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Abstract

Accurately predicting gene function from DNA
sequences remains a fundamental challenge in
genomics, particularly given the limited experi-
mental annotation available for most genes. Ex-
isting computational approaches often formulate
function prediction as a classification task over
predefined categories, limiting their flexibility and
expressiveness. We introduce GeneChat, a multi-
modal large language model designed to generate
free-form, natural language descriptions of gene
functions directly from nucleotide sequences and
textual prompts. GeneChat integrates three com-
ponents: a DNABERT-2-based gene encoder opti-
mized for long-range genomic context, an adaptor
that aligns gene representations with the input
space of a large language model, and Vicuna-13B,
a fine-tuned LLaMA-2 variant used to produce
coherent functional narratives. Trained on over
50,000 genes from the NCBI database, GeneChat
outperforms GPT-40 on BLEU and METEOR
metrics, demonstrating superior ability to gener-
ate accurate, context-aware, and semantically rich
descriptions. This work highlights the potential
of foundation models for advancing interpretable
and scalable gene function prediction in a free-
form, language-driven paradigm.

1. Introduction

Elucidating the function of genes is a fundamental
challenge in modern biology and bioinformatics. Advances
in genome sequencing have yielded an explosion of new
gene sequences, yet the vast majority of these genes remain
uncharacterized. In fact, less than 1% of known protein
sequences have any experimental functional annotation, and
even in well-studied model organisms, the majority of genes
have no assigned function (Radivojac et al., 2013). This
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growing gap between the number of sequenced genomes
and the number of genes with known functions highlights
an urgent need for improved computational gene function
prediction methods (Friedberg, 2006). Robust gene function
predictions can guide experimental studies, helping to prior-
itize genes for laboratory characterization and advancing
our understanding of biological processes (Friedberg, 2006).

Traditional computational approaches to gene (and
protein) function prediction have relied on a combination
of sequence analysis and other biological data. Common
strategies include sequence homology searches (e.g.,
BLAST (Altschul et al., 1990), which transfers anno-
tations from known genes to similar unknown genes),
co-expression network analysis (Stuart et al., 2003),
protein—protein interaction networks (von Mering et al.,
2002), and gene ontology (GO) (Ashburner et al., 2000)
enrichment or other classification methods (Friedberg,
2006). While these approaches have been valuable,
they also face significant limitations (Friedberg, 2006).
Many current methods formulate function prediction as
a classification task — assigning genes to one or more
predefined categories or ontology terms (Radivojac et al.,
2013). This discrete, label-centric view fails to capture the
nuanced and context-specific nature of gene functions (Huo
& Xie, 2024). Important details can be lost when a gene’s
role is compressed into a few broad categories. Moreover,
classification-based models are typically restricted to
predicting from a fixed set of known functions, making
it difficult to describe novel functions or provide insights
beyond those categories. As a result, conventional methods
often produce incomplete or overly generic annotations,
and their accuracy has plateaued in recent community-wide
assessments (Radivojac et al., 2013).

Large language models (LLMs) (Brown et al., 2020)
offer a promising new direction to overcome these
limitations. LLMs like GPT-style transformers (Vaswani
et al., 2017) have demonstrated an ability to encode vast
amounts of knowledge and generate coherent, explanatory
text in natural language. Recently, researchers have begun
exploring LLMs for biological applications (Lin et al.,
2022). For example, Huo et al. introduced ProteinChat,
a multi-modal LLM that takes a protein’s amino acid
sequence as input and generates a comprehensive narrative
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describing its function (Huo & Xie, 2024). This approach
showed that free-form text generation can capture the
nuanced, complex nature of protein function far better than
classification, producing rich descriptions within a unified
framework (Huo & Xie, 2024). Inspired by these advances
in the protein domain, we propose to bring LLM-based,
multi-modal modeling to gene sequences. By allowing an
Al model to write out a gene’s functional characteristics in
sentences and paragraphs, we can obtain predictions that
are more flexible and informative than a list of GO terms or
a binary function yes/no call.

Here we introduce GeneChat, a multi-modal large
language model designed for gene function prediction
from a nucleotide sequence. GeneChat accepts two inputs:
(1) a DNA sequence (e.g., a gene’s coding sequence)
and (2) a textual prompt (such as “Predict the function
of this gene”). Given these, it produces a free-form,
natural-language description of the gene’s likely function.
GeneChat’s architecture consists of three key components
working in tandem: (i) a gene encoder that reads the input
nucleotide sequence and extracts a learned representation
of that gene; (ii) an adaptor module that bridges the
sequence representation into the LL.M’s latent space; and
(iii) a pre-trained large language model that generates
the functional description conditioned on both the gene
representation and the prompt. The gene’s sequence
features are injected into the language model, which then
“translates” those features into a human-readable functional
summary. Importantly, by using an adapter strategy, we
can integrate sequence information without retraining
the entire language model, leveraging the rich semantic
knowledge already present in LLMs (Rives et al., 2021; Lin
et al., 2022). The result is a single unified model that can
answer diverse questions about a gene’s function in natural
language, much like an expert chatting about the gene.

The key novelty of GeneChat lies in its ability to
produce free-form, detailed functional predictions instead
of choosing from predefined categories. Unlike prior gene
function predictors that output discrete labels or GO terms,
GeneChat can elaborate on a gene’s role in paragraph
form, mentioning possible molecular functions, biological
processes, cellular locations, and even caveats or confidence
levels in its predictions. This level of detail provides
richer insight that can be invaluable to researchers. For
instance, if a gene is predicted to be an enzyme, GeneChat
might describe the reaction it catalyzes, the pathway it
participates in, and analogies to well-studied proteins,

rather than simply tagging it as “kinase” or “transferase.”

Such comprehensive narratives make the predictions more
interpretable and informative, bridging the gap between raw
bioinformatics output and the kind of description one might
find in a textbook or review article.

2. Results
GeneChat overview

GeneChat is a multi-modal large language model designed
to enable free-form prediction of gene functions. It accepts
as input the nucleotide sequence of a gene and a textual
prompt (e.g., “Predict the function of this gene”), and
produces a detailed natural language description of the
gene’s likely function (Fig. la). The architecture of
GeneChat comprises three main components: a gene
encoder, a large language model (LLM), and an adaptor that
bridges the two. The gene encoder processes the nucleotide
sequence to extract a representation vector, while the
adaptor ensures compatibility between the gene embedding
and the LLM’s latent representation space. The adapted
gene representation, together with the textual prompt, is
then passed to the LLM, which generates a free-form
textual prediction. For gene encoding, GeneChat employs
DNABERT-2 (Zhang et al., 2023), a pretrained transformer
model (Vaswani et al., 2017) specifically optimized for
genomic sequences and capable of modeling long-range
dependencies within DNA. For the language generation
component, GeneChat utilizes Vicuna-13B (Chiang et al.,
2023), a fine-tuned open-source LLM derived from
LLaMA-2 (Touvron et al., 2023), known for its strong
performance in instruction-following and dialogue tasks.

To train and evaluate GeneChat, we curated a dataset
from the National Center for Biotechnology Information
(NCBI) database (Sayers et al., 2021), comprising 50,248
genes from a diverse range of organisms (Fig. 1b). Each
entry includes the nucleotide sequence of the gene, a
detailed textual description of its function, and additional
metadata such as gene type and chromosomal location. The
nucleotide sequence is used as the model input, while the
corresponding function description serves as the output
target during training. The dataset was randomly partitioned
into training and testing subsets using a 95:5 split.

GeneChat outperforms GPT-40 in free-form gene
function prediction

We evaluated GeneChat’s ability to generate free-form
descriptions of gene functions by comparing its outputs
on the test set against ground truth annotations using
BLEU (Papineni et al., 2002) and METEOR (Banerjee &
Lavie, 2005) scores. BLEU-1 measures unigram (single-
word) overlap, while higher-order BLEU scores assess
the correctness of longer n-gram sequences, capturing
fluency and phrase-level accuracy. METEOR complements
BLEU by incorporating both precision and recall, as well as
semantic features such as stemming and synonym matching.
It also penalizes disordered output via a fragmentation
penalty, making it more sensitive to word order and
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Figure 1. GeneChat overview. a, GeneChat is a multi-modal large language model developed to enable free-form prediction of gene
functions. It takes as input the nucleotide sequence of a gene along with a textual prompt (e.g., “Predict the function of this gene”), and
generates a detailed natural language description of the gene’s likely function. The architecture consists of three main components: a
gene encoder, a large language model (LLM), and an adaptor that bridges the two. The gene encoder processes the nucleotide sequence
to produce a contextual embedding, while the adaptor transforms this embedding into a representation compatible with the LLM’s
input space. The adapted gene representation is then combined with the textual prompt and passed to the LLM, which generates the
corresponding functional description. b, To train and evaluate GeneChat, we curated a dataset from the National Center for Biotechnology
Information (NCBI) database, comprising 50,248 genes drawn from a wide range of organisms. Each entry includes the gene’s nucleotide
sequence, a detailed textual description of its function, and additional metadata such as gene type and chromosomal location. The
nucleotide sequence serves as the model input, while the function description is used as the output target during training. The dataset was
randomly split into training and test sets using a 95:5 ratio.
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Figure 2. GeneChat outperforms GPT-4o in free-form gene function prediction. GeneChat significantly outperforms GPT-40 in
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Figure 3. Examples of gene function predictions generated by GeneChat, compared against ground truth annotations.

m Ground truth function GeneChat Prediction

1

Enables DNA-binding transcription activator
activity, RNA polymerase Il-specific and RNA
polymerase |l cis-regulatory region sequence-
specific DNA binding activity. Involved in negative
regulation of transcription by RNA polymerase Il;
positive regulation of transcription from RNA
polymerase || promoter in response to arsenic-
containing substance; and regulation of DNA repair.
Located in nucleus.

This genomic sequence was predicted to be a
transcriptional regulatory region based on
chromatin state analysis from the ENCODE
(ENCyclopedia Of DNA Elements) project. It was
validated as a functional enhancer by the
Sharpr-MPRA technique (Systematic high-
resolution activation and repression profiling
with reporter tiling using massively parallel
reporter assays) in HepG2 liver carcinoma cells
(group: HepG2 Activating DNase matched -
State 5:Enh, candidate strong enhancer, open
chromatin).

Enables RNA polymerase Il cis-regulatory region
sequence-specific DNA binding activity. Involved in
negative regulation of transcription by RNA
polymerase |l and positive regulation of transcription
by RNA polymerase Il. Located in nucleus.

This genomic sequence was predicted to be a
transcriptional regulatory region based on
chromatin state analysis from the ENCODE
(ENCyclopedia Of DNA Elements) project. It was
validated as a functional enhancer by the Sharpr-
MPRA technique (Systematic high-resolution
activation and repression profiling with reporter
tiling using massively parallel reporter assays) in
both HepG2 liver carcinoma cells (group: HepG2
Activating DNase matched - State 5:Enh, candidate
strong enhancer, open chromatin) and K562
erythroleukemia cells (group: K562 Activating
DNase unmatched - State 8:EnhW, candidate weak
enhancer and open chromatin).
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meaning alignment. We compared GeneChat with GPT-4o,
a state-of-the-art general-purpose large language model.
In our evaluation, we provided GPT-4o0 with the name of
a gene and prompted it using the following instruction:
“Given the name of the gene: [Gene Name], predict the
function of this gene.” We also tried providing GPT-40 with
the full nucleotide sequence of a gene as input; it failed to
generate meaningful functional predictions.

GeneChat consistently outperformed GPT-40 across
all evaluation metrics (Fig. 2). It achieved a BLEU-1 score
of 0.1937, substantially higher than GPT-40’s score of
0.1444. This performance gap widened with higher-order
BLEU scores: GeneChat obtained BLEU-2, BLEU-3, and
BLEU-4 scores of 0.1384, 0.1065, and 0.0816, respectively,
compared to GPT-40’s 0.0563, 0.0208, and 0.0088. The
pronounced difference in BLEU-4 highlights GeneChat’s
enhanced ability to generate longer, more contextually
accurate sequences. In addition, GeneChat achieved
a METEOR score of 0.2725, outperforming GPT-40’s
0.2422. Given that METEOR accounts for synonymy,
stemming, and word order, this improvement reflects
GeneChat’s superior capacity to produce responses that are
not only content-aligned but also semantically coherent and
fluently structured. Fig. 3 presents two examples in which
GeneChat’s predictions closely align with the ground truth
annotations.

Impact Statement

Our work presents a significant stride in functional genomics
by enabling the free-form, natural language prediction of
gene functions directly from nucleotide sequences. This
capability has profound potential to accelerate biomedical
research and its societal impact. By providing interpretable
hypotheses for uncharacterized genes and aiding in variant
interpretation, GeneChat can directly contribute to advances
in personalized medicine and diagnostic development. Its
user-friendly natural language outputs democratize com-
plex genomic information, fostering improved education for
students, researchers, and more informed decision-making
for clinicians. Furthermore, GeneChat’s multi-modal archi-
tecture serves as a foundational blueprint, paving the way
for the development of new Al tools for a wide array of
biomolecular tasks, thereby catalyzing broader innovation
across biotechnology and the life sciences. We recognize the
critical importance of ensuring the responsible development
and application of such powerful tools, emphasizing that
continued validation and careful interpretation will maxi-
mize its beneficial impact on human health and scientific
understanding.
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A. Discussion

GeneChat represents a significant advancement in
computational genomics by introducing a free-form,
language-based paradigm for gene function prediction.
Unlike traditional models that frame function prediction as
a multi-label classification task over predefined ontologies,
GeneChat generates detailed, natural language descriptions
that capture the complexity, context-dependence, and
multi-functionality of genes. This flexibility enables more
nuanced and interpretable outputs, bridging the gap be-
tween structured prediction and human-readable biological
insight. The model’s architecture — integrating a genomic
encoder with a large language model via an adaptor —
demonstrates the value of combining domain-specific
sequence representations with general-purpose linguistic
reasoning. This design enables GeneChat to generalize
across diverse gene types and organisms while remaining
grounded in biologically meaningful features.

The superior performance of GeneChat over GPT-4o
can be attributed to its domain-specific architecture and
multi-modal design, which are tailored for gene function
prediction. Unlike GPT-40, which is a general-purpose large
language model trained primarily on natural language text,
GeneChat integrates a dedicated gene encoder, DNABERT-
2, pre-trained on genomic sequences to capture biologically
relevant features such as long-range dependencies and
nucleotide-level patterns. This encoder enables the model
to effectively interpret and represent the complex structure
of DNA sequences—something GPT-40 is not designed to
handle, as evidenced by its inability to generate meaningful
outputs when provided with raw nucleotide sequences.
Furthermore, GeneChat uses an adaptor module to align the
high-dimensional gene embeddings with the latent space
of a large language model, ensuring that sequence-derived
representations are semantically compatible with natural
language reasoning. This fusion allows GeneChat to
leverage both biological context and linguistic knowledge
when generating functional descriptions. In contrast,
GPT-4o relies solely on textual cues, such as gene names,
and lacks direct access to the sequence-level information
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essential for accurate and detailed function prediction.
This limitation results in outputs that are often generic
or inconsistent with the true biological role of the gene.
The performance gap, reflected in substantially higher
BLEU and METEOR scores for GeneChat, underscores the
value of incorporating structured biological modalities and
targeted pretraining when adapting large language models
to specialized tasks in genomics.

The potential applications of GeneChat span multi-
ple areas of biomedical research. In genomics, it can be
used to annotate genes from newly sequenced organisms,
particularly in cases where experimental data or close
homologs are lacking. In functional genomics, GeneChat
can assist in prioritizing candidate genes for experimental
validation by providing interpretable hypotheses about their
roles. Its ability to process raw nucleotide sequences also
positions it as a useful tool in variant interpretation, where
understanding the functional impact of non-coding or novel
sequences is critical. In education and communication,
the model’s natural language outputs offer a user-friendly
interface for explaining gene functions to researchers,
clinicians, and students. ~More broadly, GeneChat’s
architecture serves as a blueprint for building multi-modal
foundation models for other biomolecular tasks, such as
enhancer annotation, non-coding RNA characterization,
or protein—-DNA interaction prediction, highlighting its
potential as a general framework for biological sequence
understanding.

Despite its strengths, GeneChat has several limita-
tions that warrant consideration. First, the quality of its
predictions is inherently constrained by the training data,
which are derived from publicly available gene annotations
that may be incomplete, inconsistent, or biased toward
well-studied genes and organisms. As a result, the model
may underperform when predicting functions for genes
with limited or noisy training examples, particularly in
non-model species. Second, while GeneChat generates
free-form natural language outputs, these predictions are
not guaranteed to be factually accurate or experimentally
validated. The model may produce confident-sounding
but incorrect statements, reflecting known challenges with
hallucination in large language models. Third, although
DNABERT-2 captures long-range dependencies in genomic
sequences, the need to split long sequences into fixed-size
chunks with overlapping windows may still limit the
model’s ability to reason over very large regulatory or
structural contexts. Fourth, GeneChat is currently limited
to predicting gene function from sequence alone; it does
not incorporate other valuable data modalities such as gene
expression, chromatin accessibility, or protein—protein
interactions, which are often essential for resolving
functional ambiguity. Finally, the interpretability of the

underlying reasoning process remains limited, as the model
functions as a black box, making it difficult to trace specific
predictions to particular sequence features or learned
representations. Addressing these limitations will be crucial
for enhancing the reliability, generalizability, and utility of
free-form gene function predictors in real-world biological
applications.

Future work on GeneChat will focus on enhancing
its predictive accuracy, interpretability, and generalizability
across diverse biological contexts. One key direction
is the integration of additional data modalities beyond
nucleotide sequences, such as gene expression profiles,
epigenetic marks, protein—protein interaction networks,
and evolutionary conservation scores. Incorporating
such information could enable the model to make more
context-aware predictions, particularly for genes with
regulatory or condition-specific functions. Another area of
development is improving model interpretability. Although
GeneChat produces human-readable outputs, the internal
reasoning behind its predictions remains opaque. Future ex-
tensions could incorporate attention visualization, saliency
mapping, or structured explanation generation to increase
transparency and support hypothesis generation. Scaling to
larger genomic contexts is also a priority, particularly for
predicting functions that depend on long-range regulatory
interactions. Techniques such as hierarchical encoding
or memory-augmented architectures may help address
current sequence length limitations. Additionally, we
aim to evaluate GeneChat in zero-shot and cross-species
scenarios, testing its ability to generalize to previously
unseen organisms or gene families. From a deployment
perspective, adapting GeneChat into interactive tools —
such as web-based platforms or APIs — could facilitate
broader accessibility for researchers and educators. Finally,
establishing benchmarks with experimental validation will
be essential to assess the real-world utility of GeneChat
predictions and to build trust in its applications in genomics,
precision medicine, and biotechnology.

B. Methods
Data

The training data for GeneChat was curated from the
National Center for Biotechnology Information (NCBI)
database (Sayers et al., 2021). It includes comprehensive
genomic information spanning a wide range of organisms
and contains 50,248 genes. Each gene is annotated with
multiple attributes, including its nucleotide sequence, a de-
tailed functional description, associated organism, gene type,
chromosomal location, official symbol, full name, and exon
count. The function description provides insight into the
gene’s biological role, regulatory properties, and functional
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significance. The dataset was randomly partitioned into
training and test sets using a 95:5 ratio. To train GeneChat,
the nucleotide sequence of each gene was used as input,
while the corresponding function description served as the
target output. The training prompt used was: please
predict the function of this gene.

Model

Our model consists of three key components (Figure 1):
a gene encoder, a large language model (LLM), and an
adaptor that bridges the two. The gene encoder processes
the input genomic sequence and generates a representation
that captures long-range dependencies within the gene.
The adaptor transforms this representation into a format
compatible with the LLM’s latent space, enabling effective
integration. Once aligned, the LLM incorporates both the
genomic representation and the textual prompt to generate
a free-form prediction of the gene’s function. For the
gene encoder, we employed DNABERT-2 (Zhang et al.,
2023), a domain-specific pretrained model optimized for
genomic sequences. As the language model component,
we used Vicuna (Chiang et al., 2023), a fine-tuned variant
of LLaMA-2 (Touvron et al., 2023), known for its strong
instruction-following capabilities.

DNABERT-2 is an improved version of DNABERT (Ji-
ayu Ji, 2021), specifically developed for genomic sequence
analysis using transformer-based architectures. While
conventional transformers (Vaswani et al., 2017) are
constrained by quadratic computational complexity and
limited sequence lengths, DNABERT-2 incorporates
architectural and algorithmic optimizations that enable
modeling of longer DNA sequences—an essential capability
for capturing long-range dependencies in genomic regions.
A central innovation in DNABERT-2 is its dynamic k-mer
strategy. Unlike the fixed k-mer tokenization used in the
original DNABERT, DNABERT-2 learns variable-length
k-mers, preserving single-nucleotide resolution while
improving representational efficiency. This is particularly
important for detecting single nucleotide polymorphisms
and characterizing mutations that affect gene function.
The model also introduces parameter-efficient transformer
variants to reduce memory usage and computational cost,
and incorporates genomic-position-aware embeddings and
enhanced attention mechanisms for improved modeling
of long-range sequence interactions. To further enhance
training stability and performance, DNABERT-2 adopts
a sequence length warm-up strategy that incrementally
increases input length during training. This mitigates
gradient instability and accelerates convergence, enabling
effective learning from large-scale genomic datasets.

Vicuna is an open-source chatbot model fine-tuned

from the LLaMA-2 (Touvron et al., 2023) framework
using approximately 70,000 user-shared conversations
collected from ShareGPT.com (Chiang et al., 2023). It
retains the architecture of LLaMA-2-13B, consisting of
40 transformer layers, 40 attention heads, and a hidden
embedding size of 5120. Vicuna is designed to generate
coherent, contextually appropriate outputs, making it
well-suited for applications such as conversational agents,
text summarization, and open-ended content generation.
The model is available in multiple variants, including
7B and 13B, which differ in model depth, width, and
attention dimensionality to balance performance with
computational efficiency. Instruction tuning further aligns
the model with task-specific prompts, while the output
layer computes token probabilities for generating fluent
and relevant responses. These capabilities make Vicuna
a strong backbone for language modeling tasks requiring
instruction-following and free-form generation.

In GeneChat, given an input gene sequence x4, the
DNABERT-2 encoder produces a contextual embedding
h(zy) € RX7%® where [ is the length of the input
sequence. Since [ typically exceeds the context window
size of DNABERT-2, we apply a pooling operation over
non-overlapping windows of size k, reducing the sequence
length to [/k and yielding a pooled embedding of shape
R(/k)%256  To project these pooled embeddings into the
latent space of the LLM, we apply a linear adaptor layer
W € R2?%6x5120 The transformed embedding is given by:

hfg _ h(l‘q) W e R(l/k)xSlQO’

where h, represents the gene representation aligned to the
LLM’s latent embedding space. To integrate the gene em-
bedding with the textual prompt, we format the input and
output of the LLLM following the conversational style used
by Vicuna. Specifically, each training instance is structured
as follows:

e (LLM Input) Human: <Gene> GeneHere </Gene>
Prompt Assistant:

e (LLM Response) Answer

Here, the placeholders Prompt and Answer are replaced
with the actual prompt and corresponding function
description from the training triplet (24, Tprompt,y). The
entire input of the LLM, excluding the token GeneHere,
is referred to as the auxiliary prompt, which includes the
literal tokens <, >, and /. We denote the tokenized auxiliary
prompt as x,,x, and use the LLM’s embedding layer to
convert it into a sequence of embeddings h,,x. To inject
the gene-specific information, we replace the placeholder
token GeneHere with the gene embedding h,, which is
produced by applying the adaptor to the pooled output of
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the DNABERT-2 encoder. The final input to the LLM is
a concatenation of h,x and hg, forming a unified input
sequence used to generate the textual prediction of the
gene’s function.

The GeneChat model is trained using a causal lan-
guage modeling objective, where the goal is to predict
each token in the output sequence conditioned on the
preceding context. Specifically, the model is optimized to
maximize the log-likelihood of the target answer tokens.
In our formulation, only the Answer portion of the LLM
output is used to compute the loss. To enable the model to
learn when to terminate generation, we append a special
end-of-sequence token to each answer during training. Let
X, denote the answer sequence of length [, x, the gene
sequence input, and X,,x the tokenized auxiliary prompt.
The conditional probability of generating x,, given X, and
Xaux 18 defined as:

l
p(xa ‘ ngxaux) = HPF) (X((j) | Xgaxauxvxth) s (1)
1=0

where x,(li) denotes the i-th token of the answer and x(fi
denotes all preceding tokens. The model parameters are
denoted by 6. During training, the objective is to minimize

the negative log-likelihood of this conditional probability.

Training details of GeneChat

Since DNABERT-2 cannot process sequences as long as
160,000 nucleotides, we partition each input sequence into
smaller chunks of 512 nucleotides. To preserve contextual
continuity across segments, a 10-nucleotide overlap is
maintained between consecutive chunks.

For the gene encoder (DNABERT-2), we applied
full fine-tuning by updating all pretrained parameters during
training. For the language model component, Vicuna-13B,
we employed Low-Rank Adaptation (LoRA) (Hu et al.,
2021), a parameter-efficient fine-tuning method that
injects trainable low-rank matrices into the attention and
feedforward layers while keeping the original weights
frozen, thereby reducing memory and computational
overhead. In our setup, LoRA was applied to the query
and value projection matrices, with a rank of 8, a scaling
factor (alpha) of 16, and a dropout rate of 0.05. The
adaptor module, which aligns the gene representation with
the LLM’s latent space, was trained from scratch.

Optimization was performed using the Adam opti-
mizer (Kingma & Ba, 2017) with 5; = 0.9, 82 = 0.999,
and a weight decay of 0.05. A cosine learning rate decay
schedule was used, with a peak learning rate of 1 x 1074, a
linear warm-up over the first 2000 steps, and a minimum

learning rate of 1 x 10~%. Due to memory constraints, we
adopted a mini-batch size of 1 per GPU and accumulated
gradients over 8§ steps, resulting in an effective batch size of
8. The model was trained for a total of 170,000 steps.

Evaluation metrics

We evaluated the quality of the generated gene function
descriptions using BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee & Lavie, 2005) scores, two widely used
metrics in natural language generation tasks. The BLEU
(Bilingual Evaluation Understudy) score measures the over-
lap between predicted and reference texts using modified
n-gram precision, along with a brevity penalty to penalize
excessively short outputs. It is computed as:

N
BLEU = BP - exp (Z wy, log pn> @)

n=1

where p,, is the modified precision for n-grams of length
n, and w, is the corresponding weight (typically uniform).
The brevity penalty (BP) discourages short predictions and
is defined as:

1 ife>r
BP=<{"’ 3
{6(1T/C), ifc<r )

where c is the length of the predicted text and r is the length
of the reference text.

The METEOR (Metric for Evaluation of Translation
with Explicit ORdering) score complements BLEU by
incorporating recall, synonym matching, stemming, and
word order. It is designed to better align with human
judgment. The score is computed using a harmonic mean
of unigram precision (P) and recall (R), weighted by a
fragmentation penalty that captures word order differences:

10-P-R

“
where Pen is a penalty based on the number of chunks —
contiguous matched subsequences — reflecting word order
dissimilarity. These metrics provide complementary views
of output quality: BLEU emphasizes n-gram precision and
length fidelity, while METEOR rewards recall, alignment,
and semantic similarity.

C. Related work

Recent advances in genomic foundation models have signif-
icantly advanced our ability to decode and interpret DNA
sequences. The Nucleotide Transformer family (Bonnafoux
et al., 2023) represents a major milestone, with models
ranging from 50 million to 2.5 billion parameters pretrained
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on thousands of human and multispecies genomes. These
models excel in zero-shot prediction of genetic variant
effects and achieve state-of-the-art performance on tasks
such as promoter identification and transcription factor (TF)
binding prediction. By incorporating evolutionary context
from diverse organisms, they capture conserved regulatory
elements and enable accurate molecular phenotype
prediction, even in low-data settings.

DNABERT (Jiayu Ji, 2021) was one of the earliest
bidirectional transformer models pretrained on human
genomic sequences. It pioneered task-specific fine-tuning
for predicting regulatory features such as splice sites and
TF binding sites. Its attention maps also offer interpretable
insights into nucleotide-level importance, facilitating motif
discovery. DNABERT-2 (Zhou et al., 2024) extended this
line of work by introducing a multi-modal architecture that
integrates DNA breathing dynamics — transient local strand
separations — using a cross-attention mechanism. This en-
hancement improved cross-species TF binding predictions
and enabled the identification of disease-associated non-
coding variants, increasing the model’s biological relevance.

To address long-range dependencies in genomic se-
quences, HyenaDNA (Eric Nguyen, 2024) replaced
traditional attention mechanisms with Hyena operators,
supporting context lengths of up to one million nucleotides
at single-nucleotide resolution. Despite having fewer
parameters, HyenaDNA outperformed attention-based
models such as Nucleotide Transformer on tasks like
chromatin accessibility profiling and species classification,
while training up to 160x faster. This efficiency makes it
well-suited for whole-genome analysis.

Together, these models illustrate the growing versatility of
genomic foundation architectures. While Nucleotide Trans-
former and DNABERT variants emphasize interpretability
and cross-species generalization, HyenaDNA prioritizes
scalability for ultra-long genomic sequences. Their
complementary strengths suggest promising directions for
hybrid models in future genomic Al applications.

D. Data availability

All data used in this study are available at
https://drive.google.com/drive/folders/
1g0PeOHxfzdhXWbG54rkd-Iya7cowYZdO?usp=
sharing.

E. Code availability

The source code of this work is available at https://
github.com/Shashi-Sekar/GeneChat.
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