectral norm.

It remains to obtain the conditions on Ω such that (18) holds with high probability. This can be done for instance with the
results from (Woodruff et al., 2014). Take ε = 4

9ε
∗. It follows from Lemma 45 in (Woodruff et al., 2014) and its proof

that (18) holds with probability at least 1− δ if Ω is an ( 13 , δ, d) OSE, and

∥UT
dΩ

TΩ(A
1
2 − [[A

1
2 ]]d)∥2F ≤ ε∥A 1

2 − [[A
1
2 ]]d∥2F.

In turn the latter condition is satisfied with probability at least 1− δ if Ω is an (
√

ε
d ,

δ
N , 1) OSE, where N = 2nd+ n+ d,

as shown below. The OSE property of Ω and the union bound argument guarantee that for given N fixed vectors zi, we
have

(1−
√

ε
d )∥zi∥

2
2 ≤ ∥Ωzi∥22 ≤ (1−

√
ε
d )∥zi∥

2
2, for 1 ≤ i ≤ N (22)

with probability at least 1 − δ. Take set {zi} composed of the normalized columns of Ud denoted by xi, the normalized
columns of A

1
2 − [[A

1
2 ]]d denoted by yi, and all the pairs xi + yj and xi − yj . Then the relation (22), the parallelogram

identity and the fact that xT
i yj = 0, imply that

|xT
i Ω

TΩyj | ≤
√

ε
d∥xi∥2∥yj∥2, for 1 ≤ i ≤ d, 1 ≤ j ≤ n.

Consequently, we have

∥UT
dΩ

TΩ(A
1
2 − [[A

1
2 ]]d)∥2F =

d∑
i=1

n∑
j=1

|xT
i Ω

TΩyj |2 ≤ ε
d

d∑
i=1

n∑
j=1

∥xi∥22∥yj∥22 = ε
d
∥Ud∥2F∥A

1
2 − [[A

1
2 ]]d∥2F (23)
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with probability at least 1− δ. The proof is finished by noting that ∥Ud∥2F = d.

It is concluded that (18) and as a consequence (21) are satisfied with probability at least 1− 2δ if Ω is an ( 13 , δ, d) OSE and
(
√

ε
d ,

δ
N , 1) OSE. In turn, according to Theorem 2.1 and (3), this condition is satisfied by the block as well as the standard

SRHT with l = O(d log2 n
δ ) rows (taking ε∗ = 1

2 , ε = 2
9 ). Whereas for Gaussian matrices the required number of rows

to satisfy the aforementioned OSEs properties is somewhat lower: l = O(d log n
δ ). Although it has to be said that SRHT

matrices in practice give similar results as Gaussian matrices (Halko et al., 2011). As can be seen from our experiments,
this should also be the case for block SRHT. Moreover, we note that the condition l = O(d log n

δ ) for Gaussian matrices
is still pessimistic. This overestimation is an artifact due to the use of a general analysis based solely on the OSE property.
In reality, a Gaussian Ω should satisfy (18) with high probability if it has size l = O(d) with a small constant (say 2 or
4) (Halko et al., 2011; Tropp et al., 2017a).
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