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Abstract

Mixed time series (MiTS) comprising both continuous variables (CVs) and discrete
variables (DVs) are frequently encountered yet under-explored in time series analy-
sis. Essentially, CVs and DVs exhibit different temporal patterns and distribution
types. Overlooking these heterogeneities would lead to insufficient and imbalanced
representation learning, bringing biased results. This paper addresses the problem
with two insights: 1) DVs may originate from intrinsic latent continuous vari-
ables (LCVs), which lose fine-grained information due to extrinsic discretization;
2) LCVs and CVs share similar temporal patterns and interact spatially. Con-
sidering these similarities and interactions, we propose a general MiTS analysis
framework MiTSformer, which recovers LCVs behind DVs for sufficient and
balanced spatial-temporal modeling by designing two essential inductive biases: 1)
hierarchically aggregating multi-scale temporal context information to enrich the
information granularity of DVs; 2) adaptively learning the aggregation processes
via the adversarial guidance from CVs. Subsequently, MiTSformer captures com-
plete spatial-temporal dependencies within and across LCVs and CVs via cascaded
self- and cross-attention blocks. Empirically, MiTSformer achieves consistent
SOTA on five mixed time series analysis tasks, including classification, extrinsic
regression, anomaly detection, imputation, and long-term forecasting. The code is
available at https://github.com/chunhuiz/MiTSformer.

1 Introduction

Multivariate time series analysis is energized in various real-world applications, such as weather
forecasting [7], activity recognition [20], and industrial maintenance [47]. Empowered by deep
learning, plentiful time series models have been proposed based on foundation models such as RNNs
[23, 25, 22], CNNs [6, 36, 40], Transformers [30, 41, 10] and modernized MLPs [50, 45, 39]. These
sophisticated models have achieved increasingly remarkable performance in various time series
analysis tasks, e.g., classification [17], forecasting [7, 42], imputation [40] and anomaly detection [9].

The primary challenge in time series analysis is effectively modeling spatial-temporal patterns,
including intra-variable temporal variations and inter-variable spatial correlations [46, 48, 16, 11, 43].
So far, most current approaches naturally assume that time series data are composed solely of
continuous variables, and then uniformly model spatial-temporal patterns in continuous spaces. Yet,
in broad practical scenarios, the acquired data are often mixed time series (MiTS) that encompass both
continuous variables (CVs) and discrete variables (DVs). Take meteorological data as an example
(Fig. 1 (Left)), some sensor-derived variables are commonly recorded as CVs (e.g., temperature,
humidity, and wind speed), while certain variables like cloudage and rainfall patterns are typically
tracked as DVs due to measurement restrictions or distinctive nature. Up to now, mixed time series
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Figure 1: Left: Illustration of mixed time series. Right: Spatial-temporal heterogeneity problem.

analysis is still a formidable yet under-explored problem. Essentially, MiTS presents spatial-temporal
heterogeneity problems as depicted in Fig. 1 (Right). On one hand, CVs commonly encapsulate rich
temporal variation information, exhibited in autocorrelations, periodical patterns, local fluctuations,
etc, while DVs often undergo sudden changes or steady states due to limited value ranges, resulting
in the temporal variation discrepancy between CVs and DVs that complicates temporal modeling.
On the other hand, CVs generally adhere to Gaussian distributions, while DVs follow Bernoulli
distributions, resulting in the distribution type discrepancy that hinders spatial correlation analysis
between CVs and DVs. Neglecting these heterogeneities and equally treating mixed variables would
yield insufficient and imbalanced spatial-temporal modeling problems, i.e., the model may struggle to
characterize distinct temporal patterns of DVs and CVs and fail to reliably capture spatial correlations
within and across DVs and CVs, posing a bottleneck for MiTS analysis.

The key to addressing the spatial-temporal heterogeneity lies in bridging the information gap between
DVs and CVs. Essentially, in real-world MiTS, the observed DVs may originate from intrinsic
continuous-valued factors, which are unobservable owing to extrinsic factors such as measurement
limitations, storage requirements, and transmission interference. Continuing with the aforementioned
meteorological example, cloud cover percentage is an intrinsically continuous variable, whose fine-
grained values are hard to measure directly. In practice, discretizing it with coarse-grained discrete
variable-cloudage (reflect “cloudy” or not) is sufficient for most applications and is memory-efficient.
In this paper, we introduce latent continuous variables (LCVs) to describe the intrinsic continuous
factors behind DVs. Given its numerically continuous nature, the LCV of cloudage, i.e., cloud cover
percentage, may be spatially correlated with other observed CVs (e.g., humidity and wind speed)
and exhibit similar temporal variation patterns (e.g., autocorrelation and seasonal fluctuation) with
them, as both of them originate from the same meteorological system. Thereby, we can progressively
recover the LCVs behind DVs by leveraging these temporal similarities and spatial interactions among
CVs and LCVs. In this way, spatial-temporal dependencies of mixed variables can be completely
and reliably modeled in a unified continuous numerical space, and the spatial-temporal heterogeneity
problem is mitigated. Also, by bridging the mutual spatial-temporal interactions, LCVs and CVs can
supply complementary information for various downstream analysis tasks.

Enlightened by the above insights, we reconcile the intrinsic tension between the two highly dependent
problems - Latent Continuity Recovery and Spatial-Temporal Modeling - in one coherent and
synergistic framework, MiTSformer, for general mixed time series analysis. By leveraging the
temporal similarities and spatial interactions between LCVs and CVs, MiTSformer can gradually
decipher the LCVs behind DVs and capture the complete spatial-temporal dependencies within
and across LCVs and CVs. Specifically, we design a recovery network to portray LCVs behind
DVs by adaptatively and hierarchically aggregating temporal contextual information. Followingly,
an adversarial variable modality discrimination objective and smoothing constraints are devised to
guide the learning of the recovery network, ensuring the recovered LCVs share similar temporal
properties and distributions with CVs. Additionally, MiTSformer employs self-attention to learn
spatial-temporal dependencies within LCVs or CVs and cross-attention to exploit those across LCVs
and CVs, facilitating various downstream analysis tasks. Our contributions lie in three aspects:

(1) Novel Problem: To the best of our knowledge, our paper pioneers the exploration of the
general mixed time series analysis, which is practical and challenging. We reveal the crucial
spatial-temporal heterogeneity problem, which is caused by the discrepancies in temporal
variation properties and distribution types between DVs and CVs.
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(2) Customized Framework: To solve the spatial-temporal heterogeneity problem, we propose
a task-general framework MiTSformer customized for MiTS, which adaptively recovers
LCVs behind DVs by leveraging the adversarial guidance of CVs and task supervisions.
Moreover, MiTSformer can capture spatial-temporal dependencies within and across CVs
and LCVs via self- and cross-attention blocks, thus learning sufficient and balanced spatial-
temporal representations and being amenable to various mixed time series analysis tasks.

(3) Versatile Effectiveness: Empirically, our proposed MiTSformer establishes the state-of-
the-art performance on five mainstream mixed time series analysis tasks with 34 datasets
covering wide-ranging real-world application domains. We believe our work makes a
predominant attempt at general mixed time series analysis in practical applications.

2 Related Work

General Time Series Analysis General time series analysis aim at learning universal temporal
representations by developing task-general backbones and task-specific heads for diverse tasks.
To date, these methods have been designed predominantly for time series comprising continuous
variables solely. As a pioneering work, TimesNet [40] leverages fast Fourier transform and parameter-
efficient inception block to capture intra-period and inter-period variations for time series modeling.
Followingly, ModernTCN [16] modernizes and modifies the traditional TCN by introducing larger
effective receptive fields and cross-variable dependency modeling, bringing great performance and
efficiency. Meanwhile, GPT2TS [52] leverages pre-trained language models, e.g., GPT2 [32], for
various time series analysis tasks with task-specific fine-tuning.

Yet, most of the current works naturally assume uniformity in variable types of time series and are
inapplicable for MiTS, as they lack the differentiation of distinct variable modalities. In this paper, we
develop a systematic framework with delicate differentiation and deft alignment of mixed variables
to support sufficient and balanced spatial-temporal modeling for general mixed time series analysis.

Mixed Data Analysis Previous studies have revealed the significance of mixed data analysis and
made several attempts to shed light on this challenging problem. A naive solution for mixed data
modeling is roughly pre-processing DVs and CVs into the same variable modality, e.g., discarding
DVs or discretizing CVs by certain policies [35, 13]. However, these methods may lose vital fine-
scaled information and bring errors inevitably. Towards concurrently modeling of DVs and CVs,
Mixed Data RBF-ELM method [24] adopts a distance-based learning scheme for efficient and direct
mixed data classification, while Mixed-variate Restricted Boltzmann Machine (Mv.RBM) [15, 14]
construct ensembles of mixed-data Deep Belief Nets with varying depths for anomaly detection
of mixed data. Another line of work treats DVs as semantic attributes of CVs and establishes the
relationships between DVs and CVs by developing specific inference rules [18, 44]. More recently,
researchers have utilized mixed naive Bayes models [37, 38] or variational inference [12] for mixed
data modeling in industrial processes with different distribution priors of CVs and DVs.

However, current studies mostly focus on specific analysis tasks (e.g., designed only for classification)
and may be restricted by linear, non-temporal data, or other rigorous assumptions, which are not
capable of handling real-world MiTS that exhibit intricate spatial-temporal patterns. Instead, our
proposed MiTSformer can model complete spatial-temporal dependencies within and across DVs
and CVs and can produce task-general representations for various MiTS analysis tasks.

3 MiTSformer

3.1 Problem Formulation and Motivation Analysis

Mixed Time Series. Given a collection of multivariate time series X = {x1, x2, ..., xp}
comprising p variables with length T . Among them, there are p − n continuous variables
XC = {x1, x2, ..., xp−n} ∈ R(p−n)×T with continuous numerical values, and n discrete vari-
ables XD = {xp−n+1, xp−n+2, ..., xn} ∈ An×T with discrete states. Without loss of generality, we
consider the binary-valued discrete variables, whose value can be 0 or 1, i.e., A = {0, 1}. Mixed time
series are used as model input to support various analysis tasks, such as regression and classification.

Hampered by the spatial-temporal heterogeneity problem, directly modeling spatial-temporal depen-
dencies of CVs and DVs without considering their discrepancies may inevitably yield non-negligible
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biases. Such research bottlenecks prompt us to exploit the underlying generation and interaction
mechanism of DVs and CVs. As aforementioned, the observed DVs are potentially derived from
LCVs, which undergo discretization processes due to external interferences as depicted in Fig. 2. For
each DV xD, we adopt a corresponding LCV xLC to portray its latent continuity. To reliably and
completely model inherent spatial-temporal patterns within MiTS, deciphering and recovering LCVs
behind DVs is indispensable. Yet, it is challenging since a single discrete state can not be directly trans-
formed into a continuous value without proper supervision. In this study, we address this challenge
by revealing and leveraging the temporal similarity and spatial interaction between LCVs and CVs:

External interference factors

Latent Continuous Variables

Observed Discrete VariablesObserved Continuous Variables

 Temporal Similarity
 Spatial Interaction

high

low

high

low

1

0

Figure 2: Connections among DVs, CVs, and LCVs.

Temporal Similarity The unobserved
LCVs share similar temporal variation
patterns (e.g., autocorrelation, periodicity,
trend, etc.) with the observed CVs.

Spatial Interaction LCVs and CVs exhibit
information interactions and inter-variable
spatial correlations. The synergistic effect
of LCVs and CVs provides complementary
information for various downstream tasks.

Built upon these two insights, we design
MiTSformer, which will be elaborately introduced in the following parts.方法概览
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Figure 3: Overall pipeline of MiTSformer. First, MiTS undergo latent continuity recovery (DVs only) and are
embedded as variate tokens, which are then refined through spatial-temporal attention blocks. The acquired
variate tokens are utilized both for reconstructing the original MiTS and serving various downstream tasks.

3.2 Framework Overview

As aforementioned, there are two key steps for general MiTS analysis: 1) unifying the temporal
characteristics and distribution types of DVs and CVs; 2) modeling sufficient and balanced spatial-
temporal dependencies for effective representation learning. MiTSformer facilitates these two
steps in a highly versatile manner with a coherent framework as depicted in Fig. 3. The overall
pipeline contains two key parts: 1) Latent Continuity Recovery that adaptively aggregate contextual
information of DVs to recover LCVs with the adversarial alignment guidance of CVs and temporal
smoothness constraints; 2) Spatial-Temporal Attention Blocks that model intra- and inter-variable
modality spatial-temporal dependencies with cascaded self-attention and cross-attention sub-blocks.

3.3 Latent Continuity Recovery

Since single time points of DVs contain limited information, it is difficult to directly transform
discrete states to latent continuous values. Fortunately, time series commonly present auto-correlation
natures, i.e., the value of a certain time step is correlated with its adjacent ones. Specifically, for
a discrete state of “1” surrounded by states “1”, its latent continuous value would be relatively
large, e.g., 0.9. In contrast, for a discrete state of “1” surrounded by states “0”, its latent continuous
value would be relatively small, e.g., 0.6. Thus, an intuitive solution for enriching the information
density of a single time point of DVs is to properly leverage its adjacent context information.
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Contextual Aggregation Recovery Network We con-
vert the above insights into the model inductive bias
and realize the latent continuity recovery by adaptively
and hierarchically aggregating multi-scale adjacent con-
text information of DVs. Specifically, convolutional
neural networks (CNNs) own an inductive bias that
can aggregate receptive local information by convolu-
tional kernels. Technically, we devise the recovery net-
works that receive DVs as input to generate LCVs as
xLC = Rec-Net

(
xD

)
. As depicted in Fig. 4, the

recovery network is composed of several residual di-
lated convolutional blocks, which employ dilated con-
volutional kernels along the temporal dimension to ag-
gregate adjacent context information, and utilize resid-
ual connections to adaptively accumulate multi-scale
temporal information to characterize intricate tempo-
ral patterns of LCVs. The residual dilated convolu-
tional network is implemented by the iterative process as
hi = Convdi(hi−1)+hi−1, where hi represents the out-
put of the i-th residual block, i = 1, 2, . . . , n, Convdi

denotes the convolution operation along the temporal
axis to aggregate contextual information with dilation
rate di. The final output, xLCV = hn, is the result after n residual blocks.
Temporal Adjacent Smoothness Constraint: To facilitate spatial-temporal modeling across LCVs
and CVs, the recovered LCVs should be equipped with interpretable autocorrelation or trend proper-
ties, instead of “sudden changes” as DVs. To this end, we encourage the smoothness of LCVs across
time with a regularization term as

Lsmooth =
∥∥Abs

(
SxD

)
⊗
(
SxLC

)∥∥2
2
,S =

−1 1

. . .
. . .

−1 1

 ∈ R(T−1)×T (1)

where S is the smoothness matrix and ⊗ denotes the Hadamard product operation. Abs
(
SxD

)
=

Abs
(
xD
[2:T ] − xD

[1:T−1]

)
denotes the absolute value of the first-order difference of DVs and can reflect

the “sudden change” points (with state “1”). Overall, minimizing Lsmooth is equivalent to minimizing∑T−1
t=1 Abs

(
xD
t+1 − xDt

) (
xLC
t+1 − xLC

t

)2
by introducing the multiplication of the constant matrix S.

Alternatively, we can adopt the K-Lipschitz continuity as smoothness constraints, where the CVs can
act as guidance to determine the smoothness degree of the recovered LCVs. Empirically, we find out
such design would bring similar performance.

After latent continuity recovery, raw series of xLC and xC are independently embedded as tokens
zLC and zC through variate-wise linear projection to describe the properties of each variable.

Adversarial Variable-Modality Discrimination: Inspired by the temporal similarity property, the
recovered LCVs should exhibit similar temporal patterns and distributions to CVs. Accordingly, we
devise a variable modality discrimination objective, which is optimized in an adversarial manner as

argmin
θDis

(
max

θRec,θEmb

(
LDis = E

[
log

(
Dis

(
zC

))]
+ E

[
log

(
1−Dis

(
zLC

))]))
(2)

where Dis denotes the variable modality discriminator. Dis is trained to distinguish LCVs and
CVs as accurately as possible, while the recovery networks are facilitated to generate LCVs with
characteristics similar to CV as much as possible to confuse the discriminator. We adopt gradient
reversal layer [19](GRL) to achieve the adversarial learning objective. In this way, we bridge the
interactions between CVs and DVs and enable CVs to supply supervision signals for LCV recovery.

3.4 Intra- and Inter-Variable-Modality Spatial-Temporal Dependency Learning

Spatial-temporal dependencies are of vital importance for time series representation learning. Specif-
ically for MiTS, the complete spatial-temporal correlations include the ones within LCVs or CVs
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Inter-variable-modality cross-attention for modeling those across CVs and LCVs.

and the ones across LCVs and CVs, which are explicitly characterized by spatial-temporal attention
blocks in MiTSformer (as shown in Fig. 5).

Intra-Variable-Modality Self-Attention Within each variable modality, we adopt self-attention to
model their spatial-temporal dependencies as

ẑC
l = LN

(
zC
l + Self-Attn

([
QC

l ,K
C
l ,V

C
l

]))
, ẑC

l = LN
(
ẑC
l + FFN

(
ẑC
l

))
ẑLC
l = LN

(
zLC
l + Self-Attn

([
QLC

l ,KLC
l ,V LC

l

]))
, ẑLC

l = LN
(
ẑLC
l + FFN

(
ẑLC
l

)) (3)

where Self-Attn denotes the Multi-head Self-Attention that captures intra-variate spatial correlations
by computing Softmax scores with query and key embeddings and weighted aggregating the value
embeddings. FFN denotes the feed-forward network that processes each variable token to learn
intra-variate global temporal representations. LN denotes Layer Normalization, which is applied to
individual variate tokens and has been proven effective in tackling non-stationary problems [28].

Inter-Variable-Modality Cross-Attention We adopt symmetric cross-attention sub-blocks to model
the spatial-temporal interactions across LCVs and CVs as

zC
l+1 = LN

(
ẑC
l +Cross-Attn

([
QC

l ,K
LC
l ,V LC

l

]))
, zC

l+1 = LN
(
zC
l+1 + FFN

(
zC
l+1

))
zLC
l+1 = LN

(
zLC
l+1 +Cross-Attn

([
QLC

l ,KC
l ,V

C
l

]))
, zLC

l+1 = LN
(
zLC
l+1 + FFN

(
zLC
l+1

)) (4)

Subsequently, the acquired token embeddings zLC
L and zC

L are utilized both for 1) original MiTS
reconstruction with LRec as Eq. 5, and 2) downstream tasks with task supervision loss LTask, e.g.,
Cross Entropy loss for the classification task. See Appendix A for pipelines of each task.

Self-Reconstruction We devise variate-wise decoders based on MLPs to reconstruct the original
DVs and CVs, which can not only provide self-supervision signals for spatial-temporal dependency
learning but also guarantee the recovered LCVs retain the information of the observed DVs.

LRec =

p−n∑
i=1

MSE(Rec-DecoderC
(
zC
L,i

)
, xC

i ) +

n∑
i=1

CE(Rec-DecoderLC

(
zLC
L,i

)
, xD

i ) (5)

3.5 Synergy of Latent Continuity Recovery and Downstream Tasks

Considering both latent continuity recovery and downstream analysis task, the overall optimization
objective of MiTSformer is expressed as

LAll = λ1LSmooth + λ2LRec + λ3LDis︸ ︷︷ ︸
Self- Supervision

+ LTask︸ ︷︷ ︸
Task- Supervision

(6)

While seemingly separated from each other, the loss components of MiTSformer work in a collabora-
tive fashion on two aspects: 1). The first three self-supervision losses facilitate latent continuity
recovery synergetically to tackle the spatial-temporal heterogeneity problem. Specifically, the
smoothness loss LSmooth favorably manifests the autocorrelation of LCVs and alleviates the sudden
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Table 1: Summary of experiment benchmarks. For each dataset, we randomly select n = ⌊0.5p⌋
variables as DVs, whose values are first MinMax normalized and then discretized into the value of 0
or 1 with the threshold 0.5 as int(MinMax(x) > 0.5). See Table 5 for more details.

Tasks Benchmarks Metrics Series-length #Variables (p)
Classification UEA (10 subsets) Accuracy 29∼1751 3∼963

Extrinsic Regression UCR (10 subsets) MAE,RMSE 24∼1140 4∼24
Imputation ETT (4 subsets), Electricity,Weather MSE, MAE 96 7∼321

Anomaly Detection SMD, MSL, SMAP, SWaT, PSM Precision, Recall, F1-Socre 100 25∼55

Long-term Forecasting ETT (4 subsets), Electricity, Traffic, Weather, Exchange, ILI MSE, MAE 96∼720
(ILI: 24∼60) 7 ∼ 862

changes. Also, the discrimination loss LDis guarantees LCVs to be equipped with similar temporal
dynamics with CVs adversarially, which guarantees a crucial condition for spatial-temporal modeling.
Meanwhile, the reconstruction loss provides auxiliary self-supervision signals and constrains the
LCV recovery processes to be reversible. Our experiments, particularly the ablation study displayed
in Section 4.2, further justify the mutual dependency of the synergy between the three components;
2) The latent continuity recovery losses and task loss also work collaboratively, as reliable latent
continuity recovery can bring excellent downstream task performance, while task supervision loss
may, in turn, also reciprocate the recovery processes. Take MiTS classification as an example, the
ideally recovered LCVs can prompt learning discriminative representations for classification, while
the class label loss provides additional supervision for learning appropriate recovery functions.

4 Experiments

To verify the effectiveness and versatility of MiTSformer, we extensively experiment on five main-
stream mixed time series analysis tasks, including mixed time series classification, extrinsic regression,
long-term forecasting, imputation, and anomaly detection.

Implementations Table 1 summarizes the experiment benchmarks. For each dataset, we randomly
select half the variables and discretize them as DVs to generate MiTS data. More information about
datasets and experimental platforms, hyperparameters and experimental configurations, and algorithm
implementations can be found in Appendix A.1, A.2,A.3, respectively. The pipelines of different
mixed time series analysis tasks can be found in Appendix A.5∼A.8.

Baselines We extensively compare MiTSformer with the latest and advanced models in the time
series community, including CNN-based models: ModernTCN (2024), TimesNet (2023) and MICN
(2023); Transformer-based models: iTransformer (2024), PatchTST (2023), Crossformer (2023),
FEDformer (2022) and Pyraformer (2022); MLP-based models: LightTS (2023), DLinear (2023) and
FiLM (2022). To guarantee fairness, we keep the original backbone for each method as the feature
extractor, and we adopt universal task-specific heads and loss functions consistently for all methods.

4.1 Main Results on Different Tasks
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Figure 6: Classification Results (Acc ↑)

(1) Mixed Time Series Classification We se-
lect 10 multivariate datasets from the UEA Time
Series Classification Archive [5] and pre-press
them following [40]. As shown in Fig. 6, MiTS-
former achieves the best performance with an
average accuracy of 71.9%, surpassing all pow-
erful baselines. Besides, it can be observed that
frequency-based methods FiLM and FEDformer
show inferior performance, as the introduction
of DVs may make it difficult to estimate the fre-
quency reliably and yield non-negligible errors.
In comparison, MiTSformer adaptively recovers
and aligns the LCVs behind DVs with the guid-
ance of both CVs and class-label supervision,
thereby facilitating high-level representation learning and benefiting the classification tasks.
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Table 2: Imputation Task. The best results are bolded and the second-best results are underlined. The
same goes for Table 3. See Table 14 for full results.

Models MiTSformer
(Ours)

iTrans.
(2024)

M-TCN.
(2024)

TimesNet
(2023)

PatchTST
(2023)

Cross.
(2023)

MICN
(2023)

LightTS
(2023)

Dlinear
(2023)

FiLM
(2022)

FED.
(2022)

Pyra.
(2022)

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTm1 0.156 0.049 0.169 0.057 0.135 0.037 0.139 0.039 0.164 0.057 0.160 0.051 0.160 0.052 0.178 0.064 0.193 0.080 0.194 0.080 0.170 0.060 0.199 0.081

ETTm2 0.116 0.036 0.186 0.080 0.188 0.077 0.170 0.065 0.145 0.055 0.216 0.103 0.245 0.131 0.209 0.095 0.253 0.147 0.258 0.152 0.238 0.123 0.265 0.141

ETTh1 0.223 0.096 0.241 0.116 0.215 0.092 0.237 0.112 0.251 0.129 0.246 0.121 0.234 0.107 0.266 0.145 0.262 0.145 0.268 0.152 0.244 0.112 0.247 0.113

ETTh2 0.186 0.083 0.250 0.134 0.309 0.213 0.319 0.239 0.260 0.148 0.304 0.198 0.318 0.220 0.314 0.209 0.312 0.211 0.342 0.262 0.350 0.258 0.367 0.253

Electric 0.186 0.076 0.212 0.093 0.207 0.088 0.211 0.094 0.203 0.115 0.209 0.097 0.229 0.103 0.223 0.099 0.257 0.130 0.257 0.128 0.260 0.130 0.274 0.150

Weather 0.062 0.031 0.091 0.038 0.081 0.033 0.149 0.065 0.088 0.037 0.115 0.043 0.135 0.055 0.107 0.041 0.121 0.048 0.124 0.184 0.139 0.057 0.100 0.042
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Figure 7: Regression Results (MAE ↓)

(2) Mixed Time Series Extrinsic Regression
We select 10 multivariate datasets from TSER
repository [34] and pre-process them as [34].
As summarized in Fig. 7 (b), MiTSformer out-
performs all the rivals with an average MAE
of 0.534, verifying its capacity to model com-
plex extrinsic regression patterns. Besides, some
transformer-based models, e.g., PatchTST and
Pyraformer, present competitive performance by
learning global dependencies with self-attention.
Notably, Dlinear shows inferior results. This
is probably because Dlinear adopts single-layer
MLP to model temporal dependencies, which
might be suitable for some autoregressive en-
dogenous patterns, but are not applicable for non-
linear exogenous regression relationships and degenerate performance.

(3) Mixed Time Series Anomaly Detection We conduct experiments on five widely-used anomaly
detection benchmarks: SMD [33], MSL [21], SMAP [21], SWaT [29] and PSM [4].

SMD

MSL

SMAP SWaT

PSM

SMD
88.02

85.30

82.69 96.23

95.9076.07

73

66.53 94.99

93.27 

MiTSformer
iTransformer
ModernTCN
TimesNet
PatchTST
Crossformer
MICN
LightTS
Dlinear
FiLM
FEDformer
Pyraformer

Figure 8: Anomaly detection results (F1-score).

For fair comparisons, we adopt the reconstruc-
tion loss for both CVs and DVs to train base
models and use the reconstruction error as the
shared anomaly criterion for all experiments.
Specifically for MiTSformer, no additional task-
orientation loss is added since there are already
reconstruction losses. Fig. 8 presents the per-
formance comparison evaluated by the F1-score
(↑), demonstrating that MiTSformer consistently
achieves state-of-the-art performance on five
benchmarks. Besides, iTrasformer also achieves
great performance by adaptively modeling multi-
variate correlations with self-attentions. In
comparison, MiTSformer not only recovers the
LCVs behind DVs but also comprehensively and
explicitly characterizes the spatial-temporal dependencies within and across DVs and CVs, thereby
equipping meticulous anomaly detection ability.

(4) Mixed Time Series Imputation Following [40], we select datasets of ETT [49], Weather
(Wetterstation) and Electricity (UCI) benchmarks. In practice, imputating the values of CVs is more
important and meaningful than those of DVs. Therefore, we focus on imputing the CVs in each
experiment, while DVs are used as inputs to provide auxiliary information. To compare the model
capacity under different proportions of missing data, we randomly mask the time points in the ratio
of {12.5%, 25%, 37.5%, 50%} in length-96 mixed time series and report the averaged imputation
accuracy of CVs from 4 different mask ratios.
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Table 3: Long Term Forecasting of CVs. “-” denotes out of memory. See Table 16 for full results.

Models MiTSformer
(Ours)

iTrans.
(2024)

M-TCN.
(2024)

TimesNet
(2023)

PatchTST
(2023)

Cross.
(2023)

MICN
(2023)

LightTS
(2023)

Dlinear
(2023)

FiLM
(2022)

FED.
(2022)

Pyra.
(2022)

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTm1 0.376 0.328 0.385 0.340 0.380 0.334 0.403 0.357 0.379 0.330 0.407 0.358 0.385 0.331 0.394 0.348 0.381 0.331 0.397 0.357 0.425 0.371 0.484 0.470

ETTm2 0.365 0.363 0.371 0.373 0.366 0.371 0.376 0.395 0.368 0.364 0.878 1.056 0.528 0.599 0.529 0.578 0.512 0.568 0.376 0.389 0.386 0.385 0.896 1.732

ETTh1 0.414 0.373 0.427 0.393 0.415 0.388 0.446 0.412 0.416 0.381 0.425 0.376 0.448 0.404 0.478 0.465 0.417 0.376 0.443 0.430 0.437 0.390 0.526 0.543

ETTh2 0.430 0.449 0.442 0.472 0.442 0.480 0.453 0.490 0.440 0.464 0.917 1.422 0.692 1.000 0.729 1.063 0.675 0.982 0.450 0.490 0.476 0.508 1.304 2.548

Weather 0.326 0.268 0.334 0.279 0.328 0.269 0.348 0.296 0.332 0.276 0.338 0.257 0.356 0.278 0.354 0.277 0.346 0.274 0.353 0.291 0.386 0.322 0.357 0.274

Exchange 0.445 0.398 0.452 0.412 0.448 0.403 0.503 0.498 0.453 0.417 0.596 0.632 0.412 0.323 0.459 0.402 0.409 0.318 0.449 0.398 0.564 0.599 0.650 0.679

ILI 0.779 1.482 0.995 2.132 0.922 1.957 0.891 2.015 0.973 2.140 1.140 2.962 1.358 2.360 1.734 5.432 1.340 3.197 1.188 2.702 1.267 3.003 1.096 2.747

Electric. 0.260 0.168 0.293 0.207 0.270 0.174 0.288 0.187 0.295 0.207 0.326 0.237 0.295 0.185 0.339 0.240 0.314 0.220 0.316 0.234 0.351 0.248 0.400 0.319

Traffic 0.312 0.499 0.372 0.593 0.366 0.635 0.354 0.803 0.360 0.603 - - 0.355 0.692 0.465 0.824 0.421 0.742 - - 0.416 0.774 0.456 0.945

Due to the missing values, the imputation task requires the model to deeply exploit the underlying
temporal dependencies and spatial correlations from partial observations. According to Table 2,
MiTSformer achieves the best performance on most tasks. Through the recovery of LCVs and
the intra- and inter-variable modality attention mechanisms, MiTSformer can effectively bridge
spatial-temporal information interactions between CVs and DVs. In this way, not only can CVs
exploit useful information for self-imputation by mining temporal and spatial correlation themselves,
but also DVs can provide reliable auxiliary information for more accurate imputation of CVs.

(5) Mixed Time Series Long-term Forecasting We follow the settings of prediction lengths and
benchmarks as [40], including ETT [49], Electricity (UCI), Weather (Wetterstation), Exchange [23]
and ILI (CDC), corresponding to different applications. We focus on forecasting both DVs and CVs.

Since CVs contain more fine-grained information granularity and can more adequately evaluate
the model forecasting performance, we mainly focus on the prediction accuracy of CVs, which are
summarized in Table. 3. As reported, MiTSformer presents the best performance on most tasks
(76 % according to Table 16), surpassing extensive advanced MLP-based, Transformer-based and
CNN-based models. In addition, recent baselines- modernTCN and iTransformer present great
performance due to their delicate design of global temporal receptive fields.
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Figure 9: Visualization of LCV recovery. For each subfigure, the Left plots the observed DVs, and the
Right plots the actual LCVs (red line) and recovered LCVs (black line). The grey rectangular patches
denotes the area where the observed DV is “1”.
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Table 4: Ablation analysis. For anomaly detection tasks, we do not ablate LRec, as it is needed to
support anomaly criterion calculation. The corresponding results are omitted with “ / ”.

Models Components Cls. (Acc.) Long-term-forecasting 96-720 (MAE) Anomaly detection (F1)
LDis LSmooth LRec Cross-Att UCR Avg. ETTm1 ETTm2 ETTh1 ETTh2 Avg. SMD MSL SMAP Avg.

MiTSformer ! ! ! ! 71.9 0.415 0.439 0.442 0.455 0.438 87.84 85.30 96.83 89.99
w/oLDis % ! ! ! 70.1 0.416 0.440 0.446 0.459 0.440 86.56 83.24 95.70 88.50

w/oLSmooth ! % ! ! 70.7 0.416 0.437 0.445 0.463 0.440 87.58 82.41 95.73 88.57
w/oLRec ! ! % ! 69.7 0.463 0.478 0.624 0.509 0.519 / / / /
w/o LCVs % % % ! 69.3 0.501 0.479 0.626 0.509 0.529 / / / /

w/o Cross-Att ! ! ! % 70.2 0.428 0.442 0.451 0.461 0.446 84.92 84.10 95.79 88.27

4.2 Ablation Studies

To further verify the effectiveness of each key design, we conduct ablation experiments on mixed time
series classification, long-term forecasting, and anomaly detection tasks. The results are summarized
in Table 4, where “w/o LCVs” denotes removing LDis, LSmooth, and LRec together, and “w/o
Cross-Att” denotes removing the cross-attention sub-block and adopt self-attention sub-block solely.

Latent Continuity Recovery The three loss terms, LDis, LSmooth, and LRec support the latent
continuity recovery from different perspectives and work collaboratively. As shown in Table 4,
ablating each loss term would lead to performance degradation for different tasks. Remarkably, the
employment of all recovery loss functions in conjunction yields the optimal result.

Attention Backbones The cross-attention block is devised to bridge the information prorogation
among LCVs and CVs by modeling spatial-temporal dependencies across LCVs and CVs, as LCVs
and CVs provide complementary information for analysis tasks. The results in Table 4 also emphasize
the importance of cross-variable-modality dependency modeling for MiTS analysis.

4.3 Visualization and Model Investigations

Visualization of the Recovered LCVs To verify the interpretability of LCV recovery, we provide
visualization plots in Fig. 9. We find that DVs commonly show patterns of “sudden changes” or
“steady states”, which are less informative for analyzing spatial-temporal correlations. Fortunately,
MiTSformer not only recovers their latent fine-grained and informative temporal variation patterns
but also further leverages them for spatial-temporal representation learning, thereby mitigating the
spatial-temporal heterogeneity challenge and achieving superior performance.

Additional Analysis We analyze the model efficiency in the Appendix. B, showing MiTSformer
maintains great performance and efficiency compared with most baselines. In addition, we investigate
hyperparameter sensitivity in the Appendix C. The results demonstrate that (1) MiTSformer is
relatively stable in the selection of odel capacity-related hyper-parameters dmodel and number of
layers L; (2) MiTSformer is quite robust to the weights of loss items (i.e., λ1, λ1, and, λ3), and
moderate weights bring optimal performance.

5 Conclusion and Future Work

This paper focuses on a challenging yet seldomly explored problem in the time series community
and provides a systematic and universal solution for mixed time series analysis. To address the
spatial-temporal heterogeneity problem, we first reveal the LCVs behind DVs and try to recover them
for sufficient and balanced spatial-temporal modeling. Accordingly, MiTSformer is developed as a
task-general mixed time series analysis framework by leveraging the temporal similarities and spatial
interactions between LCVs and CVs. MiTSformer can perform adaptive LCV recovery for DVs via
the adversarial guidance of CVs as well as smooth constraints, and model complete spatial-temporal
dependencies via self- and cross-attention blocks. With extensive empirical evaluations, MiTSformer
shows great practicality, superiority, and versatility in five mainstream mixed time series analysis
tasks. In the future, it is of interest to empower MiTSformer with advanced pre-training techniques
and powerful large language models for broader applications of mixed time series.
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A Implementation Details

A.1 Datasets and Experimental Platforms

Despite being a fundamental issue, modeling mixed time series remains underexplored in academia,
with a lack of specialized benchmark datasets for mixed time series. To meet the tasks for mixed
time series, we employed benchmark time-series datasets and implemented discretization to convert
some CVs into DVs. Our conversion process simulates the generation process of DVs and discretizes
variables while preserving their inherent coupling relationships and properties. We summarized the
dataset descriptions in Table 5. All experiments are repeated three times, implemented in PyTorch 1

and conducted on Linux servers with Intel(R) Xeon(R) Gold 6246 CPUs and NVIDIA 3090 24GB
GPUs. The versions of Python and Pytorch are 3.9.7, and 1.10.0 respectively.

A.2 Hyperparameters and Experimental Configurations

All the baselines that we reproduced are implemented based on their official codes or Time Series
Library (TSlib)2. Since some baseline models are designed for specific analysis tasks, we modify
them to serve different analysis tasks by replacing task heads and loss functions. Specifically, we keep
the original backbone architecture for each method as the feature extractor, and we adopt universal
task-specific heads and loss functions consistently for all methods. The architectures of task heads
and related loss functions will be introduced in the following section.

The hyper-parameter configurations of MiTSformer are summarized in Table 6 and the hyper-
parameter configurations of baseline models are summarized in Table 7. Some hyperparameters,
including batch size, training epochs, dropout rate, and the number of attention heads (transformer-
based models only) are fixed and kept the same for all baseline models and MiTSformer. Moreover,
to compare the upper bound of different models specifically for mixed time series analysis tasks, we
conduct grid searches of model capacity-related hyper-parameters, including number of layers and
dmodel / hidden size and optimization-related hyper-parameter-learning rate. Compared with baseline
models, MiTSformer additionally fine-tuned the weight of smoothness loss weight λ1 to adapt to
different temporal variations of different datasets. The variable modality discrimination loss weight
is fixed at 1.0 and the reconstruction loss weight is fixed at 1.0 for all experiments.

A.3 Algorithm Implementations of MiTSformer

Mixed time series modeling differs significantly from typical time series tasks due to variable
heterogeneity. Thereby, each component in MiTSformer is essential to address it via latent continuity
recovery and alignment. We summarized the model feed-forward, loss-calculation, and parameter-
update procedures of MiTSformer with pseudo-codes, which are presented in Algorithm 1. We
also report the standard deviation of MiTSformer performance with different random seeds in Table
8, which exhibits that the performance of MiTSformer is stable. Here we introduce the detailed
architectures of each module in MiTSformer.

Recovery Network The recovery network, receiving the input of DVs XD with shape
(Batchsize× n× T ) and outputting LCVs XLCV with shape (Batchsize× n× T ), is com-
posed of 3 dilated convolution blocks with residual connections. Specifically, the lth di-
lated convolution block is composed of 2 dilated 1D convolutional layers with kernel_size =
2,hidden_channel = 8,dilation = 2l and GELU activations. Additionally, padding operation
Padding = ((kernel_size− 1)× dilation + 1) //2 is adopted for the convolutional layer to ensure
that the input and output have the same length T , where (kernel_size− 1)×dilation+1 denotes the
receptive field). Finally, we perform z-score normalization for each xLC ∈ R1×T to ensure training
stability as

xLC =
xLC −Mean(xLC)

Std(xLC)
where Mean and Std denote the mean and the standard deviation along the time axis, respectively.

Self-attention and Cross-attention Sub-blocks The self-attention sub-block is composed of vanilla
FullAttention with 8 attention heads and 0.1 dropout rate. The same for the cross-attention sub-block.

1https://pytorch.org/
2https://github.com/thuml/Time-Series-Library
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Table 5: Dataset descriptions. The dataset size is organized in (Train, Validation, Test). “Dim. p”
denotes the total variable dimension and “Dim. n” denotes the discrete variable dimension. Since
current benchmark datasets are time series encompassing only continuous variables, we generate
mixed time series from these datasets by discretizing partial variables. For each dataset, we randomly
select half variables as DVs (n = ⌊0.5p⌋), whose values are first MinMax normalized and then
discretized into the value of 0 or 1 with the threshold 0.5 as int(MinMax(x) > 0.5).

Task Dataset Dim p Dim n Series Length Dataset Size Semantics

Classification
(UEA)

EthanolConcentration 3 1 1751 (261, 0, 263) Alcohol Industry

FaceDetection 144 72 62 (5890, 0, 3524) Face (250Hz)

Handwriting 3 1 152 (150, 0, 850) Handwriting

Heartbeat 61 30 405 (204, 0, 205) Heart Beat

JapaneseVowels 12 6 29 (270, 0, 370) Voice

PEMS-SF 963 481 144 (267, 0, 173) Transportation (Daily)

SelfRegulationSCP1 6 3 896 (268, 0, 293) Health (256Hz)

SelfRegulationSCP2 7 3 1152 (200, 0, 180) Health (256Hz)

SpokenArabicDigits 13 6 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 1 315 (120, 0, 320) Gesture

Extrinsic
Regression

(UCR)

AppliancesEnergy 24 12 144 (96,0,42) Energy Monitoring

HouseholdPower.1 5 2 1440 (746,0,694) Energy Monitoring

HouseholdPower.2 5 2 1440 (746,0,694) Energy Monitoring

BenzeneConcentration 8 4 240 (3433,0,5445) Environment Monitoring

BeijingPM25Quality 9 4 24 (12432,0,5100) Environment Monitoring

BeijingPM10Quality 9 4 24 (12432,0,5100) Environment Monitoring

LiveFuelMoisture. 7 3 365 (3493,0,1510 ) Environment Monitoring

AustraliaRainfall 3 1 24 (112186,0,48081) Environment Monitoring

PPGDalia 4 2 256 (43215,0,21482) Health Monitoring

IEEEPPG 5 2 1000 (1768,0,1328) Health Monitoring

Imputation

ETTm1,ETTm2 7 3 96 (34465, 11521, 11521) Electricity (15 mins)

ETTh1,ETTh2 7 6 96 (8545, 2881, 2881) Electricity (15 mins)

Electricity 321 160 96 (18317, 2633, 5261) Electricity (Hourly)

Weather 21 10 96 (36792, 5271, 10540) Weather (10 mins)

Anomaly
Detection

SMD 38 19 100 (566724, 141681, 708420) Server Machine

MSL 55 27 100 (44653, 11664, 73729) Spacecraft

SMAP 25 12 100 (108146, 27037, 427617) Spacecraft

SWaT 51 25 100 (396000, 99000, 449919) Infrastructure

PSM 25 12 100 (105984, 26497, 87841) Server Machine

Long-term
Forecasting

ETTm1,ETTm2 7 3 {96;96,192,336,720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1,ETTh2 7 6 {96;96,192,336,720} (8545, 2881, 2881) Electricity (15 mins)

Electricity 321 160 {96;96,192,336,720} (18317, 2633, 5261) Electricity (Hourly)

Traffic 862 431 {96;96,192,336,720} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 10 {96;96,192,336,720} (36792, 5271, 10540) Weather (10 mins)

Exchange 8 4 {96;96,192,336,720} (5120, 665, 1422) Exchange rate (Daily)

ILI 7 3 {24;24,36,48,60} (617, 74, 170) Illness (Weekly)
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Table 6: Experiment configuration of MiTSformer. All the experiments use the ADAM optimizer
with the default hyperparameter configuration for (β1, β2) as (0.9, 0.999) with proper early stopping,
and adopt a dropout rate of 0.1. λ1 denotes the weight of smoothness loss, λ2 denotes the weight of
reconstruction loss, and λ3 denotes the weight of variable modality discrimination loss. LR∗ denotes
the initial learning rate. The number of attention heads is set to 8 for all experiments.

Task
Model Hyperparameters Training Process

Layers dmodel λ1 λ2 λ3 LR∗ Batch size Epochs

Classification {1,2} {16,32,64,128,256} {0.1,0.3,0.5} 1 1 {10−3, 5 ∗ 10−4, 10−4} 64/16† 100

Extrinsic Regression {1,2} {16,32,64,128,256} {0.1,0.3,0.5} 1 1 {10−3, 5 ∗ 10−4, 10−4} 64 100

Imputation {1,2} {64,128,256} {0.3,0.5} 1 1 {10−3, 10−4} 32 10

Anomaly Detection {1,2} {64,128,256} {0.3,0.5} 1 1 {10−3, 10−4} 32 10

Long-term Forecasting {1,2} {64,128,256} {0.3,0.5} 1 1 {10−3, 10−4} 32 10
†We set the batch size to 16 for the PEMS-SF dataset due to its high dimensionality. We set the batch size to 64
for other classification datasets. The same for Table .7

Table 7: Experiment configuration of baseline models. All the experiments use the ADAM optimizer
with the default hyperparameter configuration for (β1, β2) as (0.9, 0.999) with proper early stopping,
and adopt a dropout rate of 0.1. LR∗ denotes the initial learning rate. For Transformer-based models,
the number of attention heads is set to 8 for all experiments.

Task
Model Hyperparameters Training Process

Layers dmodel / hidden size LR∗ Batch size Epochs

Classification {1,2} {16,32,64,128,256} {10−3, 5 ∗ 10−4, 10−4} 64/16† 100

Extrinsic Regression {1,2} {16,32,64,128,256} {10−3, 5 ∗ 10−4, 10−4} 64 100

Imputation {1,2} {64,128,256} {10−3, 10−4} 32 10

Anomaly Detection {1,2} {64,128,256} {10−3, 10−4} 32 10

Long-term Forecasting {1,2} {64,128,256} {10−3, 10−4} 32 10

Variable Modality Discriminator The variable modality discriminator, receiving the input
variate embeddings with shape (Batchsize× p× dmodel) and outputting the variable modal-
ity class with shape (Batchsize× p× 2), is composed of 3-layer MLP with structure of
{d_model, 4 ∗ d_model, 4 ∗ d_model, 2}. Relu activation and batch normalization are also adopted.

Reconstruction Decoders The discrete variable reconstruction decoder, receiving the
input of LCV embeddings (Batchsize× n× dmodel) and outputting the reconstructed
DVs (Batchsize× n× T × 2), is composed of a linear layer with input_size =
d_model, output_size = 2 ∗ T (the discrete variable reconstruction can be treated as a binary classi-
fication task). The continuous variable reconstruction decoder, receiving the input of CV embeddings
(Batchsize× (p− n)× dmodel) and outputting the reconstructed CVs (Batchsize× (p− n)× T ),
is composed of a linear layer with input_size = d_model, output_size = T .

In the following, we will introduce the architectures of task heads and loss functions for different
downstream tasks.

A.4 Pipeline for Classification

Classification is a long-standing task in the time series community and is widely used to evaluate the
high-level representation capacity of models. The overall pipeline of MiTSformer-based classification
is depicted in Fig. 10. For the classification task, both token embeddings of LCVs and CVs provide
complementary information. Thereby, we concatenate the embeddings of LCVs and CVs. The fused
embeddings are flattened and fed into a classifier network to predict the class labels. For MiTSformer
and baseline models, the classifier is composed of a single-layer MLP with GELU activation and
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Algorithm 1 The training process of MiTSformer

Input: Input mixed time series with continuous variables XC = {x1, x2, ..., xp−n} ∈ R(p−n)×T ,
and discrete variables XD = {x1, x2, ..., xn} ∈n×T , number of attention blocks L, loss weights
λ1, λ2 and λ3.

Output: Optimized model parameters of MiTSformer.
1: Initialize the parameters of MiTSformer;
2: while not converge do
3: (1) Feedforward Computation:
4: ▷ Latent Continuity Recovery for DVs
5: xLC ← Rec-Net(xD);
6: ▷ Variate-wise Token Embedding of LCVs and CVs
7: zLC

0 ← EmbedLCV(x
LC)

8: zC0 ← EmbedCV(x
C)

9: ▷ Inter- and Intra-Variable-Modality Spatial-Temporal Modeling
10: for l = [0, 1, ..., L− 1] do
11: ▷ Intra-Variable-Modality Self-Attention Sub-Block
12: ẑC

l ← LN
(
zC
l + Self-Attn

([
QC

l ,K
C
l ,V

C
l

]))
13: ẑC

l ← LN
(
ẑC
l + FFN

(
ẑC
l

))
14: ẑLC

l ← LN
(
zLC
l + Self-Attn

([
QLC

l ,KLC
l ,V LC

l

]))
15: ẑLC

l ← LN
(
ẑLC
l + FFN

(
ẑLC
l

))
16: ▷ Inter-Variable-Modality Cross-Attention Sub-Block
17: zC

l+1 ← LN
(
ẑC
l +Cross-Attn

([
QC

l ,K
LC
l ,V LC

l

]))
18: zC

l+1 ← LN
(
zC
l+1 + FFN

(
zC
l+1

))
19: zLC

l+1 ← LN
(
zLC
l+1 +Cross-Attn

([
QLC

l ,KC
l ,V

C
l

]))
20: zLC

l+1 ← LN
(
zLC
l+1 + FFN

(
zLC
l+1

))
21: end for
22: ▷ Task Prediction (if needed)
23: ŷ ← Task-Heads(zLC

L , zC
L )

24: (2) Loss Calculation:
25: ▷ Task Supervision Loss (if needed)
26: LTask ← Task-Criterion(ŷ, y).
27: ▷Smoothness Constraint Loss
28: Lsmooth =

∥∥Abs
(
SxD

)
⊗
(
SxLC

)∥∥2
2
.

29: ▷Reconstruction Loss
30: LRec =

∑p−n
i=1 MSE(Rec-Decoder

(
zC
L,i

)
, xC

i ) +
∑n

i=1 CE(Rec-Decoder
(
zLC
L,i

)
, xD

i ).
31: ▷Variable Modality Discrimination Loss (via Gradient Reverse Layer)
32: LDis = E

[
log

(
GRL(Dis

(
zC

))
)
]
+ E

[
log

(
1−GRL(Dis

(
zLC

))
)
]

33: ▷Overall Loss
34: LAll = LTask + λ1LSmooth + λ2LRec + λ3LDis

35: (3) Parameter Update:
36: Update the parameters of models using Adam optimizer to minimize Lall;
37: end while
38: return Optimized model parameters.
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Table 8: Robustness of MiTSformer performance on forecasting datasets. Averaged MAE, MSE, and
their standard deviations based on different random seeds are reported.

Dataset ETTh1 ETTm1 ETTm2
Horizon MAE MSE MAE MSE MAE MSE

96 0.381±0.001 0.323±0.000 0.342±0.001 0.271±0.000 0.293±0.002 0.231±0.003
192 0.408±0.000 0.369±0.000 0.363±0.003 0.31±0.002 0.344±0.001 0.324±0.002
336 0.424±0.002 0.402±0.002 0.382±0.002 0.338±0.003 0.383±0.002 0.395±0.001
720 0.442±0.004 0.398±0.002 0.415±0.003 0.391±0.003 0.439±0.003 0.503±0.002

Dataset Electricity Weather Traffic
Horizon MAE MSE MAE MSE MAE MSE

96 0.235±0.002 0.143±0.001 0.231±0.000 0.147±0.001 0.292±0.002 0.459±0.002
192 0.250±0.000 0.159±0.002 0.294±0.000 0.216±0.001 0.310±0.003 0.494±0.002
336 0.265±0.002 0.171±0.001 0.353±0.001 0.298±0.001 0.316±0.003 0.508±0.003
720 0.291±0.003 0.198±0.002 0.426±0.002 0.412±0.001 0.330±0.005 0.534±0.003

a dropout layer with a dropout rate of 0.1. The task supervision loss is Cross-Entropy Loss. The
classification accuracy is used as the performance evaluation metric.

Concat

Classifier

Fused Embeddings

Flatten Output

Reconstruct
Decoder 

Reconstruction
Decoder

GeLU
Act.

Drop Out

Linear

Observed DVs

Observed CVs

Variate Tokens of LCVs

Variate Tokens of CVs

MiTSformer
Backbone

Figure 10: Overall pipeline of MiTSformer-based classification. The embeddings of LCVs and CVs
are concatenated, flattened, and fed into the classifier for classification.

A.5 Pipeline for Extrinsic Regression

Closely related to classification, time series extrinsic regression aims to learn the relationship between
a time series and a continuous scalar variable. The overall pipeline of MiTSformer-based extrinsic
regression is depicted in Fig. 11. Similar to classification, both token embeddings of LCVs and CVs
provide complementary information for regression tasks. Thereby, we concatenate the embeddings of
LCVs and CVs. The fused embeddings are flattened and fed into a regressor network to predict the
numerical values. For MiTSformer and baseline models, the regressor is composed of a single-layer
MLP with GELU activation and a dropout layer with a dropout rate of 0.1. The task supervision loss
is MSE Loss. We adopt the mean absolute error (RMAE) and the root mean square error (RMSE) as
the performance evaluation metrics as

RMSE =

√√√√ 1

Ny

Ny∑
i=1

(ŷi − yi)
2 (7)

MAE =
1

Ny

Ny∑
i=1

|ŷi − yi| (8)

where Ny denotes the number of test samples, ŷi denotes the predicted labels and yi denotes the
ground-truth label.
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Figure 11: Overall pipeline of MiTSformer-based extrinsic regression. The embeddings of LCVs and
CVs are concatenated, flattened, and fed into the regressor for regression.

A.6 Pipeline for Imputation

The imputation techniques are developed to impute the missing values based on the partially observed
time points. For the imputation task, we mainly focus on imputating the missing value of CVs, while
DVs are adopted as input to provide auxiliary information. The overall pipeline of MiTSformer-based
imputation is depicted in Fig. 11. For MiTSformer, the task head is an imputation decoder composed
of a linear layer, which performs variate-wise imputation for each CV. For baseline methods that
adopt the channel-independent strategy, we adopt the same task head as MiTSformer. For baseline
methods that adopt the channel-mixing strategy, we adopt a linear layer with input size of dmodel and
output size of continuous variable dimension p− n to reconstruct the CVs. We use a mask matrix
M ∈ RT×(p−n) to represent the missing values in input CVs. The state of M denotes whether
the corresponding element value of CVs is missing (denoted by 0) or not (denoted by 1). The task
supervision loss is the MSE loss calculated on the masked observations. Specifically for MiTSformer,
the reconstruction loss of CVs is calculated on unmasked observations. We adopt the mean absolute
error (MAE) and the root mean square error (RMSE) as the performance evaluation metrics that are
computed on masked elements.

Imputation
Decoder

Linear

Reconstruct
Decoder 

Reconstruction
Decoder

Observed DVs

Observed CVs

Variate Tokens of LCVs

Variate Tokens of CVs
Imputed CVs

MiTSformer
Backbone

Figure 12: Overall pipeline of MiTSformer-based imputation. The embeddings of CVs are individu-
ally fed into the imputation decoder to impute missing values of CVs.

A.7 Pipeline for Long-term Forecasting

Forecasting is a fundamental problem in the time series community, and long-term forecasting is a
more practical and challenging task. The long-term forecasting task for MiTS includes the prediction
of both DVs and CVs. The overall pipeline of MiTSformer-based long-term forecasting is depicted
in Fig. 13. For MiTSformer, the task head is composed of linear layer-based DVforecastor and
CVforecaster, which perform variate-wise forecasting for each DV and each CV, respectively. For
baseline models, we also adopt the linear layer-based forecaster to forecast the DVs with the extracted
temporal features. We adopt the mean absolute error (MAE) and the root mean square error (RMSE)
as the forecasting performance evaluation metrics.
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Figure 13: Overall pipeline of MiTSformer-based long-term forecasting. The embeddings of LCVs
are individually fed into the DVForecaster to predict the future value of corresponding DVs, and
the embeddings of CVs are individually fed into the DVForecaster to predict the future value of
corresponding CVs.

A.8 Pipeline for Anomaly Detection

The anomaly detection task is achieved by self-supervised autoencoding with the reconstruction of
both CVs and DVs. The reconstruction errors of DVs and DVs are utilized as anomaly criteria. In our
experiment, we estimate the anomaly thresholds respectively for DVs and CVs. For a test sample, the
reconstruction error of DVs exceeding the threshold or the reconstruction error of DVs exceeding the
threshold is considered an anomaly. The overall pipeline of MiTSformer-based anomaly detection is
depicted in Fig. 13. Since there already exist reconstruction decoders and corresponding losses, no
task head and additional losses are devised. For baseline models, we also adopt the linear layer-based
reconstruct decoders to reconstruct the DVs and linear layer-based reconstruct decoders to reconstruct
the CVs with the extracted temporal features. MSE loss is used for reconstruction of CVs and
CrossEntropy loss is used for reconstruction of DVs. We adopt the Precision, Recall and F1-Socre as
matrices.

Reconstruct
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Reconstruction
Decoder

Observed DVs

Observed CVs

Variate Tokens of LCVs

Variate Tokens of CVs

MiTSformer
Backbone

Figure 14: Overall pipeline of MiTSformer-based anomaly detection. The anomaly detection tasks
only rely on self-reconstruction and thus no task head is attached.

B Model Efficiency Analysis

Complexity of MiTSformer Considering the self-attention and cross-attention sub-blocks, the
complexity of MiTSformer can be derived as

O
(
n2

)
+O

(
(p− n)

2
)

︸ ︷︷ ︸
self-attention

+O (n (p− n)) +O ((p− n)n)︸ ︷︷ ︸
cross-attention

(9)

where n denotes the number of DVs and p− n denotes the number of CVs, p is the number of total
variables. In our experimental setting, we keep n = ⌊0.5p⌋. Thereby, the complexity of MiTSformer
is quadratic to the number of DVs as O

(
n2

)
.
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Figure 15: Model efficiency analysis. Experiments are carried out on ETTh1 and Electricity datasets
with “input-output” setting of “96-720”. For each subfigure, dots with different colors represent
different methods, and the size of the circle represents the magnitude of the memory footprint. The
horizontal axis represents the training time (seconds) per iter, and the vertical axis represents the
forecasting accuracy (MAE).

Model Efficiency Comparison We comprehensively compare the model performance, training speed,
and memory footprint of MiTSformer and baseline models. The results are with the optimal model
configurations as reported in Table 6 and 7. Two representative long-term forecasting datasets ETTh1
(3DVs, 4CVs) and Electricity (160DVs, 161CVs) with input-96 and output-720 settings are adopted
for efficiency comparison. The results are depicted in Fig. 15.

In general, MiTSformer maintains great performance and efficiency compared with most baselines in
datasets with a relatively small number of variables (ETTh1). When encountering datasets with a
relatively large number of variables (Electricity), MiTSformer occupies a relatively large memory
footprint, specifically compared with some advanced efficient models such as modern TCN and
DLinear. However, the training time of MiTSformer is still efficient.

C Hyper-parameter Sensitivity Analysis

We evaluate the hyper-parameter sensitivity of MiTSformer with respect to the following two aspects:

Sensitivity of Model Capacity The hidden dimension dmodel and number of layers L influence the
model capacity of MiTSformer. We evaluate the sensitivity of these two hyper-parameters on typical
long-term forecasting datasets, including ETTh1, ETTh2, and Weather with four different prediction
horizon settings. The results are presented in Fig. 16. We can find that MiTSformer is relatively
stable in the selection of dmodel and L, particularly for ETTh2 and Weather datasets. Specifically for
the ETTh1 dataset, the model capacities are not essentially favored to be as large as possible.

Sensitivity of Loss Functions We further investigate the effects of loss items, including smoothness
loss weight λ1, reconstruction loss weight λ2, and variable modality discrimination loss weight λ3 on
classification datasets (JapaneseVowels, SpokenArabicDigits, and SelfRegulationSCP1). The results
are presented in Fig. 17. In general, we can observe that MiTSformer is quite robust to the weights of
loss items, and moderate weights bring optimal performance. For example, λ1 controls the magnitude
of the smoothing constraints for latent continuity recovery. Too small λ1 would make the smoothness
invalid while too large λ1 may lead to over-smoothing problems. Therefore, a moderate setting of λ1

is favored for MiTSforemer.

D Limitations and Future Work

Handling Discrete Variables with Natural Sudden Changes The smoothness loss in our method is
suitable for DVs with sudden changes that are caused by inherent smooth variations. However, it may
not adequately account for DVs with inherent sudden changes that are essential characteristics of
the dataset. For such cases, we can adjust the coefficient λ1 with a relatively small value, or we can
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Figure 16: Sensitivity analysis of model capacity-related hyper-parameters dmodel and number of
layers L. Experiments are carried out on typical long-term forecasting datasets, including ETTh1,
ETTh2, and Weather datasets. “96-96/192/336/720” denotes different forecasting length settings
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Figure 17: Sensitivity analysis of loss items, including smoothness loss weight λ1, reconstruction
loss weight λ2 and variable modality discrimination loss weight λ3. Experiments are carried out on
classification datasets JapaneseVowels, SpokenArabicDigits, and SelfRegulationSCP1.

further leverage less restrictive constraints such as K-Lipschitz continuity to determine the proper
smoothness level.
Modeling Generalized Mixed Time Series MiTSformer is based on the assumption that the observed
discrete variables are derived from latent continuous variables, which can be guaranteed for integer
discrete variables whose discrete states represent the magnitude of the numerical value. However, a
limitation of MiTSformer is that it can not be directly applied to categorical discrete variables whose
discrete states represent different and mutually exclusive class labels (e.g., color and gender). It is
noted that integer discrete variables are more frequently encountered in real-world time series data,
specifically in the fields of medical analysis, finance, and industrial processes. In contrast, categorical
discrete variables are often recorded as independent samples that are not presented in time series
forms. In the future, it is of interest to exploit the analysis of generalized variables (including both
integer discrete variables and categorical discrete variables) by leveraging advanced cross-modality
modeling and fusion technologies.

Incorperating Powerful LLMs and Pre-training Techniques Recently, large language models, such
as the Generative Pre-trained Transformer (GPT), have shown impressive performance on various
applications and attracted numerous research interests. It is intriguing to explore the potential of
GPT-type architectures for mixed time series analysis tasks with proper inductive biases and elaborate
prompt strategies. Additionally, by utilizing efficient pre-training techniques, we can enhance the
scalability of MiTSformer in large-scale or real-time real-world applications. Meanwhile, the mixed
time series analysis on few-shot and zero-shot settings can also be a promising research direction.

E Additional Experiments and Discussions

E.1 Comparison with Mixed Naive Bayes and Variational Inference-based methods

To deal with mixed variables, naive Bayes (NB)-based models [38] and variational inference (VI)-
based models [12] are proposed to match the distributions of continuous variables (CVs) and discrete
variables (DVs) with different distribution priors for industrial process data analysis. Essentially,
mixed NB and VI methods are typically designed for tabular data. They struggle with time series
and often rely on certain assumptions like conditional independence, limiting their ability to model
the correlations between DVs and CVs. In contrast, MiTSformer leverages temporal adjacencies
to achieve latent continuity recovery, making it capable of handling time series data and effectively
capturing inherent nonlinear correlations within MiTS. Empirically, we compare MiTSformer against
typical mixed NB-based models HVM [1] and VI-based methods VAMDA [2] on mixed time series
classification datasets and summarized the results in Table 9, showing MiTSformer consistently
outperforms HVM and VAMDA.

E.2 Investigation of Non-binary Discrete Variable

In our main experimental setting, we chose the binary DVs as they are the most challenging and
commonly encountered in the real world. Actually, DVs can take on multiple states (⩾ 2) that reflect
the magnitude and can be directly input into the recovery network to obtain LCVs outputs. It is noted
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Table 9: Compared to mixed NB- and VI-based methods. Accuracy(%) scores are reported. The best
results are bolded.

Datasets MiTSformer HVM VAMDA
Handwriting 22.6 8.1 10.8

Heartbeat 74.6 57.7 63.4
JapaneseVowels 94.6 86.4 78.4

SelfRegulationSCP1 91.1 85.3 88.7
SelfRegulationSCP2 60.0 51.1 54.4
SpokenArabicDigits 98.5 90.2 90.8

Table 10: Performance of mixed time series classification under the different discrete states of DVs,
i.e., NDVs. Accuracy (%) scores are reported. The best results are bolded.

Datasets NDVs = 2 NDVs = 4

EthanolConcentration 30.4 30.4
FaceDetection 67.9 68.3
Handwriting 22.6 23.1

Heartbeat 74.6 74.1
JapaneseVowels 94.6 95.9

PEMS-SF 93.1 92.5
SelfRegulationSCP1 91.1 92.8
SelfRegulationSCP2 60 61.3
SpokenArabicDigits 98.5 98.7

UWaveGestureLibrary 86.3 85.9
Average 71.9 72.3

that more states in a DV imply richer information granularity. Also, we conducted experiments on
mixed time series classification and anomaly detection datasets with various numbers of discrete
states in Tabel 10 and Table 11, respectively. In general, the results shows that as the number of states
increases, performance improves due to the richer information.

Table 11: Performance of mixed time series anomaly detection under the different discrete states of
DVs, i.e., NDVs.The best results are bolded.

Datasets Metric NDVs = 2 NDVs = 4

SMD
Precision 88.92 88.37

Recall 86.78 87.92
F1-score 87.84 88.14

MSL
Precision 90.66 90.81

Recall 80.54 81.22
F1-score 85.30 85.75

SMAP
Precision 96.71 96.82

Recall 72.21 75.26
F1-score 82.69 84.69

SWaT
Precision 96.31 94.33

Recall 95.98 94.82
F1-score 96.15 94.57

PSM
Precision 97.88 98.41

Recall 94.85 95.62
F1-score 96.83 96.99
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Table 12: Full classification results. We report the classification accuracy (%) as the result.

Datasets/Models MiTS.
(Ours)

iTrans.
(2024)

M-TCN.
(2024)

Times.
(2023)

Patch.
(2023)

Cross.
(2023)

MICN
(2023)

Light.
(2023)

Dlinear
(2023)

FiLM
(2022)

FED.
(2022)

Pyra.
(2022)

EthanolConcentration 30.4 26.6 28.5 30.0 25.9 31.9 28.9 30.4 29.3 27.8 27.0 24.8

FaceDetection 67.9 67.9 66.1 67.9 67.5 67.3 65.2 67.9 68.0 65.9 67.4 67.4

Handwriting 22.6 17.8 18.2 15.7 13.9 15.9 6.4 8.1 11.5 8.2 14.2 17.8

Heartbeat 74.6 66.8 76.6 73.7 72.2 72.2 72.7 72.2 74.1 72.2 73.7 74.1

JapaneseVowels 94.6 93.0 94.3 93.5 90.3 92.4 79.2 92.4 87.0 77.0 94.6 93.0

PEMS-SF 93.1 87.9 84.4 86.7 83.2 83.2 85.5 85.0 86.7 85.7 85.5 84.4

SelfRegulationSCP1 91.1 87.4 92.1 89.1 86.0 89.4 89.1 90.4 89.8 84.9 73.7 89.8

SelfRegulationSCP2 60.0 58.3 57.8 56.1 56.1 57.2 56.7 56.1 57.2 55.6 55.6 54.0

SpokenArabicDigits 98.5 98.4 98.1 98.7 98.0 97.7 97.7 97.8 96.1 97.3 98.7 98.9

UWaveGestureLibrary 86.3 84.4 84.7 84.7 83.4 82.5 82.5 81.9 80.9 74.7 57.8 84.7

Average 71.9 68.9 70.1 69.6 67.6 69.0 66.4 68.2 68.1 64.9 64.8 68.9

Table 13: Full extrinsic regression Results. We report the MAE and RMSE as the result.
Models MiTSformer

(Ours)
iTransformer

(2024)
modernTCN

(2024)
TimesNet

(2023)
PatchTST

(2023)
Crossformer

(2023)
MICN
(2023)

LightTS
(2023)

Dlinear
(2023)

FiLM
(2022)

FEDformer
(2022)

Pyraformer
(2022)

Metric MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE MSE MAE RMSE

Appli. 0.582 0.730 0.634 0.913 0.675 0.851 0.730 0.915 0.696 0.888 0.744 0.906 0.665 0.847 0.723 0.917 0.748 0.936 0.733 0.961 0.763 0.961 0.705 0.888

House.1 0.443 0.610 0.451 0.610 0.467 0.627 0.437 0.589 0.409 0.549 0.410 0.547 0.449 0.598 0.451 0.613 0.529 0.706 0.491 0.654 0.601 0.806 0.489 0.713

House.2 0.670 0.911 0.692 0.904 0.673 0.919 0.698 0.947 0.731 0.980 0.648 0.866 0.690 0.925 0.697 0.931 0.658 0.897 0.704 0.946 0.676 0.869 0.711 0.992

Benze. 0.395 0.560 0.400 0.565 0.387 0.526 0.418 0.581 0.417 0.576 0.418 0.586 0.425 0.577 0.413 0.546 0.427 0.594 0.562 0.762 0.455 0.616 0.428 0.585

BJ.PM25 0.536 0.790 0.584 0.843 0.482 0.738 0.666 0.929 0.560 0.814 0.470 0.728 0.485 0.754 0.471 0.722 0.535 0.815 0.500 0.748 0.457 0.715 0.454 0.708

BJ.PM10 0.562 0.861 0.560 0.844 0.557 0.835 0.513 0.815 0.569 0.866 0.577 0.873 0.574 0.857 0.548 0.849 0.564 0.881 0.588 0.915 0.523 0.820 0.525 0.806

Live. 0.751 1.002 0.770 1.028 0.762 1.046 0.792 1.058 0.758 1.009 0.759 1.003 0.813 1.043 0.763 1.029 0.760 1.014 0.751 1.008 0.768 1.012 0.753 1.015

Austra. 0.253 0.967 0.283 0.966 0.262 0.966 0.278 0.966 0.260 0.971 0.279 0.971 0.275 0.976 0.263 0.961 0.276 0.977 0.281 0.968 0.254 0.963 0.261 0.961

PPGD. 0.382 0.596 0.501 0.667 0.391 0.549 0.421 0.592 0.426 0.594 0.443 0.609 0.434 0.584 0.413 0.636 0.705 0.912 0.479 0.651 0.431 0.595 0.388 0.550

IEEE. 0.766 0.943 0.884 1.017 0.872 1.120 0.947 1.114 0.749 0.953 0.936 1.156 0.865 1.061 0.830 1.055 0.923 1.094 0.812 1.023 0.763 0.933 0.892 1.052

Average 0.534 0.797 0.576 0.836 0.553 0.818 0.590 0.851 0.558 0.820 0.568 0.825 0.568 0.822 0.557 0.826 0.613 0.883 0.590 0.864 0.569 0.829 0.561 0.827

Kindly note: For dataset abbreviations,“Appli.” denotes “AppliancesEnergy”; “House.1” denotes “Household-
PowerConsumption1”; “House.1” denotes “HouseholdPowerConsumption2”; “Benze.” denotes “BenzeneCon-
centration”; “BJ.PM25 ” denotes “BeijingPM25Quality”; “BJ.PM10 ” denotes “BeijingPM10Quality”; “Live.”
denotes “LiveFuelMoistureContent”; “Austra.” denotes “AustraliaRainfall”; “PPGD.” denotes “PPGDalia”; and
“IEEE.” denotes “IEEEPPG”.

F Full Experimental Results

The full results of all experiments are presented in the following: classification in Table 12, extrinsic
regression in Table 13, imputation in Table 14, anomaly detection in Table 15. Besides, long-term
forecasting results of CVs are presented in Table 16 and those of DVs are presented in 17.
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Table 14: Full imputation results. We randomly mask 12.5%, 25%, 37.5% and 50% time points to
compare the model performance under different missing degrees.

Models MiTSformer
(Ours)

iTransformer
(2024)

M-TCN
(2024)

TimesNet
(2023)

PatchTST
(2023)

Crossformer
(2023)

MICN
(2023)

LightTS
(2023)

Dlinear
(2023)

FiLM
(2022)

FEDformer
(2022)

Pyraformer
(2022)

M-Ratio MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
m

1

12.5% 0.143 0.042 0.149 0.046 0.123 0.031 0.119 0.029 0.151 0.048 0.150 0.045 0.137 0.038 0.156 0.050 0.159 0.053 0.161 0.054 0.144 0.046 0.178 0.063

25% 0.152 0.047 0.162 0.053 0.130 0.034 0.131 0.035 0.159 0.053 0.155 0.048 0.156 0.049 0.172 0.058 0.182 0.069 0.183 0.070 0.161 0.055 0.192 0.080

37.5% 0.160 0.051 0.175 0.060 0.138 0.038 0.140 0.040 0.167 0.058 0.162 0.051 0.169 0.057 0.185 0.068 0.203 0.087 0.204 0.087 0.172 0.059 0.204 0.085

50% 0.170 0.057 0.190 0.070 0.149 0.043 0.164 0.052 0.180 0.067 0.172 0.058 0.178 0.065 0.200 0.079 0.226 0.110 0.227 0.110 0.202 0.079 0.222 0.096

Avg. 0.156 0.049 0.169 0.057 0.135 0.037 0.139 0.039 0.164 0.057 0.160 0.051 0.160 0.052 0.178 0.064 0.193 0.080 0.194 0.080 0.170 0.060 0.199 0.081

E
T

T
m

2

12.5% 0.104 0.030 0.163 0.062 0.169 0.064 0.134 0.040 0.132 0.046 0.194 0.080 0.174 0.066 0.197 0.087 0.196 0.086 0.211 0.100 0.178 0.065 0.234 0.105

25% 0.112 0.034 0.182 0.076 0.178 0.068 0.159 0.055 0.138 0.050 0.211 0.091 0.224 0.104 0.205 0.093 0.245 0.135 0.246 0.136 0.211 0.092 0.246 0.121

37.5% 0.120 0.038 0.195 0.087 0.193 0.079 0.180 0.072 0.147 0.056 0.225 0.113 0.268 0.151 0.213 0.098 0.272 0.165 0.274 0.169 0.258 0.140 0.279 0.159

50% 0.128 0.043 0.205 0.096 0.212 0.095 0.205 0.092 0.162 0.066 0.232 0.128 0.313 0.203 0.219 0.102 0.300 0.200 0.302 0.203 0.303 0.193 0.302 0.179

Avg. 0.116 0.036 0.186 0.080 0.188 0.077 0.170 0.065 0.145 0.055 0.216 0.103 0.245 0.131 0.209 0.095 0.253 0.147 0.258 0.152 0.238 0.123 0.265 0.141

E
T

T
h1

12.5% 0.203 0.080 0.213 0.091 0.190 0.070 0.201 0.078 0.221 0.100 0.225 0.104 0.196 .077 0.239 0.114 0.223 0.103 0.231 0.109 .201 0.075 0.214 0.085

25% 0.217 0.091 0.232 0.108 0.204 0.077 0.222 0.097 0.241 0.118 0.240 0.116 0.221 0.095 0.254 0.131 0.250 0.130 0.256 0.135 0.226 0.095 0.227 0.095

37.5% 0.230 0.100 0.250 0.124 0.223 0.093 0.247 0.119 0.259 0.136 0.251 0.126 0.247 0.115 0.274 0.155 0.275 0.156 0.279 0.165 0.257 0.122 0.254 0.118

50% 0.243 0.111 0.269 0.142 0.244 0.126 0.279 0.152 0.281 0.163 0.266 0.139 0.272 0.139 0.296 0.181 0.300 0.192 0.304 0.198 0.292 0.157 0.291 0.152

Avg. 0.223 0.096 0.241 0.116 0.215 0.092 0.237 0.112 0.251 0.129 0.246 0.121 0.234 0.107 0.266 0.145 0.262 0.145 0.268 0.152 0.244 0.112 0.247 0.113

E
T

T
h2

12.5% 0.175 0.073 0.224 0.109 0.259 0.148 0.234 0.120 0.237 0.122 0.277 0.163 0.246 0.129 0.290 0.180 0.255 0.140 0.271 0.163 0.279 0.158 0.328 0.195

25% 0.182 0.079 0.242 0.125 0.293 0.186 0.300 0.201 0.253 0.140 0.303 0.195 0.286 0.170 0.308 0.202 0.284 0.168 0.317 0.220 0.325 0.209 0.342 0.226

37.5% 0.189 0.085 0.258 0.141 0.325 0.230 0.332 0.243 0.268 0.158 0.311 0.206 0.338 0.239 0.322 0.220 0.340 0.246 0.365 0.291 0.370 0.276 0.383 0.269

50% 0.199 0.093 0.276 0.160 0.360 0.287 0.408 0.390 0.282 0.173 0.325 0.226 0.403 0.343 0.335 0.235 0.368 0.289 0.413 0.372 0.424 0.390 0.415 0.320

Avg. 0.186 0.083 0.250 0.134 0.309 0.213 0.319 0.239 0.260 0.148 0.304 0.198 0.318 0.220 0.314 0.209 0.312 0.211 0.342 0.262 0.350 0.258 0.367 0.253

E
le

ct
ri

ci
ty

12.5% 0.154 0.055 0.184 0.071 0.178 0.065 0.189 0.075 0.180 0.067 0.181 0.066 0.198 0.077 0.191 0.075 0.206 0.086 0.206 0.085 0.221 0.093 0.259 0.130

25% 0.177 0.069 0.204 0.086 0.200 0.082 0.204 0.087 0.194 0.079 0.193 0.075 0.220 0.093 0.214 0.091 0.243 0.115 0.243 0.115 0.250 0.117 0.271 0.143

37.5% 0.195 0.082 0.221 0.099 0.214 0.093 0.216 0.099 0.207 0.091 0.205 0.117 0.240 0.111 0.233 0.106 0.273 0.144 0.274 0.134 0.276 0.142 0.279 0.157

50% 0.216 0.097 0.239 0.114 0.236 0.113 0.233 0.115 0.231 0.222 0.257 0.131 0.259 0.131 0.252 0.122 0.304 0.175 0.304 0.176 0.292 0.169 0.288 0.169

Avg. 0.186 0.076 0.212 0.093 0.207 0.088 0.211 0.094 0.203 0.115 0.209 0.097 0.229 0.103 0.223 0.099 0.257 0.130 0.257 0.128 0.260 0.130 0.274 0.150

W
ea

th
er

12.5% 0.055 0.029 0.080 0.033 0.074 0.030 0.093 0.035 0.083 0.034 0.116 0.044 0.094 0.035 0.095 0.036 0.097 0.037 0.100 0.038 0.103 0.039 0.082 0.038

25% 0.060 0.030 0.088 0.036 0.081 0.032 0.136 0.051 0.085 0.035 0.111 0.041 0.122 0.047 0.107 0.040 0.116 0.045 0.118 0.046 0.119 0.045 0.093 0.041

37.5% 0.065 0.032 0.095 0.039 0.083 0.033 0.173 0.074 0.088 0.037 0.114 0.043 0.148 0.060 0.106 0.041 0.129 0.051 0.131 0.052 0.144 0.058 0.105 0.042

50% 0.069 0.034 0.102 0.042 0.087 0.035 0.195 0.098 0.097 0.041 0.119 0.045 0.176 0.076 0.118 0.046 0.143 0.059 0.145 0.600 0.188 0.086 0.118 0.047

Avg. 0.062 0.031 0.091 0.038 0.081 0.033 0.149 0.065 0.088 0.037 0.115 0.043 0.135 0.055 0.107 0.041 0.121 0.048 0.124 0.184 0.139 0.057 0.100 0.042

Overall Avg. 0.155 0.062 0.192 0.086 0.189 0.090 0.204 0.102 0.185 0.090 0.208 0.102 0.220 0.111 0.216 0.109 0.233 0.127 0.240 0.160 0.233 0.123 0.242 0.130

Top1 Counts. 34 0 12 2 0 0 0 0 0 1 0 0

Table 15: Full anomaly detection results. The “P”, “R”, and “F1” represent the precision, recall, and
F1-score (%) respectively. F1-score is the harmonic mean of precision and recall. A higher value of
P, R, and F1 indicates better anomaly detection performance. .

Dataset SMD MSL SMAP SWaT PSM Avg. F1
(%)Metrics P R F1 P R F1 P R F1 P R F1 P R F1

MiTSformer 88.92 86.78 87.84 90.66 80.54 85.30 96.71 72.21 82.69 96.31 95.98 96.15 97.88 94.85 96.83 89.76

iTransformer(2024) 87.66 75.90 81.36 84.13 82.87 83.50 86.72 77.15 81.65 96.24 93.77 94.99 98.88 92.87 95.78 87.46

ModernTCN(2024) 86.90 73.95 79.91 93.25 60.50 73.39 96.84 50.69 66.50 96.34 94.45 95.39 98.92 93.20 95.98 82.23

TimesNet(2023) 88.56 81.32 84.78 94.41 71.01 81.06 95.04 54.50 69.27 95.69 95.74 95.71 98.56 92.49 95.43 85.25

PatchTST(2023) 87.75 75.35 81.08 94.83 67.27 78.71 94.51 54.85 69.53 96.28 95.16 95.72 99.15 92.70 95.82 84.17

Crossformer(2023) 83.98 75.76 79.60 95.73 69.85 80.77 95.21 60.07 73.67 94.47 94.77 96.11 98.39 92.89 95.57 85.14

MICN(2023) 89.65 82.47 85.91 95.35 71.42 81.67 95.01 56.62 67.73 95.25 95.72 95.48 98.92 88.22 93.27 84.81

LightTS (2023) 87.10 70.73 76.07 94.85 69.57 80.27 94.77 52.94 67.93 96.24 95.75 96.00 98.58 92.51 95.45 83.14

Dlinear(2023) 87.91 78.86 83.14 94.40 60.45 73.71 95.51 52.33 67.36 97.24 94.88 96.04 98.99 92.80 95.79 83.21

FiLM (2022) 87.07 75.46 80.85 74.62 59.42 73.00 94.82 51.20 66.53 96.17 95.48 95.83 98.53 92.45 95.39 82.32

FEDformer (2022) 85.23 84.14 84.68 96.05 68.77 80.15 95.35 54.82 69.61 96.99 94.31 95.63 99.11 92.08 95.47 85.11

Pyraformer(2022) 83.27 71.55 76.97 96.07 71.99 82.31 95.53 62.08 75.26 99.05 92.81 95.83 98.85 91.46 95.01 85.08
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Table 16: Full long-term forecasting results for CVs. We compare extensive competitive models
under different prediction lengths. The input sequence length is set to 36 for the ILI dataset and 96
for the others. Avg. is averaged from all four prediction lengths. The performance is evaluated by
MAE and RMSE. “-” denotes “out of memory”.

Models MiTSformer
(Ours)

iTransformer
(2024)

M-TCN
(2024)

TimesNet
(2023)

PatchTST
(2023)

Crossformer
(2023)

MICN
(2023)

LightTS
(2023)

Dlinear
(2023)

FiLM
(2022)

FEDformer
(2022)

Pyraformer
(2022)

Length MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

E
T

T
m

1

96 0.342 0.271 0.348 0.279 0.346 0.272 0.363 0.288 0.346 0.276 0.368 0.296 0.352 0.275 0.364 0.296 0.344 0.275 0.362 0.297 0.398 0.319 0.443 0.408

192 0.363 0.310 0.371 0.321 0.367 0.314 0.400 0.351 0.367 0.313 0.401 0.349 0.369 0.321 0.382 0.331 0.368 0.312 0.392 0.348 0.415 0.356 0.467 0.441

336 0.382 0.338 0.391 0.347 0.387 0.344 0.413 0.371 0.387 0.342 0.416 0.368 0.389 0.328 0.401 0.358 0.388 0.336 0.404 0.367 0.436 0.393 0.492 0.479

720 0.415 0.391 0.430 0.414 0.421 0.404 0.437 0.416 0.416 0.389 0.442 0.417 0.429 0.399 0.430 0.407 0.423 0.399 0.428 0.414 0.451 0.414 0.532 0.552

Avg. 0.376 0.328 0.385 0.340 0.380 0.334 0.403 0.357 0.379 0.330 0.407 0.358 0.385 0.331 0.394 0.348 0.381 0.331 0.397 0.357 0.425 0.371 0.484 0.470

E
T

T
m

2

96 0.293 0.231 0.298 0.241 0.297 0.239 0.300 0.250 0.299 0.232 0.434 0.397 0.352 0.277 0.388 0.312 0.376 0.304 0.305 0.256 0.320 0.255 0.459 0.381

192 0.344 0.324 0.351 0.331 0.339 0.319 0.345 0.334 0.340 0.316 0.566 0.649 0.480 0.484 0.481 0.473 0.443 0.421 0.357 0.345 0.365 0.349 0.581 0.582

336 0.383 0.395 0.388 0.402 0.385 0.400 0.400 0.437 0.390 0.399 0.735 0.970 0.575 0.670 0.555 0.614 0.539 0.604 0.394 0.418 0.403 0.417 0.856 1.195

720 0.439 0.503 0.445 0.518 0.444 0.525 0.459 0.558 0.443 0.509 1.776 2.209 0.703 0.963 0.690 0.913 0.688 0.943 0.449 0.538 0.457 0.519 1.688 4.769

Avg. 0.365 0.363 0.371 0.373 0.366 0.371 0.376 0.395 0.368 0.364 0.878 1.056 0.528 0.599 0.529 0.578 0.512 0.568 0.376 0.389 0.386 0.385 0.896 1.732

E
T

T
h1

96 0.381 0.323 0.393 0.338 0.382 0.335 0.411 0.354 0.382 0.330 0.392 0.327 0.390 0.328 0.451 0.426 0.385 0.331 0.397 0.365 0.401 0.335 0.483 0.483

192 0.408 0.369 0.419 0.383 0.408 0.381 0.434 0.390 0.404 0.371 0.418 0.371 0.426 0.374 0.475 0.462 0.413 0.375 0.419 0.399 0.430 0.373 0.518 0.533

336 0.424 0.402 0.436 0.419 0.426 0.417 0.464 0.446 0.417 0.408 0.446 0.418 0.476 0.442 0.488 0.491 0.427 0.404 0.443 0.441 0.449 0.416 0.535 0.563

720 0.442 0.398 0.460 0.430 0.445 0.418 0.473 0.459 0.459 0.416 0.443 0.389 0.498 0.472 0.496 0.479 0.444 0.395 0.514 0.516 0.469 0.434 0.567 0.591

Avg. 0.414 0.373 0.427 0.393 0.415 0.388 0.446 0.412 0.416 0.381 0.425 0.376 0.448 0.404 0.478 0.465 0.417 0.376 0.443 0.430 0.437 0.390 0.526 0.543

E
T

T
h2

96 0.380 0.369 0.386 0.380 0.395 0.402 0.428 0.429 0.391 0.388 0.737 1.016 0.504 0.546 0.555 0.622 0.394 0.382 0.404 0.411 0.426 0.429 1.014 1.778

192 0.430 0.458 0.438 0.482 0.442 0.490 0.442 0.494 0.437 0.460 0.899 1.447 0.612 0.775 0.636 0.795 0.621 0.777 0.444 0.496 0.471 0.515 1.326 2.645

336 0.455 0.494 0.464 0.508 0.454 0.506 0.468 0.529 0.457 0.495 0.944 1.430 0.723 1.028 0.765 1.113 0.736 1.067 0.463 0.518 0.499 0.546 1.414 2.819

720 0.455 0.473 0.478 0.519 0.478 0.523 0.472 0.509 0.476 0.511 1.088 1.795 0.930 1.651 0.960 1.720 0.948 1.701 0.487 0.536 0.507 0.542 1.462 2.951

Avg. 0.430 0.449 0.442 0.472 0.442 0.480 0.453 0.490 0.440 0.464 0.917 1.422 0.692 1.000 0.729 1.063 0.675 0.982 0.450 0.490 0.476 0.508 1.304 2.548

W
ea

th
er

96 0.231 0.147 0.243 0.160 0.232 0.140 0.242 0.152 0.247 0.163 0.244 0.141 0.283 0.180 0.269 0.171 0.267 0.173 0.266 0.183 0.309 0.205 0.259 0.152

192 0.294 0.216 0.302 0.228 0.292 0.218 0.307 0.230 0.297 0.220 0.301 0.201 0.327 0.233 0.319 0.229 0.318 0.228 0.317 0.245 0.365 0.279 0.334 0.228

336 0.353 0.298 0.361 0.310 0.355 0.299 0.374 0.322 0.356 0.303 0.357 0.272 0.379 0.304 0.381 0.304 0.366 0.309 0.366 0.318 0.405 0.347 0.390 0.310

720 0.426 0.412 0.429 0.417 0.431 0.420 0.467 0.479 0.428 0.418 0.448 0.415 0.435 0.394 0.447 0.402 0.432 0.384 0.461 0.418 0.465 0.457 0.446 0.405

Avg. 0.326 0.268 0.334 0.279 0.328 0.269 0.348 0.296 0.332 0.276 0.338 0.257 0.356 0.278 0.354 0.277 0.346 0.274 0.353 0.291 0.386 0.322 0.357 0.274

E
xc

ha
ng

e

96 0.221 0.094 0.227 0.098 0.225 0.097 0.266 0.131 0.224 0.095 0.345 0.225 0.236 0.101 0.264 0.120 0.238 0.103 0.251 0.112 0.324 0.187 0.481 0.390

192 0.327 0.194 0.335 0.211 0.333 0.205 0.369 0.246 0.341 0.219 0.503 0.443 0.339 0.198 0.384 0.248 0.336 0.198 0.340 0.213 0.430 0.325 0.577 0.528

336 0.445 0.339 0.455 0.366 0.460 0.369 0.501 0.429 0.452 0.360 0.690 0.762 0.432 0.311 0.473 0.370 0.433 0.321 0.447 0.358 0.552 0.519 0.721 0.815

720 0.788 0.963 0.790 0.974 0.774 0.942 0.876 1.186 0.795 0.995 0.844 1.099 0.640 0.683 0.714 0.869 0.629 0.651 0.757 0.910 0.948 1.365 0.819 0.982

Avg. 0.445 0.398 0.452 0.412 0.448 0.403 0.503 0.498 0.453 0.417 0.596 0.632 0.412 0.323 0.459 0.402 0.409 0.318 0.449 0.398 0.564 0.599 0.650 0.679

IL
I

24 0.771 1.542 0.950 2.112 0.938 2.060 0.882 1.918 0.950 2.061 1.079 2.744 2.211 2.587 1.688 5.046 1.456 3.552 1.123 2.642 1.377 3.322 1.101 2.533

36 0.761 1.387 0.961 2.066 0.933 1.966 0.886 1.994 0.939 2.046 1.100 2.852 1.047 2.155 1.696 5.217 1.351 3.231 1.208 2.621 1.275 3.056 1.063 2.745

48 0.777 1.482 0.962 2.040 0.907 1.904 0.898 2.078 0.985 2.183 1.158 3.014 1.055 2.203 1.749 5.574 1.273 2.969 1.090 2.664 1.207 2.826 1.104 2.832

60 0.805 1.516 1.105 2.309 0.911 1.897 0.897 2.071 1.017 2.269 1.222 3.238 1.117 2.496 1.804 5.890 1.278 3.034 1.330 2.881 1.208 2.806 1.115 2.877

Avg. 0.779 1.482 0.995 2.132 0.922 1.957 0.891 2.015 0.973 2.140 1.140 2.962 1.358 2.360 1.734 5.432 1.340 3.197 1.188 2.702 1.267 3.003 1.096 2.747

E
le

ct
ri

ci
ty

96 0.235 0.143 0.268 0.180 0.243 0.145 0.263 0.161 0.275 0.187 0.268 0.171 0.278 0.167 0.318 0.218 0.297 0.207 0.286 0.207 0.330 0.220 0.390 0.314

192 0.250 0.159 0.278 0.189 0.259 0.165 0.279 0.179 0.280 0.190 0.315 0.226 0.286 0.176 0.326 0.225 0.300 0.206 0.305 0.216 0.336 0.227 0.401 0.319

336 0.265 0.171 0.296 0.207 0.272 0.174 0.290 0.189 0.296 0.204 0.349 0.257 0.298 0.186 0.342 0.240 0.314 0.217 0.313 0.227 0.352 0.247 0.407 0.326

720 0.291 0.198 0.331 0.252 0.306 0.210 0.318 0.217 0.327 0.245 0.371 0.292 0.319 0.209 0.368 0.276 0.343 0.251 0.361 0.284 0.385 0.296 0.401 0.315

Avg. 0.260 0.168 0.293 0.207 0.270 0.174 0.288 0.187 0.295 0.207 0.326 0.237 0.295 0.185 0.339 0.240 0.314 0.220 0.316 0.234 0.351 0.248 0.400 0.319

Tr
af

fic

96 0.292 0.459 0.357 0.560 0.358 0.597 0.333 0.762 0.350 0.575 - - 0.333 0.652 0.464 0.831 0.432 0.774 - - 0.409 0.756 0.423 0.858

192 0.310 0.494 0.361 0.573 0.360 0.627 0.353 0.790 0.349 0.584 - - 0.350 0.669 0.456 0.792 0.410 0.715 - - 0.396 0.746 0.444 0.908

336 0.316 0.508 0.371 0.595 0.364 0.640 0.359 0.801 0.363 0.611 - - 0.361 0.696 0.460 0.809 0.412 0.719 - - 0.409 0.765 0.452 0.957

720 0.330 0.534 0.397 0.645 0.382 0.676 0.370 0.860 0.379 0.642 - - 0.375 0.750 0.479 0.863 0.429 0.758 - - 0.451 0.830 0.504 1.055

Avg. 0.312 0.499 0.372 0.593 0.366 0.635 0.354 0.803 0.360 0.603 - - 0.355 0.692 0.465 0.824 0.421 0.742 - - 0.416 0.774 0.456 0.945

Top1 Counts. 55 0 5 0 4 4 2 0 5 0 0 0
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Table 17: Full long-term forecasting results for DVs. We compare extensive competitive models
under different prediction lengths. The input sequence length is set to 36 for the ILI dataset and 96
for the others. Avg. is averaged from all four prediction lengths. The performance is evaluated by
forecasting accuracy (%). “-” denotes “out of memory”.

Models Mixfo.
(Ours)

iTrans.
(2024)

M-TCN
(2024)

TimesN.
(2023)

Patch.
(2023)

Cross.
(2023)

MICN
(2023)

Light.
(2023)

Dlinear
(2023)

FiLM
(2022)

FEDfor.
(2022)

Pyrafo.
(2022)

E
T

T
m

1

96 73.73 71.84 73.49 71.26 72.24 68.50 73.38 71.11 70.72 71.50 72.12 68.28
192 70.72 68.80 71.14 68.33 69.74 68.00 70.58 68.58 68.71 70.16 67.50 65.95
336 69.19 67.41 69.12 67.51 67.42 65.90 68.12 65.87 66.35 68.37 66.02 65.50
720 67.81 65.99 66.94 65.68 66.58 63.36 67.47 64.35 64.91 67.57 63.30 62.95
Avg. 70.36 68.51 70.17 68.20 69.00 66.44 69.89 67.48 67.67 69.40 67.24 65.67

E
T

T
m

2

96 73.31 71.19 74.37 73.80 71.44 70.24 71.36 71.49 70.80 70.91 72.00 64.20
192 71.25 70.79 72.65 73.12 69.59 70.35 70.20 67.77 67.76 69.13 70.12 64.12
336 69.90 68.27 70.79 71.44 67.82 67.46 67.85 66.82 66.98 67.56 68.12 63.93
720 68.07 66.85 69.99 69.08 65.97 66.37 67.74 65.82 64.30 65.60 66.00 53.98
Avg. 70.63 69.28 71.95 71.86 68.71 68.61 69.29 67.98 67.46 68.30 69.06 61.56

E
T

T
h1

96 73.17 68.88 68.19 69.06 70.16 68.86 70.87 67.40 65.30 68.09 68.35 66.87
192 68.93 68.20 67.68 68.36 69.02 67.07 69.13 67.04 65.10 68.74 66.63 62.62
336 67.50 67.21 66.29 65.12 67.97 65.29 68.04 66.39 64.28 67.60 62.55 62.27
720 67.28 63.72 66.53 54.49 67.01 66.59 66.41 66.87 63.58 65.53 63.74 59.32
Avg. 69.22 67.00 67.17 64.26 68.54 66.95 68.61 66.93 64.57 67.49 65.32 62.77

E
T

T
h2

96 69.40 67.86 69.05 70.85 68.75 67.60 70.63 68.32 67.95 67.05 69.89 63.18
192 67.01 65.30 68.85 67.61 66.49 65.24 68.02 66.02 63.87 65.91 68.33 55.52
336 65.31 64.20 68.31 66.80 65.17 61.81 67.78 63.95 62.04 64.60 66.06 57.31
720 65.74 62.27 68.81 65.87 63.53 61.78 68.38 68.22 60.84 63.25 64.99 58.82
Avg. 66.87 64.91 68.76 67.78 65.99 64.11 68.70 66.63 63.68 65.20 67.32 58.71

W
ea

th
er

96 78.74 76.23 79.37 78.38 75.69 79.22 78.48 77.14 73.91 75.31 78.83 77.74
192 77.08 75.84 78.27 77.38 75.15 78.17 77.93 76.43 72.51 74.95 76.77 76.11
336 76.59 75.55 78.34 76.18 75.20 77.77 75.45 75.11 72.29 75.52 74.81 74.92
720 77.24 76.73 78.79 73.21 76.23 77.69 75.11 74.39 71.53 75.46 74.68 73.19
Avg. 77.41 76.09 78.69 76.29 75.57 78.21 76.74 75.77 72.56 75.31 76.27 75.49

E
xc

ha
ng

e

96 51.16 48.16 48.21 49.17 49.17 48.62 48.42 48.34 49.91 49.26 46.44 49.92
192 52.71 51.21 52.08 49.42 50.82 48.32 48.14 50.06 51.36 49.07 44.38 50.28
336 52.51 49.90 48.59 50.67 50.84 45.24 44.33 51.42 51.26 49.55 42.63 50.53
720 59.49 49.45 58.88 55.37 50.65 41.11 54.49 56.49 51.28 51.87 49.05 57.09
Avg. 53.97 49.68 51.94 51.16 50.37 45.82 48.85 51.58 50.95 49.94 45.63 51.96

IL
I

24 81.93 77.39 56.69 80.51 75.38 64.57 72.90 58.62 56.41 54.92 54.82 67.21
36 84.07 80.36 55.13 83.22 79.29 66.19 71.94 56.94 55.57 57.17 61.73 70.51
48 84.81 80.11 57.76 84.14 79.48 68.97 71.55 57.71 55.39 57.70 63.00 75.39
60 83.37 78.71 59.47 81.37 76.99 69.97 71.50 61.61 53.23 58.84 60.56 74.62

Avg. 83.55 79.14 57.26 82.31 77.79 67.43 71.97 58.72 55.15 57.16 60.03 71.93

E
le

ct
ri

ci
ty

96 90.83 89.85 89.94 90.34 89.67 89.35 89.74 88.73 85.90 86.93 88.62 88.67
192 90.52 89.80 89.30 89.69 89.78 88.36 89.32 88.61 85.57 88.49 89.38 87.93
336 89.84 89.12 89.51 89.19 89.22 87.57 89.08 88.33 84.97 88.46 88.91 87.48
720 88.74 87.64 88.36 88.26 87.86 86.91 88.01 88.00 83.76 87.34 87.89 87.14
Avg. 90.40 89.59 89.58 89.74 89.56 88.43 89.38 88.56 85.48 87.96 88.97 88.03

Tr
af

fic

96 88.42 87.64 85.63 88.38 86.43 - 86.94 85.71 80.00 - 85.37 86.65
192 88.90 88.72 87.64 88.98 87.79 - 88.75 87.80 81.57 - 88.15 87.21
336 89.24 88.59 89.07 89.86 88.08 - 89.98 88.72 82.61 - 89.22 88.02
720 89.71 89.10 90.48 90.68 88.46 - 88.91 89.65 85.30 - 89.59 89.26
Avg. 89.07 88.51 88.21 89.48 87.69 - 88.65 87.97 82.37 - 88.08 87.79
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G Broader Impacts

This paper copes with the general analysis of real-world mixed time series, which are under-explored
in literature but frequently encountered in various practical applications, such as industrial main-
tenance, healthcare monitoring, and financial analysis. Since previous studies struggle to address
the spatial-temporal heterogeneity problem for real-world MiTS, we present MiTSformer that fun-
damentally reveals and recovers the latent continuous variables for discrete variables to facilitate
exploiting the intricate spatial-temporal patterns within MiTS, thereby being amenable to various
analysis task. Our model achieves the state-of-the-art performance on five mainstream tasks that
cover 30+ real-world datasets from diverse application domains. Therefore, the proposed model
makes it promising to tackle real-world MiTS analysis tasks, which helps our society make better
decisions. Our paper mainly focuses on scientific research and has no obvious negative social impact.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly claimed our contributions in the end of the introduction
from the perspective of (1) Problem Formulation, (2) Technical Design, and (3) Empirical
Evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have analyzed the limitations of our proposal in Appendex D. Also, we
investigated the computational efficiency of our approach in Appendix B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: Our paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided the details regarding reproducibility, including computa-
tional platforms, dataset descriptions, model configurations, task-specific pipelines, hyperpa-
rameters settings, and pseudo-code of our approach in Appendix A. Also, We have released
the source code on Anonymous Github as stated in the Abstract. The download links of the
datasets and pre-processing functions are also included in the project homepage.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Answer: [Yes]
Justification: All experiments are repeated three times and we have reported the average
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Guidelines:
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and we have ensured to preserve
anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
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Justification: We have discussed both potential positive societal impacts and negative societal
impacts of our work in Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper (or URL) of the code package or dataset that
is used in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have released the source code on Anonymous Github as stated in the
Abstract. The instructions for running our codes are provided on the project homepage at
Anonymous Github. If our paper is accepted, we commit to releasing the relevant code as
open-source and will provide detailed documentation to support its use and replication of
our results.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

36

paperswithcode.com/datasets


Answer:[NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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