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Abstract
Among the most effective methods for uncovering high dimensional unstructured data’s generating
mechanisms are techniques based on disentangling and learning independent causal mechanisms.
However, to identify the disentangled model, previous methods need additional observable vari-
ables or do not provide identifiability results. In contrast, this work aims to design an identifiable
generative model that approximates the underlying mechanisms from observational data using only
self-supervision. Specifically, the generative model uses a degenerate mixture prior to learn mecha-
nisms that generate or transform data. We outline sufficient conditions for an identifiable generative
model up to three types of transformations that preserve a coarse-grained disentanglement. More-
over, we propose a self-supervised training method based on these identifiability conditions. We
validate our approach on MNIST, FashionMNIST, and Sprites datasets, showing that the proposed
method identifies disentangled models – by visualization and evaluating the downstream predictive
model’s accuracy under environment shifts.
Keywords: Causal mechanisms, generative model, disentanglement, identifiability

1. Introduction

The independent causal mechanisms (ICM) principle assumes that a system’s variables are gener-
ated by autonomous modules (i.e., mechanisms) that do not influence or inform each other (Schölkopf
et al., 2012; Peters et al., 2017; Schölkopf, 2019). In this paper, we consider a class of systems where
an observable variable follows a mixture distribution, and each mixture component is generated by
a composition of mechanisms (Locatello et al., 2018b; Parascandolo et al., 2018). Specifically,
each data generating mechanism generates data samples for a specific mixture component, and the
data transformation mechanisms could transform the data samples without moving the data samples
from one mixture component to another. Moreover, we let each mechanism take latent variables
as additional input, which controls the generated data’s variation. This kind of data is ubiquitous,
and examples include visual data in object recognition tasks, where animals, plants, and other ob-
jects are generated by different data generating mechanisms, and the data transforming mechanisms
control the background and the lighting condition, among others. Figure 2(b) shows an example
of our system with three mechanisms that collaboratively generate data samples (i.e., handwritten
digits) for a mixture distribution with two mixture components. This manuscript proposes a method
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(a) Sampled Data from Mechanisms
Learned by Our ICM Model.

(b) Sampled Data from Mechanisms
Learned by Existing Competitive
Training-based Approach.

Figure 1: Each row represents the data from one mechanism. Ideally, the mechanisms should spe-
cialize in synthesizing one digit uniquely. (a) shows that each data generating mechanism
specializes in different digits. (b) shows that the mechanisms are confounded with other
digits – illustrating a failure of the model and competitive training approach. Figure (b)
is adapted from (Locatello et al., 2018b).

for learning the data generating and transforming mechanisms from the observable variable in the
aforementioned class of systems by learning the latent variables.

One benefit of learning the data generating and transforming mechanisms is better generaliza-
tion across environments. Recent works (Koh et al., 2020; Gulrajani and Lopez-Paz, 2021) show
that the accuracy of a machine learning (ML) model can decrease drastically if the model is de-
ployed in an environment that differs from the environment where the model is trained. For an im-
age classification task, different environments may have variability in illumination, camera angle,
background, color, among others (Koh et al., 2020). As variables like illumination are not condi-
tioned on the data samples or the labels, we can model their effect as data transforming mechanisms
controlled by latent variables. Importantly, by the ICM principle, the change of data transformation
mechanisms does not influence the data-generating mechanisms. Therefore, if we use the inverted
data-generating mechanisms to recover the latent variables that generate the data and feed the latent
variables to the downstream predictive ML model, we can expect more robustness to environmental
shifts due to disentanglement. Thus, a disentanglement between latent variables results from the
disentanglement between mechanisms.

The literature on both independent causal mechanisms (Locatello et al., 2018b; Parascandolo
et al., 2018) and disentangled representations (Higgins et al., 2017; Locatello et al., 2020) have pro-
duced powerful disentanglement techniques. However, they often use competitive-training-based
approaches (Locatello et al., 2018a,b), which are difficult to train, resulting in entanglement between
mechanisms. Figure 1(b) illustrates an example where the estimated data-generating mechanisms
are entangled – as the mechanisms do not specialize to mixture components in the data. In contrast,
using our method, the disentangled mechanisms are specialized to digits 4 and 9 (Figure 1(a)). In
recent work, Huang et al. (2019) study clustering datapoints based on shared causal structure but do
not incorporate latent variables. Another competitive training method, Parascandolo et al. (2018),
learns the mechanisms by letting a mixture of models convert a set of transformed data samples
(e.g., rotated data samples) to the original data samples. This approach requires the use of auxiliary
data–separate from the original data. However, it is common for the transformed and original data
to be mixed in the available dataset.

An additional gap in the literature is that few of the existing methods for learning the mech-
anisms analyze identifiability conditions, i.e., when one can distinguish the desired disentangled
model among the entangled models (Locatello et al., 2019; Khemakhem et al., 2020). Existing
identifiability results (Shu et al., 2019; Locatello et al., 2020) mainly focus on disentangled repre-
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sentations and either need additional labeling efforts or are not compatible with the class of system
that we study. Section 3.3 discusses the difficulties of applying previous identifiability results in
more detail.

To address the disentanglement, dataset, and identifiability limitations, we seek a practical
method that provably identifies the disentangled mechanisms without requiring any auxiliary dataset
or label. To this end, we first present a new generative model that uses a degenerate mixture prior
distribution to learn the mechanisms. We refer to our new model as the ICM model. Our ICM model
first learns the latent variables of the mechanisms and then transforms them into disentangled mech-
anisms. We define coarse-grained disentanglement between latent variables: the variables for the
same mechanism could be entangled but each group of variables from different mechanisms should
be disentangled. With the proposed ICM model, we prove that we can identify the generative model,
which disentangles other latent variables from the latent variables of each data-generating mecha-
nism in a coarse-granularity, up to a limited set of transformations, e.g., transformations that permute
the order of the latent variables but do not violate the coarse-grained disentanglement. Albeit coarse,
we will show that the benefits of disentanglement under environment shift are preserved. Unlike ex-
isting identifiability results (Shu et al., 2019; Locatello et al., 2020; Khemakhem et al., 2020) which
require supervision, our identifiability result requires only the invertibility of the generative model.
To meet the invertibility condition, we introduce a self-supervised training method, which is easier
to implement than competitive training methods (Parascandolo et al., 2018; Locatello et al., 2018b).
Further, by enforcing the identifiability conditions, we enforce the coarse-grained disentanglement.
Our key contributions are summarized as follows:

• We develop a novel generative model for learning disentangled mechanisms using a degener-
ate mixture prior.

• We prove the proposed generative model is identifiable up a few transformations that preserve
the coarse-grained disentanglement.

• We implement this approach using a self-supervised training method to enforce the identifia-
bility conditions.

We evaluate our approach using synthetic data with known ground-truth latent variables, show-
ing that with an invertible ICM model, our approach closely approximates the true disentangled la-
tent variables, in contrast to non-invertible generative models. Qualitatively, a latent space traversal
shows that the latent variables are disentangled at the coarse-granularity of interest. Quantitatively,
we show that the proposed ICM model improves downstream classification accuracy under envi-
ronment shift due to the disentanglement between latent variables. The accuracy improvements are
up to 9.75% on MNIST (LeCun et al., 1998), FashionMNIST (Xiao et al., 2017), and Sprites 1 (Li
and Mandt, 2018) datasets, compared to VAE (Kingma and Welling, 2013), β-VAE (Higgins et al.,
2017), Ada-GVAE (Locatello et al., 2020), and VaDE (Jiang et al., 2017) models.

2. The Generative Model with a Degenerate Mixture Prior

This section introduces our proposed generative model. In constrast to prior work (Parascandolo
et al., 2018), our approach includes latent variables for the data generating mechanisms and data

1. https://lpc.opengameart.org
https://github.com/jrconway3/Universal-LPC-spritesheet
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(a) Previous Data Gen-
erating Process

(b) Disentangled Mechanisms
(proposed model)

(c) Entangled Mechanisms (con-
trast)

Figure 2: Comparing existing approaches (a) to the proposed approach (b) and an entangled variant
(c) without mechanism separation. To see the entanglement, note that the red mecha-
nism for 9s generates the 4. MGi is a data generating mechanism. MTi and MT are data
transforming mechanisms. The latent variables and data samples correspond to the mech-
anisms with the same color. Mechanisms are disentangled if their input latent variables
are disentangled and specialized for different types of variation.

transforming mechanisms simultaneously – without requiring an auxiliary dataset. Next, we con-
nect the generative model and latent variables to underlying mechanisms. We further discuss iden-
tifiability and propose a training method for our model in Sections 3 and 4, respectively.

2.1. Generative Model

Assumed Data Generating Process Following prior work (Parascandolo et al., 2018), we assume
a two-step deterministic data generating process. A data sample x′ = MGi(zGi) is generated by
a data generating mechanism MGi using latent variables zGi as in Locatello et al. (2018b). The
data sample x′ is further transformed to another data sample x = MTj (x

′) by a data transformation
mechanisms MTj similar to Parascandolo et al. (2018). Our approach is visualized in Figure 2(a)
for MNIST digits 4 and 9. Here, the latent variable zG4 may control whether digit 4 has a bar,
crossing its stem while the latent variable zG9 may decide the circle size of digit 9, as the two rows
in Figure 1(a) shows. We consider, for example, thickening or rotating a digit as data transforming
mechanisms (MT0 and MT1 in Figure 2(a)).

Our Approach and Model Structure To learn the mechanisms, we take a two-step approach:
(1) designing a model for learning the latent variables and (2) transforming the model to the mech-
anisms. In step (1), we adopt a model: x = g(zG, zT ) where x is the data sample, zG =
[zG0 , zG1 , ...] are the latent variables for the data generating mechanisms and zT is the latent vari-
able for the data transforming mechanisms. By fitting our model to the dataset (with additional
techniques), we let each zGi zT capture the variability in data. We use a running example to intro-
duce step (2).

Running Example Figure 2(b) visualizes a disentangled version of our model. Here, consider a
modular model (the black rectangle) that contains the mechanisms as sub-modules. The modular
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(a) Non-degenerate (b) Degenerate

Figure 3: (a) Using non-degenerate mixture prior leads to: (1) One latent variable that encodes
multiple types of variations (e.g., for digits 4 and 9). (2) Intervening the latent variable
moves the generated data sample from one mixture components to another. (b) Using a
degenerate mixture prior avoids these two issues.

model generates data by activating a sequence of sub-modules. We assume the sub-modules are
activated upon receiving any non-zero input.

Previous Models and their Limitations Previous competitive training-based approaches (Paras-
candolo et al., 2018; Locatello et al., 2018b) adopt a model structure that is the same as the assumed
data generating process: x =

∑KT
j=1 πTjMTj

(∑KG
i=1 πGiMGi(zGi)

)
, where πT and πG are one-hot

vectors. Unfortunately, learning mixtures of mechanisms is difficult. Their works assume the canon-
ical distribution (Parascandolo et al., 2018), x′ =

∑KG
i=1 πGiMGi(zGi) is available, then learns the

two mixtures separately (Parascandolo et al., 2018; Locatello et al., 2018b) but such an assumption
does not apply to many conventional datasets.

While the proposed approach is designed to disentangle the latent variables, simply fitting the
proposed generative model to the dataset and hoping the zGi and zT encodes different types of
variations for different mechanisms can fail. The issues are twofold: (1) The commonly used dis-
entangled prior p(zG, zT ) = N (zG | 0, I) × N (zT | 0, I) would result in samples with multiple
zGi ̸= 0. Such a sample will activate multiple data generating mechanism sub-modules (e.g. MG4

and MG9 in Figure 2(b)) in parallel. This is at odds with the independent causal mechanisms concept
– where we would like a variable to be generated by one mechanism (potentially with sequential
composition) (Parascandolo et al., 2018; Locatello et al., 2018b). (2) It is unclear whether one can
disentangle each zGi and zT due the well-known identifiability issues (Locatello et al., 2019).

2.2. A Degenerate Mixture Prior

In order to address the issue related to the disentangled prior, we propose a degenerate mixture
prior. This way, we can make sure that if we sample from one component, the irrelevant dimensions
of the samples are 0 (i.e., deactivated). Prior work (Khemakhem et al., 2020) which uses a non-
degenerate mixture prior assumes that each mixture component of the data distribution is generated
by a separate component of the mixture prior. However, the non-degenerate mixture prior has two
limitations in modeling disentangled mechanisms: (1) a single latent variable must encode multiple
types of variation, violating assumptions of the data generating process, and (2) intervening on the
latent variable may move the generated data samples from one mixture component to another.
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To see the limitations, consider the running example. Here, assume digits 4 and 9 are generated
by a one dimensional latent variable zG which follows p(zG) = π4p4(zG) + π9p9(zG). The latent
variable zG has to encode two types of variations for the two digits. If we intervene on zG to vary
the circle size of digit 9, we may push zG into the mixture component where digit 4 lies, as Figure
3(a) shows.

To address the outlined limitations, we use a degenerate mixture prior :

p(i) ∝ unif(0,KG), p(zT ) ∝ N (zT | 0, I)

p(zG | i) ∝ N (zG | 0, diag(ei)), p(zG) ∝
KG∑
i=1

1

KG
· N (zG | 0,diag(ei))

(1)

where i is the index of data generating mechanisms, ei is the ith standard unit vector. We may
let each component have a higher-dimensional, non-overlapping support in the implementation to
support multiple latent variables for each mechanism. We assume equal prior weights for each
mixture component. However, we note that recent work (Ojha et al., 2020) that studies learnable
mixture weights in generative models is complementary. Another advantage of the degenerate prior
is that all the samples within the same subspace represent the same type of data. In our running
example, no matter how we intervene zG9 , the model will always generate a digit 9 as is shown
is Figure 3(b). To eliminate the ambiguity when zG ≈ 0, we append a one-hot index i to zG,
following Antoran and Miguel (2019).

Transforming the Model to Independent Causal Mechanisms It is straightforward to connect
our generative model and latent variables to the mechanisms, complementing the intuition that the
modular model generates data by activating a sequence of sub-modules. Consider a generative
model g : Z −→ X , two data generating mechanisms MG0 : ZG0 −→ XG0 , MG1 : ZG1 −→ XG1

and one data transforming mechanism MT : XG × ZT −→ X where Z = [ZG0 ,ZG1 ,ZT ] and
XG = XG0 ∪ XG1 . We have g([zG0 ,0, zT ]) = MT (MG0(zG0), zT ) and g([0, zG1 , zT ]) =
MT (MG1(zG1), zT ). If latent variables zG0 , zG1 , and zT are disentangled and encode different
type of variations, the corresponding mechanisms MG0 , MG1 , and MT are disentangled as a conse-
quence. We will show methods for enforcing the disentanglement in the following sections.

3. Identifiability Analysis

Now, we have outlined a compact way to model the mechanisms – but fitting the model to the
data is not equivalent to learning the disentangled mechanism. Conventional training approaches
(Kingma and Welling, 2013; Higgins et al., 2017) optimize the generative model g : Z −→ X
such that pg(x) ≈ pg∗(x), where pg(x) is the marginal distribution of model g, and g∗ is the
true disentangled model. However, it is not guaranteed that we have g = g∗ even if the loss goes
to zero (Locatello et al., 2019). Given the ground-truth disentangled model, there exist infinitely
many equivalent models, including entangled models, that achieve the same loss (Locatello et al.,
2019). For instance, in our running example, the model could let mechanisms MG9 also generate
certain digit 4 when entangled, as Figure 2(c) shows, which violates the disentanglement between
mechanisms but does not affect the marginal. Other work (Locatello et al., 2019), which studies
generative models with an isotropic Gaussian prior, shows that one can construct infinitely many
g∗◦h, where h : Z −→ Z , such that g∗◦h is completely entangled but pg∗◦h(x) = pg∗(x). Following
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prior work (Locatello et al., 2020; Khemakhem et al., 2020), we first formulate the definition of
identifiability.

3.1. Definition of Identifiability

The idealized goal of ensuring that pg(x) = pg∗(x) ⇒ g = g∗ is often infeasible. In practice, we
are interested in models that are identifiable up to a class of transformation (Locatello et al., 2020;
Khemakhem et al., 2020). Thus, we introduce the following definitions:

Definition 1 We define an equivalence relation on g : Z −→ X as follows:

g ∼h g̃ ⇔ ∃h : g = g̃ ◦ h (2)

where h : Z −→ Z is a smooth invertible function.

Definition 2 We say that g : Z −→ X is identifiable up to ∼h (or h-identifiable) if:

pg(x) = pg̃(x) ⇒ g ∼h g̃ (3)

Definition 2 clarifies the assumption of a smooth invertible transformation. This assumption is
consistent with the prior work (Locatello et al., 2020) and is considered weak. For a generative
model, if the mapping between Z and X is injective, that means the generative model fails to induce
part of the data distribution. On the other hand, if the mapping is surjective, that means that if we
vary z, the generated data x may not change. In both cases, the non-bijective generative model is
called collapsed model and is unfavorable (Arjovsky et al., 2017; Yang et al., 2019). To make this
assumption more realistic, we will show how to enforce the invertibility in Section 4.

3.2. Identifiability of ICM Model

With Definitions 1 and 2, we use the following lemma to simplify the discussion in our main result
in Theorem 4.

Lemma 3 Let G be the space of smooth invertible functions with smooth inverse (i.e., a diffeomor-
phism) (Locatello et al., 2020) that map Z to X , and h : Z −→ Z is a smooth invertible function.
Then, any function g ∈ G can be represented as g = g∗ ◦ h, where g∗ : Z −→ X is the assumed true
disentangled generative model in the function space G. Formally, we have g ∼h g∗,∀g ∈ G and the
model g is h-identifiable.

We can prove this lemma by simply letting h = (g∗)−1◦g. A detailed proof is in Appendix A.1.
This lemma guarantees that by optimizing towards pg(x) = pg∗(x), the learned model g equals to
the true g∗ up to a smooth invertible transformation h.

Now, we present our main identifiability result. We show that the function h, when paired
with our degenerate prior, does not entangle the latent variables of other mechanism to those of any
data-generating mechanisms. The latent variables are disentangled in the sense that h has to map
each latent variable zGi to disjoint subspaces. For example, the function h can not map zG9 to the
subspace where zG4 lies in. As such, in our running example, the model can not generate a digit 4
by manipulating zG9 . Also, the function h can not map zT to any zGi , which preserves the benefit
of better generalization across environments.
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As all the smooth invertible generative models are h-identifiable, we only need to consider how
the function h entangles the latent variables z before the true generative model. Note that we do
not assume h is always (g∗)−1 ◦ g. The main idea is: with a degenerate mixture prior, if h maps
one latent variable to the two or more different subspaces, then the result has measure zero, or, if
we transform back to the original space using h−1, the result has measure zero, which violates the
definition of h.

Theorem 4 Let i ∈ {1, 2, ...,KG} be the index of data generating mechanisms, let σ : N+ −→ N+

be a bijective function that permutes the index i, let z be a latent variable that follows the degenerate
mixture distribution defined in Eq. (1), and let ZGi , ZT , and Z be the support of zGi , zT and z,
respectively. We let ẑ = h(z), Ẑ be the support of ẑ. We assume g∗ : Z −→ X is the true
disentangled model. Then, if there exists a smooth invertible function h : Z −→ Z such that g ∼h g∗,
then h maps each ZGi to ẐGσ(i)

, disjoint from ẐGσ(j)
,∀j ̸= i, as well as ẐT , and maps ZT to ẐT ,

which is disjoint from ẐGσ(i)
, ∀i ∈ {1, ...,KG}.

The proof of Theorem 4 is in Appendix A.2. We now discuss the remaining three types of
transformations of h. First, we cannot (and do not need to) guarantee the ith learned subspace ẐGi

corresponds to the ith true subspace ZGi because the disentanglement between latent variables will
not be affected. Therefore, the learned latent variables ẑG may be subspace-wise permutation of
the true latent variables zG. Second, the function h may still entangle the latent variables of the
same mechanism, which is the case for an intra-subspace smooth invertible transformation. Third,
h may entangle zG to zT in ẑT , which does not affect the disentanglement of ẑG. Although the
disentanglement has a coarse granularity, we will empirically show that we can still benefit from the
coarse-grained disentanglement.

3.3. Comparison to Other Identifiability Results

Identifiable VAE Previous work (Khemakhem et al., 2020) combines non-linear independent
component analysis (ICA) and variational autoencoder (VAE) for identifiability by leveraging the
invertibility of the sufficient statistics parameter matrix. The latent variables are conditioned on a
label in their setting: the class label, the environment label, or others. Besides the label requirement,
the invertibility prevents the mechanisms from sharing or duplicating the latent variables because
the matrix, of which each column is the parameters for a label, will be low-rank. Consequently, this
method is not applicable when there are additional data transforming mechanisms.

Weakly-supervised Disentanglement Ada-GVAE (Locatello et al., 2020) achieves identifiability
by introducing pair observations that share the same value on at least one latent variable. However,
even in a simple dataset like MNIST, this assumption may not hold because two digits may differ
w.r.t. each latent variable such as stroke-thickness, width, or brightness. Other work (Shu et al.,
2019) adopts a weaker assumption by introducing rank pairing. However, this method requires
additional supervision and certain latent variables (e.g., style) are hard to compare or rank.
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4. Proposed Model Architecture and Self-supervised Training Method

Figure 4: Model Architecture

In practice, we need to enforce the generative model g to be
smooth invertible with smooth inverse. As the neural network
is commonly assumed as smooth (Xie et al., 2020; Liang et al.,
2021), this section shows how to enforce the invertibility assump-
tion. For an invertible generative model, we have z = g−1(g(z)).
If we can find g−1 such that z = g−1(g(z)) holds, then the gen-
erative model g is invertible.

To do so, we first design a new model architecture. Techni-
cally, we compose a generator network G : Z −→ X , a discrim-
inator network D : X −→ Y , and an auxiliary encoder network
E : X −→ Z . We append the encoder to the generator’s output and connect the encoder back to the
generator’s input as Figure 4 shows. Specifically, our generator network and discriminator networks
are from the Wasserstein GAN (Arjovsky et al., 2017; Gulrajani et al., 2017). Our auxiliary encoder
is a deterministic encoder that approximates g−1.

We use self-supervised training to jointly train the generator and the encoder. The self-supervision
involves predicting the latent variables that generate the data samples using the auxiliary encoder
network E. The loss function is:

L = W (Pg||Pr) + λGEz∼p(z)||zG − E(G(z))G||22 + λTEz∼p(z)||zT − E(G(z))T ||22
+ λCEz∼P (z)H(zC , E(G(z))C) + λREx∼p(x)||x−G(E(x))||22

(4)

where Pg denotes the distribution induced by the generator network G, Pr denotes the real data dis-
tribution, W (Pg||Pr) denotes the Wasserstein distance (Arjovsky et al., 2017) between two distri-
butions, z = [zC , zG, zT ], zC is a categorical variable representing the index of the data generating
mechanisms and its value is determined by zG, zG and zT are the same as is defined in Section 2,
and H denotes the cross-entropy loss.

The loss function above can be decomposed into four parts: 1) W (Pg||Pr) is the WGAN loss
(Gulrajani et al., 2017). 2) Ez∼p(z)||zG − E(G(z))G||22 + Ez∼p(z)||zT − E(G(z))T ||22 is the self-
supervision loss for invertability. 3) Ez∼P (z)H(zC , E(G(z))C) is the auxiliary self-supervision
loss that encourages the data generated by different mechanisms to be different and separable. 4)
Ex∼p(x)||x − G(E(x))||22 is the cycle-consistent loss, so x ≈ G(E(x)). The encoder takes data
from the generator as input. However, the generated data distribution may differ from the real data
distribution. Thus, certain data in the real distribution may become out-of-distribution (OOD) for
the encoder. Such distribution divergence hurts the performance of downstream tasks. The cycle
consistency mitigates the distribution divergence by encouraging the ICM model to capture the
whole real data distribution. While the usage of cycle-consistency has a long history in image-to-
image translation (Zhu et al., 2017), visual-tracking (Sundaram et al., 2010), and other areas, the
loss in our method is developed from a different motivation and serves a different purpose.

Model Architecture Comparison Similar model architectures have been explored by previous
works (Larsen et al., 2016; Bao et al., 2017), which append a discriminator to a VAE model. The
issue of the VAE-based model is that the inferred prior could drift away from the true prior (Kumar
et al., 2017). Such drift breaks our identifiability result, where the prior has a specific form. Prior
work (Kumar et al., 2017) adds the distance between the inferred prior and the true prior as a reg-
ularizer to the loss function. However, the regularizer only approximates the true distance because

9



WANG NAHRSTEDT KOYEJO

the exact computation is intractable. As such, it is unclear whether the true distance decreases to
zero. In contrast, our design allows the generator to directly sample from the true prior distribution.

5. Related Work

Independent Component Analysis (ICA) Khemakhem et al. (2020) bridge the gap between the
non-linear ICA and generative models. The non-linear ICA-based approach can identify the true
distribution over observed and latent variables up to a linear transformation. However, the strong
theoretical guarantee comes with strong assumptions as is discussed in Section 3.3.

Disentangled Representations Disentangled representations (Higgins et al., 2017; Shu et al.,
2019; Locatello et al., 2020) assume that the data is generated by a single data generating mechanism
using a set of independent latent explanatory factors (Bengio et al., 2013). In terms of modeling, we
assume each mixture component in the data distribution could have their private factors and all the
mixture component share a set of shared factors. In terms of disentanglement, we only require the
latent explanatory factors associated with different mechanisms to be disentangled, while the fac-
tors associated with the same mechanisms could be entangled. Although our disentanglement has
a coarse granularity compared to previous results, our disentangled model is provably identifiable
without manual labeling, whereas their results need at least weak-supervision. We will also show in
the experiment that our coarse-grained identifiability is useful.

6. Experiments

This section first shows a visualization of the identifiability on synthetic data where the ground-
truth latent variable is available. Then, we evaluate our method both qualitatively and quantitatively.
Qualitatively, we conduct latent space traversal. Quantitatively, we develop a method to evaluate
the disentanglement by measuring the accuracy of downstream classifiers under environment shifts,
similar to existing works (Locatello et al., 2020). Additional ablation studies in Appendix C show
the importance of the loss terms in Eq. (4) and the benefit of using a degenerate mixture prior.
The downstream classifiers predict the label of data samples. If the latent variables are better dis-
entangled, the environment shift impacts the downstream classifier less. We briefly introduce the
baselines and data setup and detail the setting in Appendix B.

Baseline Setup Existing competitive training-based methods (Parascandolo et al., 2018) for learn-
ing independent causal mechanisms do not apply to our dataset because the auxiliary dataset is un-
available, as discussed in Section 1. For the other competitive training-based methods (Locatello
et al., 2018b), we have seen that the mechanisms are easily entangled (as shown in Figure 1(b)).
Hence, we select models that focus on disentangled representations, VAE, β-VAE, and AdaGVAE,
as our baselines. We also compare our method to a clustering approach VaDE.

Data Setup We generate synthetic data by changing the height, width and brightness of digits
from MNIST dataset. For the quantitative evaluation, we use the encoder network E to predict
latent variables and feed to prediction to downstream ML models. For experiments, we use 1)
three datasets, which are MNIST (MN), FashionMNIST (FMN), and Sprites (SP). Sprites dataset
contains animated characters. We select character action and color as the types of variations. 2) five
environment shifts, all of which already exist in the data.

10
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(a) Ground-truth (b) ICM (c) VAE

(d) Ground-truth (e) ICM (f ) VAE

Figure 5: The true distribution and the estimated distribution from our ICM model and VAE. (a)-
(c) plot z0 and z1 that should jointly follow a degenerate mixture distribution, (d)-(e) plot
z2 that should follow a Gaussian distribution. y is the label. Our ICM model closely
approximates the true distribution while VAE fails to recover z0 and z1.

6.1. Simulation on Synthetic Data

We define three latent variables: z0 (height), z1 (width), and z2 (brightness). The variables z0
and z1 jointly follow a degenerated mixture distribution, and z3 follows a conventional Gaussian
distribution. We then sample two images from the MNIST dataset, which are labeled as y = 0 and
y = 1, respectively. The synthetic dataset is generated by varying the height of the first image,
the width of the second image, and the brightness of both images. We fit our ICM model, with
enforcing invertibility, and a VAE model, without enforcing invertibility, to the synthetic dataset.
Figure 5 shows the estimated distributions of the degenerated mixture part and the Gaussian part.
Our ICM model closely approximates the true distribution while the VAE model fails to preserve
the degeneracy of the distribution.

6.2. Qualitative Evaluation

We show the latent space traversal of ICM model on MNIST dataset in Figure 6. Specifically,
we set the zC to the correct mechanism for each row and set and the latent variables that are not
being traversed to 0. The visualization result illustrates the disentanglement as the traversal of
each subspace shows a different type of variation. Furthermore, we show that each data generating
mechanism’s traversal yields a distinct, mechanism-specific type of variation. The traversal of the
data transforming mechanism produces the same type of variation. We show the traversal of β-VAE
in Figure 7 as a comparison. Due to the limited space, we report more visualization on MNIST,
FashionMNIST and Sprites dataset in Appendix C.4. The visualization also shows that our ICM
model is robust to interventions (Suter et al., 2019) in the sense that no matter how we change zGi

11
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(a) Data Generating Mecha-
nisms Subspaces, Distinct
Variation for Each Sub-
space/Row

(b) Data Transforming Mecha-
nism Subspace, zT0 , Width
and Rotation

(c) Data Transforming Mecha-
nism Subspace, zT1 , Stroke
Thickness and Width

Figure 6: Latent Space Traversal of ICM Model on MNIST

(a) Entangled Digit Label, Style, and
Azimuth Variation

(b) Entangled Color and Action Variation

Figure 7: Latent Space Traversal of β-VAE Model on MNIST and Sprites

and zT while keeping zC and z\Gi
fixed, the generator does not generate data that does not belong

to mechanism Gi (e.g., digit 4 does not change to digit 9 during the traversal).
We note that the number of data generating mechanisms is chosen to be larger than the number of

classes (e.g. 15 mechanisms for 10 classes in MNIST), which means one true mechanism could be
split into two estimated mechanisms. This setting is consistent with previous works (Parascandolo
et al., 2018; Locatello et al., 2018b). Appendix B proposes a procedure for choosing the number of
mechanisms.

6.3. Quantitative Evaluation

To quantitatively measure the accuracy of downstream ML models under environment shift, we
first partition the dataset using the learned latent variables, from a pre-trained ICM model, as the
conditions that are shifted by the environment. The shifted conditions include stroke thickness (T),
width and rotation (W&R), rotation (R), darkness and width (D&W), and color. Figure 14 in the
Appendix further visualizes these conditions. Since the true zT is uniquely determined by ẑT and
the true zG, for any data sample x = g(h(z)) with a given zG, varying is equivalent to varying
the true even if ẑT entangles other variables. Then, we partition the MNIST and FashionMNIST
dataset into subsets {x | x ∈ X , ẑi = E(x)i ∈ [Clower, Cupper)} using the predicted value of the
condition, which is in the ith dimension if ẑ. For the train set, we set [Clower, Cupper) to [0,∞).
For each test set, we set [Clower, Cupper) to [−0.1, 0), [−0.2,−0.1), ..., [−3.0,−2.9). We use the
Ctrain
lower − Ctest

upper to represent the shift distance. For the Sprites dataset, the train set has randomly
colored images and the test set has images with only red and green components in the RGB color

12
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space, similar to prior works that also consider color shift (Locatello et al., 2020; Dittadi et al.,
2021).

Next, we train the ICM model and other competitors on the MNIST and FashionMNIST train
set and Sprites train and test set. Appendix B discusses the training setting on Sprites. Then, we use
gradient boosted decision trees (GBT) from the Scikit-learn library (Pedregosa et al., 2011) with
default parameters as the downstream ML model, which is the same as previous works (Locatello
et al., 2019, 2020). We train the GBT with 1000 train samples (MN, FMN) or 50 train samples
(Sprites), which is sufficient for GBT to produce decent accuracy, and test the GBT accuracy on
a sequence of test sets. The test repeats ten times on each test set. Table 1 shows the average
accuracy and accuracy variations. Our ICM model achieves the best average accuracy across all
the experiments except for MNIST (R). Due to the limited space, we analyze the experiments on
the MNIST (R) dataset in the Appendix C.5.

Table 1: Average Accuracy of Downstream Classifiers under Different Shift Strength

MODEL MN (T) MN (W&R) MN (R) FMN (D&W) SPRITES AVERAGE

ICM 74.63% 2.43% 56.91% 3.70% 43.71% 7.10% 46.61% 5.24% 99.25% 1.79% 64.22%
VAE 55.91% 4.32% 41.92% 6.30% 39.90% 7.33% 37.08% 9.02% 92.99% 4.89% 53.56%
β-VAE 73.34% 2.71% 46.33% 4.98% 46.05% 7.80% 41.60% 7.83% 98.75% 2.68% 61.21%
ADA 68.09% 2.96% 47.16% 4.90% 47.58% 7.31% 40.85% 7.98% 98.75% 3.11% 60.49%
VADE 73.64% 2.69% 48.57% 4.92% 48.54% 7.16% 43.21% 7.35% 98.25% 2.95% 62.44%

* Letters in parenthesis are abbreviations of the conditions shift across environments.
The small numbers represent accuracy variations.

7. Conclusion and Future Work

This paper presents a generative model with a degenerate prior, called the ICM model, to learn a
broad range of practical mechanisms that generate and transform data. We analyze conditions under
which the disentangled ICM model is identifiable. To enforce the identifiability conditions, we
develop a model architecture and a self-supervised training method for the ICM model. Empirical
results show that the ICM model achieves better disentanglement and improves the accuracy of
downstream prediction ML models under environment shifts.

A straightforward extension of this work is to consider a class of systems where the observa-
tional data is generated by a sequential composition of data generating mechanisms, or the data
generating mechanisms may share some latent variables.
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Appendix A. Proofs

A.1. Proof of Lemma 3

Lemma 3 Let G be the space of smooth invertible functions with smooth inverse (i.e., a diffeomor-
phism) (Locatello et al., 2020) that map Z to X , and h : Z −→ Z is a smooth invertible function.
Then, any function g ∈ G can be represented as g = g∗ ◦ h, where g∗ : Z −→ X is the assumed true
disentangled generative model in the function space G. Formally, we have g ∼h g∗,∀g ∈ G and the
model g is h-identifiable.

Proof By definition, g : Z −→ X and g∗ ◦ h : Z −→ X are equal if their domain and codomain are
the same and g(z) = g∗(h(z)) for any z ∈ Z . For g ∈ G and g∗ ◦ h, their domain and codomain
are defined to be the same. Then, we could let h to be a permutation function, which is invertible,
that satisfies g(z) = g∗(h(z)),∀z ∈ Z . First, we choose a z ∈ Z and let x = g(z). Then, we
can construct ẑ = h(z) such that g∗(ẑ) = g∗(h(z)) = x. We can apply this procedure to every
z ∈ Z . This is because we assume the mapping between Z and X are bijective, which means there
is no conflict. As we assume h to be smooth, which is not implicitly satisfied by the permutation
function, we show the smooth assumption holds by showing the limit of h exists everywhere on Z:

lim
∆z−→0

h(z +∆z)− h(z)

∆z

= lim
∆z−→0

g∗
−1
(g(z +∆z))− g∗

−1
(g(z))

∆z

= g∗
−1

′

(g(z))× g
′
(z)

(5)

As we know that both g and g∗
−1

are smooth, their composition, g∗
−1 ◦g, are also smooth. Thus,

the limit above exist for any z ∈ Z . By definition, h is a smooth function. Thus, we can always
find a smooth invertible permutation function h for any g ∈ G such that g = g∗ ◦ h,∀g ∈ G. As the
valid output x for g and g∗ ◦h identical, we have g ∼h g∗ by definition. As the equivalence relation
holds between any g ∈ G and g∗ that admits the same marginal distribution, g is h-identifiable.

A.2. Proof of Theorem 4

Theorem 4 Let i ∈ {1, 2, ...,KG} be the index of data generating mechanisms, let σ : N+ −→ N+

be a bijective function that permutes the index i, let z be a latent variable that follows the degenerate
mixture distribution defined in Eq. (1), and let ZGi , ZT , and Z be the support of zGi , zT and z,
respectively. We let ẑ = h(z), Ẑ be the support of ẑ. We assume g∗ : Z −→ X be the true
disentangled model. Then, if there exists a smooth invertible function h : Z −→ Z such that g ∼h g∗,
then h maps each ZGi to ẐGσ(i)

, disjoint from ẐGσ(j)
,∀j ̸= i, as well as ẐT , and maps ZT to ẐT ,

which is disjoint from ẐGσ(i)
, ∀i ∈ {1, ...,KG}.

Proof By the definition of degenerate mixture prior, we have: if zGi ̸= 0, zGj = 0 for all j ̸= i.
We name this condition as the structure constraint. As we know that h : Z −→ Z and g∗ : Z −→ X ,
we have Z = Ẑ because the valid inputs for g∗ are fixed. The structure constraint is enforced on
both Z and Ẑ . If h entangles ẑGσ(i)

and ẑGσ(j)
for any i ̸= j, which means the change of one

ground-truth latent variable zGk
affects two learned latent variables ẑGσ(i)

and ẑGσ(j)
. Then, there
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exist a z such that h(z)Gi = ẑGσ(i)
̸= 0 and h(z)Gj = ẑGσ(j)

̸= 0 hold simultaneously, violating
the structural constraint.

To see the violation, we can let [zGi , zGj ] = [[1.0, 0.0]⊤, [0.0, 0.0]⊤] and construct [ẑGσ(i)
, ẑGσ(j)

] =

h([zGi , zGj ]) = [[0.7, 0.0]⊤, [0.5, 0.0]⊤]. We can also let [zGi , zGj ] = [[1.0, 1.0]⊤, [0.0, 0.0]⊤] and
construct [ẑGσ(i)

, ẑGσ(j)
] = h([zGi , zGj ]) = [[0.0, 1.0]⊤, [1.0, 0.0]⊤]. The existence of such ẑGσ(i)

and ẑGσ(j)
violates the structure constraint. Thus, h need to map each ZGi to ẐGσ(i)

, disjoint from
ẐGσ(j)

,∀i ̸= j, to make the structure constraint hold.
Additionally, if h entangles ẑT and ẑGσ(i)

for any valid i, there exist two cases: 1) h maps ZT

to ẐT and ẑGσ(i)
or 2) h maps ZGi to ẐT and ẑGσ(i)

. For the first case, there exist a j ̸= i such that
zGi = 0 and zGj ̸= 0 but h(z)Gi = ẑGσ(i)

̸= 0 and h(z)Gj = ẑGσ(j)
̸= 0. This is because zT is

independent from all the zGi , zGj and can push ẑGσ(i)
to arbitrary value when other variables are

fixed. Thus, the structure constraint is violated. The second case falls within our claim.
Furthermore, if h entangles multiple mechanisms, we can find two variables among the entan-

gled latent variables to show that the structure constraint is violated.

Appendix B. Implementation Details

B.1. Network Architecture

We report the network architectures for 1x28x28, and 3x64x64 images in Table 2, and 3, respec-
tively. We use the same generator/decoder and encoder (with modified output layer) for VAEs. For
the colored dataset Sprites, we use a separate encoder, which takes the gray-scale image is input and
predicts ẑC and ẑG. Such configuration would avoid identifying mechanisms by color.

Table 2: Generator, Discriminator, and Encoder Architectures for 1× 28× 28 Inputs
Generator Discriminator Encoder

Input: Rdim(z) Input: R1×28×28 Input: R1×28×28

FC 1024 BN ReLU 4×4 conv, 64 LReLU, stride 2 4×4 conv, 64 LReLU, stride 2
FC 128×7×7 BN ReLU 4×4 conv, 128 LReLU, stride 2 4×4 conv, 128 LReLU, stride 2
4×4 upconv, stride 2, 64 BN ReLU FC 1024 LReLU FC 1024 LReLU
4×4 upconv, stride 2, 1 Sigmoid FC 1 FC dim(z)

Table 3: Generator, Discriminator, and Encoder Architectures for 3× 64× 64 Inputs
Generator Discriminator Encoder

Input: Rdim(z) Input: R3×64×64 Input: R3×64×64

FC 1024 BN ReLU 4×4 conv, 64 LReLU, stride 2 4×4 conv, 64 LReLU, stride 2
FC 128×8×8 BN ReLU 4×4 conv, 64 LReLU, stride 2 4×4 conv, 64 LReLU, stride 2
4×4 upconv, stride 2, 64 BN ReLU 4×4 conv, 128 LReLU, stride 2 4×4 conv, 128 LReLU, stride 2
4×4 upconv, stride 2, 64 BN ReLU FC 1024 LReLU FC 1024 LReLU
4×4 upconv, stride 2, 3 Sigmoid FC 1 FC dim(z)
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B.2. Hyper-parameters

We set [λG, λT , λCλR] to [10.0, 10.0, 30.0, 0.05] on all the datasets and change λT to 50 for Sprites
dataset. We train our ICM model for 200 epochs. For each β-VAE and Ada-GVAE model, we train
the model for 200 epochs with β = [1, 2, 4, 8, 16]. We train each generative model three times and
report the best result. We use Adam optimizer with learning rate = 0.001 and batch size = 64 across
the experiments. We set (β1, β2) = (0.5, 0.9) for ICM and set (β1, β2) = (0.9, 0.999) for VAEs
as Gulrajani et al. (2017) suggest. We train the VAEs with dimension [10, 20, 30, 50]. We find the
VAEs with 20 dimensions have the best robustness when β is optimal. For the ICM model, we set
the dimension of each zGi to 1, 2, and 1 on MNIST, FashionMNIST, and Sprites, respectively. The
dimension of zT is 4, 5, and 3 on MNIST and FashionMNIST, and Sprites, respectively.

B.3. Disentangled Representations Datasets

The disentangled representations datasets, such as 3DShapes, assume the latent explanatory factors
are independent of each other. Such an assumption is not compatible with the class of system that
we study. We tried to create a dataset that correlates one type of variation (e.g. floor hue) with one
shape. However, such a configuration will make the data too small to use.

B.4. Choosing the Number of Mechanisms

Our method does not require users to know the precise number of mechanisms in advance because
our ICM model can tolerate the discrepancy between the learned mechanisms and the true mecha-
nisms if the number of learned mechanisms is greater or equal to the number of true mechanisms.
For example, we use 15 mechanisms in the MNIST experiment. The users can easily choose the
number of mechanisms by applying the following procedure: 1) Pick a random number and train
the ICM model. 2) Do a latent space traversal and observe the type of variations. 3) If the data sam-
ples from the same data generating mechanism share the same type of variations, the ICM model is
ready to use. Otherwise, increase the number of mechanisms and repeat steps 1)&2).

B.5. Training Setting for Sprites

If the environment shift that affects both the ICM model and the downstream GBT model is caused
by color, we do not find disentanglement improves the accuracy of the GBT model. Dittadi et al.
(2021) report similar results. The possible reason is that the color shift in our experiment is not
continuous, differing from width and brightness shifts. If the ICM model has never seen any blue
color, it is difficult to “imagine” a blue object based on the red or green. Therefore, we let the
environment shift affect the GBT model only. Such a setting is also helpful for showing the benefit
of disentanglement and is called “out-of-distribution 1 setting” in a recent work (Dittadi et al., 2021).

Appendix C. More Experimental Results

C.1. Ablation Study on Loss Terms

Figure 8 shows that removing the second term Ez∼p(z)∥zG − E(G(z))G∥22 and the third term
Ez∼p(z)∥zT −E(G(z))T ∥22 in the loss function results in entanglement between the data generating
and transforming mechanisms. Specifically, the latent space traversal for the data transforming
mechanism shows a variation that associate with the styles of digit 4. We note that if we remove
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(a) Data Generating Mechanisms
Subspaces, Each Row Repre-
sents One Dimension in zG

(b) Data Transforming Mechanism
Subspace, Dimension #0, En-
tangled with Data Generating
Mechanisms.

Figure 8: Latent Space Traversal of ICM model on MNIST. The ICM model is trained without the
second term Ez∼p(z)∥zG−E(G(z))G∥22 and the third term Ez∼p(z)∥zT −E(G(z))T ∥22)
in the loss function.

the second and third terms and keep the fifth term Ex∼p(x)||x − G(E(x))||22, the training of the
generative model fails. One possible reason is that the encoder E can not predict z accurately
without the second and third terms in the loss function, making E(x) meaningless and misleading
the training. Therefore, we have to remove the fifth term in the ablation study for the second and
third terms. Figure 9 shows that removing the fourth term Ez∼P (z)H(zC , E(G(z))C results in
entanglements between data generating mechanisms. If we remove the fifth term Ex∼p(x)||x −
G(E(x))||22, Figure 10 shows that the generative model may miss some mechanisms (e.g., the
mechanism for digit 5 in the attached figure).

C.2. Ablation Study on Degenerate Mixture

The visualization results in Figure 11 suggest that if we remove zG from the prior, the generative
model is not robust to interventions. We could observe entanglement between digits 3 and 8, 3 and
5, 4 and 9, 8 and 2. One possible reason is that the additional task of predicting zG benefits the
disentanglement.

C.3. Comparison between Degenerate and Non-degenerate Mixture Priors

We conduct qualitative ablation study using a non-degenerate mixture prior p(zG) =
∑KG

i=1
1

KG
·

N (zG | µi, σi) in the ICM model. We find that if we want to reduce the overlap between mixture
components by letting µi be far away from each other and letting each σi be small, the samples from
clusters with large |µi| makes the GAN training unstable, and the small σi reduces the model ca-
pacity for each mixture component. Therefore, we choose a smaller KG=3, let µ = [−1.0, 0.0, 1.0]
and σ = [0.5, 0.5, 0.5], and report the visualization result in Figure 12(a). We can see that (1) the
data variability is limited, (2) the two types of variations, circle size and circle number, are entan-
gled, and (3) interventions could change the label of the digit. (2) and (3) support our discussion in
Section 2.2.
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Figure 9: Latent Space Traversal of ICM
model on MNIST, Data Gen-
erating Mechanisms Subspaces,
Each Row Represents One Di-
mension in zG. The ICM model
is trained without the fourth term
Ez∼P (z)H(zC , E(G(z))C) in the
loss function.

Figure 10: Latent Space Traversal of ICM
model on MNIST, Data Generat-
ing Mechanisms Subspaces, Each
Row Represents One Dimension in
zG. The ICM model is trained
without the fifth term Ex∼p(x)||x−
G(E(x))||22 in the loss function.

(a) Latent Space, Dimension#0 (b) Latent Space, Dimension#1

(c) Latent Space, Dimension#2 (d) Latent Space, Dimension#3

Figure 11: Latent Space Traversal of ICM Model on MNIST. The ICM model is trained without
zG.
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(a) Latent Space Traversal of ICM Model
with Non-degenerate Mixture Prior.

(b) GBT Accuracy Decrease (y-axis) under
Different Environment Shift Distance (x-
axis).

Figure 12: (a) shows that circle size factor and circle number factor are entangled. (b) shows that
ICM model with degenerate mixture prior slows down the accuracy decrease under en-
vironment shift.

Quantitatively, we consider a binary classification task using digits 4 and 9 from the MNIST
dataset. The shifted conditions are the styles of digits 4 and 9 (e.g., the circle size of digit 9).
For the train set, we collect {x | x ∈ X , ẑ4 = E(x)4 ∈ [Clower, Cupper) ∨ ẑ9 = E(x)9 ∈
[Clower, Cupper)}, where [Clower, Cupper) is [−1.0, 1.0). We collect a union of two subsets for each
test set by letting [Clower, Cupper) be [−1.1,−1.0), [−1.2,−1.1), ..., [−3.0,−2.9) and [1.0, 1.1),
[1.1, 1.2), ..., [2.9, 3.0), respectively. We use the GBT model as the classifier. Figure 12(b) shows
that as the environment shifts, the accuracy decreases faster if we use the encoder from the ICM
model with a non-degenerate mixture prior. Additionally, using degenerate mixture prior yields
90.72% average accuracy, contrasting the 78.44% average accuracy from using non-degenerate mix-
ture prior. This result complements our discussion in Section 2.2.

C.4. Qualitative Evaluation

MNIST We visualize the data transforming mechanism subspace traversal in Figure 15.

FashionMNIST We visualize the traversal for each data generating mechanism subspace and the
data transforming mechanism subspace in Figure 16.

Sprites We visualize the traversal for each data generating mechanism subspace and the data
transforming mechanism subspace in Figure 17.

C.5. Quantitative Evaluation

We further investigate our model under MNIST (R) environment shift. Figure 13 shows the accu-
racy changes as the shift strength increases. Our method yields higher accuracy and slower accuracy
decreases in both experiments when the shift strength is moderate. However, after a passing thresh-
old, our method begins to lose its advantage. Our analysis suggests two reasons: 1) The test data
shifts too far from the training data, and the base generative model can not generalize to the test
sets. After the test set shifts too far away, none of the methods perform well. Thus, it is hard to
conclude that a model with ∼ 40% accuracy is better than a model with ∼ 35% accuracy. 2) The
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(a) Accuracy under
Width&Rotation
Shift

(b) Accuracy Differ-
ences between ICM
and Others

(c) Accuracy under Ro-
tation Shift

(d) Accuracy Differ-
ences between ICM
and Others

Figure 13: Accuracy and accuracy differences of downstream classifiers under environment shift
on the MNIST dataset. If ICM outperforms another method, the accuracy difference
is positive. Note that our proposed ICM outperforms all the baselines in most settings.
Exceptions include when the environment shifts too far for any model to tolerate.

test set contains too few samples, just around tens or hundreds, making the evaluation inaccurate.
As we can see from Figure 13, the larger the shift, the bigger the accuracy variations.

To eliminate this interference, we measure how much environment shift is needed to decrease
the accuracy by a relative percentage. Such evaluation will put more weight on the test set that has
more samples and yields reasonable accuracy. Tables 4, 5, and 6 show our method can tolerate more
environment shift before the test sets shift too far away and decrease the accuracy by 10%, 20%, and
40%, relatively.

Table 4: Shift Distance Needed for 10% Relative Accuracy Drop under Environment Shift
MODEL MNIST (T) MNIST (W&R) MNIST (R) FASHIONMNIST (D&W)

ICM 1.4 0.8 0.6 0.4
VAE 0.6 0.4 0.4 0.2
β-VAE 1.1 0.5 0.4 0.3
ADA 1.1 0.5 0.4 0.3

Table 5: Shift Distance Needed for 20% Relative Accuracy Drop under Environment Shift
MODEL MNIST (T) MNIST (W&R) MNIST (R) FASHIONMNIST (D&W)

ICM 2.0 1.2 0.8 0.7
VAE 1.2 0.7 0.7 0.4
β-VAE 1.7 0.8 0.7 0.5
ADA-GVAE 1.6 0.9 0.7 0.5
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Table 6: Shift Distance Needed for 40% Relative Accuracy Drop under Environment Shift
MODEL MNIST (T) MNIST (W&R) MNIST (R) FASHIONMNIST (D&W)

ICM 2.6 1.6 1.1 1.2
VAE 1.9 1.3 1.1 0.8
β-VAE 2.4 1.5 1.3 1.1
ADA-GVAE 2.2 1.5 1.2 1.0

(a) MNIST: Stroke Thickness (T) (b) MNIST: Width&Rotation (W&R)

(c) MNIST: Rotation (R) (d) FashionMNIST: Darkness&Width
(D&W)

Figure 14: Conditions (Latent Variables) Used in the Environment Shift Experiment.
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(a) Data Transforming Mechanism
Subspace, Dimension #0

(b) Data Transforming Mechanism
Subspace, Dimension #1

(c) Data Transforming Mechanism
Subspace, Dimension #2

(d) Data Transforming Mechanism
Subspace, Dimension #3

Figure 15: Data Transforming Mechanism Subspace Traversal of ICM model on MNIST
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(a) Data Generating Mechanisms
Subspaces

(b) Data Transforming Mechanism
Subspace, Dimension #0

(c) Data Transforming Mechanism
Subspace, Dimension #1

(d) Data Transforming Mechanism
Subspace, Dimension #2

(e) Data Transforming Mechanism
Subspace, Dimension #3

(f ) Data Transforming Mechanism
Subspace, Dimension #4

Figure 16: Latent Space Traversal of ICM model on FashionMNIST
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(a) Data Transforming Mechanism Subspace,
Distinct Action for Each Subspace/Row

(b) Data Transforming Mechanism Subspace,
z0, Color Change

(c) Data Transforming Mechanism Subspace,
z1, Color Change

(d) Data Transforming Mechanism Subspace,
z2, Color Change

Figure 17: Latent Space Traversal of ICM model on Sprites
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