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Abstract
Sequentially solving similar optimization prob-
lems under strict runtime constraints is essen-
tial for many applications, such as robot control,
autonomous driving, and portfolio management.
The performance of local optimization methods
in these settings is sensitive to the initial solution:
poor initialization can lead to slow convergence or
suboptimal solutions. To address this challenge,
we propose learning to predict multiple diverse
initial solutions given parameters that define the
problem instance. We introduce two strategies
for utilizing multiple initial solutions: (i) a single-
optimizer approach, where the most promising ini-
tial solution is chosen using a selection function,
and (ii) a multiple-optimizers approach, where
several optimizers, potentially run in parallel, are
each initialized with a different solution, with the
best solution chosen afterward. Notably, by in-
cluding a default initialization among predicted
ones, the cost of the final output is guaranteed to
be equal or lower than with the default initializa-
tion. We validate our method on three optimal
control benchmark tasks: cart-pole, reacher, and
autonomous driving, using different optimizers:
DDP, MPPI, and iLQR. We find significant and
consistent improvement with our method across
all evaluation settings and demonstrate that it effi-
ciently scales with the number of initial solutions
required.

1. Introduction
Many applications, ranging from trajectory optimization in
robotics and autonomous driving to portfolio management
in finance, require solving similar optimization problems
sequentially under tight runtime constraints (Paden et al.,
2016; Ye et al., 2020; Mugel et al., 2022). The performance
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of local optimizers in these contexts is often highly sensitive
to the initial solution provided, where poor initialization can
result in suboptimal solutions or failure to converge within
the allowed time (Michalska & Mayne, 1993; Scokaert et al.,
1999). The ability to consistently generate high-quality
initial solutions is, therefore, essential for ensuring both
performance and safety guarantees.

Conventional methods for selecting these initial solutions
typically rely on heuristics or warm-starting, where the so-
lution from a previously solved, related problem instance is
reused. More recently, learning-based solutions have also
been proposed, where neural networks are used to predict an
initial solution. However, in more challenging cases, where
the optimization landscape is highly non-convex or when
consecutive problem instances rapidly change, predicting a
single good initial solution is inherently difficult.

To this end, we propose Learning Multiple Initial Solutions
(MISO) (Figure 1), in which we train a neural network to
predict multiple initial solutions. Our approach facilitates
two key settings: (i) a single-optimizer method, where a
selection function leverages prior knowledge of the prob-
lem instance to identify the most promising initial solution,
which is then supplied to the optimizer; and (ii) a multiple-
optimizers method, where multiple initial solutions are gen-
erated jointly to support the execution of several optimizers,
potentially running in parallel, with the best solution chosen
afterward.

More specifically, our neural network receives a parameter
vector that characterizes the problem instance and outputs
K candidate initial solutions. The network is trained on
a dataset of problem instances paired with (near-)optimal
solutions and is evaluated on previously unseen instances.
Crucially, the network is designed not only to predict good
initial solutions—those close to the optimal—but also to en-
sure that these solutions are sufficiently diverse, potentially
spanning all underlying modes of the problem in hand. To
actively encourage this multimodality, we implement train-
ing strategies such as a winner-takes-all loss that penalizes
only the candidate with the lowest loss, a dispersion-based
loss term to promote dispersion among solutions, and a
combination of both.

Notably, any existing initialization strategy can be combined
with MISO, by simply including the existing initial solution
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Figure 1. As opposed to previous works (top) that predict a single initial solution, MISO trains a single neural network to predict multiple
initial solutions. We use them to either initialize a single optimizer (middle) or jointly initialize multiple optimizers (bottom).

among the predicted ones; and by design, MISO is guaran-
teed to be equal or better than the default initialization.

We evaluate MISO across three distinct local optimization al-
gorithms applied to separate robot control tasks: First-order
Box Differential Dynamic Programming (DDP), which uti-
lizes first-order linearization for the cart-pole swing-up task;
Model Predictive Path Integral (MPPI) control, a sampling-
based method, for the reacher task; and the Iterative Linear
Quadratic Regulator (iLQR), a trajectory optimization al-
gorithm, for an autonomous driving task. Our results show
that MISO significantly outperforms existing initialization
methods that rely on heuristics, learn to predict a single
initial solution or use ensembles of independently learned
models.

In summary, our key contributions are as follows:

1. We present a novel framework for predicting multiple
initial solutions for optimizers.

2. We introduce two distinct strategies for utilizing the
predicted initial solutions: (i) single-optimizer, where
the most promising solution is chosen based on a se-
lection function, and (ii) multiple-optimizers, where
multiple optimizers are initialized, potentially in paral-
lel, with the best solution chosen afterward.

3. We design and implement specific training objectives

to prevent mode collapse and ensure that the predicted
solutions remain multimodal.

4. We apply our framework to three distinct sequential
optimization tasks and perform extensive evaluation.

2. Related Work
Learning for optimization. Advancements in machine
learning have introduced numerous learning-based ap-
proaches to optimization problems (Sun et al., 2019). Early
work by Gregor & LeCun (2010) replaced components of
classical convex optimization algorithms with neural net-
works. More recent works aim to replace optimization meth-
ods entirely with end-to-end neural networks (OpenAI et al.,
2020; Mirowski et al., 2017) or generate new optimiza-
tion algorithms (Chen et al., 2022b) for specific classes of
problems. Other works enhance optimization-based control
algorithms (Sacks & Boots, 2022), learn constraints (Fa-
jemisin et al., 2024), or learn objective functions and system
dynamics (Lenz et al., 2015; Wahlström et al., 2015; Tamar
et al., 2017; Hafner et al., 2019; Nagabandi et al., 2018;
Xiao et al., 2022).

Learning initial solutions. Previous studies have pro-
posed heuristic approaches to generate initial solutions
for optimizers (Johnson et al., 2015; Marcucci & Tedrake,
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2020). More recently, learning-based methods for initializ-
ing optimizers have gained attention in various fields, aim-
ing to enhance both computational efficiency and resulting
solutions quality. In mixed-integer programming, neural
networks have enhanced solver performance by predicting
variable assignments (Nair et al., 2020), branching deci-
sions (Sonnerat et al., 2021), and integer variables (Bertsi-
mas & Stellato, 2021). Baker (2019) employed Random
Forests to predict solutions for AC optimal power flow prob-
lems. Kang et al. (2024) utilized nearest neighbor search to
warm-start tight convex relaxations in nonconvex trajectory
optimization problems. In robot control, neural networks
were used to predict initializations for trajectory optimizers
or Model Predictive Control (MPC) (Chen et al., 2022a;
Wang & Ba, 2019; Lembono et al., 2020). An exciting
line of recent work developed differentiable optimization
algorithms, which allow jointly learning objectives, con-
straints, and initializations by backpropagating through the
optimization process (Amos et al., 2018; East et al., 2019;
Karkus et al., 2022; Sambharya et al., 2023). In contrast, we
learn multiple initializations instead of one, and we do so
without strong assumptions about the task or the optimizer.
Notably, Bouzidi et al. (2023) used multiple initializations
by repurposing a motion prediction model and Bézier curve
fitting for a downstream MPC; however, this approach is
specifically tailored for autonomous driving, incorporating
a dedicated motion prediction module.

Parallel optimizers. Leveraging parallelism has a long
history in optimization research (Betts & Huffman, 1991).
With recent advances in parallel computing hardware, such
as GPUs, methods that execute multiple optimizers in par-
allel have also emerged. For example, Sundaralingam et al.
(2023) introduced cuRobo, a GPU-accelerated method com-
bining L-BFGS and particle-based optimization for robotic
manipulators. Similarly, Huang et al. (2024) utilized mas-
sive parallel GPU computation for efficient inverse kine-
matics and trajectory optimization. de Groot et al. (2024)
proposed a topology-driven method that plans for multiple
evasive maneuvers in parallel. Barcelos et al. (2024) focused
on initializing parallel optimizers through rough paths. How-
ever, these works have not utilized learning. Lembono et al.
(2020) explored learning-based strategies for initializing tra-
jectory optimizers based on a database of previous solutions
and ensemble-learned models, particularly in manipulation
and humanoid control tasks. In contrast, we propose a single
neural network to generate multiple initializations, which,
as shown in our experiments, significantly outperforms the
ensemble-based approach.

3. Initializing optimizers
Problem setup. In the most general form, we need to
solve instances of a parameterized optimization problem,

x⋆(ψ) = argmin
x
J(x;ψ) s.t.

g(x;ψ) ≤ 0,

h(x;ψ) = 0.
(1)

where x ∈ Rn is the variable vector to be optimized, J is
the objective function, g and h are collections of inequality
and equality constraints, and ψ ∈ Rm is a parameter vector
that defines the problem instance, e.g., parameters of the
objective function and constraints that differ across problem
instances. A local optimization algorithm, Opt, attempts
to find an optimum of J , namely,

x̂⋆ = Opt(J,ψ, tlim;x
init),

where xinit is initial solution provided to the optimizer, and
tlim is the runtime limit.

Heuristic methods. A common choice of the initial so-
lution, xinit, is the solution to a previously solved similar
problem instance, referred to as a warm-start. For example,
in optimal control the warm-start is typically the solution
from the previous timestep, shifted and padded with zeros,
xw.s. := {{xcand

t+k }H−2
k=1 ,0} (Otta et al., 2015). This heuris-

tic often works well in practice, however, it can struggle
when large changes in the problem instance, ψ, occur be-
tween consecutive time steps, leading to significant shifts in
the optimal solution. For example, in autonomous driving,
abrupt events like a traffic light switch or the sudden ap-
pearance of a pedestrian might drastically alter the reference
trajectory or constraints. In such cases, the previous solution
becomes a poor initialization, and the optimizer may fail to
find a good solution within the allocated time frame.

4. Learning Multiple Initial SOlutions
The main idea of MISO is to train a single neural network
to predict multiple initial solutions to an optimization prob-
lem, such that the initial solutions cover promising regions
of the optimization landscape, eventually allowing a local
optimizer to find a solution close to the global optimum.
The key questions are then how to design a multi-output
predictor; how to utilize multiple initial solutions in existing
optimizers; and how to train the predictor to output a diverse
set of initial solutions. In the following, we discuss our
proposed solutions to these questions, illustrate the need for
multimodality with a toy example, and discuss applications
to optimal control.

4.1. Multi-output predictor

Our multi-output predictor is a standard Transformer model–
chosen for its simplicity and clarity (see Appendix A.13
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for a discussion on alternative architectures). It takes the
problem instance,ψ, as input and outputsK initial solutions
for the optimization problem,

{x̂init
k }Kk=1 = f(ψ;θ),

where θ are the learned parameters of the network. We train
the network on a dataset of problem instances and their cor-
responding (near-)optimal solutions, {(ψi,x

⋆
i )}ni=1. Such

dataset can be generated offline, for example, by running a
slow yet globally optimal solver, or allowing the same local
optimizer to run with longer time limits, potentially many
times from different initial solutions.

4.2. Optimization with multiple initial solutions

We propose two distinct settings to leverage multiple initial
solutions: single-optimizer and multiple-optimizers. The
resulting frameworks are illustrated in Fig. 1.

Single optimizer. In the single-optimizer setting we run
a single instance of the optimizer with the most promising
initial solution, x̂⋆ = Opt(J,ψ, tlimit; x̂

init). We introduce
a selection function, Λ, which, given a set of candidate
solutions and the problem instance ψ, returns the most
promising candidate, x̂init = Λ({x̂init

k }Kk=1,ψ). A reason-
able choice for Λ used in our experiments is selecting the
candidate that minimizes the objective function the opti-
mizer aims to minimize, i.e., Λ := argmink J(x̂

init
k ;ψ).

However, other criteria–such as robustness, constraint sat-
isfaction, or domain-specific requirements–may be more
appropriate in certain scenarios; see Appendix A.10 for
details and examples.

Multiple optimizers. In the multiple-optimizers set-
ting, we assume multiple instances of the optimizer
can be executed in parallel. We then initialize each
optimizer with a different initial solution, x⋆

k =
Optk(J,ψ, tlimit; x̂

init
k ), k ∈ {1, . . . ,K}. To select a

single solution from the outputs of the optimizers, we can
use the same selection function Λ, as in the previous case,
e.g., the solution that minimizes the objective function.

Guarantees. Our framework can be trivially generalized
to allow a different number of optimizers and initial solu-
tion predictions, as well as using a heterogeneous set of
optimization methods. To maintain performance guarantees,
one may include traditional initialization methods, such as
warm-start heuristics, as part of the set of initializations.
MISO is guaranteed to improve over the existing default
strategy by design. In the single-optimizer setting the best
initial solution is always equal or better than the default
according to the selection function Λ; and in the multiple-
optimizer setting the final solution is equal or better than
using only the default initialization.

4.3. Training strategies

The ultimate goal is to predict multiple initial solutions so
that the downstream optimizer can find a solution close
to the global optima, i.e., J(x̂⋆;ψ) ≈ J(x⋆;ψ). Train-
ing a neural network directly for this objective is not fea-
sible in general. Instead, we propose proxy training ob-
jectives that combine two terms: a regression term that
encourages outputs to be close to the global optimum, e.g.,
Lreg(x̂

init
k ,x⋆) = ∥x̂init − x⋆∥, where ∥ · ∥ is a distance

metric; along with a diversity term that promotes outputs
being different from each other, thereby covering various
regions of the solution space. An illustrative example is in
Sect. 4.4. In the following, we present three simple training
strategies promoting diversity and preventing mode collapse.
We discuss alternative formulations, with probabilistic mod-
eling and reinforcement learning, in Sect. 7.

Pairwise distance loss. A simple method to encourage the
model’s outputs to differ from each other is to penalize the
pairwise distance between all outputs. The overall loss com-
bines this dispersion-promoting term with the regression
loss,

LPD =
1

K

K∑
k=1

Lreg(x̂
init
k ,x⋆) + αK

1

K

K∑
k=1

LPD,k(x̂
init
k ),

LPD,k =
1

K − 1

K∑
k′=1
k′ ̸=k

∥x̂init
k − x̂init

k′ ∥,

where αK is a hyperparameter that balances the trade-off
between accuracy and dispersion.

Winner-takes-all loss. A more interesting way to encour-
age multimodality is to select the best-predicted output at
training time and only minimize the regression loss for this
specific prediction,

LWTA = min
k

{Lreg(x̂
init
k ,x⋆)}.

Intuitively, the model only needs one of its outputs to be
close to the ground truth, while the other predictions are not
penalized for deviating, potentially aligning with different
regions of the underlying distribution. Similar losses have
been used, e.g., in multiple-choice learning (Guzman-Rivera
et al., 2012). One advantage of this approach is that it is
hyperparameter-free.

Mixture loss. Lastly, we consider a combination of the
previous two approaches to potentially enhance perfor-
mance, as it provides some measure of dispersion we can
tune,

LMIX = min
k

{
Lreg(x̂

init
k ,x⋆) + αKΦ

(
LPD,k(x̂

init
k )

)}
,
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here, Φ is an upper-bounded function, such as min or tanh,
designed to limit the contribution of the pairwise distance
term.

Beyond the losses above, MISO could be integrated with
other training paradigms, such as reinforcement learning or
probabilistic modeling. We discuss these options in Sect. 7
but differ investigation to future work.

4.4. Illustrative example

Figure 2. Left: The one-dimensional cost function c(x) with
global minima at A and C and a local minimum at B. Right:
Predicted initial solution for different methods, demonstrating why
explicitly promoting multimodality is important.

To illustrate the advantage of using a single model with
multimodal outputs compared to regression models or en-
sembles of regressors, we examine a straightforward one-
dimensional optimization problem aimed at minimizing the
cost function c(x) shown in Fig. 2 (top). The function fea-
tures two global minima, denoted as A and C, with a local
minimum located between them at B.

Applying our learning framework to this simple problem,
the dataset of optimal solutions includes instances of A
and C. A single-output regression model has no means to
distinguish the two modes and inevitably learns to predict
the mean of examples in the dataset, somewhere near B.
Consequently, the local optimizer is likely to converge to the
suboptimal local minimum at B. Constructing an ensemble
of such models to generate multiple initial solutions does
not mitigate this issue, as each ensemble member tends
to be biased toward the mean of the two modes near B.
We implemented the optimization problem and showed the
predictions for different training strategies in Fig. 2 (bottom).
Details are in Appendix A.5. Indeed, an ensemble of single-
output predictors fails to predict a global optimum, while
our multi-output predictor succeeds with winner-takes-all
and mixture losses.

While the problem considered here is purposefully simplis-
tic, the existence of local minima is the key challenge in
most optimization problems.

4.5. Application to optimal control

MISO is applicable to a broad class of sequential optimiza-
tion problems; however, for the sake of evaluation, we focus
on optimal control problems. Optimal control has a wide
range of applications, e.g., in robotics, autonomous driv-
ing, and many other domains with strict runtime require-
ments, and due to the complexity induced by constraints and
non-convex costs, local optimization algorithms are highly
sensitive to the initial solution.

In optimal control the optimization variable x represents
a trajectory defined as a sequence of states and control in-
puts over discrete time steps: τ = {st,ut}t=1:H . Here,
st ∈ S and ut ∈ U denote the state and control input
at time step t ∈ Z+, and H ∈ Z+ is the optimization
horizon. The constraints involve adhering to the system dy-
namics fd(st+1, st,ut) = 0, starting from an initial state
s0 = scurr, where scurr represents the system’s current state.
The problem instance parameters ψ encompass the initial
state s0, and other domain-specific variables that parame-
terize the objective function or constraints, such as target
states, reference trajectories, obstacle positions, friction co-
efficients, temperature, etc.

A specific property of optimal control problems is that the
relationship between optimization variables, states st and
controls ut, are defined by the dynamics constraint fd;
and the initial state s0 is given. Therefore, a sequence
of controls uniquely defines an (initial) solution. We can
leverage this property by learning to predict only a sequence
of controls instead of the full optimization variable of state-
control sequences. Further, one can define the training loss
over either control, state, or state-control sequences and
backpropagate gradients through the dynamics constraint
as long as it is differentiable. In our experiments, we use
state-control loss by default as we found it to improve both
our and baseline learning methods. In Appendix A.7, we
show that our conclusions hold with control-only loss as
well.

(a) Cart-pole (b) Reacher (c) Driving

Figure 3. Optimal control tasks used in our experiments.

5. Experimental setup
Tasks. We evaluated our method on the three robot con-
trol benchmark tasks shown in Fig. 3, each employing a
distinct local optimization algorithm. Cart-pole. This task
involves balancing a pole upright while moving a cart to-
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ward a randomly selected target position (Barto et al., 1983),
using a first-order box Differential Dynamic Programming
(DDP) optimizer (Amos et al., 2018). Reacher. In this
task, a two-link planar robotic arm needs to reach a target
placed at a random positon (Tassa et al., 2018), using a
Model Predictive Path Integral (MPPI) optimizer (Williams
et al., 2015). Autonomous Driving. Based on the nuPlan
benchmark (Caesar et al., 2021), this task focuses on tra-
jectory tracking in complex urban environments by follow-
ing a reference trajectory generated by a Predictive Driver
Model (PDM) planner (Dauner et al., 2023), using the Iter-
ative Linear Quadratic Regulator (iLQR) optimizer (Li &
Todorov, 2004). Further details are in Appendix A.1 and
Appendix A.2.

Baselines. We compare MISO to a range of alternative
methods to provide single or multiple initial solutions. For
a single initial solution, we considered: Warm-start, the
default method that uses the optimizer output from the last
problem instance; Regression, a single-output regression
model (the K = 1 version of MISO); Oracle Proxy, opti-
mization with unlimited runtime, which we also used to gen-
erate our training data. For methods that generate multiple
initial solutions, we considered: Warm-start with pertur-
bations, which extends the warm-start approach by adding
Gaussian noise to the optimizer output from the last problem
instance; Regression with perturbations, where Gaussian
noise is introduced to the predictions of the single-output
regression model; Multi-output regression, a naive multi-
output regression model without a diversity-promoting ob-
jective; and Ensemble, which trains multiple single-output
neural networks with different random initializations. Fi-
nally, we assessed variants of our proposed method with
the different training losses discussed in Sect. 4.3: pairwise
distance, winner-takes-all, and mix.

Evaluation settings. We employ two evaluation modes.
(i) One-off, where the optimization task is treated as an
isolated problem with the objective of finding the minimum
of a given function. This mode serves as the default config-
uration for training neural networks, where data is replayed
to the model, and the optimizer’s solution is recorded but
not executed. Methods are assessed by the mean cost of
the optimizer’s output over problem instances. (ii) Sequen-
tial, which involves solving a series of related optimization
problems, executing each proposed solution, and starting
the subsequent optimization from the resulting state. This
setting simulates real-world conditions where the optimizer
continuously interacts with a dynamic environment in a
closed loop. Astute readers may notice parallels to the
open-loop/closed-loop paradigms in control theory; these
connections are discussed in greater depth in Appendix A.11
and Appendix A.12

We evaluate performance by taking the mean cost over prob-
lems in a sequence, and then the mean over sequences.

To account for the additional time required to predict initial
solutions, we assumed that all models perform inference in
under 0.85ms, which was the case for all methods on both
CPU and GPU, except for the ensemble (see Appendix A.6).
In the autonomous driving task, we then reduced the runtime
allocated to the optimizer accordingly.

Implementation details. To generate the training data,
we first create a set of problem instances by sequentially ex-
ecuting the optimizer initialized with the default warm-start
strategy. The problem instances are then fed again to an ”or-
acle” version of the optimizer with a significantly increased
runtime limit, and the resulting solutions are recorded. Af-
ter training, evaluation is done on a separate unseen set of
problem instances. All experiments are conducted on an
Intel Core i9-13900KF CPU and an NVIDIA RTX 4090
GPU. Further implementation details, including hyperpa-
rameters and training procedures, are in Appendix A.3 and
Appendix A.4.

6. Results
Our main results for optimization with different initial solu-
tions are reported in Table 1 and Table 2 for single optimizer
and multiple optimizers settings, respectively. Figure 4
shows the effect of the number of predicted initial solutions.
Figure 5 provides qualitative results. More detailed results,
including inference times, are in the Appendix.

Single optimizer. In the single-optimizer setting, Table 1,
we first observe that even one learned initialization outper-
forms heuristic solutions (regression vs. warm-start), in
almost all settings, and in particular in the most challeng-
ing autonomous driving task. We then examine the im-
pact of generating multiple initial solutions. Perturbations-
based methods show some improvement over their single-
initialization counterparts in most cases, and ensembles of
independently learned models perform consistently better
than single models. Finally, our proposed multi-output meth-
ods demonstrate substantial improvements over all baselines
because they can learn to predict diverse multimodal initial
solutions. Specifically, MISO winner-takes-all or MISO mix
achieve the lowest mean costs across all tasks. Considering
the pairwise distance term alone proves insufficient to en-
sure adequate diversity, whereas incorporating it with MISO
winner-takes-all often boosts performance, yet, its effective-
ness varies, which underscores the challenge of selecting
optimal hyperparameters. As expected, improvements are
consistently larger in the more important sequential opti-
mization setting, where errors over time compound.
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Table 1. Results for the single optimizer setting. The mean cost of solutions found by the single optimizer using different initial solutions
across tasks and evaluation settings.

One-Off Optimization Sequential Optimization

Method K Reacher Cart-pole Driving Reacher Cart-pole Driving

Single Optimizer
Warm-start 1 13.48 ±0.88 11.69 ±0.84 283.86 ±37.91 13.48 ±0.88 11.69 ±0.84 283.86 ±37.91
Regression 1 13.40 ±0.88 11.19 ±0.80 74.23 ±7.69 19.56 ±0.52 6.18 ±0.47 70.62 ±7.38
Warm-start w. perturb 32 13.46 ±0.88 11.64 ±0.83 145.01 ±23.01 14.71 ±0.93 16.29 ±0.44 164.75 ±22.84
Regression w. perturb 32 13.38 ±0.88 11.16 ±0.80 67.69 ±8.01 15.28 ±0.58 5.74 ±0.47 66.75 ±6.56
Multi-output regression 32 13.41 ±0.88 11.21 ±0.80 70.25 ±8.75 18.49 ±0.55 6.62 ±0.45 78.74 ±8.99
Ensemble 32 13.39 ±0.88 10.94 ±0.79 47.22 ±4.71 8.40 ±0.40 3.55 ±0.34 52.59 ±4.81
MISO pairwise dist. 32 13.41 ±0.88 11.22 ±0.80 66.06 ±7.48 19.20 ±0.49 6.07 ±0.45 71.90 ±7.90
MISO winner-takes-all 32 13.36 ±0.88 10.48 ±0.77 30.17 ±2.24 2.72 ±0.21 0.83 ±0.06 30.75 ±2.15
MISO mix 32 12.74 ±0.86 10.48 ±0.77 33.95 ±2.39 2.44 ±0.20 0.79 ±0.04 33.38 ±2.21
Oracle Proxy 1 13.43 ±0.88 11.01 ±0.80 41.94 ±4.31 6.88 ±0.58 4.54 ±0.71 26.52 ±2.00

Table 2. Results for the multiple optimizers setting. Mean cost of solutions found by multiple optimizers using different initial solutions
across tasks and evaluation settings.

One-Off Optimization Sequential Optimization

Method K Reacher Cart-pole Driving Reacher Cart-pole Driving

Multiple Optimizers
Warm-start w. perturb 32 13.41 ±0.88 10.93 ±0.79 155.53 ±24.33 5.89 ±0.50 6.68 ±0.59 162.13 ±34.10
Regression w. perturb 32 13.34 ±0.88 11.12 ±0.80 64.88 ±6.84 3.53 ±0.27 5.36 ±0.48 62.07 ±6.39
Multi-output regression 32 13.34 ±0.88 11.21 ±0.80 70.29 ±9.13 3.31 ±0.26 6.38 ±0.43 70.71 ±8.18
Ensemble 32 13.34 ±0.88 10.65 ±0.78 45.44 ±4.64 3.08 ±0.23 2.21 ±0.20 49.08 ±5.29
MISO pairwise dist. 32 13.34 ±0.88 11.22 ±0.80 67.62 ±7.58 3.42 ±0.27 6.09 ±0.47 71.33 ±8.13
MISO winner-takes-all 32 13.34 ±0.88 10.29 ±0.76 30.87 ±2.30 2.21 ±0.16 0.76 ±0.05 30.48 ±2.07
MISO mix 32 12.72 ±0.86 10.29 ±0.76 33.52 ±2.35 1.56 ±0.14 0.63 ±0.02 34.85 ±2.64

Multiple optimizers. When considering the multiple-
optimizers setting, we observe the same trend. Learning-
based methods outperform heuristic ones, and multi-output
approaches yield further enhancements. As expected, the
use of multiple optimizers leads to consistently better results
compared to the single-optimizer setting due to increased
exploration of the solution space.

Scaling with the number of initial solutions. Figure 4
shows that our method scales effectively and consistently
with the number of predicted initial solutions K, and out-
performs other approaches across varying values of K. Im-
portantly, as K increases, the inference time for ensemble
approaches grows, whereas MISO remains almost constant
(see Appendix A.6). We further evaluate mode diversity
in Appendix A.8, and find that, in line with our conclusions,
all MISO outputs remain useful even when K increases.

Performance guarantees. To evaluate the guarantees dis-
cussed in Sect. 4.2, we added the warm-start initial solution
to the set of candidates of MISO winner-takes-all and MISO
mix. We observed in all problem instances the cost of the
best initial solution to be equal or lower than the cost of the
warm start in the single optimizer setting; and the cost of
the final solution to be lower or equal than for the warm

start in the multiple optimizer setting. The mean costs re-
mained mostly similar to MISO, and improved slightly in
some cases. Detailed results are in Appendix A.15.

Qualitative results. Figure 5 (left) depicts the optimizer’s
output trajectories with different initial solutions for the au-
tonomous driving task. In this scenario, the high-level plan-
ner abruptly alters the reference path, which could happen,
e.g., because of a newly detected pedestrian. The change in
reference path makes the previous solution (warm-start) a
poor initialization, and the optimizer converges to a local
minimum that minimizes control effort but is far from the
desired path. Regression and model ensemble also fail to
predict a good initial solution. In contrast, MISO winner-
takes-all adapts to this sudden reference change and closely
follows the reference path. Figure 5 (right) depicts MISO’s
initial solutions for the cart-pole task. The different outputs
capture different modes of the solution space (maintaining
balance while moving, swinging leftward, and swinging
rightward), showing MISO’s ability to generate diverse and
multimodal solutions.

Summary. Overall, our methods significantly outperform
the other baselines in both settings. The consistent superior-
ity of the MISO mix and MISO winner-takes-all methods
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(a) Single Optimizer (b) Multiple Optimizers

Figure 4. Mean cost of the driving task (Sequential Optimization) for varying K values. The shaded regions indicate the standard error.

Figure 5. Single Optimizer for Driving (left) and Cart-Pole (right). On the left, we show each method’s adaptation when the high-level
planner abruptly modifies the reference path. On the right, we illustrate multiple trajectories predicted by MISO winner-takes-all.

across different tasks and configurations underscores the ad-
vantages of using learning-based multi-output strategies for
generating initial solutions. These findings demonstrate that
promoting diversity among multiple initializations is cru-
cial for improving optimization outcomes, especially when
combined with multiple optimizers.

7. Conclusions and Future Work
We introduced Learning Multiple Initial Solutions (MISO),
a novel framework for learning multiple diverse initial solu-
tions that significantly enhance the reliability and efficiency
of local optimization algorithms across various settings. Ex-
tensive experiments in optimal control demonstrated that
our method consistently outperforms baseline approaches
and scales efficiently with the number of initializations.

Limitations. Our approach is not without limitations.
First, to train a useful model, we rely on the coverage and
quality of the training data, as the method does not directly
interact with the optimizer or the underlying objective func-
tion. Second, the underlying assumption of our regression
loss is that initial solutions closer to the global optimum
increase the likelihood of successful optimization may not
hold in complex optimization landscapes with intricate con-
straints. Third, in highly complex optimization problems
where each solution constitutes a high-dimensional and intri-
cate structure, accurately learning initial solution candidates
can become exceedingly challenging, potentially diminish-
ing the effectiveness of our approach.

Future work. There are several promising directions for
future research. To address the aforementioned limitations,
one may simply incorporate the optimization objective into
the model training loss, thus creating a direct link to the
final optimization goal. Alternatively, using reinforcement
learning (RL) to train MISO is a particularly exciting op-
portunity. By framing the problem in an RL context, e.g.,
where the reward is the negative cost of the optimizer’s final
solution, models would be directly trained to maximize the
probability of the optimizer finding the global optima and
may learn to specialize to the specific optimizer. One chal-
lenge would be computational, as RL would require running
the optimizer numerous times during training.

Other extensions of our approach include probabilistic mod-
eling, e.g., Gaussian mixture models, variational autoen-
coders, or diffusion models; however, preventing mode col-
lapse and promoting diversity, and inference overhead (see
Appendix A.14), would remain a challenge. Future work
may explore alternative selection functions, such as risk
measures or criteria based on stability, robustness, explo-
ration, or other domain-specific metrics; as well as using
a heterogeneous set of parallel optimizers. Finally, we are
excited about various possible applications in optimal con-
trol and beyond, where sequences of similar optimization
problems need to be solved, for example, localization and
mapping in robotics, financial optimization, traffic routing
optimization, or even training neural networks with different
initial weights, e.g., for meta-learning.
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Impact statement. This paper presents work whose goal
is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here.
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A. Appendix
A.1. Detailed Descriptions of Baseline Optimizers

This subsection provides detailed descriptions of the optimization algorithms used in our evaluations: First-order Box
Differential Dynamic Programming (DDP), Model Predictive Path Integral (MPPI), and the Iterative Linear Quadratic
Regulator (iLQR). These algorithms were selected due to their widespread use and effectiveness in solving optimal control
problems across various domains.

First-order Box Differential Dynamic Programming (DDP). Building on the work of (Tassa et al., 2014), (Amos et al.,
2018) introduced a simplified version of Box-DDP that utilizes first-order linearization instead of second-order derivatives.
This approach, termed ”first-order Box-DDP,” reduces computational complexity while maintaining the ability to handle box
constraints on both the state and control spaces.

Model Predictive Path Integral (MPPI). MPPI (Williams et al., 2015) is a sampling-based model predictive control
algorithm that iteratively refines control inputs using stochastic sampling. Starting from the current state and a prior solution,
it generates a set of randomly perturbed control sequences, simulates their trajectories, and evaluates them using a cost
function. The control inputs are then updated based on a weighted average, favoring lower-cost trajectories. We use the
implementation from https://github.com/UM-ARM-Lab/pytorch_mppi.

Iterative Linear Quadratic Regulator (iLQR). iLQR (Li & Todorov, 2004) is a trajectory optimization algorithm that
refines control sequences iteratively by linearizing system dynamics and approximating the cost function quadratically
around a nominal trajectory. It alternates between a forward pass, simulating the system trajectory, and a backward pass,
computing optimal control updates. We use the implementation provided in the nuPlan simulator.

A.2. Detailed Task Descriptions and Hyperparameters

This subsection provides detailed descriptions of the tasks used in our experiments: cart-pole, reacher, and autonomous
driving. For each task, we outline the system dynamics, control inputs, and the specific hyperparameters employed in our
evaluations.

Cart-pole. The cart-pole task (Barto et al., 1983) involves a cart-pole system tasked with swinging the pole upright
while moving the cart to a randomly selected target position along the rail. The goal is to balance the pole vertically and
simultaneously reach the target cart position. The system is characterized by the state vector st ∈ R4, which includes the
pole angle θ, pole angular velocity θ̇, cart position x, and cart velocity ẋ. The control input is a single force applied to the
cart, ut ∈ R.

Hyperparameters. The mass of the cart is mc = 1.0 kg, the mass of the pole is mp = 0.3 kg, and the length of the pole is
l = 0.5m. Gravity is set to g = −9.81m/s2. Control inputs are bounded by umin = −5.5N and umax = 5.5N, with a time
step of ∆t = 0.1 s and nsub steps = 2 physics sub-steps per control step. Each episode has a maximum length of Tenv = 50
steps. Both optimizers use goal weights of [0.1, 0.01, 1.0, 0.01] for the state variables and a control weight of 0.0001. The
prediction horizon is set to H = 10. For the online optimizer, we set lqr iter = 2 and max linesearch iter = 1.
In the oracle optimizer, we use lqr iter = 10 and max linesearch iter = 3. The initial state s0 ∈ R4 is sampled
as follows: x0 ∼ U(−2, 2)m, ẋ0 ∼ U(−1, 1)m/s, θ0 ∼ U(−π

2 ,
π
2 ) rad, and θ̇0 ∼ U(−π

4 ,
π
4 ) rad/s. The goal state is defined

by a target cart position xgoal ∼ U(−2, 2)m, while the rest of the state variables (pole angle and velocities) are set to zero,
ensuring the goal is to bring the pole upright and bring the system to rest.

Reacher. The Reacher task (Tassa et al., 2018) involves a two-link planar robot arm tasked with reaching a randomly
positioned target. The goal is to move the end-effector to the target position in the plane. The system is characterized by the
state vector st ∈ R4, which includes the joint angles θ1, θ2 and angular velocities θ̇1, θ̇2. The control inputs, ut ∈ R2, are
torques applied to each joint.

Hyperparameters. The simulation uses a time step of ∆t = 0.02 s, with joint damping set to 0.01 and motor gear ratios
of 0.05. The control inputs are constrained by umin = [−1,−1] and umax = [1, 1]. The wrist joint has a limited range
of [−160◦, 160◦]. Each episode is limited to Tenv = 250 steps. Both optimizers are set with a control noise covariance
σ2 = 1 × 10−3, a temperature parameter λ = 1 × 10−4, and a prediction horizon H = 10. The online optimizer uses
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num samples = 3, while the oracle optimizer uses num samples = 50. The target position is generated by sampling
θtarget ∼ U(0, 2π) and rtarget ∼ U(0.05, 0.20)m, then set as posx = rtarget cos(θtarget) and posy = rtarget sin(θtarget).

Autonomous Driving. The autonomous driving task, based on the nuPlan benchmark (Caesar et al., 2021), evaluates the
performance of motion planning algorithms in complex urban environments. Our focus is on the control (tracking) layer,
which is responsible for accurately following the planned trajectories. The task involves navigating a vehicle through a
series of scenarios with varying traffic conditions, obstacles, and road layouts. The goal is to execute safe, efficient, and
comfortable trajectories while adhering to traffic rules and avoiding collisions. The system is characterized by the state
vector st ∈ R5, which includes the vehicle’s position (x, y), orientation ϕ, velocity v, and steering angle δ. The control
inputs, ut ∈ R2, are acceleration a and steering angle rate δ̇. We use the state-of-the-art Predictive Driver Model (PDM)
planner (Dauner et al., 2023) to generate the reference trajectories rt.

Hyperparameters. The prediction horizon is set to H = 40 with a discretization time step of ∆t = 0.2 s. The cost
function is weighted with state cost diagonal entries [1.0, 1.0, 10.0, 0.0, 0.0] for the position, heading, velocity, and steering
angle, respectively, and input cost diagonal entries [1.0, 10.0] for acceleration and steering angle rate. The maximum
acceleration is constrained to 3.0m/s2, the maximum steering angle is 60◦, and the maximum steering angle rate is 0.5 rad/s.
A minimum velocity threshold for linearization is set at 0.01m/s. The online optimizer is limited to a maximum solve time
of max solve time = 5ms, while the oracle optimizer allows for max solve time = 50ms. For a fair comparison,
we keep the total runtime limit fixed, including both initialization and optimization. The total runtime limit for warm-start
and perturbation methods is 5ms. For learning-based methods, the inference time for our neural networks is between 0.6ms
and 0.7ms on a GPU, and 0.7ms to 0.8ms on a CPU. For simplicity, we allocate 0.85ms for model inference and run the
optimizer for the remaining 4.15ms. We have not performed any inference optimization for our models (e.g., TensorRT).

A.3. Network Architecture and Training Details

This section provides a brief overview of the network architecture, the data collection process, and the training procedures
used in our experiments. We summarize the design of our base Transformer model, outline the methods used to generate
and preprocess the training data, and detail the key training methodologies and hyperparameters employed.

Network Architecture. The base model is a standard Transformer architecture with absolute positional embedding, a linear
decoder layer, and output scaling. The core Transformer architecture remains standard, with task-specific configurations.
The input to the network is the concatenated sequence of the warm-start state trajectory error, τw.s.

e , defined as the difference
between the reference trajectory, ψ = τr, (in the autonomous driving task) or the goal state, ψ = xg (in the cart-pole and
reacher tasks), and the warm-start trajectory, τw.s.

x . The warm-start control trajectory is τw.s.
u = {{ucand

t+k }H−2
k=1 ,0}. The

network predicts K control trajectories, {τ̂ init
u,k }Kk=1, for the next optimization step. Each environment’s configuration is

described in Table 3.

Table 3. Configuration of the Transformer model for each environment.
Parameter Description Reacher Cart-pole Driving

n layer Number of layers 4 4 4
n head Number of heads 2 2 2
n embd Embedding dimension 64 64 64
dropout Dropout rate 0.1 0.1 0.1
src dim Input dimension 8 5 7
src len Sequence length 10 9 40
out dim Output dimension 2 1 2

Data Collection and Preprocessing. In all experiments, the training data is generated by (1) unrolling an optimizer using
a warm-start initialization policy and recording its inputs and outputs, and (2) replaying the same scenarios using an oracle
optimizer—essentially the same optimizer with enhanced capabilities, such as more optimization steps or additional sampled
trajectories—and logging its inputs and outputs. The resulting mapping may be seen as a filter, refining (near-)optimal initial
solutions into optimal ones. For each task, 500,000 instances were collected.

Training. Prior to training, all features were standardized to ensure consistent input scaling. We used the AdamW
optimizer and applied gradient norm clipping. The models were trained using standard settings without any complex
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modifications. All hyperparameters are detailed in Table 4.

Table 4. Training hyperparameters for each environment.
Parameter Description Reacher Cart-pole Driving

epochs Epochs 125 125 125
batch size Batch size 1024 1024 1024
lr Learning rate 0.001 0.0003 0.0001
weight decay Weight decay 0.0001 0.0001 0.0001
grad norm clip Gradient norm clipping 2.0 2.0 2.0
control loss weight Control loss weight 100.0 1.0 5.0
state loss weight State loss weight 0 0.01 0.005
pairwise loss weight Pairwise loss weight 0.1 0.01 0.1

A.4. Descriptions of Baseline Methods

This section introduces the baseline methods used in our experiments in more detail and discusses their implementation
specifics. These baselines serve as reference points to evaluate our proposed methods’ performance and understand the
benefits and limitations of different initialization strategies in optimization algorithms.

Warm-start (K = 1). A common technique involves shifting the previous solution forward by one time step and padding
it with zeros. Assuming the system does not exhibit rapid changes in this interval, the previous solution should retain local,
feasible information.

Oracle Proxy (K = 1). This proxy serves two purposes: (1) estimating the gap between a real-time-constrained optimizer
and an unrestricted one and (2) providing a proxy for a mapping worth learning. For each optimization algorithm, a suitable
heuristic is defined. In DDP, the oracle is allowed more iterations to converge; in MPPI, it has a larger sample budget; and in
iLQR, it is given more time to perform optimization iterations.

Regression (K = 1). This approach involves training a neural network to approximate the oracle’s mapping. Unlike the
oracle heuristic, which is impractical for real-time use, the trained neural network requires only a single forward pass.

Warm-start with Perturbations (K >1). We utilize the warm-start technique as another baseline by duplicating the
proposed initial solution K times and adding Gaussian noise. While this introduces some form of dispersion, the resulting
initial solutions are neither guaranteed to be feasible nor to ensure any level of optimality.

Regression with Perturbations (K >1). Similar to the warm-start with perturbation, after predicting an initial solution
using the neural network, we duplicate it K times and add perturbations.

Ensemble (K >1). An ensemble of K separate neural networks leverages the idea that networks initialized with different
weights during training will often produce different predictions. The main drawbacks of this approach are (1) the need
to train K neural networks and (2) the requirement to run K forward passes, which may be impractical for real-time
deployment.

Multi-Output Regression (K >1). A naive approach to predicting K initializations from a single network involves
calculating the loss for each prediction and summing the losses. However, since there is no explicit multimodality objective,
these models are prone to mode collapse.

MISO Pairwise Distance (K >1). One way to mitigate mode collapse is to introduce an additional term in the loss
function, such as the pairwise distance between predictions. While this approach requires weight tuning and selecting an
appropriate norm, a significant challenge lies in understanding how effectively this term promotes multimodality in practice.

MISO Winner-Takes-All (K >1). This approach updates only the best-performing mode based on the loss of each
prediction. Although no explicit dispersion objective is included, multimodality is indirectly encouraged by maintaining
multiple active modes while refining only the best one and not penalizing the others.
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MISO Mix (K >1). Lastly, we combine the pairwise distance term with the Winner-Takes-All approach. While this allows
for greater refinement, it adds complexity due to additional hyperparameters and the need to apply further operations—such
as clamping distances—to ensure the loss won’t diverge.

A.5. Illustrative Example

This example provides a simplified scenario to illustrate the behavior of local optimization algorithms in a controlled,
low-dimensional setting with non-convex and multimodal objective function. The system dynamics are defined by the linear
equation xt+1 = xt + ut, where xt ∈ R represents the state and ut ∈ [−1, 1] is the constrained control input at time step
t. The initial state is x0 = 0, and the optimization horizon is set to H = 5. The objective is to find the optimal control
trajectory τ ⋆

u = {ut}H−1
t=0 that minimizes the cumulative cost function τ ⋆

u = argminτu

∑H−1
k=0 c(xt+k), where the resulting

state trajectory τx = {xt}Ht=0 is obtained by unrolling τu from x0. The cost function, c(x) = (x2+0.05)(x+1.5)2(x−2)2,
is non-convex and multimodal, featuring two global minima at x⋆1 = −1.5 and x⋆2 = 2.

Table 5. Comparison of different methods for predicting the optimal control trajectories
Method xH+1 τ̂u

Ensemble 0.03 -0.02, 0.03, 0.00, 0.01, 0.01
0.02 -0.01, 0.02, -0.01, 0.01, 0.01

MISO pairwise dist. -0.24 -0.12, -0.05, -0.04, -0.02, 0.01
0.24 0.08, 0.05, 0.04, 0.03, 0.03

MISO winner-takes-all -1.49 -0.88, -0.65, 0.00, 0.02, 0.02
2.01 0.99, 0.94, 0.05, 0.01, 0.01

MISO mix -1.52 -0.90, -0.68, 0.00, 0.03, 0.03
2.05 0.99, 0.95, 0.07, 0.02, 0.02

Optimal -1.50 -1.00, -0.50, 0.00, 0.00, 0.00
2.00 1.00, 1.00, 0.00, 0.00, 0.00

The results from Table 5 provide a comparison of different methods for predicting optimal control trajectories. The Ensemble
method, which combines multiple single-output predictions, yields the least accurate results, with final states close to zero.
Due to the dispersion term, MISO pairwise distance is a bit further from zero but still far from either optimum. On the other
hand, MISO winner-takes-all and MISO mix successfully predict both optimal sequences with high fidelity and thus are able
to reach either global optimum.

Overall, the results suggest that methods specifically tailored for capturing multimodality, such as the winner-takes-all and
mixed strategies, are more effective than their single-output regression counterparts, particularly in non-convex environments.

A.6. Inference Time: Ensemble vs. Multi-Output Models

Figure 6. Mean inference time for varying values of K for the ensemble and multi-output models on CPU and CUDA

This experiment benchmarks the execution time of two model architectures: an ensemble of K single-output models and

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Learning Multiple Initial Solutions to Optimization Problems

a single multi-output model producing K outputs. Both models are based on the Transformer architecture used in the
autonomous driving environment.

The experiments were conducted on an Intel Core i9-13900KF CPU and an NVIDIA RTX 4090 GPU, measuring the mean
inference time over 1000 runs across five random seeds. GPU operations were synchronized before timing to ensure accurate
measurements. The results, shown in Fig. 6, display the mean inference time in milliseconds as K increases for both the
ensemble and multi-output models on CPU and GPU.

The multi-output model exhibits minimal sensitivity to the increase in K on both the CPU and GPU, indicating that this
architecture scales efficiently, maintaining a low overhead even as the number of outputs grows. In contrast, the ensemble
model’s inference time increases significantly with K, suggesting that managing multiple models introduces overhead that
scales poorly as K grows.

In applications with strict runtime constraints, such as the autonomous driving environment, the ensemble approach becomes
impractical as K increases. Conversely, the multi-output model remains a viable option, even at larger values of K, making
it the preferred choice for time-sensitive scenarios.

A.7. State Loss

An additional challenge in learning control policies is addressing compounding errors—small inaccuracies in the predicted
control trajectory τu that, when unrolled, cause significant deviations in the state trajectory τx. Even if most elements of τu
are accurate, errors in the initial steps can cause the state τx to drift, leading to further divergence as the system evolves.

To mitigate compounding errors, we introduce a regression loss not only over the control trajectory τu but also over the
resulting state trajectory τx. In a supervised learning setting, this requires a model of the system dynamics, which can either
be known or learned.

Let τ̂u = {ût}H−1
t=0 denote the predicted control trajectory, and τ ⋆

u = {u⋆
t }H−1

t=0 denote the target control trajectory.
Similarly, let τ̂x = {x̂t}Ht=1 be the predicted state trajectory obtained by unrolling the predicted controls through the system
dynamics starting from the initial state x0, i.e.,

x̂t+1 = f(x̂t, ût), with x̂0 = x0, (2)

and let τ ⋆
x = {x⋆

t }Ht=1 be the target state trajectory.

We define the control loss as

Lcontrol =
1

H

H−1∑
t=0

∥ût − u⋆
t ∥

2
, (3)

and the state loss as

Lstate =
1

H

H∑
t=1

∥x̂t − x⋆
t ∥

2
. (4)

Our total loss function combines these two components:

L = Lcontrol + λLstate, (5)

where λ is a weighting factor that balances the contributions of the control loss and the state loss.

By incorporating the state loss Lstate, we encourage the predicted control trajectory to produce a state trajectory that remains
close to the target state trajectory, thereby mitigating compounding errors during rollout.

As we show in Table 6, incorporating state trajectory loss helps mitigate these types of error accumulation and improve
long-horizon trajectory accuracy. More specifically, we see that (1) as the prediction horizon increases, from H = 9
(Cart-pole) to H = 40 (Driving), so does the difference between using and not using state loss, (2) The gap between One-Off
and Sequential also increases thus we do not generalize as well, (3) For the single-output regression model, the difference is
even greater.

Table 6 shows a comparison between using and not using state loss (SL) across One-Off and Sequential Optimization
settings. While both strategies benefit from including the state loss, the improvement is more profound in the Sequential
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Table 6. Mean Cost Comparison for One-Off and Sequential Optimization (With and Without State Loss)
One-Off Optimization Sequential Optimization

Method K Cart-pole Driving Cart-pole Driving
No SL With SL No SL With SL No SL With SL No SL With SL

Single Opt.
Regression 1 11.88 ±0.79 11.19 ±0.80 440.97 ±74.92 74.23 ±7.69 11.93 ±0.29 6.18 ±0.47 590.50 ±89.06 70.62 ±7.38
MISO WTA 32 10.62 ±0.77 10.48 ±0.77 128.32 ±22.55 30.17 ±2.24 1.86 ±0.20 0.83 ±0.06 151.4 ±20.70 30.75 ±2.15
MISO mix 32 10.63 ±0.77 10.48 ±0.77 153.37 ±21.8 33.95 ±2.39 2.28 ±0.26 0.79 ±0.04 212.70 ±28.02 33.38 ±2.21

Multiple Opt.
MISO WTA 32 10.25 ±0.75 10.29 ±0.76 144.51 ±19.51 30.87 ±2.30 0.97 ±0.06 0.76 ±0.05 158.71 ±20.94 30.48 ±2.07
MISO mix 32 10.24 ±0.75 10.29 ±0.76 196.09 ±31.43 33.52 ±2.35 1.14 ±0.12 0.63 ±0.02 214.56 ±28.02 34.85 ±2.64

Optimization setting. This is because it involves executing each solution and starting the next optimization from the resulting
state, causing the compounding errors to accumulate. The One-Off Optimization setting also benefits from state loss, but the
impact is less apparent and thus was not marked in the table.

A.8. Mode frequency

Figure 7 presents a heatmap illustrating the percentage of selections for each specific mode (output) in MISO winner-takes-all
by the selection function, which in this context chooses the output with the lowest resulting cost. Although a few modes
appear to dominate, all other modes remain active, i.e., with a frequency greater than zero, indicating that there are problem
instances where these less frequent modes identify the optimal action, thereby contributing to the overall performance
improvements. Additionally, Fig. 8 compares the distribution of selections between MISO winner-takes-all and MISO mix
with the expected, approximately uniform distribution of the Ensemble method.

(a) Cart-pole (Single Optimizer) (b) Driving (Single Optimizer)

Figure 7. Heatmap of MISO winner-takes-all outputs argmin frequency

(a) Cart-pole (Single Optimizer) (b) Driving (Single Optimizer)

Figure 8. Argmin frequency of various methods for K =32
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(a) Cart-pole: Single Optimizer (b) Cart-pole: Multiple Optimizers

(c) Reacher: Single Optimizer (d) Reacher: Multiple Optimizers

Figure 9. Mean Cost of the cart-pole and reacher environments with varying values of K. Subfigures (a) and (b) show the results for
cart-pole using Single and Multiple Optimizers, respectively, while (c) and (d) display the same for the reacher environment. The shaded
regions around each curve represent the standard error of the mean.

A.9. Mean Cost Sequential Optimization

Figure 9 shows the mean cost of each method with varying values of K, for both cart-pole and reacher environments. Both
showcase that our method scales effectively and consistently with the number of predicted initial solutions and outperforms
other approaches across varying values of K.

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Learning Multiple Initial Solutions to Optimization Problems

A.10. Selection Function Λ

In our framework, the selection function Λ plays a critical role in choosing the most promising initial solution from the set
of candidates predicted by our model. While using the objective function J as Λ is a natural and effective choice, alternative
choices for Λ can be advantageous in certain scenarios.

A.10.1. ALTERNATIVE SELECTION CRITERIA

Constraint Satisfaction: In some applications, especially those that are safety-critical, it is essential to ensure that certain
constraints are satisfied by the initial solution, even if it means accepting a higher value of J . In such cases, Λ can be
designed to prioritize solutions that satisfy these constraints. For example:

Λ(x̂init
k , ψ) = J(x̂init

k , ψ) + β C(x̂init
k , ψ), (6)

where C(x̂init
k , ψ) measures the degree of constraint violation, and β is a weighting factor that penalizes constraint violations.

Robustness Measures: Λ can incorporate robustness criteria, selecting initial solutions less sensitive to model uncertainties
or external disturbances. For instance, it could favor solutions that maintain performance across various scenarios.

Contextual Adaptation: The selection function can adapt based on the problem instance ψ. For example, in varying
environmental conditions, Λ could prioritize more conservative or aggressive solutions depending on the context or
operational requirements.

A.10.2. LEARNING THE SELECTION FUNCTION

Instead of hand-crafting Λ, it can be learned from data. One approach is to model Λ as a parameterized function, such as a
neural network, and train it jointly with the predictor model or separately. The learning objective could be to maximize
the overall performance of the optimizer when initialized with the selected solutions, potentially incorporating criteria like
safety, robustness, or energy efficiency.

A.10.3. EXAMPLES

Safety-Critical Control: In autonomous driving, safety constraints such as maintaining a safe distance from obstacles
are crucial. Λ can prioritize trajectories that ensure safety over those that simply minimize time or fuel consumption. For
example, it can assign infinite cost to any solution violating safety constraints, effectively excluding unsafe options.

Adaptive Behavior: In robotics, Λ can select initial solutions that favor energy efficiency when the robot’s battery is low or
prioritize speed when tasks are time-sensitive. By incorporating the robot’s current state or mission objectives into Λ, the
system can adapt its behavior accordingly.

A.11. Evaluation Modes: One-off and Sequential

In our experiments, we assess the performance of the methods using two evaluation modes:

One-off Evaluation: In the one-off evaluation, problem instances are uniformly sampled from the evaluation dataset
(disjoint from the training dataset). Each method is tested on the same set of independently sampled instances, ensuring
a fair comparison across methods. The optimizer solves each problem instance independently, without any interaction
with the environment or influence from previous solutions. This evaluation mode focuses on the optimizer’s ability to find
high-quality solutions for individual problems in isolation.

Sequential Evaluation: In sequential evaluation, the optimizer interacts with the environment across a series of time steps.
Starting from an initial state sampled from the evaluation dataset (disjoint from the training dataset), at each time step the
optimizer adjusts its decisions based on the evolving state. This mode evaluates the optimizer’s performance in a dynamic,
real-time setting, highlighting its ability to manage evolving states and adapt over time.

A.12. Sequential vs. Closed-loop and One-off vs. Open-loop

In control settings, the terms sequential and closed-loop evaluations are often used interchangeably. However, in the context
of general optimization problems, the notion of ”closed-loop” may not always be applicable, as there may be no dynamic
environment or feedback mechanism involved. Therefore, we adopt more general terminology—referring to sequential
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evaluations—to encompass scenarios where decisions are made in a sequence but without necessarily involving feedback
from an environment.

On the other hand, the distinction between one-off and open-loop evaluations is subtle yet significant. In a one-off evaluation,
we assess the optimizer’s performance on individual problem instances without any interaction with an environment. This
means the optimizer solves a static problem, and we can directly compare different methods on the same set of instances. In
contrast, open-loop control involves sequentially executing actions in an environment without feedback.

A.13. Alternative Neural Backbone Architectures

We chose a standard Transformer backbone primarily for its simplicity and clarity. Our focus is not on comparing different
sequence-based architectures, e.g., Action Chunking Transformers (Zhao et al., 2023), LSTM variants, or hierarchical
models, but on introducing a multi-output framework that can be integrated into a wide range of neural backbones to generate
multiple diverse initial solutions. Consequently, replacing the Transformer with, say, an Action Chunking Transformer or
another advanced architecture would still benefit from the same multi-output concept and diversity-promoting objectives,
with minimal implementation changes.

A.14. Sampling-Based Architectures

Methods that rely on sampling multiple solutions at inference time—such as diffusion models—are particularly ill-suited for
real-time settings with strict runtime constraints. Generating K distinct samples typically entails either multiple iterative
steps per sample or repeated forward passes, causing inference time to scale poorly with K. This overhead is incompatible
with scenarios like autonomous driving, where any significant increase in computation time can undermine real-time
performance. For instance, a Diffusion Policy (Chi et al., 2024) took1 378.50 milliseconds to produce a single sequence for
the autonomous driving task (length 40 and dimension 2), compared to K >>1 sequences in just 0.85 milliseconds using a
multi-output regressor.

A.15. Experiments on combining MISO with warm-start

In Table 7 and Table 8 we report mean cost results for combining MISO predicted initial solution candidates with the
heuristic warm-start initial solution. Specifically MISO⋆ denotes a setting where the warm-start is added as an extra
candidate. Results show that MISO⋆ consistently improves over warm-start. Further, including warm-start as one of the
candidate initial solutions can sometimes lead to additional improvements (MISO vs. MISO⋆).

Table 7. Results for combining MISO with warm-start for the single optimizer setting.
One-Off Optimization Sequential Optimization

Method K Reacher Cart-pole Driving Reacher Cart-pole Driving

Single Optimizer
Warm-start 1 13.48 ±0.88 11.69 ±0.84 283.86 ±37.91 13.48 ±0.88 11.69 ±0.84 283.86 ±37.91
MISO winner-takes-all 32 13.36 ±0.88 10.48 ±0.77 30.17 ±2.24 2.72 ±0.21 0.83 ±0.06 30.75 ±2.15
MISO mix 32 12.74 ±0.86 10.48 ±0.77 33.95 ±2.39 2.44 ±0.20 0.79 ±0.04 33.38 ±2.21
MISO⋆ winner-takes-all 32 13.36 ±0.88 10.47 ±0.77 29.95 ±2.04 2.70 ±0.21 0.82 ±0.05 29.62 ±1.98
MISO⋆ mix 32 12.74 ±0.86 10.47 ±0.77 33.19 ±2.39 2.30 ±0.19 0.77 ±0.04 33.82 ±2.48

Table 8. Results for combining MISO with warm-start for the multiple optimizers setting.
One-Off Optimization Sequential Optimization

Method K Reacher Cart-pole Driving Reacher Cart-pole Driving

Multiple Optimizers
Warm-start w. perturb 32 13.41 ±0.88 10.93 ±0.79 155.53 ±24.33 5.89 ±0.50 6.68 ±0.59 162.13 ±34.10
MISO winner-takes-all 32 13.34 ±0.88 10.29 ±0.76 30.87 ±2.30 2.21 ±0.16 0.76 ±0.05 30.48 ±2.07
MISO mix 32 12.72 ±0.86 10.29 ±0.76 33.52 ±2.35 1.56 ±0.14 0.63 ±0.02 34.85 ±2.64
MISO⋆ winner-takes-all 32 13.34 ±0.88 10.29 ±0.76 30.62 ±2.24 2.19 ±0.17 0.76 ±0.05 29.71 ±1.96
MISO⋆ mix 32 12.72 ±0.86 10.28 ±0.76 33.26 ±2.29 1.53 ±0.14 0.63 ±0.02 33.61 ±2.36

1Mean over 1000 runs using Cadene et al. (2024) implementation, on an NVIDIA RTX 4090 GPU.
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