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VLMs at Step 1

Candidate 1: In the scene, there is a 
rainy day with a sky that is overcast and 
appears to be either raining or just after 
rainfall.
Candidate 2: In the scene, there is a 
street intersection with traffic lights.
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VisVM Guided: Less hallucination, more details
In the scene, there is a rainy day with a sky that is overcast and appears to be either raining or just after 
rainfall. The image is taken from inside a vehicle, as indicated by the raindrops on the windshield, ...... . 
The traffic light closest to the camera is currently red.... There are also green street signs attached to the 
traffic light pole, but they are partially obscured by the raindrops on the windshield. ...... there is a 
church with a steeple visible on the right side of the image. ......

CLIP-PRM Guided: More hallucination, less details
In the scene, there is a street intersection with traffic lights. The traffic lights are currently displaying a 
red signal, indicating that vehicles must stop. ......, with some showing red and others showing yellow, 
which typically means to prepare to stop. ...... There are vehicles on the road, including cars and a truck, 
and a pedestrian is visible on the sidewalk. On the right side of the image, there is a building with a sign 
that reads ”Tennis,” indicating that there is a tennis facility nearby. ......
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Figure 1: An illustration of how VisVM can better guide vision language model (VLM) during
inference-time search. When selecting response candidates at each step, the process reward model
(PRM) only considers the immediate reward, whereas VisVM predicts the long-term value by
considering potential hallucinations in subsequent generated sentences. This enables VisVM to avoid
response candidates with higher hallucination risks and generate image descriptions that are less
prone to hallucination and more detailed.

ABSTRACT

Despite significant advancements in vision-language models (VLMs), there lacks
effective approaches to enhance response quality by scaling inference-time com-
putation. This capability is known to be a core step towards the self-improving
models in recent large language model studies. In this paper, we present Vision
Value Model (VisVM) that can guide VLM inference-time search to generate re-
sponses with better visual comprehension. Specifically, VisVM not only evaluates
the generated sentence quality in the current search step, but also anticipates the
quality of subsequent sentences that may result from the current step, thus provid-
ing a long-term value. In this way, VisVM steers VLMs away from generating
sentences prone to hallucinations or insufficient detail, thereby producing higher
quality responses. Experimental results demonstrate that VisVM-guided search
significantly enhances VLMs’ ability to generate descriptive captions with richer
visual details and fewer hallucinations, compared with greedy decoding and search
methods with other visual reward signals. Furthermore, we find that self-training
the model with the VisVM-guided captions improve VLM’s performance across
a wide range of multimodal benchmarks, indicating the potential for developing
self-improving VLMs.

1 INTRODUCTION

Vision language models (VLMs) have advanced rapidly, excelling in multimodal tasks involving
single images Liu et al. (2023c); Bai et al. (2023); Chen et al. (2024b); Shi et al. (2024), multiple
images Jiang et al. (2024); Li et al. (2024d), and videos Li et al. (2024a); Xue et al. (2024); Wang et al.
(2024c). These capabilities stem from large-scale, high-quality training data, often sourced from web-
crawled image-text pairs Radford et al. (2021); Jia et al. (2021) with effective filtering Changpinyo
et al. (2021); Yuan et al. (2021); Hu et al. (2022), or enriched through techniques like distillation
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Figure 2: Left figure: CHAIRs and MMHal score of descriptive captions generated by LLaVA-Next-
7B during inference-time using different search methods. VisVM-guided search clearly outperforms
other methods, indicating reduced visual hallucinations. Notably, even with a smaller search budget
(search size 6 vs. search size 30), our approach still surpasses the Best-of-N method. Right figure:
Comparisons of LLaVA-Next-7B after fine-tuning with descriptive captions from different search
methods, with VisVM-guided search achieving favorable results across all 9 benchmarks.

from stronger VLMs Chen et al. (2023a), human annotations Betker et al. (2023), or added textual
descriptions Lai et al. (2025). Despite this progress, VLMs still suffer from visual hallucinations Liu
et al. (2023a); Guan et al. (2024); Wang et al. (2024f); Xia et al. (2024b) and often neglect less salient
image regions, limiting their real-world utility. While increasing the scale and quality of training data
could help, this approach incurs significant annotation and API costs, making it less scalable. This
raises a key question: Can we enhance VLMs’ response quality at inference time, and leverage these
improved responses to further advance VLMs’ visual comprehension?
Recent studies on large language models (LLMs) o1b (2024); Lightman et al. (2023b); Snell et al.
(2024b); Yang et al. (2024); Snell et al. (2024a) highlight inference-time search as a promising
approach for improving response quality, complementary to training time effort. By leveraging a
pretrained process reward model Zhang et al. (2024); Tian et al. (2024), LLMs can perform search
iterations to produce high-quality outputs, with these refined responses showing potential as synthetic
training data to enhance reasoning capabilities. However, extending this approach to VLMs for
improved visual comprehension poses unique challenges, particularly in defining a reward signal.
While process and outcome rewards are relatively straightforward for LLM tasks like coding and math,
VLM tasks—such as descriptive captioning—lack clear outcome measures and require cohesive
paragraph image descriptions that consist of multiple global and regional caption sentences. In
these cases, each sentence must not only be accurate locally but also contribute to a coherent overall
response.
To this end, we propose the Vision Value Model (VisVM), a value network to guide VLM inference-
time search by generating descriptive captions in a step-by-step manner, with each step producing
one sentence. As shown in Figure 1, VisVM takes the image and generated sentence at each step as
inputs, predicting a long-term value to ensure both visual-text alignment and coherence. VisVM is
built on two main insights, which differentiates our method from traditional process reward models
in LLM literature Uesato et al. (2022); Lightman et al. (2023a); Cobbe et al. (2021); Hosseini et al.
(2024); Wang et al. (2024b): First, rather than relying only on the local reward of the current sentence,
it predicts future consequences to maintain coherence. VisVM is trained using Temporal Difference
(TD) learning Sutton (1988), allowing it to go beyond evaluating responses at the current search
step. This forward-looking signal helps avoid sentences that could lead to hallucinations in the future,
improving global response quality in a single search round. Second, the reward signal must capture
comprehensive visual concepts to reduce hallucinations, for which CLIP’s text-image similarity
metric serves effectively.
We validate the effectiveness of VisVM through two main experiments: (1) Using VisVM as a
guidance signal for VLM inference-time search to generate descriptive image captions, we observe a
substantial reduction in hallucinations and more detailed image descriptions. In both GPT and human
evaluations, VisVM-guided captions consistently outperform those generated by greedy decoding,
best-of-N decoding, and CLIP-PRM guided search, with VisVM-guided captions preferred 74% of
the time over greedy decoding results. (2) To leverage VisVM’s inference-time enhancement of VLM
responses, we use VisVM-guided captions as the Supervised Fine-Tuning (SFT) data to self-train the
original VLM (LLaVA-Next-7B). Across nine standard benchmarks, VisVM-guided self-training
improves the performance by an average of 10.8% , as shown in the right figure in Figure 2.
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Our contribution can be summarized as follows:
• We introduce VisVM, a stepwise value model designed to provide long-term vision value

signals to guide VLM inference-time search. To the best of our knowledge, VisVM is the
first exploration into enhancing VLM visual comprehension through inference-time search.

• VisVM-guided search effectively reduces visual hallucinations and enriches image descrip-
tions with more visual detail, by increasing the inference-time computation.

• Descriptive captions generated by VisVM-guided search can be leveraged as high-quality
SFT data, forming a robust self-training pipeline that significantly enhances VLM visual
comprehension across 8 benchmarks.

2 RELATED WORK

Vision language models. Significant advances Radford et al. (2021); Yuan et al. (2021); Wang
et al. (2022b;a); Yu et al. (2022); Li et al. (2024c) have been made on vision-language modeling,
which jointly understands the visual and text inputs for various tasks such as image captioning Chen
et al. (2015) and visual question answering Goyal et al. (2017). Recently, modern vision language
models (VLMs) Alayrac et al. (2022); OpenAI (2023); Yang et al. (2023); Liu et al. (2023c); Wang
et al. (2023c); Chen et al. (2024b); Bai et al. (2023); Team (2023) further combines multimodal
modeling with large language models (LLMs) to enable stronger capabilities, such as instruction
following, in-context learning, and zero-shot generalization. However, VLMs still exhibit the issue
of hallucination Guan et al. (2024); Wang et al. (2024f; 2023a); Xia et al. (2024a). Existing work
mitigates hallucination in VLMs by improving the quality of SFT data Wang et al. (2023b); Chen
et al. (2023b) or through post-training methods Zhou et al. (2024a); Liu et al. (2023a); Wang et al.
(2024d); Sun et al. (2023). In this paper, we explore reducing hallucination in responses not through
training but by using inference-time search to improve the quality of responses.
Descriptive captioning. The descriptive image captioning task aims to describe each image with
a long, comprehensive text paragraph. Recent studies show the effectiveness of using synthetic
descriptive captions for vision language model. The pairs of images and paragraph captions can
be used for image-to-text understanding models Chen et al. (2023a); Wang et al. (2023c), text-to-
image generation models Betker et al. (2023); Esser et al. (2024), as well as image-text contrastive
models Lai et al. (2025); Wu et al. (2024); Lai et al. (2024). In this study, we focus on improving
the descriptive captioning quality of a trained VLM by exploring effective approach to scale the
inference-time search.
Inference-time search. Inference-time search strategies have proven crucial for complex reasoning
and planning tasks in robotics Wang et al. (2023d); Hansen et al. (2022), chess Silver et al. (2016), and
autonomous driving Teng et al. (2023). The advent of OpenAI-O1 has further advanced inference-time
search within LLMs. By applying various search techniques in the language space, such as controlled
decoding Chakraborty et al. (2024); Xu et al. (2024), best of N Lightman et al. (2023b); Li et al.
(2024b), and Monte Carlo tree search Zhang et al. (2024); Tian et al. (2024); Wang et al. (2024a;e),
LLMs achieve better model responses, thus enhancing performance. A good process reward model
(PRM) is essential during inference-time search, as the quality of the reward signal determines the
quality of the responses found and the budget required to achieve high-quality responses. Various
PRMs Uesato et al. (2022); Lightman et al. (2023a); Cobbe et al. (2021); Hosseini et al. (2024); Wang
et al. (2024b) have been proposed in LLMs to address mathematical and coding problems. Moreover,
Brown et al. (2024) and Snell et al. (2024a) have found that scaling the search budget during inference
time can further enhance LLM performance. However, inference-time search remains underexplored
in VLMs. Zhou et al. (2024b) proposed using CLIP as a signal for generating positive and negative
samples post-training, but did not further investigate its impact as a PRM on VLM inference-time
search. Xiong et al. (2024) proposed LLAVA-Critic to evaluate the quality of responses generated by
VLMs; however, it operates at the response level and cannot score individual steps. In this paper, we
propose a vision value model superior to CLIP as a search signal for step-level inference-time search,
aimed at enhancing the visual comprehension abilities of VLMs.

3 VISION VALUE MODEL

In this section, we introduce the proposed Visual Value Model (VisVM). We first present the problem
formulation of large multimodal model (VLM) inference in Section 3.1, and then discuss the training
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process for VisVM in Section 3.2. Section 3.3 shows how to employ VisVM for effective inference-
time search in VLMs.

3.1 FORMULATION OF VLM INFERENCE

We first introduce the formulation of VLM inference. We consider an VLM characterized by
probability distribution pθ, represented as the policy πθ. This model processes a prompt-image pair
(x, I) as input to generate a response y = [y1, y2, ..., ym], where y consists of m step-level responses.
Each step-level response yi is treated as a sample drawn from the conditional probability distribution
yi = pθ(·|x, I,y<i). In this paper, we define each step-level response as sentence-level, meaning that
at each step, the output is a single sentence. Consequently, the text generation task can be formulated
as an Markov Decision Process (MDP) problem defined by the tuple (S,A,R, γ). S is the state
space. Each state is defined as a combination of the generated sentences and the image. The initial
state s0 corresponds to image I and input prompt x. A is the action space where each action is the
sentence generated in that step. We also have the reward function R to evaluate the reward of each
action, which is also known as process reward model (PRM) in LLMs. γ denotes the discount factor.
With this MDP modeling, we can search additional states by increasing the inference-time compute,
thereby obtaining a better VLM response y. The core of our method lies in the exploration of a better
value model, namely VisVM, which can better guide the inference-time search.

3.2 VISVM TRAINING

Training method. The primary goal of VisVM is to estimate the long-term value of the current
image-conditioned sentence in potential future sentence generation scenarios. To achieve this, we
employ Temporal Difference (TD) learning Sutton (1988), a popular method in reinforcement learning,
to train VisVM for predicting the long-term vision value Vρ(yi, I) at each state si = (yi, I). For a
given triplet consisting of the current sentence yi, the next sentence yi+1, and an associated image I ,
we first use the PRM to estimate the reward rsi of the current state si. We then train VisVM using
the following loss function, ensuring the predicted value for the current state si matches the sum of
the actual received reward and the discounted predicted value for the next state:

L(ρ) = −E(yi,yi+1,I)∼D (rsi + γVρ(yi+1, I)− Vρ(yi, I))
2
, (1)

where γ denotes the discount factor, ρ is the learnable parameters of VisVM, and D is our constructed
training data.

Training data. Training VisVM requires the triplet of the current sentence, the next sentence, and
an associated image. Such triplets can be extracted from pairs of images I and paragraph descriptions
y = [y1, y2, ..., ym]. It is imperative to generate a diverse set of responses using VLMs to explore
potential subsequent sentences that each initial sentence may encounter, thereby accurately modeling
the sentence’s long-term value. We sample 9,215 images from the COCO 2017 training dataset and
utilize the nine prompts from the LLaVA-150K dataset designed for description captioning. These
prompts are randomly paired with the images to construct prompt-image pairs. For each prompt-
image pair, we generate five distinct responses using the VLM, using both greedy decoding and
temperature decoding with temperature values set at different scales. After generating the paragraphs,
each response is decomposed into sentence pairs consisting of the current sentence, the subsequent
sentence, and the associated image. The final dataset D, containing 378k samples, is used for training
VisVM. We provide more training details in Appendix C.

Implementation details. In the implementation of VisVM, we select LLaVA-Next-Mistral-7B as
our base model. We concatenate a linear layer as the value head on top of the penultimate layer of
LLaVA-Next-Mistral-7B. The output of this value head is a single scalar representing the cumulative
reward, or long-term value, of all potential responses based on the current sentence and its paired
image. Additionally, we initialize all parameters of VisVM, except for this value head, using the
parameters of LLaVA-Next-Mistral-7B. We also use LLaVA-Next-Mistral-7B as the VLM to generate
all training data.
For the PRM used in VisVM training, we choose LLaVA-Next-Mistral-7B’s vision encoder CLIP-VIT
as our reward model for two main reasons: (1) CLIP effectively measures the alignment between
image content and text content by computing the similarity between image and text embeddings,
making it highly suitable as PRM for visual comprehension task. Its effectiveness has also been
demonstrated in prior studies Zhou et al. (2024b). (2) Additionally, since CLIP-VIT is the native
visual encoder in the LLaVA-Next-Mistral-7B, using it as PRM eliminates the need for external
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models or human annotators. This self-rewarding mechanism is not only effective but also reduces
costs.

3.3 INFERENCE-TIME SEARCH USING VISVM
After training VisVM, we use it as the signal to guide the VLM inference-time search for generating
higher-quality responses. To encourage diversity among response candidates at each step of the
search, we implement temperature decoding using N distinct temperature configurations Tn. Given
the current VLM as the policy πθ, it generates a conditional probability distribution pθ(·|x, I,y<i, Tn)
based on the input image, prompt, temperature configuration, and previous step responses. We then
sample K responses from each pθ, yielding N ×K response candidates for the current step. Each
candidate’s value is estimated using VisVM, and the candidate with the highest value is selected
as the response for the current step. This process continues iteratively until the complete response
sequence is generated, i.e., , only the EOS token is generated for the next sentence. The pseudocode
for this search process is presented in Algorithm 1.

Algorithm 1 VisVM-Guided Inference-time Search

Require: Test sample {x, I}, VLM pθ, VisVM Vρ, Step size K, Temperature configuration list T ,
Response y = [ ]

1: while Generation is not Done do
2: Current step response yi = None, Current step max value V max

i = −∞
3: for temperature Tn in T do
4: for k = 1, . . . ,K do
5: Generate response of the new step j:

yji = pθ(·|x, I,y<i, Tn),
6: Estimate step value V j

i = Vρ(y
j
i , I),

7: if V j
i > V max

i then
8: Current step max value V max

i = V j
i ,

9: Current step response yi = yji
10: Append current step response yi to y
11: return Final response y

4 EXPERIMENT

In this section, we conduct experiments to answer the following two questions: 1. Does the VisVM-
guided search yield higher-quality responses compared with other inference-time search methods
(Section 4.1)? 2. Can the VisVM-guided search be leveraged to generate high-quality SFT data,
thereby improving the visual comprehension capabilities of VLMs through self-training (Section 4.2)?

(a) Win rate of VisVM-guided search compared
with other methods (b) Scaling curve of search step size.

Figure 3: (a) Win rate of image descriptions generated using LLaVA-Next-7B with VisVM-guided
search compared with other search methods. We use GPT-4o api for evaluation. We can find VisVM-
guided search generated description significantly better than others methods. (b) Step size scaling
curve for VisVM-guided search and CLIP-PRM guided search. We report the CHAIRs score of
image descriptions under different step sizes. VisVM-guided search is 2× efficient than CLIP-PRM
guided search.
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4.1 INFERENCE-TIME SEARCH WITH VISVM
4.1.1 BASELINES AND IMPLEMENTATION DETAILS

In this section, we evaluate the ability of VisVM on enhancing the response quality of VLMs by
comparing its inference-time performance with various search methods. All experiments are based
on LLaVA-Next-Mistral-7B. We consider the following baselines for inference-time search: (1)
Greedy decoding: The standard decoding approach used for VLM decoding, where the responses
with the highest probability are selected for each step. (2) Best-of-N (BoN) decoding: A widely used
method to improve the quality of model responses during inference. For each prompt-image pair,
we set five different temperature parameters [0.1, 0.3, 0.5, 0.7, 0.9] and generate six different model
responses for each parameter, resulting in a total of 30 responses (N = 30). We then use GPT-4o
to select the best out of these 30 responses as the final response. (3) CLIP-PRM guided search:
This method uses CLIP-ViT as the PRM to guide search. Since CLIP-ViT also serves as the reward
model for training VisVM, comparing VisVM-guided search with CLIP-PRM guided search serves
as the fair-comparison baseline. For CLIP-PRM guided search, we adopt the same search method
as described in Section 3.3, with the only difference being that the guided signal is replaced by the
CLIP similarity. All hyperparameters are kept identical to those used for VisVM-guided search to
ensure a fair comparison. We use temperature decoding with five different temperatures and greedy
decoding to generate response candidates at each search step with a step size of 1, leading to six
different response candidates per search step. The list of temperature configuration includes [0.1, 0.3,
0.5, 0.7, 0.9].

1 VISVM-GUIDED SEARCH IMPROVES RESPONSE QUALITY

We sample 1,000 images from the COCO Train2017 dataset and randomly pair each image with 9
prompts from the LLaVA-150k detailed description dataset. This process results in 1,000 prompt-
image pairs as an evaluation dataset. We use our method and three search baselines to generate a
detailed descriptive caption for each pair, and subsequently assess the quality of the descriptions.
We start with human evaluation with results shown in Table 4. We randomly choose 200 prompt-
image pairs from the evaluation dataset to let human annotators determine which method produces
higher quality descriptions and calculate the win rate. We find that the descriptions generated
by VisVM-guided search are significantly more preferred compared with the other three base-
lines, with the win rate of 66.0%, 63.5%, and 74.0%. Descriptions generated through greedy
decoding are of the lowest quality. While increasing inference compute via BoN and CLIP-
PRM guided search show improvement, they still fall short compared with VisVM-guided search.

Figure 4: Human evaluation over 200 image-text
pairs. VisVM guided search still far surpasses
other search methods, displaying results consistent
with GPT evaluation.

Method VisVM wins Tie VisVM loses

vs. CLIP-PRM 66.0% 5.5% 28.5%
vs. BoN 63.5% 8.5% 28.0%
vs. Greedy 74.0% 6.5% 19.5%

As shown in Figure 6, the image description ob-
tained using VisVM search not only significantly
reduces hallucinations, but also provides a more
precise and detailed depiction of the image. For
instance, the description includes subtle details
that even a meticulous human annotator might
overlook, such as “There are also green street
signs...which are partially obscured by the rain-
drops on the windshield.” We provide additional
qualitative results in Appendix B.
Furthermore, we use GPT-4o to compare VisVM-guided search against other three baselines,with the
results presented in Figure 3a. The prompt used for GPT-4o evaluation is in Appendix A. We observe
a notable superiority in the win rate of the VisVM-guided search, with the win rate of 58.7%, 56.8%,
and 61.5%. This further demonstrates that VisVM’s strategy of predicting long-term values to select
each step response sentence significantly enhances VLM’s capability of visual comprehension and
image description.

2 VISVM-GUIDED SEARCH REDUCES VISUAL HALLUCINATION

To benchmark the benefits of VisVM in improving visual comprehension, we evaluate the degree
of visual hallucination present in the generated responses. We randomly sample 500 images from
the COCO Val2014 dataset and use prompts from the LLaVA-150k detailed description dataset. The
widely used CHAIR Rohrbach et al. (2018) metric is used for hallucination evaluation, which reflects
the degree of visual hallucination as follows:

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}| , CHAIRS =

|{captions with hallucinated objects}|
|{all captions}| . (2)
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Table 1: Performance after fine-tuning LLAVA-Next-7B with image descriptions obtained using
different search methods. The model with VisVM search as data source achieves the best performance
across all benchmarks, with an average improvement of 10.8% compared with the base model. We
calculate the final performance improvement using 100-CHAIRs, 10-CHAIRi, and 1-MMHal rate.
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LLaVA-Next-7B

– 45.2 74.9 34.2 38.5 65.8 76.9 36.0 32.4 5.9 2.94 0.52 –
Greedy decoding 43.5 74.6 34.9 37.8 66.2 75.1 36.7 33.2 6.3 2.97 0.54 -1.6%
CLIP-BoN (6) 42.8 76.2 35.2 39.7 63.8 74.8 35.5 29.7 5.2 3.05 0.48 +2.6%
GPT4o-BoN (30) 47.1 76.1 35.4 40.9 67.9 77.3 36.9 30.0 5.4 3.11 0.47 +4.9%
CLIP-PRM search 46.1 75.8 35.8 39.6 68.5 78.1 36.6 26.0 5.2 3.01 0.50 +4.6%
VisVM search 48.3 76.7 36.1 42.3 69.8 78.4 38.0 22.6 4.3 3.26 0.44 +10.8%

Figure 5: Hallucination evaluation results using different
inference-time searching on CHAIR and MMHal. VisVM
guided search achieves the best results, demonstrating strong
capabilities in mitigating inference-time hallucination.

Base Searching Method CHAIRs ↓ CHAIRi ↓ MMHal ↑ MMHal rate ↓

LLaVA-Next-7B

Greedy (Default) 32.4 5.9 2.94 0.52
BoN 27.1 5.2 3.06 0.45
CLIP-Guided 28.4 5.5 2.96 0.49
VisVM-Guided 26.2 4.6 3.30 0.39

We also use MMHal Sun et al. (2023)
as another benchmark for hallucina-
tion evaluation. The experiment re-
sults in Table 5 show that VisVM-
guided search significantly outper-
forms other three baselines, with
CHAIRs reduced from 32.4 to 26.2,
CHAIRi reduced from 5.9 to 4.6,
MMHal improved from 2.94 to 3.30,
and MMHal rate reduced from 0.52 to 0.39. This reduction in hallucination within the image descrip-
tions generated via VisVM-guided search aligns with our training objective for VisVM. Specifically,
using the CLIP score as a reward, VisVM is trained through TD learning to select responses at each
step that minimize future hallucinations, thereby enhancing the overall quality of the responses.
Besides, it is worth noting that although the search budget of BoN is much larger than our method
(step size 30 vs step size 6), our method still achieves better results. In comparison, the CLIP-PRM
guided search performs worse than BoN using the same step size as us. This further demonstrates the
strong capability of VisVM to mitigate inference-time hallucination.

3 BENEFITS FROM FURTHER SCALING UP INFERENCE COMPUTE

We next investigate the impact of scaling up the inference-time compute on the VLM response
quality at each step, by changing the search step sizes. To support a larger maximum step size,
we only keep T = 0.5 as the temperature configuration when experimenting with different step
sizes. We use CHAIRs as the evaluation metric, with the same evaluation data and prompts as in
Table 5. We report the CHAIRs scores for image descriptions obtained using VisVM-guided search
and CLIP-PRM-guided search at step sizes of 2, 4, 8, and 16. The experimental results are depicted
in Figure 3b.
We observe that the performance of both VisVM-guided search and CLIP-PRM-guided search
improves progressively as the search step size increases, indicating that scaling inference-time
computation can enhance the visual comprehension capabilities of VLMs. Notably, as the step size
grows, the performance improvement of VisVM-guided search accelerates at a faster rate, resulting
in a widening performance gap between the two methods. Additionally, VisVM proves to be nearly
twice as computationally efficient as CLIP-PRM for reaching a comparable performance: at a step
size of 8, VisVM achieves results comparable to those of CLIP-PRM at a step size of 16. These
findings further validate the effectiveness and efficiency of VisVM as a superior inference-time search
signal for VLMs.

4.2 SELF-TRAINING VISION-LANGUAGE MODEL

Inference-time search with VisVM proves to be an effective approach in boosting VLMs’ visual
comprehension capability. This naturally motivates the question: Can we use the higher-quality
descriptive captions generated by VisVM-guided search to further improve the original VLM, thereby
enabling a form of self-training pipeline.

Training details. We start with the 9,215 <image, prompt> pairs from Section 3.2, which are used
to generate VisVM training data. LLaVA-Next-Mistral-7B continues to serve as our base model.
We first generate corresponding image descriptions for all 9,215 <image, prompt> pairs using
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VisVM-guided search, resulting in 9,215 <image, prompt, description> tuples as the SFT dataset.
Subsequently, we conduct a full parameter fine-tuning of LLaVA-Next-Mistral-7B using this SFT
dataset for five epochs with a learning rate of 1e-6. As a comparison, we also generate corresponding
descriptions on this prompt dataset using greedy decoding, BoN, and CLIP-PRM-guided search, and
perform full parameter SFT on LLaVA-Next-Mistral-7B with the same learning rate and number
of epochs. To be specific, we utilize two BoN methods to generate self-training data as baselines.
The first is CLIP-BoN, where the average CLIP score of all sentences in the response is used as the
selection criterion, with a step size of 6, consistent with VisVM guided search and CLIP-PRM guided
search. The second is GPT4o-BoN, which selects the best response using GPT-4o, with a larger step
size of 30. Among these two methods, the first provides a more fair comparison to our approach,
while the second serves as a stronger baseline for comparison. All experiments are conducted on
8×A100 80GB GPUs.

Evaluation benchmarks. We conduct evaluations on two types of benchmarks: visual comprehen-
sion benchmarks and hallucination benchmarks. For the visual comprehension evaluation, we select
seven standard benchmarks: MM-Vet Yu et al. (2023), MMBench Liu et al. (2024), MMMU Yue et al.
(2024), MathVista Lu et al. (2024), CVBench Tong et al. (2024), LLAVA-Wild Liu et al. (2023b),
and MMStar Chen et al. (2024a). For hallucination evaluation, we benchmark on CHAIR Rohrbach
et al. (2018) and MMHal Sun et al. (2023).

Evaluation results on visual comprehension. Table 1 presents the fine-tuning results of LLaVA-
Next on visual comprehension benchmarks. Performance improved across nearly all benchmarks
after self-training, with one exception of the greedy decoding self-training, which leads to a decline
in most cases. Among the methods evaluated, the VisVM search self-training approach demonstrates
the most significant improvement, boosting LLaVA-Next’s average performance by 5.5%. This
gain far exceeds the improvements achieved by the BoN and CLIP-PRM search methods. These
findings highlight the superior quality of descriptive captions obtained through VisVM search, which
significantly enhances LLaVA-Next’s visual comprehension capabilities during self-training.

Evaluation results on visual hallucinations. As shown in Table 1, the VisVM search self-training
significantly reduces hallucination in LLaVA-Next. When evaluated across four metrics on two
benchmarks, VisVM search self-training decreases the hallucination rates of LLaVA-Next by 20.3%,
substantially outperforming the reductions achieved by CLIP-BoN, GPT4o-BoN, and CLIP-PRM
search, which are 8.3%, 8.0% and 8.3%, respectively. These results further validate the effectiveness
of the VisVM search self-training approach.

The promise of a VLM self-training pipeline. The experiment results in this section demonstrate
that the VisVM search significantly enhances the visual comprehension capabilities of LLaVA-Next
by generating high-quality descriptive captions as the SFT data. Throughout this process, no external
models or human annotations are utilized beyond the raw COCO images. The reward model for
training VisVM is derived from the CLIP encoder embedded within LLaVA-Next, and VisVM itself
is initialized from the parameters of LLaVA-Next. The SFT data is produced by VisVM-guided
LLaVA-Next search, ensuring that all training signals originated solely from the same VLM, LLaVA-
Next. As future directions, we see great promise in applying this method to other VLMs, leading to a
genuine self-training pipeline that could continuously self-improve VLMs’ visual comprehension
capability, without reliance on any external models or human annotations.

5 VISVM ANALYSIS

To better understand how VisVM influences VLM’s response generation, this section examines
how VisVM and CLIP-PRM select responses when presented with the same set of candidates. As
illustrated in the upper part of Figure 6, given an image and prompt, LLAVA-Next generated three
different response candidates. When using CLIP to directly score the responses, the second candidate
received the highest clip score which is 0.2617 and is thus chosen as the current step response.
However, VisVM considers potential hallucinations in subsequent responses induced by the sentence,
resulting in a higher value 2.2695 for the third sentence among the given candidates. Therefore, the
third sentence is selected. We search and obtain the final complete response using both CLIP-PRM
and VisVM following their choices, as shown in the lower part of Figure 6. We observe that the
response generated through VisVM search indeed contains more details and less hallucinations.
Additionally, Figure 6 also presents the changes in the LLAVA-Next’s image-text cross-attention
map following the selection of different candidates. We note significant differences in the attention
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What is happening 
in this scene?

Response candidates

In the scene, there is a rainy day with a sky 
that is overcast and appears to be either 
raining or just after rainfall.

In the scene, there is a street intersection 
with traffic lights.

In the image, we see a street scene with a 
traffic light on red, indicating that vehicles 
are required to stop.

2.2559

2.2480

2.2695

0.2531

0.2617

0.2382

CLIP-PRM Guided

VisVM Guided

Attention Map after 
first sentence generation

In the scene, there is a rainy day with a sky that is overcast and appears to be either raining or just after rainfall. The image is taken from inside a 
vehicle, as indicated by the raindrops on the windshield, and the photo captures the view looking towards an intersection ahead. At the intersection, 
there are traffic lights hanging over the road. The traffic light closest to the camera is currently red, indicating that vehicles are required to stop. There 
are also green street signs attached to the traffic light pole, but they are partially obscured by the raindrops on the windshield. On the road, there is a 
vehicle with its headlights on, which suggests that it is either raining or the vehicle's headlights are on for visibility. There are also other vehicles visible 
in the distance, including a truck and a car. The buildings in the background have a brick facade, and there is a church with a steeple visible on the right 
side of the image. The overall atmosphere of the scene is somewhat gloomy due to the rain and the overcast sky.

Full response generated by different search method 

VisVM Guided

In the scene, there is a street intersection with traffic lights. The traffic lights are currently displaying a red signal, indicating that vehicles must stop. 
There are several traffic lights visible, with some showing red and others showing yellow, which typically means to prepare to stop. The sky is overcast, 
suggesting it might be a cloudy or rainy day. The road appears to be wet, which could be due to recent rain. There are vehicles on the road, including 
cars and a truck, and a pedestrian is visible on the sidewalk. On the right side of the image, there is a building with a sign that reads ”Tennis,” 
indicating that there is a tennis facility nearby. The overall atmosphere of the scene is quiet and typical of a small town or suburban area.

CLIP-PRM Guided

Attention Map after first 
token generation

The image captures a moment on a street corner in a small town. The sky overhead is a canvas of gray, suggesting an overcast day. The 
street, slick with rain, is lined with buildings on both sides, their windows reflecting the muted light. On the left side of the street, a traffic 
light stands tall. It's currently displaying a red light, indicating a stop for any vehicles. The traffic light is positioned next to a green street 
sign that reads "KNOX", perhaps indicating the name of the street or the direction it leads. On the right side of the street, another traffic 
light is visible. It too is displaying a red light, mirroring its counterpart on the left. A green street sign reading "3rd" is also present here, 
possibly indicating the name of the street or the block number. In the background, a church steeple can be seen, adding a touch of serenity 
to the urban setting. The rain has left its mark on the street, with puddles scattered around, reflecting the gray sky above. Overall, the 
image paints a picture of a quiet, rainy day in a small town, with traffic lights and street signs guiding the way.

Best of N (30)

The image captures a moment on a street corner in a small town. The sky overhead is a canvas of gray, suggesting an overcast day. The 
street itself is a typical American road, with a yellow traffic light hanging above it. The traffic light is currently displaying a red signal, 
indicating a stop for the vehicles on the road. On the right side of the image, there's a white building with a green roof. The building has a 
sign that reads "KNOX", possibly indicating the name of the establishment. On the left side of the image, there's a red brick building with a 
white sign that reads "TENNES". This building is located at the corner of the street, adding to the small-town charm of the scene. The road 
itself is lined with trees, providing a natural border for the street. The trees are lush and green, contrasting with the gray sky. In the 
background, there's a white church with a steeple. The church is located on the right side of the image, adding to the small-town feel of the 
scene. Overall, this image paints a picture of a quiet day in a small town, with its mix of buildings, trees, and overcast sky.

Greedy Decoding

Figure 6: A case study on VisVM-guided search. The upper part shows how VisVM and CLIP-PRM
make different choices when given the same step response candidates, and the changes in the LLaVA-
Next attention map after the choices are made. We can observe significant differences in the attention
maps. The second part presents the complete responses obtained using different search methods,
with blue text indicating correct details and red text indicating hallucinations. VisVM-guided search
obtains response with richer details and fewer hallucinations.

maps after choosing different candidates. VisVM’s attention map more comprehensively covers the
entire image, enabling it to catch visual details such as “water droplets obscuring the road sign.” In
contrast, the CLIP-PRM’s attention map over-emphasizes the area around the traffic light, leading to
inaccurate description of the light’s color and missing other visual details.

6 CONCLUSION

We have presented VisVM, a vision value model that effectively guides VLM for inference-time search
to improve visual comprehension. Our results demonstrate that scaling inference-time computations
can produce VLM responses that include richer visual details and reduce hallucinations. Among
various reward signals, VisVM has a better scaling behavior due to its consideration of potential
future generations. Moreover, we highlight the promise of using VisVM-guided search to establish a
self-training pipeline, enabling the enhancement of VLMs without external annotations.
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A GPT-4O EVALUATION PROMPTS

In this section, we provide the detailed prompt for GPT-4o evaluation in Section 4.1. We evaluate the
caption quality from 5 aspects: Richness of Content, Accuracy, Harmlessness and Appropriateness,
Creativity and Elaboration, Clarity and Coherence.
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GPT-4o evaluation prompt
Evaluate the following image captions generated by two vision-language models (VLMs) in
response to a given image. Please decide which caption is “better” based on the following criteria:

Richness of Content: The caption should provide a comprehensive description of the visual elements
in the image, detailing objects, actions, colors, or settings that enhance the viewer’s understanding
of the scene.
Accuracy: The caption must accurately reflect what is in the image without adding incorrect
information or making erroneous assumptions about unseen aspects.
Harmlessness and Appropriateness: The caption should be free from any potentially harmful,
offensive, or inappropriate content. Ensure that the caption does not make unnecessary assumptions
about people’s identities, backgrounds, or intentions.
Creativity and Elaboration: If the caption can remain accurate and harmless, it should include
suitable and imaginative elaborations that enrich the scene’s description (e.g., suggesting possible
actions, moods, or a gentle interpretation of the scene’s context).
Clarity and Coherence: The caption should be clear, concise, and well-structured, helping any
viewer quickly understand the image’s content without ambiguity.

After considering these criteria, please directly output your choice, the format of your choice should
be ‘Response1 is better’, ‘Response2 is better’ or ‘Tie’.
Response1: {}
Response2: {}

Table 2: Prompt used for image caption quality evaluation with GPT-4o.

B MORE CASE STUDIES

In this section, we give more case studies from Table 3 to Table 11 to compare VisVM guided
decoding results and CLIP-PRM guided decoding results.

C DETAILS OF VISVM TRAINING

Our training dataset consists of 378k <current sentence, current sentence clip score, next sentence,
image>. Based on this training set, we train VisVM for 3 epochs with a learning rate of 5e-5 and a
batch size of 1024. The latent dimension of the value head in VisVM is 2560. γ used for TD learning
is 0.9. The entire training process is conducted on 8x80G A100 GPUs for 50 hours.
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Example 1

Question What is happening in this scene?

VisVM Guided In the scene, there is a rainy day with a sky that is overcast and appears to be
either raining or just after rainfall. The image is taken from inside a vehicle, as
indicated by the raindrops on the windshield, and the photo captures the view
looking towards an intersection ahead.
At the intersection, there are traffic lights hanging over the road. The traffic light
closest to the camera is currently red, indicating that vehicles are required to stop.
There are also green street signs attached to the traffic light pole, but they are
partially obscured by the raindrops on the windshield.
On the road, there is a vehicle with its headlights on, which suggests that it is
either raining or the vehicle’s headlights are on for visibility. There are also other
vehicles visible in the distance, including a truck and a car.
The buildings in the background have a brick facade, and there is a church with a
steeple visible on the right side of the image. The overall atmosphere of the scene
is somewhat gloomy due to the rain and the overcast sky.

CLIP-PRM Guided In the scene, there is a street intersection with traffic lights. The traffic lights are
currently displaying a red signal, indicating that vehicles must stop. There are
several traffic lights visible, with some showing red and others showing yellow,
which typically means to prepare to stop.
The sky is overcast, suggesting it might be a cloudy or rainy day. The road appears
to be wet, which could be due to recent rain. There are vehicles on the road,
including cars and a truck, and a pedestrian is visible on the sidewalk.
On the right side of the image, there is a building with a sign that reads ”Tennis,”
indicating that there is a tennis facility nearby. The overall atmosphere of the scene
is quiet and typical of a small town or suburban area.

Table 3
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Example 2

Question What is happening in this scene?

VisVM Guided In the image, there is a person riding a motorcycle or moped with a large bundle
of bananas tied to the back. The person is wearing a helmet and appears to be
on a rural road, with lush greenery and trees on both sides, suggesting a tropical
or subtropical region. There are other people in the background, some of whom
are walking along the road, and there’s a small building or structure visible in the
distance. The road seems to be a secondary road, with yellow markings indicating
it’s a two-way road, and there’s a sign or symbol on the right side of the road that
is partially obscured. The overall scene suggests a day-to-day activity in a rural or
semi-rural area, possibly related to transportation of goods or agricultural produce.

CLIP-PRM Guided In the image, there is a person riding a motorcycle loaded with a large quantity
of green bananas. The bananas are tied to the back of the motorcycle, and the
rider appears to be transporting them down a road. The setting is rural, with trees
and greenery surrounding the road, suggesting that the bananas might have been
harvested from nearby plantations. The person is wearing a helmet, which is a
good safety practice when riding a motorcycle. The scene captures a moment of
daily life in a region where bananas are a significant crop.

Table 4
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Example 3

Question Can you describe the main features of this image for me?

VisVM Guided The image shows a single-engine, propeller-driven aircraft flying against a clear
blue sky. The aircraft has a bright red fuselage with white and blue stripes running
along its side, and a white and blue striped tail. There are no visible registration
numbers or other identifying marks on the aircraft. The aircraft appears to be a
small personal or recreational plane, given its size and the absence of any visible
branding or commercial markings. The wings are swept back slightly, and there
are no visible landing gear, suggesting that the aircraft is either in flight or has just
taken off. The image captures the aircraft from a perspective below and to the side,
providing a clear view of its underside and tail section.

CLIP-PRM Guided The image shows a red airplane flying against a clear blue sky. The aircraft has
a single propeller and a tail fin with a white stripe. It appears to be a small,
single-engine plane, possibly a vintage or classic model, given its design and color
scheme. The plane is captured in mid-flight, with its nose pointed slightly upward.
The wings are swept back, which is a common feature in many small aircraft for
improved aerodynamics. There are no visible windows on the fuselage, suggesting
it may be a one-seater or a light utility aircraft. The overall impression is that of a
leisurely flight or a demonstration of the aircraft’s capabilities.

Table 5
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Example 4

Question Can you elaborate on the elements of the picture provided?

VisVM Guided In the image, there is a soccer player in action on a field. The player is wearing a
white soccer kit with a red number ”8” on the front, which is a common way to
identify a player’s position or role within a team. The jersey also has an emblem
that appears to be a bird, possibly a falcon, which could be the team’s logo. The
player is wearing white socks with black cleats, which are typical for soccer
players. The player is in the process of kicking a soccer ball, which is white with
black pentagons, known as a pentagon ball, which is the standard shape for soccer
balls. The playerś body is in a dynamic pose, with one leg extended forward and
the other bent at the knee, indicating a powerful kick. The field is marked with
white lines, which are standard for soccer fields, and there is a yellow line on
the side, which could be the touchline or the goal line, depending on the specific
context of the game. In the background, there is a chain-link fence, which is
common for soccer fields to keep the ball from going out of play. There is also a
vehicle, possibly a car or van, partially visible behind the fence, suggesting that
the field might be located in a park or recreational area near a road. The sky is
overcast, and the lighting suggests it might be late afternoon or early evening, as
the shadows are long and the light is diffused. The overall atmosphere of the image
is one of action and competition, capturing a moment of athletic endeavor.

CLIP-PRM Guided In the image, we see a soccer player in action on a field. The player is wearing a
white uniform with a red number ”8” on the front, which is likely his teamś jersey
number. The uniform is the standard soccer attire, with shorts, a shirt, and possibly
socks and shin guards that are not fully visible. The player is wearing yellow and
orange cleats, which are common for soccer players to provide traction on the
field. The player is in the process of kicking the soccer ball, which is in mid-air,
indicating a dynamic moment in the game. The playerś right foot is extended
towards the ball, suggesting a powerful strike. The player’s body is positioned with
one leg bent and the other extended, which is a common stance for a player about
to kick the ball. The background of the image shows a soccer field with a goal
post visible, indicating that the player is near the goal area. The field appears to be
well-maintained with clear boundary lines, and there are no visible spectators or
other players, which puts the focus on the player and his action. Overall, the image
captures a snapshot of an intense moment during a soccer game. The athlete’s
concentration and the positioning of the ball and the playerś leg suggest a high
level of skill and athleticism.

Table 6
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Example 5

Question Write a detailed description of the given image.

VisVM Guided In the heart of a bustling city, a small Chihuahua with a vibrant coat of black and
brown fur is the star of this scene. The dog, standing on its hind legs, has its front
paws resting on the window sill of a white car. The car is parked on the side of a
street, with a building visible in the background. The dog is dressed in a sweater
that is a riot of colors - red, blue, green, and yellow. The sweater, made of soft
fabric, adds a touch of whimsy to the otherwise mundane urban setting. The dog’s
head is tilted to the side, as if it’s curiously observing its surroundings. Its eyes
are wide open, taking in the sights of the city. Despite being inside a car, the dog
seems to be enjoying the view outside. The image captures a moment of joy and
curiosity in an everyday urban scene. It’s a reminder that even in the hustle and
bustle of city life, there’s always room for a little bit of fun and playfulness.

CLIP-PRM Guided In the heart of a bustling city, a small Chihuahua has found its perch on the
passenger side of a car. The dog, dressed in a vibrant sweater, is the star of this
urban tableau. The sweater, a riot of colors, is adorned with a playful polka dot
pattern that stands out against the dog’s dark fur. The dog is seated comfortably
on the car’s door sill, its front paws resting on the window ledge. Its head is tilted
slightly to the left, as if it’s curiously observing the world outside. The window
itself is rolled down, allowing the dog to enjoy the sights and sounds of the city.
The car itself is a stark white, contrasting with the dog’s colorful attire. It’s parked
on a street lined with buildings, their details blurred by the distance. The overall
scene paints a picture of a day in the life of this charming Chihuahua.

Table 7
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Example 6

Question Can you describe the main features of this image for me?

VisVM Guided The image depicts a serene outdoor setting with a view of the ocean. In the
foreground, there is a man seated at a table with a red chair. He appears to be
looking out at the water, possibly enjoying the view or perhaps deep in thought.
The table is covered with a red cloth, and there is a Coca-Cola logo on the chair,
suggesting the location might be a restaurant or café with branded furniture. In the
background, there is a large red and white boat on the water, which seems to be in
motion, as suggested by the wake it is leaving behind. The sky is overcast, with
a soft light that suggests either dawn or dusk. The water is calm, reflecting the
colors of the sky and the boat. The overall scene is one of tranquility and solitude,
with the man at the table as the main subject, framed by the expansive view of
the ocean and the boat. The red color of the tablecloth and chair adds a vibrant
contrast to the cooler tones of the water and sky.

CLIP-PRM Guided The image shows a person sitting at a table on what appears to be a pier or
waterfront. The person is facing away from the camera, looking out towards the
water. The table is set with a red tablecloth and there are two red chairs, one of
which the person is occupying. In the background, there is a large body of water,
and on the water, there is a red and white boat that seems to be moving away from
the pier. The sky is overcast, suggesting either early morning or late afternoon
light conditions. The overall atmosphere of the image is calm and serene, with a
sense of solitude and contemplation.

Table 8
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Example 7

Question What’s happening in the scene?

VisVM Guided In the scene, there’s a store named ”Pinocchio Fancy Dress” which suggests it
sells costumes or special occasion outfits. There’s a display in the window with
various mannequins dressed in different styles of clothing, which might be used to
showcase the types of outfits available inside the store. In front of the store, there’s
a statue of a large cow with a spotted pattern, possibly representing a character
from a story or just a decorative element. The cow is positioned in such a way
that it appears to be walking towards the store, which adds a whimsical or playful
touch to the storefront. On the right side of the image, there’s a sign that reads
”Dress Hire” indicating that the store offers rental services for costumes or dresses.
There are also some signs with phone numbers and possibly some text that is too
small to read clearly, likely providing additional information about the store’s
offerings or contact details. The overall impression is that this is a storefront with
a creative and engaging display designed to attract customers and convey the type
of business it operates.

CLIP-PRM Guided In the scene, there is a life-size statue of a cow with a black and white color
pattern, standing in front of a store named ”Pino’s Fancy Dress.” The storefront
has a sign that reads ”Dress Hire” and there are other signs indicating the services
offered, such as ”Fancy Dress,” ”Adult & Children’s Fancy Dress,” and ”100’s
Fancy Dress.” The cow statue appears to be a decorative element to attract attention
to the store. To the left of the cow statue, there is a mannequin dressed in what
appears to be a traditional or historical costume, which could be related to the
dress hire services offered by the store. The overall setting suggests this is a shop
that rents costumes for various occasions, and the cow statue could be a fun and
quirky way to draw customers in.

Table 9
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Example 8

Question Can you elaborate on the elements of the picture provided?

VisVM Guided In the image, there are several elements that contribute to the urban scene. The
most prominent figure is a police officer standing in the middle of the street. The
officer is wearing a dark-colored uniform with the word ”POLICE” printed on
the chest, indicating their role. They are also wearing a cap, sunglasses, and a
holster, which are standard items of police attire. The officer is standing on a
skateboard, which is a common mode of transportation in urban areas. This action
could suggest that the officer is taking a break from duty or perhaps patrolling an
area where skateboarding is allowed or encouraged. In the background, there is
a busy street with vehicles, including a white SUV and a yellow taxi cab, which
are typical of city traffic. There are also other pedestrians visible, contributing to
the bustling atmosphere of the city. The architecture of the buildings suggests a
modern cityscape, with high-rise buildings that are common in many urban centers.
The presence of traffic lights and street signs further emphasizes the urban setting.
The image captures a moment of everyday life in a city, with the police officer on
a skateboard adding a unique and dynamic element to the scene.

CLIP-PRM Guided The image shows a police officer riding a skateboard in a city street. The officer is
wearing a uniform that includes a dark-colored shirt with the word ”POLICE” on
the front, and heś also wearing a cap with a badge. He has a walkie-talkie on his
belt and is holding a bag, possibly containing personal items or equipment. The
officer is on a skateboard, which is a common mode of transportation for urban
areas. The skateboard is red and black, and the officer is wearing casual shoes and
sunglasses. In the background, there are other people and vehicles, indicating that
this is a busy urban environment. There’s a white SUV to the left of the officer,
and a traffic light is visible in the distance. The architecture suggests a modern
cityscape, and the presence of a building with a sign that reads ”BROOKLYN”
indicates that this scene might be taking place in a city that has a borough named
Brooklyn. Overall, the image captures a moment of urban law enforcement using
a skateboard as a means of navigating through the city. Itś a snapshot of a unique
approach to policing in a contemporary urban setting.

Table 10

23



Example 9

Question Can you elaborate on the elements of the picture provided?

VisVM Guided In this snapshot, it appears to be a scene from a bar or a restaurant with a focus
on the beverage selection. The refrigerator, which is likely a beer cooler, is
prominently stocked with various bottles of what seems to be beer. The lighting
is dim, with a warm glow coming from the refrigerator, which is typical for
establishments that want to highlight their beverage offerings. The presence of
a potted plant and a shelf with more bottles in the background suggests a well-
decorated and inviting space. It’s possible that the image was taken during a quiet
moment or just before or after opening or closing hours when the establishment is
not busy.

CLIP-PRM Guided In this snapshot, it appears to be an interior view of a bar or a restaurant with
a focus on a refrigerator. The refrigerator is stocked with various bottles, likely
containing beverages such as beer, wine, or cocktails. The lighting in the room is
dim, with the refrigerator illuminated, which suggests that it might be evening or
the place is intentionally dimly lit. The presence of wine glasses on a shelf above
the refrigerator indicates that the establishment serves alcoholic beverages. The
ambiance seems to be casual and relaxed, possibly catering to a social or dining
experience.

Table 11
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