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ABSTRACT

We present an experimental method for evaluating the stability of ResNets, in-
spired by the qualitative theory of dynamical systems. To apply qualitative
and quantitative properties from the literature on dynamical systems, we have
proposed ResNets designed to maintain dimensionality throughout the residual
blocks. As a result, we can not only introduce a well-suited concept of expansiv-
ity and shadowing properties for ResNets but also analyze their numerical degrees
based on dynamical systems theory. This work aims to contribute to the under-
standing of ResNets’ stability and bridge the gap between theory and practical
applications.

1 INTRODUCTION

Deep residual networks (ResNets) He et al. (2016) began by highlighting successful tasks that have
been studied with dynamical systems induced by ODEs/PDEs. This connection was first estab-
lished by E (2017); Haber & Ruthotto (2017); Chang et al. (2017), and it has developed for various
perspectives, such as approximation Li et al. (2022); Jung & Rojas (2023); Zhang et al. (2020),
optimization/generalization Ott et al. (2020); Zhang et al. (2019); Zhang & Schaeffer (2020), and
the interpretability of structures Ruthotto & Haber (2020); Lu et al. (2018); Ciccone et al. (2018).
However, the theory of dynamical systems itself for ResNets has not yet made significant progress.

Inspired by the concept of Deep Learning via Dynamical Systems E (2017); Li et al. (2022), we
primarily consider the Qualitative Theory of Dynamical Systems, which has theoretical tools to
scrutinize complex phenomena without explicitly finding solutions. This study aims to develop a
framework for ResNets and dynamical systems based on solid theorems.

In particular, our work focuses on topological spaces that allow a top-down approach to ResNets via
dynamical systems. To apply the perspective mentioned above, we directly utilize the qualitative
properties of discrete dynamical systems in flow-induced function spaces for ResNets. Fundamen-
tally, a dynamical system consists of a phase space and a predetermined rule governing point evo-
lution over time. Regarding this paper, we investigate ResNets within metric spaces, where the rule
corresponds to the type of skip connection, and time is represented by the number of residual blocks.
As a result, we present qualitative properties of topological dynamics along with accompanying
numerical experiments designed to interpret and evaluate ResNets.

The primary processes outlined in this work are as follows:

• First, we establish a theoretical framework inspired by dynamical systems that corresponds
to experiments in supervised learning. We empirically demonstrate various properties of
dynamical systems;

• Taking into consideration the gap between theory and practice, we provide an explanation
of revised ResNets, emphasizing mild assumptions to shed light on the underlying phe-
nomena;

• Finally, we illustrate how applying ideas from dynamical systems theory can enhance the
interpretability of ResNets.
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2 QUALITATIVE PROPERTIES OF DYNAMICAL SYSTEMS FOR RESNETS

2.1 PRELIMINARY

We construct the preliminary inspired by E (2017); Li et al. (2022). ResNets can be effectively
described through the framework of a function F : Rn → Rm. We denote this function as F = g◦φ,
where φ = φT−1 ◦ · · · ◦ φ0, and each φi : Rn → Rn assumes the form:

φi(x) = x+ Viσ(Wix+ bi),

where σ : R → R represents the (component-wise) activation function, while Wi ∈ Rpi×n, bi ∈
Rpi , and Vi ∈ Rn×pi . The function g : Rn → Rm corresponds to the output layer, often taking the
form of a fully connected layer or a softmax layer.

The findings presented in the abovementioned papers highlight the relationship between the output
φ(x0) and xT , where the iterative equation xt+1 = xt + φt(xt) = xt + φθt(xt) encapsulates
the weights at time t, denoted as θt = (Vt,Wt, bt). This iterative process can be understood as a
discrete-time counterpart to the ordinary differential equation (ODE) represented by:

ẋ(t) = φθ(t)(x(t)), x(0) = x0.

The authors of Li et al. (2022) presented the hypothesis space Hode with respect to F as follows:

Hode(F) =
⋃
T>0

Hode(T ) where Hode(T ) = {g ◦ φT (·; θ) : g ∈ G, θ ∈ Θ ⊂ Rq},

Here, φT (·; θ) symbolizes the flow-map at time T , an essential component associated with the ODE.
In practical terms, φT (x0; θ) embodies x(T ) where x : [0, T ] → Rn represents the solution to the
aforementioned ODE. The set Θ encapsulates the parameters of φθ = φθt as they manifest in ODE.
They termed the set F = {φθ : θ ∈ Θ} as the control family, while G as the terminal family.

While Li et al. (2022) successfully demonstrates the adeptness of approximating any function g ◦
φT (·; θ) through ODE and ResNets, establishing a direct research connection between Differentiable
Dynamical Systems and ResNets is yet to be established. This gap between theory and practice
can be attributed to the need for a deeper level of mathematical rigor for a more comprehensive
analysis. In this context, we attempted to explore compositions of functions within the domain of
H, gaining some insights into their behavior at each processing block, even if it diverges from the
conventional ResNet structure. In particular, according to the theory of discrete dynamical systems
from a topological point of view, we attempted to examine the dynamics of ResNets. This analysis
involves the family of flow and terminal maps, as follows:

H = G ◦ Φ where Φ =
⋃
T>0

{φT (·; θ) : θ ∈ Θ}

The compositions of functions serve to portray ResNets as discrete-time variants of ODEs, de-
scribing the classification process after defining a control family. (In the manuscript, we assumed
Φ = {φ} and G = {g} for simplicity.)

2.2 EXPANSIVENESS

In the realm of dynamical systems, expansivity reveals one of the chaotic phenomena, characterized
by an absence of predictability. While it is customary to describe a phenomenon as chaotic when it
cannot be predicted or explained, various deep learning phenomena exhibit chaotic behavior, where
slight changes in inputs can lead to vastly different outputs, signifying a high degree of instability.
The concept of expansivity in dynamical systems was first introduced by Utz (1950) under the name
unstable. However, explaining expansivity in the context of deep neural networks used in computer
vision tasks has been challenging. Within the framework of a hypothesis space H, we propose
the definition of g-expansive, signifying the existence of a residual block where the difference of
probability of ϵ between two images of different classes. Let X,Y be metric spaces and continuous
maps φ : X → X and g : X → Y in what follows.

Definition 1 We will define that φ is g-expansive if there exists ϵ > 0 (called g-expansive con-
stant) such that whenever g(x) ̸= g(x′) for some x, x′ ∈ X there exists n ≥ 0 such that
d(g(φn(x)), g(φn(x′))) ≥ ϵ.
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We emphasize that the expansive constant ϵ, represents the minimum distance between the probabil-
ities of pairs of images as they pass through residual blocks and is dependent on the chosen metric.
This definition is a new concept in the literature of dynamical systems, and the closest work to ours
is in Achigar et al. (2018).

2.3 SHADOWING PROPERTY

The original meaning of the shadowing property implies that approximated trajectories may be
followed by true ones as close as we want. This concept, initially introduced from a topological
perspective by Bowen (1975), is fundamental to the qualitative theory of dynamical systems. In this
manuscript, we introduce the g-shadowing property, which means that there exist images that are
not classified as different classes even when passing through each of the residual blocks, with suf-
ficiently small local probability errors, as compared to approximated orbits. Let H be a hypothesis
space. Given δ > 0, we say that a sequence ξ = (xn)n∈N0 of X is a δ-pseudo-orbit of φ for g if
d(gφ(xn), g(xn+1)) ≤ δ for all n ∈ N0. We say that ξ can be ϵ-shadowed of φ for g if there is
x ∈ X such that d(gφn(x), g(xn)) ≤ ϵ for any n ≥ 0.

Definition 2 We say that φ has the g-shadowing property if for all ϵ > 0, there exists δ > 0 such
that for every δ-pseudo orbits of φ for g can be ϵ-shadowed for g.

To quantify the degree of stability, we introduce the g-shadowing constant as follows. Given ϵ > 0
we can consider the set S(g, φ, ϵ) of δ ≥ 0 for which every δ-pseudo orbit of φ for g can be ϵ-
shadowed for g. Note that [0, δ] ⊂ S(g, φ, ϵ) for δ ∈ S(g, φ, ϵ). So, the supremum supS(g, φ, ϵ)
represents the optimal number under which every pseudo orbit can be ϵ-shadowed. By dividing it
by ϵ and taking limit inferior as ϵ → 0 we get the following value called g-shadowing constant:

Shg(φ) = lim inf
ϵ→0

supS(g, φ, ϵ)

ϵ
.

This constant represents the maximum error of pseudo-orbits concerning the minimal error for rigid
images.

2.4 TOPOLOGICAL STABILITY

Now, we introduce topological stability for ResNets, motivated by the notions of robustness and sta-
bility in the deep learning and dynamical systems literature, respectively. In the context of ResNets,
robustness refers to the ability of a trained ResNet to generalize and accurately classify test data,
even when the distribution of the test data differs from that of the training data. In particular, the
robustness of residual blocks is about perturbations of trained ResNets for each residual block. In
connection with dynamical systems, we now present topological g-stability on H based on the clas-
sical stability theorem by Walters (2006), which establishes that expansiveness and the shadowing
property imply the topological stability of a given system. Denoted by 2X the set formed by the
subsets of X and IdX the identity map of X . The supremum distance of continuous maps can be
denoted by dC0(φ, φ̂) = supx∈X d(φ(x), φ̂(x)).

Definition 3 We say that φ is topological g-stable on H if for every ϵ > 0, there exists δ > 0
such that for every continuous map φ̂ with dC0(φ, φ̂) < δ, there is a strict compact g-valued upper
semi-continuous map H : X → 2X such that (i) d(H, IdX) ≤ ϵ; (ii) φ ◦H ⊆ H ◦ φ̂.

Similarly, as with the g-shadowing constant, we quantify topological g-stability as follows: For all
ϵ ≥ 0, we define the set T (g, φ, ϵ) of δ ≥ 0 for which for every continuous map φ̂ : X → X with
d(φ, φ̂) ≤ δ there exists a strict compact g-valued upper semi-continuous map H : X → 2X such
that (i) d(H, idX) ≤ ϵ; (ii) φ ◦H ⊆ H ◦ φ̂.

Then, we will call the topological g-stable constant:

Tg(φ) = lim inf
ϵ→0

supT (g, φ, ϵ)

ϵ
.

The main theorem is to determine the qualitative properties of solutions of trained ResNets that
exhibit stability when passing through residual blocks. We will define Lip(g) = sup{K > 0 :
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d(g(x), g(y)) ≤ K · d(x, y), ∀x, y ∈ X} (K is called the Lipschitz constant of g). We say that g is
bounded-to-bounded if g−1(B) is bounded for every bounded subset B ⊂ Y .

Theorem 1 Let X ⊂ Rn and Y ⊂ Rm be closed subsets of Euclidean spaces. If φ : X → X is
continuous and g-expansive for some Lipschitz bounded-to-bounded map g, then

Shg(φ) ≤ Lip(g) · Tg(φ).

See Appendix A for the specific definition of topological g-stability and the proof of Theorem 1.

3 EXPERIMENTS

In this section, we describe how to apply qualitative properties of dynamical systems to numerical
experiments. We address several gaps between theory and practice and modify the model based on
the formalism of ResNets.

• To provide a theoretical illustration of ResNets, each residual block requires revision to
maintain the same dimensionality n (the number of channels and pixels).

• Theoretically, inputs would enter residual blocks immediately, but in practice, there is a
single CNN layer before entering residual blocks. Therefore, the first CNN layer was
replaced with a patch to reduce the difference in the effects of the CNN layer before entering
residual blocks.

• Trained residual blocks with a number of T > 0 can be considered with the parameters as
the family of continuous maps {φθT ◦ · · · ◦ φθ1}. However, for the purpose of theoretical
proof, we present the solution of ResNets using only one parameter denoted as Φ = {φ}.
Similarly, we also consider a terminal family G = {g} as one parameter.

Datasets. We used the following datasets for evaluation: the MNIST and CIFAR-10 datasets ?.
The MNIST dataset consists of images of digits and includes 50,000 training images and 10,000
testing images across 10 classes, with a resolution of 28 × 28 pixels. To facilitate our experiments,
we applied zero-padding to each edge of the images, resulting in the use of the MNIST data with
a resolution of 32 × 32 pixels. Additionally, we expanded the image channels from 1 to 3. The
CIFAR-10 dataset, also including the same number of training and testing images as MNIST, has
a resolution of 32 × 32 pixels and RGB channels. Both the MNIST and CIFAR-10 datasets are
publicly available.

Model details. In our experiment, We employed ResNets-18 and ResNets-50 models.

Figure 1: Revised ResNets.

The conventional ResNets consist of four compartments,
each of which alters the input data’s dimensions. For exam-
ple, in ResNet-50, the blocks from the 4th to the 7th have 512
output channels, while the 1st to the 3rd have 256 channels
for output size. However, for our experiment, we needed to
maintain uniform data dimensions. To achieve this, we made
several modifications to the ResNets architecture shown in
Figure 1. Initially, we retained only the first convolutional
layer and the first max-pooling layer, removing all downsam-
ple and channel expansion functions. We introduced a patch-
ing function to address channel expansion, followed by group
convolution to compute convolution for each patch. Finally,
we eliminated global pooling at the end of the model to min-
imize information loss. Additionally, we made some adjust-
ments to the ResNet-18 model, utilizing bottleneck blocks,
to ensure that these two models are identical, except for the
number of blocks.

Training ResNets. To establish the theoretical framework, we made revisions to the ResNets mod-
els and conducted training on them. Subsequently, we present the fundamental performance of the
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proposed ResNets with respect to the loss on the test dataset. Each classification result was calcu-
lated using the scikit-learn package. All models were trained for 100 epochs, utilizing the Adam
optimizer and cross-entropy loss with default parameters from the PyTorch package. The learning
rate varied depending on the dataset, with MNIST and CIFAR-10 datasets trained at 10−4. In both
MNIST and CIFAR-10 experiments, we used a mini-batch size of 400. For both training and testing,
we employed two different machines: one equipped with a 3.2GHz processor and 16GB RAM, and
the other with 32GB RAM and an NVIDIA Tesla V100 GPU with 32GB of memory.

Table 1: The basic performance of revised ResNets
Datasets Models Precision Recall F1-score Loss

MNIST ResNets-18 0.9893 0.9891 0.9891 0.0363
MNIST ResNets-50 0.9860 0.9855 0.9857 0.0449

CIFAR-10 ResNets-18 0.7641 0.7657 0.7644 0.8241
CIFAR-10 ResNets-50 0.7428 0.7398 0.7400 0.8347

In Table 1, we obtained classification results through simulations that involved combinations of
different datasets and ResNet models. However, ResNets’ performance on CIFAR-10 under certain
conditions was lower than that of the conventional model. The main difference can be attributed to
the method of channel expansion. In particular, the conventional residual block conducts convolution
on the entire image with different kernels, even after the image is downsampled. As mentioned in
the model details, we replaced pooling between blocks with patching, which directed the model to
compute different sections of the image as it went deeper. Consequently, we analyze the reason for
the low performance of ResNets with the CIFAR-10 dataset. The backgrounds of the images remain
unfiltered, and the model’s output contains excessive information. One might question whether all
residual blocks can effectively extract features for image processing, but our objective is solely to
evaluate the trained ResNets.

The constants of properties of dynamical systems. To assess various properties, one can calculate
the l2 distances between all pairs of images, corresponding to all values passing through residual
blocks and its fully connected layer. Table 2 presents the constants associated with the qualitative
properties. Trained ResNets with the number of residual blocks T > 0 can be considered the
parameterized residual blocks as the family of continuous maps with parametrized fully connected
layer gθn for n = 0, · · · , T.
Note that the parameters of the function will vary from model to model, and if trained on differ-
ent datasets, each parameter will also differ. Thus, all constants, including the Lipschitz constant,
depend on the dataset and model.

Table 2: The values of constants for various properties related to dynamical systems.
Datasets Models g-expansive g-shadowing Lip(g) topological g-stable

MNIST ResNets-18 4.14 ×10−5 2.3583 3.38 0.6977
MNIST ResNets-50 8.75 ×10−6 0.0031 1.77 0.0017

CIFAR-10 ResNets-18 0.0081 0.9867 3.51 0.2811
CIFAR-10 ResNets-50 0.0048 1.0023 2.37 0.4229

As a result of the g-expansive constant of ResNet-18 on MNIST, it can be inferred that for every
image pair with different classes, there exists at least one residual block with a distance greater than
4.14× 10−5. Equivalently, when the distance between pairs of images passing through all blocks is
less than 4.14× 10−5, the images can be considered as belonging to the same class.

Comparing ResNets-18 and ResNets-50, we observe that ResNets-50 exhibits a tendency to clas-
sify images from different classes with a shorter distance, likely attributed to passing through more
blocks. Additionally, the solution of trained ResNets on CIFAR-10 tends to be generous for classi-
fication, resulting in higher g-expansive constants compared to those of MNIST.
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The primary purpose of the g-shadowing property is to establish the connectivity of topological g-
stability. To determine the g-shadowing constant, we calculated all candidate groups that satisfy the
δ-pseudo-orbit of φ for g. For all images, we selected the most similar image after passing through
the block once and calculated the corresponding distance. Specifically, we extracted the maximum
value of δ with the minimal value of ϵ by using all the calculated values to find the best tracing, as
follows:

• (MNIST, ResNet-18) 2.3583 with ϵ : 0.1025, δ : 0.2417;

• (MNIST, ResNet-50) 0.0031 with ϵ : 0.1565, δ : 0.0004;

• (CIFAR-10, ResNet-18) 0.9867 with ϵ : 0.0933, δ : 0.0920;

• (CIFAR-10, ResNet-50) 1.0023 with ϵ : 0.1219, δ : 0.1222.

By utilizing these methods and Theorem 1, we aim to determine the topological g-stable constant
by multiplying it with the Lipschitz constant of g. To calculate the Lipschitz constants of a fully
connected network g, we utilized the LipSDP package developed by Fazlyab et al. (2019), along
with LipSDP-Neuron (using a 1K split size and SDPT3 solver). Since this package requires more
than 2 layers, we placed an identity matrix for weight before the weight of the fully connected layer
we trained on the final one of ResNets. Thus, we can determine the lower bound of the topological
g-stable constant by Theorem 1 after obtaining the upper bound of the Lipschitz constant.

4 APPLICATIONS

In this section, the application of the aforementioned concepts is actively demonstrated. Tracking
how trained ResNets consistently classify is a focal point. To emphasize, in the process of calculating
the g-expansive constant, we measure all values of distances passing through all residual blocks and
their fully connected layer.

Figure 2 illustrates the results of analyzing pairs of images that exhibited the minimum distance
on average of all residual blocks, while Figure 3 presents the existence of pairs of images that had
the closest distance at a specific residual block. In both Figures 2 and 3, the x-axis represents the
corresponding classes in order, and the y-axis represents the value of a certain g-expansive constant,
respectively. A round dot in the picture indicates the presence of an image of the class represented
by a certain g-expansive constant.

Figure 2: On the first line (class airplane) for ResNets-18 (Left), a gray point (a ship image) indicates
the existence of a pair of ship images and airplane images that have a closer distance than when
comparing the distances between airplane images. Also, ResNets-18 suspects that its performance
may be particularly poor in classifying birds, cats, and trucks than other classes. Compared to
ResNet-18, the characteristic of ResNets-50 (Right) is that it can consider representative image
pairs that can be well distinguished into the same class while passing through all blocks since the
distance of the same class images appears closest.
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Figure 3: Comparison of g-expansive constants for each class. ResNet-50 on MNIST (Top) gener-
ally performed well in distinguishing all numbers. However, there were challenging instances, such
as distinguishing between the handwritten numbers 4 and 6, and each pair involving the handwritten
numbers 2 with 1, 5, 6, and 7, respectively. More details are provided for the handwritten number
2 in Table 3. In both ResNets-18 (Left) and ResNets-50 (Right) on CIFAR-10 (Bottom), there were
images in the Bird, Cat, Dog, and Frog classes that appeared less distinguishable than images in
other classes. Generally, ResNets-18 tends to struggle with distinguishing between animals. For
ResNets-50, a moment when a pair of automobile and truck images were close was observed. In
Table 3, we specifically examine the moment with the minimum distance.

Based on the information in Figure 3, details in Table 3 become evident. Considering all distances
for images passing through both residual blocks and the fully connected layer allows for the de-
termination of the minimum distance ϵ corresponding to the n-th residual block. The MNIST and
CIFAR-10 datasets are obtained using the Pytorch package. Furthermore, each collected image is
numbered in order after the dataset is not only used without shuffling but also collected separately
into each class which was distributed approximately 1K images per class. Hence, tracking the im-
age pair with the closest distance in one of the residual blocks is pursued. Notably, there were
image pairs related to the g-expansive constant that exhibited distances slightly smaller than those
indicated in Table 3 (specifically, the handwritten numbers 4 and 6 in the case of MNIST). How-
ever, we mainly have listed those instances where distinctions were challenging even upon visual
examination.

Our perspective on the g-expansive constant encompasses complex phenomena in classification
tasks in computer vision inspired by the concept of expansivity in the literature of dynamical sys-
tems. Its significance lies in our discovery of images in the dataset that can lead to misunderstandings
even when viewed by humans. Furthermore, we aim to analyze the sensitivity of classification oc-
curring while passing through residual blocks. Consequently, this offers an opportunity to reexamine
aspects often taken for granted, such as the MNIST and CIFAR-10 datasets.
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Table 3: Examples showing a close distance for image classification of different class pairs in
MNIST (Top) and CIFAR-10 (Bottom).

Models ResNet-50 ResNet-50 ResNet-50 ResNet-50
Class 2 1 2 5 2 6 2 7

Images

Order 1021th 186th 540th 348th 668th 377th 435th 919th
n-th block 1th 16th 11th 14th
Distance 8.67 ×10−5 8.63 ×10−5 4.43 ×10−5 4.24 ×10−5

Models ResNet-18 ResNet-18 ResNet-50 ResNet-50
Class 2 4 4 6 0 8 1 9

Images

Order 666th 381th 171th 37th 639th 626th 16th 101th
n-th block 2rd 3nd 6th 9th
Distance 0.0107 0.0099 0.0065 0.0071

Next, we will show the results of the g-shadowing property for assessing ResNet-18 and ResNet-50
on MNIST, CIFAR-10. ResNet-18 discriminated handwritten digit 4, as far as feasible, it traces as a
similar thing with the probability errors that may be small as it passes through each of the 8 residual
blocks as shown in Table 4. In other words, it can be misunderstood that it has (not intended) stability
in distinguishing even though images of other classes appear that are similar to class 4. The results
for the handwritten number 4 in Table 4 show that it can be classified as the handwritten number 9
using the somewhat perturbed solution of ResNets.

In the other case in Table 4, there was the trap of a 5th-residual block that traced the image of a
ship with misunderstanding to the class of airplane. Moreover, it should be noted that this behavior
measures stability constants in Table 2 even in situations involving incorrect solutions of ResNets.

In the MNIST case of Table 5, residual blocks consistently allowed tracing along the same classes
while minimizing the probability errors that might occur in each pass through each residual block.
Therefore, the g-shadowing value, which represents our intended robustness, is 0.0031, as shown
in Table 2. As can be seen from the horse image of CIFAR-10 in Table 5, we will need to make
assumptions that allow tracing to the same class passing through the residual blocks. It is necessary
to adjust the values for g-shadowing constants.

Moreover, the g-shadowing property means finding slightly perturbed images that approximately
follow the solutions of ResNets over time. This provides a bridge between the system’s chaotic
behavior and the possibility of making short-term predictions within a limited time interval. The
stability of ResNets is intended to exhibit shadow properties because small perturbations in initial
conditions do not lead to sharp divergence of the classification.

Table 4: Selection of the image that best can be traced via each of residual blocks (ResNet-18).
Best MNIST

Best CIFAR-10
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Table 5: Selection of the image that best can be traced via each of residual blocks (ResNet-50).

MNIST

The Best image

CIFAR-10

The Best image

5 CONCLUSION REMARKS

Our primary goal is to advance the foundation of deep learning through the lens of dynamical sys-
tems. We initiate our exploration by examining metric spaces derived from high-dimensional Eu-
clidean spaces. Emphasizing the significance of these metric spaces measuring the distances among
probabilities, we apply established dynamical systems theory. Despite the ongoing development
of research on ordinary/partial differential equations (ODEs/PDEs) and ResNets, our focus lies on
bridging dynamical systems itself (induced by ODEs) and ResNets. This common concern in the
study of dynamical systems and deep learning involves grappling with the challenge of deriving
qualitative (or quantitative) insights.

In this paper, the aim is to provide theoretical insights into dynamical systems supported by nu-
merical experiments. Despite advancements in theoretical understanding, a persistent gap remains
between theory and practical implementation in the realm of deep learning. Aligning with the ap-
proach presented in this paper, it is imperative to contribute to both theoretical understanding and
practical applications to narrow this gap. Additionally, improvement is needed to provide absolute
quantitative values. There remains the issue that specific comparisons are only possible when the
model and data are different, respectively, or when the model and data are the same, but parameter
differences occur due to differences in training.

The main goal is to apply well-established tools of qualitative theory of dynamical systems that has
developed over a century, directly to the field of deep learning. To begin with, we evaluate trained
ResNets and provide quantitative explainability for stability using the g-expansive and g-shadowing
constants, inspired by fundamental theorem in the literature concerning the qualitative properties of
dynamical systems.
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A PROOF OF THEOREM 1.

Let X ⊂ Rn and Y ⊂ Rm be closed subsets of Euclidean spaces as inputs and outputs for n,m ∈ N,
modeling deep neural networks in general one. Let φ : X → X and g : X → Y be continuous
maps. We define the pseudometric dg of X by dg(x, y) = d(g(x), g(y)) for all x, y ∈ X (In fact,
dg(x, y) = 0 does not implies x = y). We can define

Eg(φ) = {e > 0 : Φg(φ, e) = {x}, ∀x ∈ X},
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where Φg(φ, e) = {y : dg(φ
i(x), φi(y)) ≤ e, ∀i ≥ 0}

Recall that a sequence (xi) is a (δ, g)-pseudo orbit if dg(φi(xi), xi+1) ≤ δ for all i ≥ 0. And, we
say (xi) can be (ϵ, g)-shadowed if there is x ∈ X such that dg(φi(x), xi) ≤ ϵ, for all i ≥ 0. Then,
we can define Shg(φ, ϵ) = {δ ≥ 0 : every (δ, g)-pseudo orbit of can be (ϵ, g)-shadowed}. Thus, we
present g-shadowing constant Shg(φ) as dealing with the limit inferior for ϵ.

Shg(φ) = lim inf
ϵ→0

supShg(φ, ϵ)

ϵ
, where supShg(φ, ϵ) = sup{δ : δ ∈ Shg(φ, ϵ)}.

Also, we say that a set-valed map H : X → 2X is

• strict if H(x) ̸= ∅, for all x ∈ X;

• compact-valued if H(x) is compact for all x ∈ X;

• g-valued if H(x) ⊆ g−1(g(y)), ∀x ∈ X, ∀y ∈ H(x);

• upper semi-continuous if for every x ∈ X and a neighborhood U of H(X), there is δ > 0
such that for every H(y) ⊆ U , and y ∈ X with d(x, y) ≤ δ.

In particular, we consider Topg(φ, ϵ) = {δ ≥ 0 : for every continuous map φ̂ : X →
X with dC0(φ, φ̂) ≤ δ1, there is a strict compact g-valued upper semi-continuous map H :
X → 2X such that (i) dC0(H, idX) ≤ ϵ; (ii) φ ◦ H ⊆ H ◦ φ̂}, then we will call the
topological g-stable constant:

Tg(φ) = lim inf
ϵ→0

supTopg(φ, ϵ)

ϵ
, where supTopg(φ, ϵ) = sup{δ : δ ∈ Topg(φ, ϵ)}.

Theorem 1 Let X ⊂ Rn and Y ⊂ Rm be closed subsets of Euclidean spaces. If φ : X → X is
continuous and g-expansive for some Lipschitz bounded-to-bounded map g, then

Shg(φ) ≤ Lip(g) · Tg(φ).

Proof of Theorem 1. Pick e ∈ Eg(φ), e > 0, and δ ∈ Shg(φ). We assume Lip(g) > 0 (i.e. g is not
constant) and take any Lipschitz constant K of g. We can take δ ∈ Shg(φ,

e
2 ).

If φ̂ : X → X is continuous with dC0(φ, φ̂) ≤ δ
K for x ∈ X , then

dg(φ(φ̂
i(x)), φ̂i+1(x)) = d(g(φ(φ̂i(x))), g(φ̂i+1(x)))

≤ K · d(φ(φ̂i(x), φ̂(φ̂i(x))

≤ K · dC0(φ, φ̂)

= K · δ

K
= δ

Then, (φ̂i(x)) is (δ, g)-pseudo orbit. Thus, there is y ∈ X such that

dg(φ
i(y), φ̂i(x)) ≤ e

2
, ∀i ≥ 0.

This proves that the map H : X → 2X defined by

H(x) = {y ∈ X : dg(φ
i(y), φ̂i(x)) ≤ e

2
, ∀i ≥ 0}

is strict. Replacing i = 0, we have
dg(H, idX) ≤ e

2
.

1We use the C0 distance in theory, but in practice we do calculations with the l2 distance. This can be
adjusted by simply multiplying by a constant as they are equivalent in finite spaces

11
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Now suppose y, y′ ∈ H(x). Then

dg(φ
i(y), φ̂i(x)) ≤ e

2
∀i ≥ 0,

and dg(φ
i(y′), φ̂i(x)) ≤ e

2
∀i ≥ 0.

So, dg(φi(y), φ̂i(y′)) ≤ e, ∀i ≥ 0. Thus, we get y′ ∈ Φg(φ, e) ⊆ g−1(g(y)). This means H(x) ⊆
g−1(g(y)) ∀y ∈ H(x). Thus, H is g-valued.

If y ∈ H(x), then dg(φ
i(y), φ̂i(x)) ≤ e

2 , ∀i ≥ 0. So,

dg(φ
i+1(y), φ̂i+1(x)) = dg(φ

i(φ(y)), φ̂i(φ̂(x))) ≤ e

2
∀i ≥ 0.

This implies that φ(y) ∈ H(φ̂(x)) proving φ(H(x)) ⊆ H(φ̂(x)). Clearly, H(x) is compact for
every x ∈ X . Thus, H is compact g-valued.

Finally, we have to show H is upper semi-continuous. Suppose by contradiction that it is not so.
Then, there are x ∈ X , a neighborhood U of H(x) and sequence xn → x such that H(xn) ̸⊆ U for
every n ∈ N. Then, there is x′

n ∈ H(xn) \ U .

We can see from the definition of H that dg(xn, x
′
n) ≤ e

2 namely d(g(xn), g(x
′
n)) ≤ e

2 for all
n. Since xn → x and g is continuous, g(xn) → g(x). Henceforth, there is R > 0 such that
d(g(x), g(xn)) ≤ R for all n. This implies

d(g(x), g(x′
n)) ≤ d(g(x), g(xn)) + d(g(xn), g(x

′
n)) ≤ R+

e

2
, ∀n ∈ N.

We conclude that
g(x′

n) ∈ B(g(x), R+
e

2
), ∀n ∈ N.

But H is g-valued so H(xn) ⊂ g−1(g(x′
n)) for all n ∈ N. This together with the above membership

yield ⋃
n∈N

H(xn) ⊂ g−1(B(g(x), R+
e

2
)).

Since g is bounded-to-bounded, we have that g−1(B(g(x), R + e
2 )) is bounded in Rn. Since x′

n ∈
H(xn), we conclude that x′

n is a bounded sequence and so has a convergent subsequence. Up to
passing to such a subsequence, we can assume without loss of generality we can assume that x′

n
itself converges to some x′ ∈ X since X is closed.

Since x′
n /∈ U which is open,

x′ /∈ U.

However, the definition of H and x′
n ∈ H(xn) imply

dg(φ
i(x′

n), φ̂
i(xn)) ≤

e

2
, ∀i ≥ 0, ∀n ∈ N.

Fixing i and letting n → ∞, we get

dg(φ
i(x′), φ̂i(x)) ≤ e

2
, ∀i ≥ 0.

Thus, x′ ∈ H(x) ⊆ U implies
x′ ∈ U.

This is a contradiction. Therefore, H is upper semi-continuous.

All together showed that δ
K ∈ Topg(φ,

e
2 ). So,

Shg

(
φ,

e

2

)
⊆ K · Topg

(
φ,

e

2

)
, ∀e ∈ Eg(φ), e ̸= 0.

Then,

lim inf
e→0

supShg(φ,
e
2 )

e
2

≤ K · lim inf
e→0

supTopg(φ,
e
2 )

e
2
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Thus,
Shg(φ) ≤ K · Tg(φ).

Letting K → Lip(g) above, we get

Shg(φ) ≤ Lip(g) · Tg(φ)

completing the proof.
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