
Global Minimizers of ℓp-Regularized Objectives
Yield the Sparsest ReLU Neural Networks

Julia Nakhleh
Department of Computer Science
University of Wisconsin-Madison

Madison, WI
jnakhleh@wisc.edu

Robert D. Nowak
Department of Electrical and Computer Engineering

University of Wisconsin-Madison
Madison, WI

rdnowak@wisc.edu

Abstract

Overparameterized neural networks can interpolate a given dataset in many dif-
ferent ways, prompting the fundamental question: which among these solutions
should we prefer, and what explicit regularization strategies will provably yield
these solutions? This paper addresses the challenge of finding the sparsest inter-
polating ReLU network—i.e., the network with the fewest nonzero parameters
or neurons—a goal with wide-ranging implications for efficiency, generalization,
interpretability, theory, and model compression. Unlike post hoc pruning ap-
proaches, we propose a continuous, almost-everywhere differentiable training
objective whose global minima are guaranteed to correspond to the sparsest single-
hidden-layer ReLU networks that fit the data. This result marks a conceptual
advance: it recasts the combinatorial problem of sparse interpolation as a smooth
optimization task, potentially enabling the use of gradient-based training methods.
Our objective is based on minimizing ℓp quasinorms of the weights for 0 < p < 1,
a classical sparsity-promoting strategy in finite-dimensional settings. However,
applying these ideas to neural networks presents new challenges: the function
class is infinite-dimensional, and the weights are learned using a highly nonconvex
objective. We prove that, under our formulation, global minimizers correspond
exactly to sparsest solutions. Our work lays a foundation for understanding when
and how continuous sparsity-inducing objectives can be leveraged to recover sparse
networks through training.

1 Introduction

Highly overparameterized neural networks have become the workhorse of modern machine learning.
Because these networks can interpolate a given dataset in many different ways (see e.g. Figs. 1b
and 1c), explicit regularization is frequently incorporated into the training procedure to favor solutions
that are, in some sense, more regular or desirable. In this work, we focus on explicit regularizers
which yield sparse single-hidden-layer ReLU interpolating networks, which for our purposes are
those with the fewest nonzero input weight parameters among the active neurons.1 Sparse models are
particularly desirable for computational efficiency purposes, as they have lower storage requirement
and computational overhead when deployed at inference time, and may have other attractive general-
ization and robustness properties (Mozer and Smolensky (1988); Guo et al. (2018); Liao et al. (2022);
Liu et al. (2022), among many others).

Although a myriad of sparsity-inducing regularization schemes have been proposed in the neural
network literature, almost none of them have actually been proven to yield true sparsest solutions, and

1In the univariate-input case, this is equivalent to the count of active neurons.
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the justifications for their use remain almost entirely heuristic and/or empirical. Furthermore, many
such strategies rely on complex pruning pipelines—composed of iterative magnitude thresholding,
fine-tuning, and sensitivity analyses—which are computationally costly, difficult to implement, and
offer no theoretical guarantees in terms of the resulting sparsity. In contrast, we propose a simple
regularization objective, based on the ℓp quasinorm of the network weights for 0 < p < 1, whose
global minimizer is provably a sparsest interpolating ReLU network for sufficiently small p. This
objective is continuous and differentiable away from zero, making it compatible with gradient descent.
Although ℓp-norm minimization with 0 < p < 1 has been studied in finite-dimensional linear
problems (most extensively in the context of compressed sensing), where it is known to guarantee
sparsity under certain assumptions on the data/measurements, its behavior in the context of neural
networks—wherein the features themselves are continuously parameterized and data-adaptive—
is challenging to characterize mathematically, and to our knowledge, we are the first to do so.
Specifically, our contributions are the following:

1. Sparsity, uniqueness, and width/parameter bounds for univariate ℓp-regularized networks.
In Section 3, we prove that, for single-hidden-layer ReLU networks of input dimension one,
minimizing the network’s ℓp path norm (see (2)) implicitly minimizes both its ℓ1 path norm
(i.e., the total variation of its derivative) and, for sufficiently small p > 0, its ℓ0 path norm (total
knot/neuron count). We show that for any 0 < p < 1, a minimum ℓp path norm interpolant of N
data points has no more than N − 2 active neurons. In contrast, ℓ1 path norm minimization alone
is not guaranteed to implicitly minimize sparsity, and may yield solutions with arbitrarily many
neurons (Fig. 1a). Our result follows from reframing the network training problem as an optimiza-
tion over continuous piecewise linear (CPWL) functions which interpolate a dataset with minimal
p-variation (6) of the derivative. Using this variational framework, we can explicitly describe
the optimal functions’ behavior based on the geometry of the data points. This characterization
provides data-dependent bounds on the sparsity and weight magnitudes of such minimum-ℓp
solutions, and highlights an easily-verifiable condition on the data under which ℓp minimization
for any 0 < p < 1 yields a sparsest interpolant (ℓ0 solution). Additionally, our analysis shows that
the solution to the univariate ℓp minimization problem is unique for almost every 0 < p < 1; in
contrast, univariate ℓ0 and ℓ1 solutions are both known to be non-unique in general (Debarre et al.
(2022); Hanin (2022)).

2. Exact sparsity in arbitrary input dimensions. In Section 4, we show for networks of arbitrary
input dimension that the problem of minimizing the network’s ℓp path norm subject to an ℓ∞

boundedness constraint on the weights (see (8)) can be recast as a finite-dimensional minimization
of a continuous, concave function over a polytope. Using this reformulation, we show that there
always exists some data-dependent threshold p∗ below which ℓp minimization recovers an ℓ0

(sparsest) solution, in terms of the count of nonzero parameters of the active neurons in the
network. This sparsest solution has no more than N active neurons (Proposition 4.1) and, if the
data is in general position, has O(N) active input weight/bias parameters among these active
neurons.

3. A principled, differentiable objective for sparse ReLU networks. Our theory provides the
first rigorous justification for using a smooth ℓp penalty for 0 < p < 1 to obtain truly sparsest
interpolating ReLU networks via gradient-based methods—no pruning or complex post-hoc
approaches required.

2 Related work

Sparsity via ℓp minimization in finite-dimensional linear models: ℓp penalties with 0 < p ≤ 1
for linear constraint problems have been studied extensively in the compressed sensing literature, and
have been shown to yield exact ℓ0 minimizers under certain conditions (typically involving restricted
isometry and/or null-space constants) on the measurement matrix (Candes and Tao (2005); Chartrand
(2007); Chartrand and Staneva (2008); Foucart and Lai (2009)). Such penalties have also been studied
in the statistics literature under the name bridge regression (Frank and Friedman (1993); Knight
and Fu (2000); Fan and Li (2001)). Existing theory in these areas is highly dependent on the fixed,
finite-dimensional nature of the linear constraint, and is not readily adaptable to the neural network
context, wherein the features are themselves are adaptively learned.
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(a) (b) (c)

Figure 1: Fig. 1a shows several univariate min-ℓ1 path norm interpolants of a given dataset. Such
solutions are generally non-unique, and always include at least one sparsest interpolant (black), but
also include arbitrarily non-sparse interpolants (blue, red, green). Figs. 1b and 1c: two different
ReLU network interpolants of a the same 2D dataset with different numbers of active neurons and
parameters. Fig. 1b has 5 nonzero input weight/bias parameters (its ℓ0 path norm as in (9)), while
Fig. 1c has 16.

ℓ1 path norm regularization in single-layer ReLU networks: Neyshabur et al. (2015) showed
that the ℓ1 path norm of a single-layer ReLU network controls its Rademacher complexity and thus its
generalization gap, but do not directly address the question of sparsity. In the context of infinite-width
ReLU networks, the problem of minimum-ℓ1 path norm interpolation is known to have solutions with
no more active neurons than the number of data points (Parhi and Nowak (2021, 2022); Shenouda
et al. (2024)).2 However, solutions to that problem are known to be non-unique, and generally
include interpolating ReLU networks with arbitrarily many active neurons (Hanin (2022); Debarre
et al. (2022)). Nakhleh et al. (2024) show that a variant of ℓ1 path norm minimization applied to
univariate-input, multi-output networks always yields a solution with no more than N active neurons,
but this solution rarely coincides with the sparsest solution unless the dataset is of a very particular
form. Therefore, the intuition that “ℓ1 = sparsity” breaks down in the neural network case.

Empirical methods for training sparse neural networks: A large body of research has been
dedicated to sparsity-promoting neural network neural network training strategies. Here we briefly
summarize some of the most well-known strategies as well as some which resemble our proposed
regularization approach; our list is by no means comprehensive. Earlier works suggested using ℓ1

and ℓ2 penalties to encourage small network weights (Ng (2004); Hinton and Van Camp (1993))
or applying post-training magnitude-based pruning approaches (LeCun et al. (1989); Hassibi et al.
(1993); Han et al. (2015)). Group ℓ2,1-type penalties designed to induce structured sparsity over
neurons or channels (Scardapane et al. (2017); Wen et al. (2016)) have also been suggested. More
recent pruning schemes incorporate pruning iteratively into training (Guo et al. (2016); Frankle and
Carbin (2018); Zhou et al. (2019)). Other proposed approaches include ℓ0 approximation using
binary stochastic gates (Louizos et al. (2018)) and ADMM; (Zhang et al. (2018)), ℓp (for p < 1)
minimization using reweighted ℓ1 (Gong et al. (2022)), decoupled weight decay (Outmezguine and
Levi (2024)), and shrinkage operators for nonconvex “norms” (Srinivas and Babu (2017)); and
variational dropout (Molchanov et al. (2017)). Another line of research uses reparameterization
tricks to replace non-smooth sparsifying objectives with smooth versions that share the same local
and global minimizers (Ziyin and Wang (2023); Kolb et al. (2023, 2025)). While these methods
have demonstrated empirical success in training sparse networks, existing theory does not guarantee
that any of them will find sparsest solutions. Moreover, these approaches often require complex
multi-stage pipelines and are computationally costly to implement.

Provable sparsest-recovery in specialized neural network settings: In the 1D input case, Boursier
and Flammarion (2023) show that, under certain assumptions on the data—namely, that the data
contains no more than three consecutive points on which the straight-line interpolant is strictly convex
or concave—interpolation using a bias-penalized ℓ1 path norm regularizer will select a sparsest
interpolant of the dataset. As we will see in Section 3, this assumption on the data is rather restrictive,
and our analysis does not require it. Their proof is also not readily extendable to multivariate inputs.

2For input dimension greater than one, the ℓ1 path norm
∑K

k=1 |vk|∥wk∥2 studied in those works differs
from the one we consider in (8), which is equivalent to

∑K
k=1 |vk|∥wk∥1 for p = 1.
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Debarre et al. (2022) characterize the sparsest min-ℓ1 path norm interpolants in the univariate case
and provide an algorithm for explicitly constructing one such solution. Ergen and Pilanci (2021)
show that ℓ1 path norm minimization yields solutions with a minimal number of active neurons if
the data dimension is greater than the number of samples (precluding the univariate-input case) and
the data satisfy special assumptions, such as whitened data. In contrast, our sparsity results do not
require any special assumptions on the data, and provide exact sparsity guarantees in arbitrary input
dimensions.

3 Univariate ℓp-regularized neural networks

Here we consider single-hidden-layer R→ R ReLU neural networks of the form

fθ(x) :=

K∑
k=1

vk(wkx+ bk)+ + ax+ c (1)

where (·)+ := max{0, ·} is the ReLU function, θ :=
{
{wk, bk, vk}Kk=1, a, b

}
is the collection of

network parameters, and all parameters are R-valued. For a given dataset (x1, y1), . . . , (xN , yN ) ∈
R× R, a fixed p ∈ (0, 1], and a fixed width K ≥ N ,3 consider the following problem:

min
θ

K∑
k=1

|wkvk|p , subject to fθ(xi) = yi, i = 1, . . . , N (2)

We will refer to the quantity being minimized in (2) as the network’s ℓp path norm. Additionally,
consider the “sparsifying” problem

min
θ

K∑
k=1

1wkvk ̸=0 , subject to fθ(xi) = yi, i = 1, . . . , N (3)

where the ℓ0 path norm
∑K

k=1 1wkvk ̸=0—which is equivalent to the limit of the ℓp path norm as
p ↓ 0—counts the number of active neurons in the network.

In this section, we will analyze the relationship between solutions of (2) and (3) in terms of their
represented functions, and show that these functions can be explicitly described in terms of the
geometry of the data points. This characterization (Theorem 3.1) shows that solutions to (2) for any
0 < p < 1 are necessarily also solutions for p = 1, immediately implying data-dependent bounds
on the network’s parameters and Lipschitz constant. This description also allows problem (2) to be
reduced to a minimization of a continuous, concave function over a closed, convex polytope. From
there, we show in Theorem 3.2 that solutions to (2) are unique (in terms of their represented functions)
for Lebesgue-almost every 0 < p < 1 and that, for small enough p, this unique optimal function is
also a sparsest interpolant of the data (i.e., a solution to (3)). Furthermore, if the data meets certain
easily-verifiable geometric assumptions, solutions to (2) for any 0 < p < 1 are solutions to the
sparsest-interpolation problem (3).

3.1 Variational reformulation of (2) and (3)

We begin by showing that problems (2) and (3) can be equivalently expressed as a type of variational
problem over the set of continuous piecewise linear (CPWL) functions which interpolate the data.
This equivalence is critical for the analysis in this section, since it allows solutions to (2) and (3) to
be characterized geometrically in terms of the represented functions and their local behavior around
data points. Here, we let S∗

θ,p (resp. S∗
θ,0) denote the set of parameters of optimal neural networks

which solve (2) (resp. (3)) for a given dataset, and let

S∗
p := {f : R→ R | f = fθ, θ ∈ S∗

θ,p} (4)

be the set of functions represented by neural networks with optimal parameters in S∗
θ,p, for any

0 ≤ p ≤ 1.
3Here and in Section 4 we fix K ≥ N because interpolation in any dimension is possible with K = N

neurons (Bubeck et al. (2020), Proposition 2).
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Proposition 3.1. For any 0 ≤ p ≤ 1, the set S∗
p is exactly the set of minimizers of

min
f

Vp(f) , subject to f(xi) = yi, i = 1, . . . , N (5)

where the optimization in (5) is taken over all f : R → R which are continuous piecewise linear
(CPWL) with at most K knots. For such CPWL functions f , we define

Vp(f) :=

{
supP

∑nP−1
i=0 |Df(xi+1)−Df(xi)|p = supπ

∑
A∈π |D2f(A)|p, if 0 < p ≤ 1

number of knots of f, if p = 0
(6)

with the first sup taken over all partitions P = {x0 < · · · < xnP} of R, and the second sup taken
over partitions π of R into countably many disjoint (Borel) measurable subsets. In particular, S∗

0 is
non-empty.

Remark 1. For p ∈ (0, 1], Vp(f) is the p-variation (Dudley and Norvaiša (2006), Part II.2) of the
distributional derivative Df (in the sense of functions), or equivalently of the second distributional
derivative D2f (in the sense of measures). In particular, for a CPWL function f with knots at
u1, . . . , uK and corresponding slope changes c1, . . . , cK at those knots, so that D2f =

∑K
k=1 ckδuk

,
we have

Vp(f) =

K∑
k=1

|ck|p

In the case p = 1, V1(f) is exactly the total variation of Df (in the sense of functions) and of D2f
(in the sense of measures), and the reformulation in Proposition 3.1 is equivalent to that of Savarese
et al. (2019). For a neural network where no two neurons “activate” at the same location (i.e.,
bk/wk = bk′/wk′ for k ̸= k′), Vp(f) is exactly the ℓp path norm of f as defined above.

The proof is in Section A.1.1. Proposition 3.1 says that the set S∗
p of functions represented by

solutions to (2) is exactly the set of CPWL functions f which interpolate the data with minimal sum
of absolute slope changes, each taken to the pth power. In the case p = 0, solutions to (3) represent
CPWL functions which interpolate the data with the fewest possible knots. This reformulation also
shows that problem (3) is invariant to the choice of network width K, as long as K is large enough to
allow interpolation. As a consequence of Theorem 3.1, we will see that this same width-invariance
holds for problem (2).

3.2 Geometric characterization of solutions to (5)

Next, in Theorem 3.1, we describe a set of geometric characteristics which any optimal network
function f ∈ S∗

p for 0 < p < 1 must satisfy, and which at least one f ∈ S∗
0 satisfies. This

characterization depends on the slopes si := yi+1−yi

xi+1−xi
of the straight lines ℓi connecting (xi, yi)

and (xi+1, yi+1). The discrete curvature at a data point xi refers to ϵi := sgn(si − si−1), which is
positive if the slope of the straight lines between consecutive data points increases at xi, and negative
if this slope decreases (with sgn(0) = 0).

In words, Theorem 3.1 says that the behavior of any f ∈ S∗
p for 0 < p < 1 is uniquely determined

everywhere except around sequences of more than three consecutive data points xi, . . . , xi+m with
the same discrete curvature. On these “constant-curvature” regions of potential ambiguity, solutions
must be convex (resp. concave) if the curvature of the data is positive (resp. negative), and can have at
most m knots on any such region. Additionally, Theorem 3.1 says that solutions to (5) for 0 < p < 1
have at most N − 2 knots. Therefore, as in the case p = 0, we see that problem (2) is invariant (in
terms of represented functions) to the choice of network width K, as long as K ≥ N − 2.
Theorem 3.1. For 0 < p < 1, solutions exist to (5) (hence to (2)). For any such solution, its
represented function f ∈ S∗

p is CPWL and obeys the following:

1. f is linear before x2 and after xN ; between any three or more consecutive collinear data
points; and between any two consecutive points xi and xi+1 with opposite discrete curvature
ϵi ̸= ϵi+1.

2. On any maximal set of m consecutive data points xi, . . . , xi+m with the same discrete
curvature (i.e., ϵi−1 ̸= ϵi = ϵi+1 = · · · = ϵi+m ̸= ϵi+m+1):
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(a) A function satisfying the description in Theorem 3.1.

(b) A second possible function on [x7, x10]. (c) A third possible function on [x7, x10].

Figure 2: Illustration of Theorem 3.1. By Theorem 3.1,1, any f ∈ S∗
p for 0 < p < 1 must agree with

the function in Fig. 2a on (−∞, x7] and [x10,∞). The only possible ambiguity occurs between x7

and x10, where all points have the same discrete curvature. Here the function behavior is described by
Theorem 3.1,2b. Figs. 2b and 2c show two other functions whose behavior on [x7, x10] also concurs
with Theorem 3.1,2b.

(a) If m = 1, then f has a single knot between xi and xi+1, with incoming/outgoing slopes
si−1 at xi and si+1 at xi+1.

(b) If m ≥ 2, then f has incoming slope si−1 at xi and outgoing slope si+m at xi+m.
Between xi and xi+m, f takes on at most m − 1 slopes u1, . . . , um−1 distinct from
si−1 and si+m. Each uj is between si+j−1 and si+j , inclusive, and its corresponding
segment passes through (xi+j , yi+j).

Furthermore, there is always some f ∈ S∗
0 which obeys the above description. (See illustration in

Fig. 2.)

Corollary 3.1.1. Any minimum ℓp path norm interpolant of the data for 0 < p < 1 is also a minimum
ℓ1 path norm interpolant, and can be represented by a network with no more than N − 2 neurons.

The set S∗
1 of optimal neural network functions for p = 1 has been fully characterized in previous

work (Hanin (2022); Debarre et al. (2022)), which showed that any interpolant f obeying the
description in Theorem 3.1 is in S∗

1 . Therefore, Theorem 3.1 shows that any solution to (5) (hence
to (2)) for 0 < p < 1 is also a solution for p = 1. This result is interesting because, as our proof of
Theorem 3.1 shows, problem (5) generally has multiple solutions for p = 0, many of which are not
solutions for p = 1 and may have arbitrarily large slope changes which cannot be bounded in terms
of the data. Intuitively, the latter fact is unsurprising, since the objective V0(f) depends only on the
number of knots of f , not on the magnitudes of the corresponding slope changes. One might therefore
expect that penalizing Vp for sufficiently small p could also produce solutions with arbitrarily large
slope changes (corresponding to networks with arbitrarily large weights), particularly in light of the
equivalence between Vp and V0 penalization for sufficiently small p, as we demonstrate in Section 3.3.
However, Theorem 3.1 says that this is not the case. Therefore, in conjunction with Theorem 3.2,
Theorem 3.1 says that for sufficiently small p, penalizing Vp effectively penalizes both V0 and V1
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simultaneously: i.e., it selects a solution with the fewest possible knots (corresponding to a network
with the fewest possible neurons), and whose weights are small in the sense that

∑K
k=1 |vkwk| is

minimal. In fact, Theorem 3.1 immediately implies the following data-dependent bounds on the
parameters and on the network function’s Lipschitz constant:

Corollary 3.1.2. Any solution θ to (2) for 0 < p < 1 has maxk=1,...,K |vkwk| ≤
∑K

k=1 |vkwk| =∑N−2
i=1 |si+1 − si|, and Lipschitz constant L ≤ maxi=1,...,N−1 |si|.

Regarding the N−2 neuron bound in Corollary 3.1.1, we note that this bound applies to any minimum
ℓp path norm solution for any 0 < p < 1. In contrast, there exist minimum ℓ1 path norm solutions
with N −2 knots, but also solutions with arbitrarily many knots (Hanin (2022); Debarre et al. (2022));
see Fig. 1a. Solutions for 0 < p < 1 are thus guaranteed a certain level of sparsity which is not
enforced by p = 1 minimization alone. Sparsest (minimum ℓ0) solutions—which we soon show will
coincide with an ℓp path norm solution for small enough p—are known to have as many as N − 2
active neurons and as few as O(N/2) neurons, depending on the structure of data (Debarre et al.
(2022)).

The proof of Theorem 3.1 hinges mainly on two auxiliary results, detailed in Section A.1.2, which
describe the local behavior of any optimal f ∈ S∗

p between consecutive data points in terms of
f ’s incoming and outgoing slopes at those points. This allows us to characterize when a knot
can be removed from any interpolating function while maintaining interpolation and reducing its
regularization cost Vp. The full proof is in Section A.1.3.

3.3 Uniqueness and sparsity of solutions to (5) for 0 < p < 1

Using Theorem 3.1, we show that solutions to (5) are unique for almost every 0 < p < 1, and for
sufficiently small 0 < p < 1, correspond with globally sparsest interpolants (i.e., interpolants with
the fewest total knots). Additionally, Theorem 3.1 shows that under an easily-verifiable condition
on the data, penalizing Vp for any 0 < p < 1 yields a sparsest interpolant. In conjunction with
Theorem 3.1, this result tells us that for univariate data, ℓp path norm minimization for sufficiencly
small p > 0 simultaneously minimizes both the ℓ1 and ℓ0 path norms, producing a unique solution
which is both maximally sparse and controlled in terms of its parameter’ magnitudes. We note that
almost-everywhere uniqueness of solutions to (5) occurs only in the 0 < p < 1 case. In contrast,
solutions for both p = 0 and p = 1 are non-unique in general, and for p = 1, they may have infinitely
many knots/neurons (Debarre et al. (2022), Hanin (2022)).
Theorem 3.2. For all but finitely many 0 < p < 1, the solution to (5) is unique.4 Furthermore, there
is some data-dependent p∗ such that the unique solution to (5) for any 0 < p < p∗ is a solution for
p = 0. If the data contains no more than two consecutive points with the same discrete curvature,
then the solution to (5) for any 0 < p < 1 is also a solution for p = 0.

The proof of Theorem 3.2 is in Section A.1.4. It relies on Theorem 3.1 in combination with the
Bauer Maximum Principle (Aliprantis and Border (2006), Theorem 4.104), which states that any
continuous, concave function over a closed, convex set attains a minimum at an extreme point of that
set. The main idea is that, using Theorem 3.1, we can recast the problem of finding the minimum-Vp

interpolant f ∈ S (where S denotes the set of functions which meet the description in Theorem 3.1)
as a minimization of a continuous, concave function over the hypercube [0, 1]m−1. This reformulation
is possible because, by Theorem 3.1, the only place where these interpolants f ∈ S may differ is
around sequences of points xi, . . . , xi+m (for m ≥ 2) which all have the same nonzero discrete
curvature. Using the description in Theorem 3.1,2b, the slopes u1, . . . , um−1 of any f ∈ S on such
an interval [xi, xi+m] can be expressed as convex combinations uj := (1 − αj)si+j−1 + αjsi+j ,
and any such solution f ∈ S can be fully identified with its corresponding vector of the parameters
[α1, . . . , αj−1]

⊤ ∈ [0, 1]m−1. Expressed in terms of these parameters [α1, . . . , αj−1]
⊤ ∈ [0, 1]m−1,

the cost Vp is strictly concave. Therefore, by the Bauer Maximum Principle, any f ∈ S with minimal
Vp for 0 < p < 1 must correspond to one of the finitely many vertices of the cube [0, 1]m−1. Having
restricted the set of possible candidate solutions to this finite set (which can be shown to include at
least one sparsest solution), the theorem statement follows from standard analysis arguments.

4Uniqueness here and in the remainder of the discussion only in terms of functions which interpolate the
data with the same set of absolute slope changes. If the data contains special symmetries, it may admit multiple
distinct interpolating functions which have the same set of absolute slope changes (corresponding to interpolating
networks with the same weights).
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In the next section, we will show that this general line of reasoning—recast the neural network
optimization as a concave function over a polytope, and apply the Bauer Maximum Principle—can
also be used to characterize the sparsity of ℓp-regularized multivariate-input ReLU networks, although
the machinery underlying the argument is very different.

4 Multivariate ℓp-regularized neural networks

Here we consider single-hidden-layer Rd → R ReLU neural networks of the form

fθ(x) :=

K∑
k=1

vk(w
⊤
k x)+ (7)

with output weights vk ∈ R, input weights wk ∈ Rd+1, and x := [x⊤, 1]⊤ augments the dimension
of the input x to account for a bias term. As before, θ := {wk, vk}Kk=1 is the collection of network
parameters. For a given dataset (x1, y1), . . . , (xN , yN ) ∈ Rd × R, and fixed constants K ≥ N ,
0 < p < 1, and R > 0, consider the minimum ℓp path norm interpolation problem

argmin
θ

K∑
k=1

∥vkwk∥pp , subject to fθ(xi) = yi, i = 1, . . . , N, ∥vkwk∥∞ ≤ R, k = 1, . . . ,K

(8)

We will prove that, for small enough p, any solution to (8) also solves the “sparsifying” problem

argmin
θ

K∑
k=1

∥vkwk∥0 , subject to fθ(xi) = yi, i = 1, . . . , N, ∥vkwk∥∞ ≤ R, k = 1, . . . ,K (9)

The multivariate ℓ0 path norm objective in (9) counts the number of nonzero input weight/bias
parameters of the active neurons5 in the network. Although we incorporate the biases into the input
weight vectors (thus including them in the ℓp path norm) for ease of exposition, the same analysis
holds for the unregularized bias problem by replacing the vectors νj and ωj in the objective of
Lemma 4.1 with the subvectors of their first d elements. As in the univariate case, the multivariate
sparsest-interpolation problem (9) is invariant to the selection of the width K as long as K ≥ N , and
if the data are in general position, has O(N) nonzero input weight/bias parameters across these active
neurons. Specifically:
Proposition 4.1. For any K ≥ N , any minimum ℓ0 solution {wk, vk}Kk=1 to (9) has at most N
active neurons. If the data x1, . . . ,xN are in general position,6 then for sufficiently large R, any
such solution has

∑K
k=1 ∥vkwk∥0 = O(N).

See proof in Section A.2.1 for explicit constants in various cases.

To show the equivalence of problems (8) and (9) for sufficiently small p, we first show that both
problems both be recast as finite- (albeit high-) dimensional optimizations over a linear constraint set.
This reformulation is heavily inspired by Theorem 1 in Pilanci and Ergen (2020). Here the matrices
{Dj}2

N

j=1 are defined as Dj = diag(sj) for all binary vectors sj ∈ {0, 1}N , and a ≤ b denotes
element-wise inequality for vectors a, b.
Lemma 4.1. Let θ = {wk, vk}Kk=1 be a solution to (8) for some 0 < p < 1. Then there is another
solution θ′ = {w′

k, v
′
k}Kk=1 to (8), which is reconstructed from a solution {ν′

j ,ω
′
j}2

N

j=1 to the problem

argmin
{νj ,ωj}2N

j=1⊂Rd+1

2N∑
j=1

∥νj∥pp + ∥ωj∥pp , subject to
2N∑
j=1

DjX(νj − ωj) = y, (10)

(2Dj − I)Xνj ≥ 0, (2Dj − I)Xωj ≥ 0, ∥νj∥∞ ≤ R, ∥ωj∥∞ ≤ R, ∀j (11)

5A neuron x 7→ vk(w
⊤
k x)+ is active if vkwk ̸= 0; i.e., that neuron has a nonzero contribution to the

network function.
6A set of points x1, . . . ,xN ∈ Rd are in general (linear) position if no k of them lie in a k − 2 dimensional

affine subspace, for k = 2, 3, . . . , d+ 1. If N ≥ d+ 1, this is equivalent to the statement that no hyperplane
contains more than d points.
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as
{w′

k}Kk=1 =
{
ν′
j/αj ,ν

′
j ̸= 0

}
∪
{
ω′

j/βj ,ω
′
j ̸= 0

}
, {v′k}Kk=1 =

{
αj ,ν

′
j ̸= 0

}
∪
{
−βj ,ω

′
j ̸= 0

}
(12)

for any choice of α1, β1, . . . , α2N , β2N > 0. Both solutions satisfy
∑K

k=1 ∥vkwk∥0 =∑K
k=1 ∥v′kw′

k∥0 as well as
∑K

k=1 ∥vkwk∥qq =
∑K

k=1 ∥v′kw′
k∥qq for any 0 < q < 1. The same

statement holds for solutions θ to (9), with the objective in (10) replaced by
∑2N

j=1 ∥νj∥0 + ∥ωj∥0.

The proof of Lemma 4.1 is in Section A.2.2. The main idea is that although there are uncountably
many ways to choose the neurons’ parameters, there are only finitely many possible binary activation
patterns, i.e., vectors representing whether a given neuron is active on each data point. By combining
all neurons which induce the same activation pattern into a single neuron, the network’s output and
ℓp path norm can be expressed as a sum over all 2N neurons, each corresponding to one of the
possible activation patterns. The equality constraint in (10) encodes the interpolation constraint;
the ℓ∞ inequalities reflect the corresponding ∥vkwk∥∞ ≤ R constraint in (8); and the additional
inequality constraints in (10) force the optimization to only consider activation patterns which can
actually be induced by some choice of input weight/bias wk. With this reformulation in hand, we are
ready for the main result of this section:
Theorem 4.1. For any dataset, there is some data-dependent p∗ such that any solution to (8) for any
0 < p < p∗ is a solution to (9).
Remark 2. This result also holds if the interpolation problems in (8) and (9) are replaced by the
regularized ℓ∞ constrained loss problems

argmin
θ

N∑
i=1

L(yi, fθ(xi)) + λ

k∑
k=1

∥vkwk∥pp , subject to ∥vkwk∥∞ ≤ R, k = 1, . . . ,K (13)

and its ℓ0 analogue, for a loss function L which is CPWL in its second argument (e.g. hinge loss,
L1/L∞ losses). This is because problem (13) can be reformulated as

argmin
θ

k∑
k=1

∥vkwk∥pp , subject to
N∑
i=1

L(yi, fθ(xi)) ≤ C, ∥vkwk∥∞ ≤ R, k = 1, . . . ,K (14)

and, under the CPWL assumption on L, the feasible set of the reformulation of (14) as in Lemma 4.1
is a polytope. The proof of Theorem 4.1 then applies verbatim.

The proof is inspired by that in Peng et al. (2015), with a correction to what we believe is an important
error in their reasoning regarding p-independent boundedness of solutions to problems of the form
argminx ∥x∥pp s.t. Ax = y; this is why we include the ℓ∞ boundedness constraint in problems (8)
and (9) (see Section A.2.3 for our proof and further discussion). The fundamental observation is
that the linear constraints in (10) determine a polytope, and the map z 7→ ∥z∥pp is concave on each
individual orthant and invariant to absolute values of vector elements. By projecting the constraint set
of (10) into the nonnegative orthant, the problem turns into a minimization of a continuous, concave
functional over a polytope. By the Bauer Maximum Principle, any solution to this problem occurs at
one of the finitely many vertices of that polytope, and by appropriately normalizing the vertices of
this polytope, we are able to demonstrate the desired result.

Although Theorem 4.1 applies to any input dimension, thus recovering part of the result of Theo-
rem 3.2, we note that our multivariate analysis requires an explicit ℓ∞ boundedness constraint on
the parameter vectors wkvk in problems (8) and (9). In contrast, the univariate optimizations in (2)
and (3) require no such constraint, as Theorem 3.1 tells us that ℓp minimization implicitly performs
ℓ1 minimization which yields immediate data-dependent control on all parameter magnitudes. Our
multivariate analysis does not easily recover the univariate results on uniqueness, parameter/width
bounds, or explicit functional characterization of solutions to (8). Thus, although Theorem 4.1 guar-
antees exact sparsest recovery for sufficiently small p in arbitrary input dimensions, the multivariate
problem leaves many interesting open questions, which we save for future work.

5 Experiments

We perform several simple experiments on synthetic data which suggest that our proposed ℓp

path norm lends itself to practical application, recovering far sparser solutions more quickly than
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Figure 3: Sparsity over time of networks trained to interpolation with a reweighted ℓ1 algorithm (see
Section A.3.1) for ℓp path norm regularization, p ∈ {0.4, 0.7, 1}, and of unregularized and weight
decay-regularized networks. Results on the left are for a synthetic univariate “peak/plateau” dataset,
and results on the right are for a high-dimensional set of random data and labels. The gray dashed
lines reflect the true minimal sparsity (in the univariate case, left) and the upper bound on the minimal
sparsity guaranteed by Proposition 4.1 in the multivariate case (right). For further details, results, and
discussion, see Section A.3.2.

unregularized or weight decay-regularized gradient-based training. To implement our regularizer,
we use a proximal gradient algorithm based on the iteratively reweighted ℓ1 method of Candes
et al. (2008); Figueiredo et al. (2007), the details of which are summarized in Section A.3.1. Fig. 3
shows the sparsity over time of networks trained with our reweighted ℓ1 algorithm for three different
values of p ∈ {0.4, 0.7, 1}, as well as with unregularized Adam and AdamW weight decay, on two
different synthetic datasets. For all values of p, the ℓp-regularized networks are much sparser much
earlier in training than the unregularized or weight decay regularized networks, with the p = 0.4
networks being the sparsest. For the univariate synthetic dataset, the p = 0.4 regularized network
recovers the true sparsest solution, and for the multivariate synthetic dataset, all ℓp regularized
networks recover solutions which obey the sparsity upper bound guaranteed by Proposition 4.1. For
further details, results, and discussion, see Section A.3.2. Code for these experiments is available at
https://github.com/julianakhleh/sparse_nns_lp.

6 Conclusion and Discussion

We have introduced a smooth, ℓp path norm (0 < p < 1) regularization framework whose global
minimizers provably coincide with the sparsest ReLU network interpolants for sufficiently small p,
thus recasting the combinatorial ℓ0 minimization problem as a differentiable objective compatible with
gradient descent. In the univariate case, we showed minimum ℓp path norm interpolants are unique for
almost every 0 < p < 1; never require more than N −2 neurons; and are also ℓ1 minimizers, yielding
explicit data-dependent parameter and Lipschitz bounds. In arbitrary dimensions, we demonstrate
a similar ℓp-ℓ0 equivalence for sufficiently small p. Our proposed regularization objective offers a
principled, gradient-based alternative to heuristic pruning methods for training truly sparse neural
networks.

While we demonstrate the existence of p small enough for ℓp/ℓ0 minimization equivalence, our proofs
do not yield an efficient way to compute the “critical threshold” p∗, although they do demonstrate
that estimating this p∗ is in theory possible by enumerating an exponential number of vertices of
a data-dependent polytope. Whether or not p∗ can be computed or estimated efficiently is an open
question of interest for future work. Other possible directions of interest are to extend our results
here to multi-output and deep architectures and to other notions of sparsity (such as sparsity over
entire neurons vs. parameters in the multi-dimensional case).
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A Proofs of main results

A.1 Univariate results

A.1.1 Proof of Proposition 3.1

Proof. By homogeneity of the ReLU—meaning that (αx)+ = α(x)+ for any α > 0—any ReLU
neural network of the form (1) can have its parameters rescaled as vk 7→ |wk|vk, (wk, bk) 7→
|wk|−1(wk, bk) without changing the network’s represented function or its ℓp path norm. Therefore,
any f ∈ S∗

p can be expressed as a neural network of the form (1) with |wk| = 1 for all k = 1, . . . ,K.
Additionally, any f ∈ S∗

p can be expressed as a network where no two neurons “activate” at the same
location, i.e., bk/wk ̸= bk′/wk′ whenever k ̸= k′. To see this, consider a neural network fθ with
unit-norm input weights which contains two distinct neurons k, k′ with bk/wk = bk′/wk′ . The sum
of these neurons can be rewritten as

vk(wkx+ bk)+ + vk′(wk′x+ bk′)+ = (vk + vk′)(wkx+ bk)+ (15)

if wk = wk′ , or as

vk(wkx+ bk)+ + vk′(wk′x+ bk′)+ = (vk + vk′)(wkx+ bk)+ − vk′(wkx+ bk) (16)

if wk = −wk′ . (The latter uses the identity x = (x)+−(−x)+.) In either case, we see that the original
two neurons k, k′ can be replaced with a single neuron and, in the latter case, an additive affine term.
Because the affine term does not contribute to ℓp path norm, and because |vk + vk′ |p ≤ |vk|p + |vk′ |p
for p ∈ (0, 1], the resulting network represents the same function as the original one with no greater
regularization cost.

Furthermore, any neural network of the form (1) with unit-norm input weights and K active neurons,
where no two active neurons activate at the same location, is a CPWL function with K knots, where
knot k is located at −bk/wk, and the slope change of the function at knot k is vk. Conversely, any
R → R CPWL function f with K knots at locations u1 < · · · < uK and corresponding slope
changes v1, . . . , vK can be expressed as

f(x) = f(u0) + f ′(u0)(x− u0) +

K∑
k=1

vk(x− uk)+ (17)

for some arbitrary point u0 < u1. Any such f has D2f =
∑K

k=1 vkδuk
, so that Vp(f) =

∑K
k=1 |vk|p,

and V0(f) =
∑K

k=1 1vk ̸=0 = K.

These facts are sufficient to establish the equivalence of problems (2) and (5). Indeed, let S
∗
θ,p denote

the set of optimal parameters for a modified version of problem (2) which imposes the additional
constraints that each |wk| = 1 and that bk/wk ̸= bk′/wk′ whenever k ̸= k′. For some θ∗ ∈ S

∗
θ,p, let

C∗ denote its ℓp path norm. We have shown that S∗
p can be equivalently expressed as

S∗
p = {f : R→ R | f = fθ, θ ∈ S

∗
θ,p} (18)

= {f : R→ R | f is CPWL with ≤ K knots, Vp(f) = C∗, f(xi) = yi, i = 1, . . . , N} (19)

which is exactly the set of minimizers of (5). Non-emptiness of S∗
0,θ (and thus of S∗

0 ) follows from
non-emptiness of the feasible set Θ of (3) when K ≥ N , and the fact that the objective values of
members of the feasible set lie in {1, . . . ,K}, on which a minimum is achieved.

A.1.2 Auxiliary lemmas: local behavior of f around same/opposite sign slope changes

Our proof of Theorem 3.1 relies strongly on the following two auxiliary lemmas, which describe the
local behavior of any f ∈ S∗

p for 0 ≤ p < 1 between consecutive data points. Here we denote the
incoming and outgoing slopes of any interpolant f at a data point xi as sin(f, xi) and sout(f, xi),
respectively (sometimes dropping the explicit reference to f if it is clear from context). First, we
show in Lemma A.1 that for any optimal network function f ∈ S∗

p , 0 ≤ p < 1, if the signs of
si − sin(f, xi) and sout(f, xi+1) − si agree, then f connects (xi, yi) and (xi+1, yi+1) in a single
“peak” (see Fig. 4a).
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(a) Illustration of Lemma A.1. (b) Illustration of Lemma A.2.

Figure 4: Left: Illustration of the case sgn (si − sin(f, xi)) = sgn (sout(f, xi+1)− si) addressed
in Lemma A.1. Right: illustration of the case sgn (si − sin(f, xi)) ̸= sgn (sout(f, xi+1)− si)
addressed in Lemma A.2. In both cases, the functions in black have strictly greater Vp for 0 ≤ p < 1
than the functions in blue.

Figure 5: Base case of Lemma A.2, where we consider the possibility that f ∈ S∗
p for some 0 ≤ p < 1

has a single knot at some x ∈ (xi, xi+1) where sgn(a− b) ̸= sgn(b− c). Here τ := x−xi

xi+1−xi
.

Lemma A.1 (Behavior of f ∈ S∗
p around same-sign slope changes). For 0 ≤ p < 1, suppose that

f ∈ S∗
p has sgn (si − sin(f, xi)) = sgn (sout(f, xi+1)− si) at consecutive data points xi, xi+1. If

both signs are zero, then f is linear on the interval I := [xi − δ, xi+1 + δ] surrounding [xi, xi+1],
for small δ > 0. Otherwise, f has a single knot on I , between xi and xi+1. (See Fig. 4a.)

Proof. If both signs are zero, then f must be linear on I , since anything else would have nonzero
Vp(f |I) for 0 ≤ p < 1. If both signs are nonzero, observe that

|sout(f, xi+1)−sin(f, xi)|p < |sout(f, xi+1)−uJ |p+|uJ−uJ−1|p+· · ·+|u2−u1|p+|u1−sin(f, xi)|p

for any u1, . . . , uJ which are all distinct from each other and from sin(f, xi) and sout(f, xi+1). This
is a simple consequence of the inequality |a+ b|p ≤ |a|p + |b|p, which holds for any a, b ∈ R and
any 0 < p < 1 and is strict unless a = 0 or b = 0. Since any interpolant with more than one knot on
I has one or more intermediate slopes u1, . . . , uJ between xi and xi+1, the result follows.

Next, Lemma A.2 says that if the signs of si−sin(f, xi) and sout(f, xi+1)−si of an optimal f ∈ S∗
p ,

0 < p < 1 disagree, then f is linear between xi and xi+1.
Lemma A.2 (Behavior of f ∈ S∗

p around opposite-sign slope changes). For 0 ≤ p < 1, suppose that
f ∈ S∗

p has sgn (si − sin(f, xi)) ̸= sgn (sout(f, xi+1)− si) at consecutive data points xi, xi+1. If
0 < p < 1, then f is linear between xi and xi+1. If p = 0, then either f is linear between xi and
xi+1, or it agrees outside of [xi, xi+1] with some g ∈ S∗

0 which is linear between xi and xi+1. (See
illustration in Fig. 4b.)

Proof. First consider the base case illustrated in Fig. 5, where we suppose that f ∈ S∗
p for some

0 ≤ p < 1 has a single knot at some x ∈ (xi, xi+1). To simplify the notation, we denote a :=
sin(f, xi), b := si, c := sout(f, xi+1) and τ := x−xi

xi+1−xi
and assume that sgn(a− b) ̸= sgn(b− c).

The intermediate slopes u1 and u2 can be parameterized as u1 = b+ δ and u2 = b− τ
1−τ δ for some

δ ∈ R. Consider the cost Vp(f
∣∣
I
) of f on the interval I := (xi − ϵ, xi+1 + ϵ) (for some arbitrary
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ϵ > 0) as a function C(δ) of the parameter δ. If p = 0, then clearly C(0) = 2 ≤ C(δ) ∈ {2, 3} for
δ ̸= 0. This shows that the function g whose slope is b on [xi, xi+1] has no greater cost than f , and
thus g ∈ S∗

0 . In the case 0 < p < 1, we have

C(δ) := |δ + b− a|p + 1

(1− τ)p
|δ|p +

∣∣c− b+
τ

1− τ
δ
∣∣p (20)

and we will show that C(0) < C(δ) for δ ̸= 0, contradicting the assumption that f ∈ S∗
p .

Note that C is coercive and continuous on δ ∈ R, so it attains a minimizer (this follows from the
Weierstrass Extreme Value Theorem as applied to the compact sublevel sets of C). By Fermat’s
Theorem, any minimizer of C must occur at critical points, i.e., points where the derivative C ′ is zero
or undefined. The three points where C ′ is undefined are δ1 = a− b, δ2 = 0, and δ3 = 1−τ

τ (b− c).
Assuming without loss of generality that δ1 < δ2 < δ3, note that C is concave on the intervals
(−∞, δ1), (δ1, δ2), (δ2, δ3), and (δ3,∞). This is because compositions of concave and affine
functions are concave, and the function x 7→ |x|p for p ∈ (0, 1] is concave on any subinterval of R
over which x does not change sign. Therefore, any point at which C ′ = 0 will be a local maximum
rather than a minimum, and hence any minimum of C can only occur at the critical points δ1, δ2, δ3.
We have

C(δ1) =
1

(1− τ)p
|a− b|p +

∣∣c+ τ

1− τ
a− 1

1− τ
b
∣∣p (21)

C(δ2) = |b− a|p + |c− b|p (22)

C(δ3) =
∣∣1
τ
b− 1− τ

τ
c− a

∣∣p + 1

τp
|b− c|p (23)

Now, for the variable t ∈ [0, 1), define

h1(t) :=
1

(1− t)p
|a− b|p +

∣∣c+ t

1− t
a− 1

1− t
b
∣∣p (24)

and observe that h1(0) = C(δ2) and h1(τ) = C(δ1). Its derivative is

h′
1(t) =

p

(1− t)p+1
|a− b|p + p

∣∣c+ t

1− t
a− 1

1− t
b
∣∣p−1

sgn
(
c+

t

1− t
a− 1

1− t
b

)
a− b

(1− t)2

(25)

=
p

(1− t)p+1
|a− b|p + p

∣∣c+ t

1− t
a− 1

1− t
b
∣∣p−1

sgn
(
(1− t)(c− b) + t(a− b)

1− t

)
a− b

(1− t)2

(26)

Assuming that sgn(a − b) ̸= sgn(b − c) with a ̸= b (and thus δ1 ̸= δ2), we see that h′
1(t) > 0 for

all t ∈ [0, 1). This is because the term inside the sgn above is positive if a > b (so that b ≤ c) and
negative if a < b (so that b ≥ c). This shows that h1(0) = C(δ2) < h1(τ) = C(δ1). Similarly,
define

h2(t) :=
∣∣1
t
b− 1− t

t
c− a

∣∣p + 1

tp
|b− c|p (27)

for t ∈ (0, 1], so that h2(τ) = C(δ3) and h2(1) = C(δ2). Its derivative is

h′
2(t) = p

∣∣1
t
b− 1− t

t
c− a

∣∣p−1
sgn

(
1

t
b− 1− t

t
c− a

)
c− b

t2
− p

tp+1
|b− c|p (28)

= p
∣∣1
t
b− 1− t

t
c− a

∣∣p−1
sgn

(
t(b− a) + (1− t)(b− c)

t

)
c− b

t2
− p

tp+1
|b− c|p (29)

Assuming that sgn(a − b) ̸= sgn(b − c) with b ̸= c (and thus δ2 ̸= δ3), we see that h′
2(t) > 0 for

all t ∈ (0, 1]. This is because the term inside the sgn above is positive if b > c (so that a ≤ b) and
negative if b < c (so that a ≥ b). This shows that h2(τ) = C(δ3) < h2(1) = C(δ2). Therefore,
C(0) < C(δ) for δ ̸= 0, as desired.

Next, consider the general case, where we assume by contradiction that f ∈ S∗
p for 0 ≤ p < 1 may

have multiple knots inside (xi, xi+1). As before, in the case p = 0, f can’t have fewer knots than
the function g whose slope is b on [xi, xi+1]; the only way for f to be in S∗

0 is if it has a single knot
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(a) u1, uJ are on the same side of si. (b) u1 and uJ can be connected, reducing Vp(f).

Figure 6: General case of Lemma A.2, where the outgoing line segment at xi and the incoming line
segment at xi+1 both lie on the same side of the straight line between (xi, yi) and (xi+1, yi+1). We
can apply the argument in the proof of Lemma A.1 to connect these two segments in a single knot
inside (xi, xi+1) and strictly reduce Vp(f).

(a) u1, uJ are on opposite sides of si.
(b) u1, uj0 and uj0 , uJ can be connected, reducing
Vp(f).

(c) u1 and sout(f, xi+1) can be connected, reducing
Vp(f).

Figure 7: General case of Lemma A.2, where the outgoing line segment at xi and the incoming line
segment at xi+1 lie on opposite sides of the straight line between (xi, yi) and (xi+1, yi+1). We can
apply the argument in the proof of Lemma A.1 to connect the segments u1 and uj0 and uj0 and uJ ,
resulting in a function with two knots inside (xi, xi+1) and strictly reducing Vp(f). By the same
argument, we can further reduce Vp(f) by connecting u1 and sout(f, xi+1), resulting in a single knot
inside (xi, xi+1).

inside (xi, xi+1) and a single knot at either xi or xi+1, in which case we also have g ∈ S∗
0 . In the

case 0 < p < 1, let u1, . . . , uJ denote the slopes of f on [xi, xi+1]. If the line segments with slopes
u1 and uJ lie on the same side of the line segment with slope si, then we can apply the argument in
the proof of Lemma A.1 to remove the segments with slopes u2, . . . , uJ−1 and connect the segments
with u1 and uJ in a single knot inside (xi, xi+1); this strictly reduces Vp(f), contradicting f ∈ S∗

p .
(See Fig. 6.) If the line segments with slopes u1 and uJ lie on opposite sides of the line segment with
slope si, then either one of the intermediate segments, whose slope we call uj0 , crosses the segment
with slope si, or else one of the intermediate segments (again call its slope uj0 ) lies on one side of si,
and uj0+1 lies on the other side. In either case, the segments u1 and uj0 can be connected and the
segments between them removed, as can the segments uj0 (or uj0+1) and uJ . (See Fig. 7.) Again,
by the logic in the proof of Lemma A.1, this strictly reduces Vp(f), contradicting f ∈ S∗

p . If f is
already of the form in Fig. 7b, with only two knots inside (xi, xi+1) on opposite sides of the line si,
then the second knot can be removed by directly connecting u1 and sout(f, xi+1) (see Fig. 7c). By
the same logic, this strictly reduces Vp(f), contradicting f ∈ S∗

p .
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(a) A function with a knot inside (x1, x2). (b) A function which agrees with ℓ1 on (−∞, x2].

Figure 8: Behavior of f ∈ S∗
p before x2 and after xN . A knot inside (x1, x2) can be moved to

x2, maintaining the same outgoing slope at x2, which strictly decreases the magnitude of the slope
change at the knot.

A.1.3 Proof of Theorem 3.1

Proof. We first use Theorem 3.1 and Lemmas A.1 and A.2 to show that any f ∈ S∗
p for 0 < p < 1

must obey the description in Theorem 3.1, and that there is always some f ∈ S∗
0 which fits this

description. Using this result, we argue non-emptiness of S∗
p . We break the proof into the following

sections.

Linearity before x2 and after xN−1. We will prove the statement for (−∞, x2]; the proof for
[xN−1,∞) is analogous. No f ∈ S∗

p for 0 ≤ p ≤ 1 can have a knot at or before x1 as this would
strictly increase the cost Vp(f) without affecting the ability of f to interpolate the data points. In the
case 0 < p < 1, assume by contradiction that some f ∈ S∗

p has a knot at some x ∈ (x1, x2). By
Lemma A.2, it must be the case that sgn(s1−sin(f, x1)) = sgn(sout(f, x2)−s1), and by Lemma A.1,
this knot is the only one inside (x1, x2), with sin(f, x1) = sout(f, x1) and sin(f, x2) = sout(f, x2).
(See Fig. 8a.) Assuming without loss of generality that sgn(s1 − sin(f, x1)) = sgn(sout(f, x2)−
s1) = −1, we have sin(f, x1) > s1 > sout(f, x2), and therefore |sout(f, x2) − sin(f, x1)| >
|sout(f, x2)− s1|. But this shows that Vp(f) > Vp(g), where g = ℓ1 on (−∞, x2] and is otherwise
identical to f . (See Fig. 8b.) This contradicts f ∈ S∗

p .

In the case p = 0, fix some f ∈ S∗
0 . As argued above, f has no knots on (−∞, x1]. If sgn(s1 −

sin(f, x1)) ̸= sgn(sout(f, x2) − s1), then by Lemma A.2, either f = ℓ1 on [x1, x2] (hence it also
must agree with ℓ1 on (−∞, x1]), or there is some g ∈ S∗

0 which agrees with ℓ1 on [x1, x2] (hence
also on (−∞, x1], since g must also not have any knots on (−∞, x1]). If sgn(s1 − sin(f, x1)) =
sgn(sout(f, x2)− s1) = 0, then by Lemma A.1, f = ℓ1 on [x1, x2] and thus also on (−∞, x1]. If
sgn(s1 − sin(f, x1)) = sgn(sout(f, x2)− s1) are both nonzero, then by Lemma A.1, f has a single
knot inside (x1, x2) with sin(f, x1) = sout(f, x1) and sin(f, x2) = sout(f, x2), as in Fig. 8a. Then
function depicted in Fig. 8, which agrees with ℓ1 on (−∞, x2] and with f on [x2,∞), has the same
number of knots as f , so g ∈ S∗

0 .

Linearity between data points of opposite curvature. For 0 < p < 1, assume by contradiction
that some f ∈ S∗

p does not agree with ℓi on an interval [xi, xi+1] where sgn(si−si−1) ̸= sgn(si+1−
si). By Lemmas A.1 and A.2, it must be the case that sgn(si− sin(f, xi)) = sgn(sout(f, xi+1)− si)
are both nonzero, and that sin(f, xi) = sout(f, xi) and sin(f, xi+1) = sout(f, xi+1) and f has
a single knot inside (xi, xi+1) where the incoming line at xi and the outgoing line at xi+1 meet.
It must be the case that sgn(si − si−1) ̸= sgn(si − sin(f, xi)) and/or that sgn(si+1 − si) ̸=
sgn(sout(f, xi+1)−si). Assume without loss of generality that sgn(si+1−si) ̸= sgn(sout(f, xi+1)−
si) = 1, so that si+1 ≤ si < sout(f, xi+1) = sin(f, xi+1). Then clearly si+1 ̸= sout(f, xi+1) (in
other words, f does not agree with ℓi+1 on all of [xi+1, xi+2]), so by Lemma A.1 and Lemma A.2,
it must be the case that −1 = sgn(si+1 − sin(f, xi+1)) = sgn(sout(f, xi+2) − si+1), that f has
a single knot inside (xi+1, xi+2), and that sin(f, xi+2) = sout(f, xi+2). (See Fig. 9a.) Therefore,
sin(f, xi+2) = sout(f, xi+2) < si+1 ≤ si < sout(f, xi+1) = sin(f, xi+1). Furthermore, because
1 = sgn(sout(f, xi+1) − si) = sgn(si − sin(f, xi)), we have sin(f, xi) < si < sout(xi+1). On
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(a) A function with knots inside (xi, xi+1) and
(xi+1, xi+2). (b) A function which agrees with ℓi on [xi, xi+1].

Figure 9: Behavior of f ∈ S∗
p between data points of opposite curvature. The knot inside (xi, xi+1)

on the left can be moved to xi, and the knot inside (xi+1, xi+2) can be adjusted accordingly (right);
this reduces the magnitudes of the slope changes of both knots.

I := [xi−1 − ϵ, xi+2 + ϵ] for small ϵ > 0, we thus have

Vp(f
∣∣
I
) = |sout(f, xi+1)− sin(f, xi)|p + |sout(f, xi+2)− sout(f, xi+1)|p (30)

> |si − sin(f, xi)|p + |sout(f, xi+2)− si|p = Vp(g
∣∣
I
) (31)

where g agrees with f outside of [xi, xi+2], agrees with ℓi on [xi, xi+1], and has a single knot
inside [xi+1, xi+2] with sout(g, xi+1) = si and sin(g, xi+2) = sout(g, xi+2) = sout(f, xi+2). (See
Fig. 9b.) This contradicts f ∈ S∗

p .

For p = 0, consider some f ∈ S∗
0 . If sgn(si − sin(f, xi)) ̸= sgn(sout(f, xi+1) − si), then by

Lemma A.2, there is some g ∈ S∗
0 which agrees with f outside of [xi, xi+1] and agrees with ℓi on

[xi, xi+1]. By Lemma A.1, if sgn(si − sin(f, xi)) = sgn(sout(f, xi+1)− si) = 0, then f = ℓi on
[xi, xi+1]. If sgn(si − sin(f, xi)) = sgn(sout(f, xi+1)− si) are both nonzero, then by Lemma A.1,
sin(f, xi) = sout(f, xi) and sin(f, xi+1) = sout(f, xi+1), and f has a single knot inside (xi, xi+1)
where the incoming line at xi and the outgoing line at xi+1 meet. As before, it must be the case that
sgn(si−si−1) ̸= sgn(si−sin(f, xi)) and/or that sgn(si+1−si) ̸= sgn(sout(f, xi+1)−si). Assume
without loss of generality that sgn(si+1 − si) ̸= sgn(sout(f, xi+1)− si) = 1, so that si+1 ≤ si <
sout(f, xi+1) = sin(f, xi+1). Because 1 = sgn(sout(f, xi+1)− si) = sgn(si− sin(f, xi)), we also
have sin(f, xi) < si < sout(f, xi+1). If sgn(sout(f, xi+2)− si+1) ̸= sgn(si+1 − sin(f, xi+1)) =
−1, then by Lemma A.2, there is some g ∈ S∗

0 which agrees with f outside [xi+1, xi+2] and
agrees with ℓi+1 on [xi+1, xi+2]. Then this g has sout(g, xi+1) = si and sin(g, xi) = sin(f, xi), so
sgn(sout(xi+1)− si) ∈ {−1, 0}, and sgn(si − sin(g, xi)) = 1; hence by Lemma A.2, there is some
h ∈ S∗

0 which agrees with g outside of [xi, xi+1] and agrees with ℓi on [xi, xi+1]. On the other hand,
if sgn(sout(f, xi+2)− si+1) = sgn(si+1 − sin(f, xi+1)) = −1, then by Lemma A.1, f has a single
knot inside (xi+1, xi+2), and sin(f, xi+2) = sout(f, xi+2), as in Fig. 9a. This function has two
knots on I := [xi−1− ϵ, xi+2+ ϵ] (for small ϵ > 0). The function g depicted in Fig. 9b, which agrees
with f outside of [xi, xi+2], agrees with ℓi on [xi, xi+1], and has a single knot inside [xi+1, xi+2]
with sout(g, xi+1) = si and sin(g, xi+2) = sout(g, xi+2) = sout(f, xi+2), also has two knots on I .
Therefore g ∈ S∗

0 .

Linearity between collinear data points. For 0 < p < 1, fix f ∈ S∗
p . If sin(f, xi) = si = si+1 =

· · · = si+m−1 = sout(f, xi+m), then f must agree with ℓi = · · · = ℓi+m−1 on [xi, xi+m], since any
other function g would have Vp(g

∣∣
I
) > 0 = Vp(f

∣∣
I
) on I := [xi − ϵ, xi+m + ϵ] for small ϵ > 0. If

sgn(si−sin(f, xi)) ̸= sgn(sout(f, xi+m)−si), then the argument in the proof of Lemma A.2 shows
that f must agree with ℓi = · · · = ℓi+m−1 on [xi, xi+m]. So we need only consider the case where
sgn(si − sin(f, xi)) = sgn(sout(f, xi+m) − si) are both nonzero; say without loss of generality
that they both equal 1, so that sin(f, xi) < si < sout(f, xi+m). If f = ℓi on both [xi, xi+1]
and [xi+m−1, xi+m], then it also must agree with ℓi on [xi+1, xi+m−1] (otherwise it would have
Vp(f

∣∣
[xi,xi+m]

) > 0), so assume by contradiction that f ̸= ℓi on at least one of these intervals, say
without loss of generality on [xi, xi+1]. Then by Lemmas A.1 and A.2, it must be the case that f has a
single knot inside (xi, xi+1) and that sin(f, xi) = sout(f, xi) < si < sin(f, xi+1) = sout(f, xi+1).
This implies that f also disagrees with ℓi on [xi, xi+1], so again by Lemmas A.1 and A.2, f must
have a single knot inside (xi+1, xi+2) with sin(f, xi+1) = sout(f, xi+1) > si+1 > sin(f, xi+2) =
sout(f, xi+2). The same logic applies on the remaining intervals up to and including [xi+m−1, xi+m]
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(a) A nonlinear function between m+ 1 collinear
points, m-even.

(b) A nonlinear function between m+ 1 collinear
points, m-odd.

Figure 10: Behavior of f ∈ S∗
p between collinear points. If f ∈ S∗

p is not a straight line between
collinear points (xi, yi), . . . , (xi+m, yi+m), it must look like Fig. 10a (if m is even) or Fig. 10b (if
m is odd). In both cases, the sum of absolute slope changes of these functions is greater than the sum
of absolute slope changes of the function g which agrees with f outside of [xi, xi+m] and connects
(xi, yi), . . . , (xi+m, yi+m) with a straight line. Such a g has two knots, whereas functions of the
form f depicted here have m ≥ 2 knots.

(see Fig. 10). Note that if m is even, we will have sin(f, xi+m−1) = sout(f, xi+m−1) > si+m−1 =
si > sin(f, xi+m) = sout(f, xi+m), contradicting the assumption that sgn(sout(f, xi+m)− si) = 1
(see Fig. 10a). If m is odd, as in Fig. 10b, we have

Vp(f
∣∣
I
) = |sout(f, xi+1)− sin(f, xi)|p + |sout(f, xi+2)− sout(f, xi+1)|p (32)

+ · · ·+ |sout(f, xi+m)− sout(f, xi+m−1)|p (33)

> |si − sin(f, xi)|p + |sout(f, xi+m)− si+m−1|p = Vp(g
∣∣
I
) (34)

where g is the function which agrees with f outside of [xi, xi+m] and agrees with ℓi = · · · = ℓi+m−1

on [xi, xi+m]; this contradicts f ∈ S∗
p .

In the case p = 0, fix f ∈ S∗
0 . If sin(f, xi) = si = · · · = si+m−1 = sout(f, xi+m), then f must

agree with ℓi = · · · = ℓi+m−1 on [xi, xi+m] and if sgn(si − sin(f, xi)) ̸= sgn(sout(f, xi+m)− si),
then the proof of Lemma A.2 shows that there is some g ∈ S∗

0 which agrees with f outside of
[xi, xi+m] and agrees with ℓi on [xi, xi+m]. If sgn(si − sin(f, xi)) = sgn(sout(f, xi+m)− si) are
both nonzero, then there must be at least one knot on [xi, xi+m] in order for the slope to change
from sin(f, xi) to sout(f, xi+m). It is impossible for f to interpolate the data with a single knot
on [xi, xi+m] where the slope changes from sin(f, xi) to sout(f, xi+m), since this would require
at least two of the points (xi, yi), . . . , (xi+m, yi+m) to both lie on either the incoming line at xi or
the outgoing point at xi+m, but this is impossible because si ̸= sin(f, xi) and si ̸= sout(f, xi+m).
Therefore, f must have at least two knots on [xi, xi+m]. The function g which agrees with ℓi on
[xi, xi+m] and has sin(g, xi) = sin(f, xi) and sout(g, xi+m) = sout(f, xi+m) interpolates the points
(xi, yi), . . . , (xi+m, yi+m) with exactly two knots on [xi − ϵ, xi+m + ϵ], and thus g ∈ S∗

0 .

Single knot between two data points with the same curvature. For 0 < p < 1, fix f ∈ S∗
p . If

i = 2, then f = ℓ1 on (−∞, x2] by Theorem 3.1,1. If i > 2, then by assumption, sgn(si−1−si−2) ̸=
sgn(si − si−1), so by Theorem 3.1,1, f = ℓi−1 on [xi−1, xi]. In either case, we have sin(f, xi) =
si−1. An analogous argument shows that sout(f, xi+1) = si+1. Similarly, Theorem 3.1,1 says that
there is some g ∈ S∗

0 for which sin(g, xi) = si−1 and sout(g, xi+1) = si+1. In both cases, the
conclusion then follows from Lemma A.2.

Characterization around ≥ 2 points with the same curvature. For 0 < p < 1, fix some f ∈ S∗
p .

As in the proof of Theorem 3.1,2a above, the assumptions guarantee that si−1 = sin(f, xi) and
si+m = sout(f, xi+m). Using this fact, we will proceed by (strong) induction, assuming without loss
of generality that sgn(si − si−1) = sgn(si+1 − si) = · · · = sgn(si+m − si+m−1) = 1.

In the base case m = 2, first suppose that sgn(si − sin(f, xi)) ̸= sgn(sout(f, xi+1) − si). Since
sin(f, xi) = si−1 < si by assumption, it must be the case that sgn(sout(f, xi+1)− si) ∈ {0,−1}. If
sgn(sout(f, xi+1)−si) = −1, Lemma A.2 implies that f = ℓi on [xi, xi+1], and thus sin(f, xi+1) =
si. But then we have sin(f, xi+1) = si < si+1 < sout(f, xi+2) = si+2, so by Lemma A.1, it must be
the case that sin(f, xi+1) = sout(f, xi+1), contradicting sgn(sout(f, xi+1)−si) = −1 (see Fig. 12b).
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(a) u1 = si+1 (b) si < u1 < si+1

(c) ui = si

Figure 11: Possible behavior of f ∈ S∗
p between three consecutive data points of the same discrete

curvature. All possibilities satisfy si ≤ u1 ≤ si+1.

(a) sin(xi+1) = sout(xi+1) > si+1 (b) sout(xi+1) < sin(xi+1) = si

Figure 12: Behaviors which f ∈ S∗
p for 0 < p < 1 cannot exhibit around three consecutive points

of the same discrete curvature. The case on the left violates Lemma A.2, and the case on the right
violates Lemma A.1.

If sgn(sout(f, xi+1) − si) = 0, then Lemma A.2 implies that f = ℓi on [xi, xi+1], and therefore
sin(f, xi+1) = sout(f, xi+1) = si. Then sin(f, xi+1) = si < si+1 < sout(f, xi+2) = si+2, so by
Lemma A.1, f has a single knot inside [xi+1, xi+2], with sin(f, xi+1) = sout(f, xi+1) = si (as we
already know) and sin(f, xi+2) = sout(f, xi+2) = si+2. The conclusion then holds with u1 := si
(see Fig. 11c).

On the other hand, still for the base case m = 2, suppose that sgn(si − sin(f, xi)) =
sgn(sout(f, xi+1) − si). Then by Lemma A.1, there is a single knot inside [xi, xi+1], with
si−1 = sin(f, xi) = sout(f, xi) and sin(f, xi+1) = sout(f, xi+1). It cannot be the case that
sout(f, xi+1) > si+1, because if this were true, we would have −1 = sgn(si+1 − sin(f, xi+1)) ̸=
sgn(sout(f, xi+2)− si+1) = 1, and that would imply by Lemma A.2 that f = ℓi+1 on [xi+1, xi+2],
contradicting sout(f, xi+1) > si+1 (see Fig. 12a). Therefore, we must have sout(f, xi+1) ≤ si+1. If
sout(f, xi+1) < si+1, then by Lemma A.1, there is a single knot on [xi+1, xi+2], with sin(f, xi+1) =
sout(f, xi+1) (as we already knew) and sin(f, xi+2) = sout(f, xi+2) = si+2. The conclusion then
holds with u1 := sin(f, xi+1) = sout(f, xi+1) (see Fig. 11b). If sout(f, xi+1) = si+1, then
0 = sgn(si+1 − sin(f, xi+1) ̸= sgn(sout(f, xi+2) − si+1) = 1, so by Lemma A.2, f = ℓi+1 on
[xi+1, xi+2]. The conclusion then holds with u1 := si+1 (see Fig. 11a).

Next, for the (strong) inductive step, fix some integer m ≥ 4 and assume the conclusion holds for
all integers 2, . . . ,m − 1. First suppose that sout(f, xi+m−1) > si+m−2. Then by the inductive
hypothesis, f has slopes u1, . . . , um−2—some of which may be equal to each other, but all of which
are distinct from sin(f, xi) = si−1 and sout(f, xi+m−1)—on [xi, xi+m−1] satisfying si+j−1 ≤
uj ≤ si+j for all j = 1, . . . ,m− 2. It cannot be the case that sout(f, xi+m−1) > si+m−1, because

21



(a) si+m−2 < um−1 < si+m−1 (b) um−2 = um−1 = si+m−2

Figure 13: Possible behavior of f ∈ S∗
p around m consecutive data points of the same discrete

curvature. Assuming inductively that Theorem 3.1,2b holds for 2, . . . ,m− 1, both satisfy si+j−1 ≤
uj ≤ si+j for j = 1, . . . ,m− 1.

(a) si+m−1 = sout(xi+m−1) ≤ sin(xi+m−1) (b) sin(xi+m−1) = sout(xi+m−1) > si+m−1

Figure 14: Behaviors which f ∈ S∗
p can and cannot exhibit between m consecutive points of the

same discrete curvature. Assuming inductively that Theorem 3.1,2b holds for 2, . . . ,m− 1, the case
with the green check mark on the left satisfies si+j−1 ≤ uj ≤ si+j for j = 1, . . . ,m− 1. The case
with the red x on the left violates Lemma A.1, and the case on the right violates Lemma A.2.

if this were true, we would have −1 = sgn(si+m−1 − sin(f, xi+m−1)) ̸= sgn(sout(f, xi+m) −
si+m−1) = 1, and thus Lemma A.2 would imply that f = ℓi+m−1 on [xi+m−1, xi+m], contradicting
sout(f, xi+m−1) > si+m−1 (see Fig. 12b). Therefore, we must have sout(f, xi+m−1) ≤ si+m−1. If
sout(f, xi+m−1) < si+m−1, then by Lemma A.1, there is a single knot inside [xi+m−1, xi+m] and
sin(f, xi+m−1) = sout(f, xi+m−1) and sin(f, xi+m) = sout(f, xi+m) = si+m. The conclusion
then holds for m with um−1 := sout(f, xi+m−1) (see Fig. 13a). If sout(f, xi+m−1) = si+m−1,
then by Lemmas A.1 and A.2, it must be the case that {0,−1} ∋ sgn(si+m−1 − sin(f, xi+m−1)) ̸=
sgn(sout(f, xi+m) − si+m−1)) = 1. It is impossible that sgn(si+m−1 − sin(f, xi+m−1)) = −1
because by Lemmas A.1 and A.2, for f to disagree with ℓi+m−2 on [xi+m−2, xi+m−1], it must be the
case that sin(f, xi+m−1) = sout(f, xi+m−1), contradicting sin(f, xi+m−1) < sout(f, xi+m−1) =
si+m−1 (see Fig. 14a, red). Therefore, in this case we have sin(f, xi+m−1) = sout(f, xi+m−1) =
si+m−1, and the conclusion holds for m with um−1 := si+m−1 (see Fig. 14a, green).

On the other hand, still for the (strong) inductive step, suppose that sout(f, xi+m−1) ≤ si+m−2. If
sout(f, xi+m−1) = si+m−2, then by Lemmas A.1 and A.2, f has a single knot inside [xi+m−1, xi+m]
with sin(f, xi+m−1) = sout(f, xi+m−1) = si+m−2 and sin(f, xi+m) = sout(f, xi+m) = si+m.
This implies, again by Lemmas A.1 and A.2, that f = ℓi+m−2 on [xi+m−2, xi+m−1]. By the (strong)
inductive hypothesis, f has slopes u1, . . . , um−3 on [xi, xi+m−2], all distinct from sin(f, xi) = si−1

and sout(f, xi+m−2) = si+m−2, which satisfy si+j−1 ≤ uj ≤ si+j for j = 2, . . . ,m − 3. The
conclusion then holds for m with um−2 = um−1 := si+m−2 (see Fig. 13b). It remains only to
consider the case sout(f, xi+m−1) < si+m−2, and show that this is impossible for f ∈ S∗

p . If
sout(f, xi+m−1) < si+m−2, then by Lemmas A.1 and A.2, there is a single knot inside [xi+m−1 −
xi+m] and sin(f, xi+m−1) = sout(f, xi+m−1) and sin(f, xi+m) = sout(f, xi+m) = si+m. This in
turn implies, again by Lemmas A.1 and A.2, that there is a single knot inside [xi+m−2, xi+m−1] and
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(a) A function with sout(xi+m−1) < si+m−2.
(b) A function with sin(xi+m−1) = sout(xi+m−1) =
si+m−2.

Figure 15: Possible behavior of f ∈ S∗
p around m consecutive slope changes of the same discrete

curvature. The magnitude of slope change at each knot of the function f on the left, which has
sout(f, xi+m−1) < si+m−2, is greater than that of the corresponding knot in the function g on the
right, which has sin(xi+m−1) = sout(xi+m−1) = si+m−2.

sin(f, xi+m−2) = sout(f, xi+m−2). (See Fig. 15a.) On the interval I := [xi+m−2 − ϵ, xi+m + ϵ]
for small ϵ > 0, we thus have

Vp(f
∣∣
I
) = |sout(f, xi+m−1)− sin(f, xi+m−2)|p + |si+m − sout(f, xi+m−1)|p (35)

> |si+m−2 − sin(f, xi+m−2)|p + |si+m − si+m−2|p (36)

where the inequality holds because sout(f, xi+m−1) < si+m−2 < si+m and sin(f, xi+m−2) >
si+m−2 > sout(f, xi+m−1). The latter is exactly Vp(g

∣∣
I
), where g is the function which agrees

with f outside of [xi+m−2, xi+m], agrees with ℓi+m−2 on [xi+m−2, xi+m−1], and has a single
knot in [xi+m−1, xi+m] with sin(f, xi+m−1) = sout(f, xi+m−1) = si+m−2 and sin(f, xi+m) =
sout(f, xi+m) = si+m. (See Fig. 15b.) This contradicts f ∈ S∗

p .

For the case p = 0: again, as in the proof of Theorem 3.1,2a, the assumptions guarantee that there is
some f ∈ S∗

0 for which sin(f, xi) = si−1 and sout(f, xi+1) = si+1. The inductive argument above
for 0 < p < 1 also shows the desired result in the p = 0 case, with each reference to Lemma A.2 as
well as the last portion of the inductive step instead justifying the existence of some g ∈ S∗

0 which
exhibits the desired local behavior and agrees with f elsewhere.

Non-emptiness of S∗
p for 0 < p < 1. As noted in Section A.1.1, restricting the input weights

to |wk| = 1 in optimization (2) recovers the same set of optimal functions S∗
p . The geometric

characterization proved above shows that any solution to this modified (2) must have no knots outside
of [x2, xN−1], and thus its biases satisfy |bk| ≤ B := max{|x2|, |xN−1|}. Additionally, any such
solution has slopes absolutely bounded by C := maxi=1,...,N−1 |si|, so that each |vkwk| = |vk| ≤
2C, and thus its skip connection parameters can be bounded as

|a| −

∣∣∣∣∣ ∑
wk>0

vk

∣∣∣∣∣ ≤
∣∣∣∣∣a+

∑
wk>0

vk

∣∣∣∣∣ = |f ′(xN + 1)| ≤ C =⇒ |a| ≤ A := C +
∑
wk>0

|v| ≤ C + 2KC

(37)

and

c = y1 −
K∑

k=1

vk(wkx1 − bk)+ − ax1 =⇒ |c| ≤ |y1|+
K∑

k=1

|vk|(|x1|+ |bk|) + |ax1| (38)

≤ C0 := |y1|+ 2KC(|x1|+B) + |x1|(C + 2KC)
(39)

Therefore, any f ∈ S∗
p is recovered by a restricted version of (2) which requires that |wk| = 1, |bk| ≤

B, |vk| ≤ 2C, |a| ≤ A, |c| ≤ C0. For any fixed choice of w1, . . . , wK ∈ {−1, 1}K , this modified
optimization (in the remaining variables) constitutes a minimization of a continuous function over a
compact set, so by the Weierstrass Extreme Value Theorem, a solution exists. Taking the minimum
over all such solutions for all possible choices of w1, . . . , wK ∈ {−1, 1}K proves the result.

23



A.1.4 Proof of Theorem 3.2

Proof. If the data contain no more than two consecutive points with the same discrete curvature,
there is only one interpolant f which fits the description in Theorem 3.1. By Theorem 4 in Debarre
et al. (2022), this f ∈ S∗

0 . Otherwise, if the data do contain some xi, . . . , xi+m with the same
discrete curvature for m ≥ 2, the slopes u1, . . . , um−1 of any interpolant satisfying the description
in Theorem 3.1,2b have si+j−1 ≤ uj ≤ si+j for each j = 1, . . . ,m − 1. Indeed, any choice
of u1, . . . , um−1 satisfying si+j−1 ≤ uj ≤ si+j for each j defines an CPWL interpolant of the
data, given by the pointwise maximum of ℓi−1, ℓi+m, and the lines Lj , each of which has slope
uj and passes through (xi+j , yi+j). Therefore, the set S of functions described by Theorem 3.1,2b
on any such xi, . . . , xi+m can be fully associated with the set of numbers u1, . . . , um satisfying
si+j−1 ≤ uj ≤ si+j for each j. Since any such uj = (1 − αj)si+j−1 + αjsi+j for a unique
αj ∈ [0, 1], we can equivalently identify S with the unit cube [0, 1]m−1.

Viewed as a function of its corresponding α = [α1, . . . , αm−1]
⊤ ∈ [0, 1]m−1, the regularization cost

Vp(f |I) (for 0 < p < 1) of any f ∈ S on I := [xi−1 − δ, xi+m+1 + δ] for small δ > 0 is

Vp(α) = |u1 − si−1|p +
m−1∑
j=2

|uj − uj−1|p + |si+m − um−1|p = ∥Aα+ c∥pp (40)

where the rows a1, . . . ,am of A ∈ Rm×(m−1) and entries c1, . . . , cm of c ∈ Rm are

a1 = [si+1 − si, 0, . . . , 0]
⊤, c1 = si − si−1 (41)

am = [0, . . . , 0, si+m−1 − si+m]⊤, c1 = si+m − si+m−1 (42)

and

aj = [0, . . . , 0,−(si+j−1 − si+j−2), si+j − si+j−1, 0, . . . , 0]
⊤, cj = si+j−1 − si+j−2 (43)

for j = 2, . . . ,m− 1, with the nonzero entries of aj in positions j − 1 and j. By the assumption that
ϵi = · · · = ϵi+m are all nonzero, the rows a1, . . . ,am of A span Rm−1, and thus α 7→ Aα+ c is
injective. For any distinct α1,α2 ∈ [0, 1]m−1, we thus have Aα1 + c ̸= Aα2 + c, and therefore

Vp(tα1 + (1− t)α2) = ∥t(Aα1 + c) + (1− t)(Aα2 + c)∥pp > t∥Aα1 + c∥pp + (1− t)∥Aα2 + c∥pp
(44)

for any t ∈ (0, 1) by strict concavity of ∥ · ∥pp on [0, 1]m−1. This shows that Vp is strictly concave on
[0, 1]m−1. By the Bauer Maximum Principle (Aliprantis and Border (2006), Theorem 4.104), Vp(α)
thus attains a minimum on [0, 1]m−1 at an extreme point of [0, 1]m−1. Moreover, by strict concavity
of Vp(α), any minimum of Vp(α) over [0, 1]m−1 must occur at an extreme point. Therefore, when
searching for an f ∈ S with minimal Vp, we may restrict our attention to those f corresponding to
the 2m−1 vertices {0, 1}m−1 of the cube [0, 1]m−1.

Among these 2m−1 vertices, there is at least one corresponding to a sparsest solution f ∈ S∗
0 ∩ S.

This is because, by Theorem 4 in Debarre et al. (2022), any f ∈ S∗
0 ∩ S has ⌈m+1

2 ⌉ knots on I ,
and there is one such f if m is odd, or uncountably many if m is even. If m is odd, this unique
f corresponds to the vertex [1, 0, . . . , 1, 0]⊤ ∈ {0, 1}m−1; i.e., this f has uj = si+j for odd j and
uj = si+j−1 for even j. If m is even, there are multiple vertices α ∈ {0, 1}m−1 which attain
the minimal number ⌈m+1

2 ⌉ of knots on I: two examples are [1, 0, . . . , 1, 0, 1]⊤ ∈ {0, 1}m−1 (see
Fig. 16b) and [0, 1, . . . , 0, 1, 0]⊤ ∈ {0, 1}m−1 (see Fig. 16a).

For each of the 2m−1 functions f ∈ S corresponding to the vertices α ∈ {0, 1}m−1, consider the
associated “cost curves” Cf (p) := Vp(f |I), which is simply the regularization cost Vp(f |I) for that
individual f over I , viewed as a function of the variable p ∈ [0, 1]. Each Cf (p) is a generalized
Dirichlet polynomial7 of the variable p. By the generalized Descartes rule of signs for Dirichlet
polynomials (Jameson (2006), Theorem 3.1), any two cost curves Cf (p), Cg(p) for distinct f, g can
only intersect at finitely many p ∈ [0, 1]. Therefore, for any given p ∈ [0, 1] outside of that finite set
(which has Lebesgue measure zero), a unique one of these 2m−1 candidate solutions f has smaller

7Generalized Dirichlet polynomials are functions of the form f(x) =
∑n

i=1 aib
x
i , where ai, x ∈ R and

b1 ≥ · · · ≥ bn > 0.
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(a) One sparsest interpolant, corresponding to α =
[0, 1, 0].

(b) Another sparsest interpolant, corresponding to
α = [1, 0, 1].

Figure 16: Illustration of two sparsest interpolants in the scenario of Theorem 3.1,2b with m = 4.
Both have ⌈m+1

2 ⌉ = 3 knots on [xi − 1, xi+m + 1], consistent with Theorem 4 of Debarre et al.
(2022).

cost Cf (p) = Vp(f |I) than the others. Furthermore, the sparsest of these 2m−1 functions (i.e., the
ones in S ∩ S∗

0 ) will necessarily have smaller Cf (0) = V0(f |I) than the rest, and because all of the
cost curves Cf (p) are continuous, a unique one of these sparsest solutions will have smaller cost
Cf (p) than the others for all p between 0 and p∗, which is the location of the first intersection of any
two of these 2m−1 candidate solutions’ cost curves.

A.2 Multivariate results

A.2.1 Proof of Proposition 4.1

Proof. Assume by contradiction that a solution {vk,wk}Kk=1 to (9) for K > N has K0 > N active
neurons {vk,wk}K0

k=1. Because K0 > N , the vectors ak := [(w⊤
k x1)+, . . . , (w

⊤
k xN )+]

⊤, where
xi := [xi, 1], are linearly dependent, meaning that there are constants c1, . . . , cK0

(not all zero) for
which

∑K0

k=1 ckak = 0. Then for any real t:

K0∑
k=1

(vk + tck)ak =

K0∑
k=1

vkak + t

K0∑
k=1

ckak =

K0∑
k=1

vkak = y

where y := [y1, . . . , yN ]⊤. Therefore, choosing t = −vk′/ck′ for one of the ck′ ̸= 0, the network
with parameters {vk + tck,wk}K0

k=1 interpolates the data, and satisfies

K0∑
k=1

∥(vk + tck)wk∥0 <

K0∑
k=1

∥vkwk∥0

where strict inequality holds because all of the vkwk are nonzero, whereas at least one of the
(vk + tck)wk on the left is zero (for k = k′), and ∥vkwk∥0 = ∥(vk + tck)wk∥0 whenever both
vkwk and (vk + tck)wk are nonzero. This contradicts optimality of {vk,wk}Kk=1.

If the data are in general position and N ≥ d+ 1, then Bubeck et al. (2020) show that there exists an
interpolating single-hidden-layer ReLU network with 4⌈N/d⌉ neurons. Any such network clearly has
at most 4(d+1)⌈N/d⌉ ≤ 4(N +1)+ 4(N +1)/d ≤ 8(N +1) = O(N) nonzero input weight/bias
parameters across those 4⌈N/d⌉ neurons.

If the data are in general position and N ≤ d+1, the points x1, . . . ,xN must be affinely independent,
meaning that

N∑
i=1

αixi = 0 and
N∑
i=1

αi = 0 =⇒ α1 = · · · = αN = 0 (45)

Because this condition is equivalent to linear independence of the vectors xi := [x⊤
i , 1]

⊤, the general
position assumption ensures that augmented data matrix X = [x1, . . . ,xN ]⊤ ∈ RN×(d+1) has full
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rank N . Therefore, there exists a solution w ∈ Rd+1 to the system

Xw = y := [y1, . . . , yN ]⊤ (46)

with ∥w∥0 = N . (To see this, choose N linearly independent columns of X , express y as a
linear combination with respect to this basis, and let w be the vector of coefficients of this linear
combination.) For any such w, (46) says that the affine function

f(x) = w⊤x = (w⊤x)+ − (−w⊤x)+ (47)

interpolates the data (recall x := [x⊤, 1]⊤). The term on the right is a two-neuron ReLU network with
ℓ0 path norm of 2∥w∥0 = 2N . Also note that if the labels yi are all nonnegative (resp. nonpositive),
we may discard the second (resp. first) ReLU term in (47), achieving interpolation with ℓ0 path norm
of ∥w∥0 = N .

As long as R is large enough to allow these constructions, we have shown that the ℓ0 path norm of
any solution to (9) is O(N).

A.2.2 Proof of Lemma 4.1

Proof. Note that the data-fitting constraint in problems (8) and (9) can be expressed in matrix form as
K∑

k=1

vk
(
Xwk

)
+
= y (48)

where X = [x1, . . . ,xN ]⊤ ∈ RN×(d+1) is the matrix of augmented data points xi := [x⊤
i , 1]

⊤,
y = [y1, . . . , yN ]⊤ ∈ RN is the vector of labels, and the ReLU (·)+ is applied element-wise. For
any wk ∈ Rd+1, define sk = [1w⊤

k x1≥0, . . . ,1w⊤
k xN≥0]

⊤ ∈ {0, 1}N . In other words, sk checks
whether each entry of Xwk is positive (in which case its corresponding entry is 1) or negative (in
which case its corresponding entry is 0). Of course, even though there are uncountably many possible
wk’s, there are only a finite number—clearly at most 2N— of possible binary activation patterns sk.
Although the actual number of possible activation patterns which could be induced by a configuration
of ReLU neurons on the data is generally fewer than this maximal possible 2N (Ojha (2000); Winder
(1966); Stanley et al. (2007)), we may reformulate our optimization as being over all 2N binary
patterns, since we will encode explicit constraints into the optimization to require that any solutions
correspond to activation patterns which can be induced on the data by a ReLU network. Denote the
corresponding diagonal matrices diag(sk) as D1, . . . ,D2N ∈ {0, 1}N×N . Then for any wk whose
corresponding activation pattern is Dpattern(k), we have

(Xwk)+ = Dpattern(k)Xwk =⇒ (Xwk)+vk = Dpattern(k)Xw̃k

where w̃k := vkwk.

For any j = 1, . . . , 2N , let Kj = {k : pattern(k) = j} be the set of neuron indices which share the
same pattern Dj . Then the sum of those neurons can be rewritten as∑

k∈Kj

(Xwk)+vk =
∑
k∈Kj

DjXw̃k = DjX
∑
k∈Kj

w̃k = DjX(νj − ωj)

where νj and ωj represent the positive and negative parts of the aggregate vector
∑

k∈Kj
w̃k,

respectively, i.e.
νj =

∑
k∈K+

j

vkwk, ωj = −
∑

k∈K−
j

vkwk

where K+
j := {k ∈ Kj , vk > 0} and K−

j := {k ∈ Kj , vk < 0}, so that

νj − ωj =
∑

k∈K+
j

vkwk +
∑

k∈K−
j

vkwk =
∑
k∈Kj

w̃k

Therefore, the entire network output can be written as

K∑
k=1

(Xwk)+vk =

2N∑
j=1

DjX(νj − ωj)
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with the understanding that, if the set Kj is empty for some j, the vector νj − ωj :=
∑

k∈Kj
vkwk

is the zero vector.

The objectives of (8) and (9) can be correspondingly rewritten as:

K∑
k=1

∥vkwk∥pp =

K∑
k=1

∥w̃k∥pp =

2N∑
j=1

 ∑
k∈K+

j

∥w̃k∥pp +
∑

k∈K−
j

∥w̃k∥pp


K∑

k=1

∥vkwk∥0 =

K∑
k=1

∥w̃k∥0 =

2N∑
j=1

 ∑
k∈K+

j

∥w̃k∥0 +
∑

k∈K−
j

∥w̃k∥0


Observe that:∑

k∈K+
j

∥w̃k∥pp ≥
∥∥∥∥ ∑

k∈K+
j

w̃k

∥∥∥∥p
p

= ∥νj∥pp,
∑

k∈K−
j

∥w̃k∥pp ≥
∥∥∥∥ ∑

k∈K−
j

w̃k

∥∥∥∥p
p

= ∥ωj∥pp (49)

∑
k∈K+

j

∥w̃k∥0 ≥
∥∥∥∥ ∑

k∈K+
j

w̃k

∥∥∥∥
0

= ∥νj∥0,
∑

k∈K−
j

∥w̃k∥0 ≥
∥∥∥∥ ∑

k∈K−
j

w̃k

∥∥∥∥
0

= ∥ωj∥0 (50)

where in all cases, equality holds if and only if the supports of each vector in the sum (i.e., the set
of indices at which each vector is nonzero) are disjoint. This follows from applying the inequality
(a + b)p ≤ ap + bp—which holds for any a, b ≥ 0 if 0 < p < 1 and for any a, b ∈ R if p = 0
(defining 00 = 0), and in both cases is strict unless a = 0 or b = 0—coordinate wise.

At a global minimizer of either (8) or (9), this lower bound will be achieved. To see this,
note that it is always possible to replace a single one of the vectors w̃k in each group K+

j

(resp. K−
j ) with the vector νj (resp. −ωj), and set the remaining vectors in each group to

zero. By definition νj =
∑

k∈K+
j
w̃k and ωj = −

∑
k∈K−

j
w̃k, so clearly the network output∑2N

j=1 DjX
(∑

k∈K+
j
w̃k +

∑
k∈K−

j
w̃k

)
=

∑2N

j=1 DjX(νj − ωj) on the data X remains un-
changed by this modification. And with this modification, all inequalities in (49) will clearly hold
with equality. This shows that, for any solution to (8) or (9), all input weight vectors wk in any
individual activation pattern group K+

j or K−
j will have disjoint supports. In any such case, the

neurons in each individual positive/negative activation pattern groups can be merged into a single
nonzero neuron containing their sum, without affecting either the network’s ability to interpolate
the data or the value of the sums

∑
k∈K+

j
∥w̃k∥0 or

∑
k∈K+

j
∥w̃k∥qq for any 0 < q < 1. Note that,

although this merging may alter the function represented by the neural network, it will preserve
the values of

∑K
k=1 ∥vkwk∥0 and

∑K
k=1 ∥vkwk∥qq for any 0 < q < 1, which is the only thing

required for the statement of the lemma and its subsequent use in proving Theorem 4.1. Therefore,
we may enforce that there is at most one positively-weighted neuron vjwj = νj and at most one
negatively-weighted neuron vjwj = ωj corresponding to any possible activation pattern j on the
data. Under this assumption, solutions to problem (8) can be recovered from solutions to (10) as

{wk}Kk=1 =

{
νj

αj
,νj ̸= 0

}
∪
{
ωj

βj
,ωj ̸= 0

}
(51)

{vk}Kk=1 = {αj ,νj ̸= 0} ∪ {−βj ,ωj ̸= 0} (52)

for any constants α1, β1 . . . , α2N , β2N > 0, the choice of which affects neither the network’s
represented function, nor its value of

∑K
k=1 ∥vkwk∥0 or

∑K
k=1 ∥vkwk∥qq for any 0 < q < 1.

Finally, notice that in order for a particular binary pattern Dj to actually correspond to an input
weight/bias wk, it must be the case that (Xwk)i ≥ 0 wherever (Dj)ii = 1 and (Xwk)i ≤ 0

wherever (Dj)ii = 0. This is exactly the requirement that every entry of the vector (2Dj−I)Xwk ∈
RN is nonnegative, since

((2Dj − I)Xwk)i =

{
(Xwk)i, if (Dj)ii = 1

−(Xwk)i, if (Dj)ii = 0
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When we re-parameterize as w̃k = vkwk and split the neuron indices Kj correponding to activation
pattern Dj into the groups K+

j and K−
j , the requirement that (2Dj − I)Xwk ≥ 0 is equivalent

to requiring that (2Dj − I)Xw̃k ≥ 0 if k ∈ K+
j and (2Dj − I)Xw̃k ≤ 0 if k ∈ K−

j . Under
the assumption (discussed above) that there is at most one nonzero neuron w̃k = νj (resp. w̃k =
−ωj) in each activation pattern group K+

j (resp. K−
j ), this condition is also clearly equivalent to

(2Dj − I)Xνj ≥ 0 and (2Dj − I)Xωj ≥ 0. By incorporating these constraints, we have thus
fully reparameterized the neural network problems (8) and (9) as stated in the lemma.

A.2.3 Proof of Theorem 4.1

Proof. Our proof follows the same line of reasoning as Peng et al. (2015), with a correction to
what we believe to be an important oversight in their argument. Peng et al. (2015) claim that for
any 0 < p < 1, solutions to minx∈Rn ∥x∥pp s.t. Ax = b, for a full rank matrix A ∈ Rm×n with
m < n, are bounded inside the ℓ∞ ball of radius nmaxi=1,...,n |(A(AA⊤)−1b)i|. This claim
of ℓ∞ boundedness independent of p is critical to the proof of their main result. We believe this
bound is incorrect, and that the correct bound is instead n1/p maxi=1,...,n |(A(AA⊤)−1b)i|, which
is unbounded as p ↓ 0. For this reason, we explicitly include the ℓ∞ boundedness constraint in
optimizations (8) and (9). With (10) expressed more compactly in matrix form, we thus have the
problem

argmin
z∈R2N+1(d+1)

∥z∥pp , subject to Az = y, Gz ≥ 0, ∥z∥∞ ≤ R (53)

where z := [ν⊤
1 ,ω⊤

1 , . . . ,ν
⊤
2N ,ω⊤

2N ]⊤ ∈ R2N+1(d+1), A :=

[D1X,−D1X, . . . ,D2NX,−D2NX] ∈ RN×2N+1(d+1), and G is the block diagonal matrix G :=

diag
(
(2D1 − I)X, (2D1 − I)X, . . . , (2D2N − I)X, (2D2N − I)X

)
∈ RN2N+1×2N+1(d+1).

The feasible set Ω of (53) is a polytope, i.e., a bounded intersection of finitely many half-spaces.
The map z 7→ ∥z∥pp is not concave on all of R2N+1(d+1)

, but it is concave on each individual orthant,
so to apply the Bauer Maximum Principle as in the proof of Theorem 3.2, we will relate (53) to an
optimization over a polytope contained in the nonnegative orthant R2N+1(d+1)

+ . To do so, note that the
set

Ψ :=
{
(z, z′) ∈ R2N+1(d+1) × R2N+1(d+1)

+

∣∣ z ∈ Ω, ∥z′∥∞ ≤ R, |z| ≤ z′
}
, (54)

is a polytope in the product space R2N+1(d+1) × R2N+1(d+1)
+ . (Here the module vector |z| is the

vector of absolute values of entries of z.) Because the coordinate projection of a polytope is a
polytope (Goemans (2009)), the set

Ω′ :=
{
z′ ∈ R2N+1(d+1)

+

∣∣ ∥z′∥∞ ≤ R, ∃ z ∈ Ω s.t. |z| ≤ z′
}
, (55)

which is given by the coordinate projection of Ψ onto the z′ coordinate, is a polytope in R2N+1(d+1)
+ .

Furthermore, minz∈Ω ∥z∥pp = minz′∈Ω′ ∥z′∥pp. To see this, note that for any z ∈ Ω, its module
vector |z| ∈ Ω′, so minz∈Ω ∥z∥pp ≥ minz′∈Ω′ ∥z′∥pp. If that inequality were strict, then there would
be some z ∈ Ω with |z| < z′

∗ ∋ argminz′∈Ω′ ∥z′∥pp, but this would imply that minz∈Ω ∥z∥pp <
minz′∈Ω ∥z′∥pp.

As a polytope, Ω′ is compact, convex, and has finitely many extreme points, the set of which we
denote Ext(Ω′). Let

r := min{z′i > 0 | z′ = [z′1, . . . , z
′
2N+1(d+1)]

⊤ ∈ Ext(Ω′)} (56)

be the smallest nonzero coordinate in any of the extreme points of Ω′.

Next, note that for 0 < p < 1, the objective z 7→ ∥z∥pp is continuous and strictly concave on

the nonnegative orthant R2N+1(d+1)
+ , and thus on Ω′. Therefore, by the Bauer Maximum Principle

(Aliprantis and Border (2006), Theorem 4.104), a solution to argminz′∈Ω′ ∥z′∥pp exists at an extreme
point of Ω′. In particular, by strict concavity of z 7→ ∥z∥pp, any solution to argminz′∈Ω′ ∥z′∥pp must
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be at an extreme point of Ω′. (Otherwise, if such a solution had z′ = ta′ + (1 − t)b′ for distinct
a, b ∈ Ω′ and t ∈ (0, 1), then ∥z′∥pp > t∥a′∥pp + (1 − t)∥b′∥pp ≥ t∥z′∥pp + (1 − t)∥z′∥pp = ∥z′∥pp
which is impossible.)

Putting everything together, fix an arbitrary 0 < p < 1 and let zp be a solution to (53) for that p. The
previous paragraph shows that |zp| is a solution to argminz′∈Ω′ ∥z′∥pp, and therefore |zp| ∈ Ext(Ω′).
Then:

∥zp∥0 = ∥r−1|zp|∥0 = lim
q↓0

2N∑
i=1

(
|zp,i|
r

)q

(57)

≤
2N∑
i=1

(
|zp,i|
r

)p

= r−p min
z′∈Ω′

∥z′∥pp = r−p min
z∈Ω
∥z∥pp =

(
R

r

)p

min
z∈Ω
∥R−1z∥pp (58)

≤
(
R

r

)p

min
z∈Ω
∥R−1z∥0 =

(
R

r

)p

min
z∈Ω
∥z∥0 (59)

where the inequalities come from the fact that p 7→ xp is decreasing for x ∈ (0, 1) and increasing for
x > 1. Because ∥z∥0 is a positive integer for any z, the above shows that zp solves

argmin
z∈R2N+1(d+1)

∥z∥0 , subject to Az = y, Gz ≥ 0, ∥z∥∞ ≤ R (60)

for any p satisfying(
R

r

)p

min
z∈Ω
∥z∥0 < min

z∈Ω
∥z∥0 + 1 (61)

⇐⇒ p <
log(minz∈Ω ∥z∥0 + 1)− log(minz∈Ω ∥z∥0)

logR− log r
(62)

if r < R, or for any 0 < p < 1 if r = R. (Note that by definition of Ω′, r ≤ R always.)

Let θ0 be a solution to (9) and θp be a solution to (8) for any p which obeys the inequality in (62),
and let θ′

0 and θ′
p be the corresponding solutions—constructed from solutions zp and z0 to (53) and

(60), respectively—as stated in Lemma 4.1. We have shown that

∥θp∥0 = ∥θ′
p∥0 = ∥zp∥0 = ∥z0∥0 = ∥θ′

0∥0 = ∥θ0∥0 (63)

which proves the result.

A.3 Experiments

All code for the experiments can be found at https://github.com/julianakhleh/sparse_
nns_lp.

A.3.1 Reweighted ℓ1 algorithm

To implement our proposed ℓp path norm regularizer, we use the iteratively reweighted ℓ1 algorithm
of Candes et al. (2008); Figueiredo et al. (2007), which we summarize informally here. The principal
motivation is the inequality

|x|p ≤ |x|p|y|p−1 + (1− p)|y|p (64)
which holds for all x ∈ R, all y ∈ R \ {0}, and all 0 < p ≤ 1, with equality when p = 1 and/or when
x = y. Applied to x = |vkwk,i|, we have

K∑
k=1

∥vkwk∥pp =

K∑
k=1

d∑
i=1

|vkwk,i|p ≤
K∑

k=1

d∑
i=1

(
|vkwk,i|p|yk,i|p−1 + (1− p)|yk,i|p

)
(65)

for any choice of constant yk,i ∈ R\{0}. The iteratively reweighed ℓ1 algorithm attempts to minimize
the ℓp path norm objective on the left hand side of (65) by minimizing its upper bound on the right.
Because the choice of vk, wk,i which minimizes this upper bound is invariant to the additive constant
(1− p)|yk,i|p term, we can equivalently choose vkwk,i at each iteration t to minimize only the first
term Ck,i|vkwk,i| where Ck,i := p|yk,i|p−1. Because the upper bound is tighter when yk,i is closer
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to the optimal values of vkwk,i for this iteration t, we choose the constants yk,i as v
(t−1)
k w

(t−1)
k,i ,

where v
(t−1)
k , w

(t−1)
k,i are the previous iterates. The regularization penalty thus becomes

K∑
k=1

d∑
i=1

Ck,i|vkwk,i| (66)

which is simply a separable weighted ℓ1 penalty with weights Ck,i. This objective lends itself to a
standard ℓ1 proximal gradient update algorithm, with each soft-thresholding step scaled appropriately
according to the individual threshold Ck,i. The full algorithm is summarized in Algorithm 1.

Algorithm 1 Iteratively reweighted ℓ1 algorithm for ℓp path norm minimization
Input: loss function L, sparsity parameter 0 < p ≤ 1, learning rate γ > 0, regularization parameter
λ > 0, total number of iterations T .

for t = 1, . . . , T do
Compute thresholds: Ck,i ← λp|v(t−1)

k w
(t−1)
k,i |p−1

Gradient update for input weights: w̃k,i ← w
(t−1)
k,i − λ∂L(θ)

∂wk,i

∣∣
w

(t−1)
k,i

Gradient update for output weights: ṽk ← v
(t−1)
k − λ∂L(θ)

∂vk

∣∣
v
(t−1)
k

Reweighted ℓ1 prox update: uk,i ← ProxCk,i|·| = sgn(ṽkw̃k,i)(|ṽkw̃k,i| − Ck,i)+

Update input weights: w(t)
k,i ← sgn(w̃

(t)
k,i)

uk,i√
∥uk∥2

Update output weights: v(t)k ← sgn(ṽ
(t)
k )

√
∥uk∥2 ▷ satisfies uk = v

(t)
k w

(t)
k,i

end for

We note that there are infinitely many ways to choose the updated input/output weights w
(t)
k,i and

v
(t)
k to satisfy uk = v

(t)
k w

(t)
k,i; due to homogeneity of the ReLU (meaning that (αx)+ = α(x)+ for

any α ≥ 0), any choice w
(t)
k,i ← αuk,i and v

(t)
k ← 1/α for any α > 0 would satisfy uk = v

(t)
k w

(t)
k,i

and produce the same neural network function. The particular choice described in Algorithm 1
additionally satisfies the balancing constraint ∥w(t)

k ∥2 = |v(t)k |, and we find that this selection tends
to perform best in practice. We also note that, for univariate input dimension d = 1 and sparsity
parameter p = 1, Algorithm 1 is equivalent to the PathProx algorithm of Yang et al. (2022).

A.3.2 Setup and results

We test our algorithm on two simple synthetic datasets. The first is a univariate “peak/plateau” dataset,
which consists of the data/label pairs:

(−2, 0), (−1, 0), (0, 1), (1, 1), (2, 0), (3, 0) (67)

For this dataset, the theory of Debarre et al. (2022) shows that the sparsest interpolant f is unique,
and is represented using 3 ReLU neurons as

f(x) = (x+ 1)+ − 2(x− 1/2)+ + (x− 2)+ (68)

Our theory in Section 3 also shows that this f is a global ℓp-path norm minimizer for any 0 < p ≤ 1,
and is the unique such minimizer for any 0 < p < 1.

Fig. 17 shows the sparsity over time of our reweighted ℓ1 algorithm for three different values of
p ∈ {0.4, 0.7, 1}, implemented in PyTorch using the Adam optimizer, along with that of Adam-only
(no regularization) and AdamW weight decay. All networks share the same random initialization and
are trained with MSE loss for 100,000 epochs with learning rate γ = 0.01, regularization parameter
λ = 0.003 (except for unregularized Adam-only, which uses λ = 0), and hidden layer width K = 80.
All three values of p in our reweighted ℓ1 algorithm produce vastly sparser solutions earlier on in
training than both Adam-only and AdamW; however, only p = 0.4 eventually recovers the true
sparsest solution f with 3 ReLU neurons (see Fig. 18).
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Figure 17: Sparsity over time of five networks trained to interpolation on the univariate peak-plateau
dataset (67). The reweighted ℓ1 algorithm for ℓp path norm minimization (Algorithm 1) recovers much
sparser solutions earlier in training than unregularized Adam or AdamW weight decay regularization,
with the smallest value p = 0.4 eventually recovering the sparsest possible interpolant (68).

Fig. 19 shows the functions learned by all five networks throughout the course of training. We see
that reweighted ℓ1 with p ∈ {0.4, 0.7, 1} all converge quickly to near-sparsest solutions, and then
the small additional kinks inside [0, 1] disappear gradually throughout training, with only p = 0.4
eliminating them completely (the final solutions for p ∈ {0.7, 1} have a single extraneous active
neuron of small magnitude which activates just before x = 1/2).

For our second experiment, we consider N = 10 data points in d = 50 dimensions. The coordinates
of each data xi point are drawn i.i.d. from Unif[−1, 1], as are the labels yi. As in the univariate case,
we compare the sparsity over time of our reweighted ℓ1 algorithm for p ∈ {0.4, 0.7, 1}, implemented
in PyTorch using the Adam optimizer, against that of Adam-only (no explicit regularization) and
AdamW weight decay. All networks are trained using MSE loss for 100,000 epochs with learning
rate γ = 0.01, regularization parameter λ = 0.005 (except for unregularized Adam-only, which uses
λ = 0), and hidden layer width K = 100. Fig. 20 shows that all values of p produce much sparser
solutions than Adam-only and AdamW weight decay, with p = 0.4 producing sparser solutions than
p ∈ {0.7, 1}. The solutions recovered by p ∈ {0.4, 0.7, 1} all obey the sparsity upper bound of 2N
guaranteed by the proof of Proposition 4.1.
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Figure 18: Three interpolants of the peak-plateau dataset, learned after 100,000 epochs using
unregularized Adam, AdamW weight decay, and reweighted ℓ1 (Algorithm 1) with p = 0.4. Only
the latter recovers the true sparsest interpolant (68).
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Figure 19: Learned network functions of five different algorithms throughout the course of training.
Reweighted ℓ1 with p ∈ {0.4, 0.7, 1} converge to near-sparsest solutions early on in training, with
only p = 0.4 eventually eliminating all extraneous neurons to recover the true sparsest solution (68).
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Figure 20: Sparsity over time of five networks trained to interpolation on N = 10 uniform random
data points in d = 50. The solutions obtained by the ℓ1 algorithm (Algorithm 1) for p ∈ {0.4, 0.7, 1})
satisfy the sparsity upper bound of 2N guaranteed by guaranteed by the proof of Proposition 4.1.
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Answer: [Yes]
Justification: Our paper has no social consequences.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our paper has no societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: no risks of data or model misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: no use of existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: no new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: no crowdsourcing or human subject research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: no human subject research.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used for writing/editing, literature review, and occasional assis-
tance in proving theorems (mainly searching for related/relevant existing results), which we
do not consider an important, original, or non-standard usage.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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