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Abstract

The quality of training data are crucial for en-001
hancing the long-text capabilities of founda-002
tion models. Despite existing efforts to re-003
fine data quality through heuristic rules and004
evaluations based on data diversity and diffi-005
culty, there’s a lack of systematic approaches006
specifically tailored for assessing long texts.007
Addressing this gap, our work systematically008
measures the quality of long texts by evaluat-009
ing three fundamental linguistic dimensions:010
coherence, cohesion, and complexity. Draw-011
ing inspiration from the aforementioned three012
dimensions, we introduce a suite of metrics013
designed to evaluate the quality of long texts,014
encompassing both statistical and pre-trained015
language model-based ones. Leveraging these016
metrics, we present LongWanjuan, a bilingual017
dataset specifically tailored to enhance the train-018
ing of language models for long-text tasks with019
over 160B tokens. In LongWanjuan, we cate-020
gorize long texts into holistic, aggregated, and021
chaotic types, enabling a detailed analysis of022
long-text quality. Furthermore, we devise a023
data mixture recipe that strategically balances024
different types of long texts within LongWan-025
juan, leading to significant improvements in026
model performance on long-text tasks.027

1 Introduction028

Effectively processing long texts is a crucial capa-029

bility of language models and has recently become030

a focal point of research (Liu et al., 2023b; Peng031

et al., 2023; Pal et al., 2023; Han et al., 2023; Chen032

et al., 2023). Tasks such as long document sum-033

marization (Zhong et al., 2021), long document034

question answering (Dasigi et al., 2021), repository-035

level code tasks (Liu et al., 2023a), and retrieval-036

augmentation generation (Xu et al., 2023) often037

involve handling thousands or even tens of thou-038

sands of tokens.039

The quality of data is vital for the long-text ca-040

pabilities of foundation models (Zha et al., 2023;041
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Figure 1: The three dimensions for measuring the qual-
ity of long texts: coherence, cohesion and complexity.

Xiong et al., 2023; Rozière et al., 2023). There 042

have been efforts made to improve data quality. 043

Some approaches employ heuristic rules, such as 044

deduplication and the removal of overly short data 045

entries (Soboleva et al., 2023; Penedo et al., 2023). 046

Additionally, some other approaches consider data 047

diversity and perplexity based on pre-trained lan- 048

guage models (Tirumala et al., 2023; Marion et al., 049

2023). However, these filtering rules are designed 050

for general training data and do not take into ac- 051

count the unique characteristics of long texts. 052

To systematically assess the quality of long texts, 053

we adhere to linguistic fundamentals and evaluate 054

them through three dimensions: coherence (Wang 055

and Guo, 2014), cohesion (Halliday and Hasan, 056

2014; Carrell, 1982), and complexity (Pallotti, 057

2015), as illustrated in Figure 1. Given that long 058

texts typically contain more extensive content, they 059

necessitate elevated levels of these characteristics 060

to effectively convey information and engage in dis- 061

cussion. Coherence measures the overall consis- 062

tency and clarity of the text as a whole. Cohesion 063

gauges the strength of connections between sen- 064

tences or sections of the text. Complexity assesses 065

the linguistic sophistication within the text. Draw- 066
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ing from these three fundamental dimensions, we067

propose a set of metrics to quantitatively analyze068

the quality of long texts. These metrics encom-069

pass both statistical and pre-trained model-based070

approaches, offering strong interpretability. Further071

details on these metrics can be found in Section 3.072

Based on the characteristics across these three073

dimensions, we categorize the long texts in pre-074

training dataset into three types: holistic long texts,075

encompassing complete works such as books, aca-076

demic papers, reports, novels, and interviews; ag-077

gregated long texts, consisting of short texts re-078

lated by topic or fragmented texts like extensive079

lists or tables; and chaotic long texts, characterized080

by nonsensical content such as garbled data. Draw-081

ing upon these classifications, we manually anno-082

tated a validation set of 200 samples from SlimPa-083

jama (Soboleva et al., 2023) and Wanjuan (He et al.,084

2023) to validate the correlation between our pro-085

posed metrics and human judgments. Our quanti-086

tative metrics effectively differentiate between the087

three categories of long texts.088

Building on these analysis and metrics, we cre-089

ate a bilingual long-text dataset with category la-090

bels, named LongWanjuan, containing over 160B091

tokens. With LongWanjuan, we propose a data092

mixture recipe to mitigate the imbalance between093

holistic long texts and aggregated long texts within094

the dataset. Specifically, by removing chaotic long095

texts and upsampling aggregated long texts, we096

continue to train InternLM2-7B (Team, 2023) with097

an additional 5B tokens, thereby achieving state-of-098

the-art performance for long texts on models of the099

7B parameter scale. The effectiveness and general-100

izability of this recipe are analyzed in Section 5.4.101

In summary, our contributions are as follows:102

1. To the best of our knowledge, this is the first103

work to systematically analyze and introduce104

quantitative metrics for assessing the quality105

of long texts. Grounded in linguistic princi-106

ples, we measure the quality of long texts in107

terms of coherence, cohesion, and complexity.108

2. Leveraging SlimPajama and Wanjuan, we con-109

structed a bilingual long-text dataset with over110

160B tokens, LongWanjuan, which is avail-111

able to the community as an open-source re-112

source.113

3. Based on LongWanjuan, we devise a data mix-114

ture recipe to mitigate the imbalance in the115

dataset, and advance to a new state-of-the-art116

long-text model at the 7B parameter scale, 117

demonstrating a 13.07% improvement over 118

the untrained baseline on Longbench (Bai 119

et al., 2023). 120

2 Related Work 121

2.1 Pre-training Data Pruning 122

The quality of pre-training data plays a crucial role 123

in the performance of foundation models (Rae et al., 124

2021; Du et al., 2022; Xiong et al., 2023; Rozière 125

et al., 2023; Gunasekar et al., 2023). Several studies 126

have enhanced data quality by pruning the original 127

training data into a subset. 128

Some works primarily focus on heuristic rules 129

and deduplication to improve data quality. Raffel 130

et al. (2020) and Soboleva et al. (2023) employ sim- 131

ilar heuristic rules to enhance data quality, includ- 132

ing the removal of overly short entries and dedupli- 133

cation. Abbas et al. (2023) leverages embeddings 134

from pre-trained models to further eliminate se- 135

mantic duplicates. Another notable contribution 136

is RefinedWeb (Penedo et al., 2023), which metic- 137

ulously designs a comprehensive data processing 138

pipeline. 139

Moreover, several studies take into consider- 140

ation the data diversity and difficulty to prune 141

data. Tirumala et al. (2023) employs clustering- 142

based methods to augment data diversity. Marion 143

et al. (2023) evaluates the effectiveness of perplex- 144

ity, EL2N (Paul et al., 2021), and memorization 145

score (Biderman et al., 2023) in assessing data diffi- 146

culty. Maharana et al. (2023) regards data diversity 147

and difficulty as complementary aspects, selecting 148

data through forward and reverse message passing 149

on a dataset graph. 150

Distinct from these studies that concentrate on 151

general pre-training data, our research specifically 152

targets long texts. It is essential to highlight that our 153

work extends beyond mere data curation and is ap- 154

plicable in a wider range of contexts for evaluating 155

the quality of long texts. 156

2.2 Text Quality Assessment 157

Several works score texts through supervised learn- 158

ing. Alikaniotis et al. (2016) trains score-specific 159

word embeddings and a Long Short-Term Mem- 160

ory (LSTM) network (Hochreiter and Schmidhu- 161

ber, 1997) for text scoring purposes. Similarly, Wu 162

et al. (2023) conducts fine-grained annotations on 163

501 Chinese essays and achieves comparable scor- 164

ing performance to ChatGPT-3.5 through training 165
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Low Level Example High Level Example

Coherence The project aims to reduce carbon emissions by
25% within the next five years. Strawberries are
rich in vitamins and antioxidants. It’s raining
today.

The project aims to reduce carbon emissions by 25%
within the next five years. This goal will be achieved
through the implementation of renewable energy sources
and improved energy efficiency. The initiative reflects our
commitment to environmental sustainability.

Cohesion I prepared the soil in my garden. I planted some
tomato seeds. I watered seeds in my garden.

Firstly, I prepared the soil in my garden. Then, I planted
some tomato seeds in the prepared ground. After that, I
watered them.

Complexity Eating fish is good. It helps your brain. After researching various nutrition sources, I concluded
that incorporating omega-3 fatty acids and antioxidants
into our diet can significantly ameliorate cognitive decline
in elderly individuals.

Table 1: Examples illustrating dimensions of coherence, cohesion, and complexity. Blue and orange illustrate
distinct aspects of each dimension. In the context of coherence, the blue and orange texts signify different elements
that maintain thematic consistency throughout the text. For cohesion, the blue text indicates connectors that link
sentences together, while the orange text refers to references to previously mentioned entities. Within complexity,
the blue text represents lexical sophistication, whereas the orange text denotes the complexity of sentence structure.

based on RoBERTa (Liu et al., 2019). However,166

these approaches suffer from limited generalizabil-167

ity, being applicable only within the confines of168

labeled domains.169

Other works leverage unsupervised methods to170

automatically construct data for training purposes.171

UNION (Guan and Huang, 2020) is trained to dif-172

ferentiate between human-written stories and neg-173

ative samples. Ru et al. (2023) explores implicit174

discourse relations with a latent discourse sense,175

showcasing strong performance.176

Furthermore, some studies utilize pre-trained177

language models to assess text quality without ad-178

ditional training. Shrivastava et al. (2018) eval-179

uates textual coherence by modeling the uncer-180

tainty of topics within paragraphs and their interre-181

lations, thus scoring texts. BARTScore (Yuan et al.,182

2021) and GPTScore (Fu et al., 2023) employ the183

weighted average of the model’s output conditional184

probabilities as a metric, facilitating multifaceted185

evaluation across a broad range of generative tasks.186

Our work measures the quality of long texts187

from multiple dimensions, introducing metrics that188

are task-agnostic and do not necessitate additional189

training.190

3 Method191

Long texts, characterized by their extended con-192

texts and abundant information, pose distinct chal-193

lenges in maintaining textual integrity and quality.194

We systematically measure the quality of long texts195

through three dimensions: coherence, cohesion,196

and complexity. Each dimension is accompanied197

by corresponding quantitative metrics, allowing for198

an effective measurement of long text quality. 199

3.1 Coherence, Cohesion and Complexity 200

In accordance with linguistic fundamentals, we sys- 201

tematically assess the quality of long texts through 202

the following three dimensions. 203

Coherence refers to the consistency and clarity 204

of the text as a whole. A coherent text maintains 205

thematic unity throughout its parts, with logical 206

connections between the different sections. 207

Cohesion measures the degree of tight connec- 208

tion between two sentences or sections of the text, 209

reflected in the use of connectives, pronouns, syn- 210

onyms, and hypernyms/hyponyms. 211

Complexity assesses the level of linguistic so- 212

phistication in the use of language in the text. This 213

can be gauged through the richness and diversity of 214

vocabulary, as well as the complexity of sentence 215

structures. 216

To better elucidate these dimensions, we provide 217

examples in Table 1 that illustrate both high and 218

low levels of these dimensions. Key terms that 219

exemplify specific features of each dimension are 220

highlighted for emphasis. 221

3.2 Metric 222

Inspired by the three dimensions mentioned above, 223

we propose the following metrics to assess the qual- 224

ity of long text t = {t1, t2, . . . , tn}, including both 225

statistical and model-based ones, where higher val- 226

ues correlate with more pronounced characteristics 227

of the corresponding dimension. 228

To measure the coherence of a long text, we eval- 229

uate the extent to which prior segments of the text 230

contribute to understanding subsequent segments. 231
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Figure 2: Pipeline for constructing the LongWanjuan dataset.

A coherent text should make it easier to predict232

its following content based on its preceding con-233

text. For example, when predicting the blue text234

below, it is easier to make a correct prediction if235

the preceding text is provided.236

The sky darkened, and the wind howled. 
It was clear 

It was clear 

237

We evaluate the coherence of long texts by com-238

paring the prediction accuracy with a longer con-239

text and the accuracy with a shorter context, as240

well as the difference between these two contexts.241

Specifically, with a pre-trained causal language242

model parameterized by θ, we employ the follow-243

ing three metrics for assessing the coherence of244

long texts:245

Coherenceaccl =

⌊ n
w⌋∑

i=1

acc
(
yi|xi

l, θ
)
/
⌊ n
w

⌋
, (1)246

Coherenceaccs =

⌊ n
w⌋∑

i=1

acc
(
yi|xi

s, θ
)
/
⌊ n
w

⌋
, (2)247

Coherencediff =

∑⌊ n
w⌋

i=1

ℓ(yi|xi
l ,θ)−ℓ(yi|xi

s,θ)
ℓ(yi|xi

l ,θ)⌊
n
w

⌋ ,

(3)

248

where xi
l = {t(i−1)w, . . . , t(i− 1

4
)w},249

xi
s = {t(i− 1

2
)w, . . . , t(i− 1

4
)w},250

yi = {t(i− 1
4
)w, . . . , tiw}. (4)251

acc(y|x, θ) and ℓ(y|x, θ) denote the model’s 252

average top-1 prediction accuracy and negative 253

log-likelihood loss for generating y given the 254

prompt x, parameterized by θ. Coherenceaccl and 255

Coherenceaccs respectively denote the model’s top- 256

1 prediction accuracy with longer and shorter pre- 257

ceding texts, and Coherencediff represents the pro- 258

portional improvement in model performance when 259

using a longer versus a shorter context. We pro- 260

cess long texts with a sliding window of size w to 261

avoid exceeding the processing capabilities of the 262

language model, setting w to 4096 in practice. 263

We quantitatively measure cohesion by analyz- 264

ing the density of connectives and pronouns in the 265

text and the relationships between adjacent sen- 266

tences. Connectives play pivotal roles in linking 267

words, sentences, or ideas within sentences and 268

paragraphs. Pronouns, serving as substitutes for 269

nouns or noun phrases, maintain references to spe- 270

cific entities mentioned earlier while avoiding un- 271

necessary repetition. 272

Cohesionconn =
Nconn

n
, (5) 273

Cohesionpron =
Npron

n
, (6) 274

CohesionDMR = 1−
N∑
i=1

p(no_conn|si, si+1)

N
,

(7)

275

where Nconn and Npron represent the number of 276

connectives and pronouns in the text, respectively. 277

The comprehensive list of considered connectives 278

and pronouns can be found in the Appendix A. 279
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The text t consists of N + 1 sentences, with si280

denoting the ith sentence in the text. The term281

p(no_conn|si, si+1) indicates the probability, as282

determined using Distributed Marker Representa-283

tion (DMR) (Ru et al., 2023), that sentences si and284

si+1 are unrelated.1285

The complexity of the text is assessed from vo-286

cabulary and paragraph.287

ComplexityTTR =
Nunique

n
, (8)288

Complexitypara =
n

Npara
, (9)289

where Nunique refers to the number of unique tokens290

in the text, used to calculate the Type-Token Ratio291

(TTR) (Richards, 1987). Npara denotes the number292

of paragraphs in the text, used to determine the293

average paragraph length.294

4 LongWanjuan295

4.1 Dataset Construction296

Based on the analysis and metrics discussed pre-297

viously, we introduce LongWanjuan, a bilingual298

long-text dataset. The pipeline for constructing our299

dataset is illustrated in Figure 2.300

Given that the majority of the SlimPa-301

jama (Soboleva et al., 2023) corpus is in English,302

we enrich it with Chinese texts from the Wan-303

juan (He et al., 2023) dataset. Initially, we extract304

data entries exceeding 32K bytes from both the305

SlimPajama and Wanjuan datasets, serving as the306

starting point for our dataset construction.307

Subsequently, we evaluate each data entry308

using the metrics we proposed. Specifically,309

we first tokenize the data with InternLM2 to-310

kenizer (Team, 2023), thereafter calculating311

ComplexityTTR. The tokenized results are further312

processed with InternLM2-7B to obtain coherence313

scores, including Coherenceaccl , Coherenceaccs ,314

and Coherencediff. We employ NLTK (Bird and315

Loper, 2004) and LTP (Che et al., 2021) respec-316

tively for English and Chinese sentence segmenta-317

tion. These sentences are then fed into DMR model318

to derive the CohesionDMR score. The metrics319

Cohesionconn, Cohesionpron and Complexitypara,320

are calculated by straightforward word counting.321

After scoring each data entry with these met-322

rics, we establish thresholds to categorize the data323

1The DMR approach is originally considered for English
texts only. To process Chinese data, we follow its training
methodology and train a Chinese DMR model based on the
Wanjuan dataset.

Figure 3: Distribution of texts with different character-
istics on the Cohesionconn metric in the C4 domain.

into holistic long texts, aggregated long texts, and 324

chaotic long texts. During this process, it is nec- 325

essary only to check whether texts on either side 326

of the threshold belong to different categories. Fig- 327

ure 3 shows the distribution of texts within the C4 328

domain based on the Cohesionconn metric. As illus- 329

trated, the texts within different ranges of our pro- 330

posed metric exhibit distinct characteristics, simpli- 331

fying the process of threshold determination. For 332

each domain in the dataset, we can extract approx- 333

imately 30 data samples based on the distribution 334

of this metric and identify the thresholds between 335

different categories of texts. More information on 336

the distribution of text quality across various met- 337

rics are shown in Appendix B. In this phase, we 338

initially determine thresholds to segregate holis- 339

tic long texts. Subsequently, within the remain- 340

ing texts, we establish thresholds to differentiate 341

chaotic long texts, with the residual texts classified 342

as aggregated long texts. 343

Overall, holistic long texts are characterized by 344

high coherence and cohesion, with moderate com- 345

plexity. Aggregated long texts exhibit lower coher- 346

ence and cohesion compared to the former. The 347

main feature of chaotic long texts is their complex- 348

ity, which is anomalously high or low. 349

4.2 Statistics 350

The LongWanjuan dataset comprises a total of 351

160.6B tokens, as tokenized by the InternLM2 to- 352

kenizer. Of these, holistic texts constitute 137.6B 353

tokens, accounting for 85.7% of the dataset; aggre- 354

gated texts make up 21.8 billion tokens, or 13.6%; 355

and chaotic texts comprise 1.2B tokens, represent- 356

ing 0.7%. In this section, we will present statistical 357

information about LongWanjuan, focusing on the 358

distribution of domains and lengths. The specific 359

values of token count and document count for each 360

domain are provided in Appendix B. 361

Domain Figures 4a and 4b depict the distribution 362

of data across various domains in English and Chi- 363

nese, respectively, within the LongWanjuan dataset. 364
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Figure 4: Distribution of token and document counts across different domains. Each bar is divided from left to right
into three parts: holistic, aggregated, and chaotic texts.

0 10 20 30 40 50
Percentage %

> 128K

64K - 128K

48K - 64K

32K - 48K

16K - 32K

8K - 16K

4K - 8K

0K - 4K

Do
c 

Le
ng

th

Pre-training truncation length Tokens
Docs

Figure 5: Distribution of token and document counts
across different lengths. In LongWanjuan, over 99.9%
of the data exceed the truncation length in pre-training.

In these bar graphs, each row is divided into three365

segments from left to right, representing holistic366

texts, aggregated texts, and chaotic texts, in that367

order. In the English data, the CommonCrawl do-368

main predominates, accounting for over 50% of the369

data. Apart from a significant amount of aggregated370

texts in the CommonCrawl domain, the majority371

of data in other domains consists of holistic texts.372

In the Chinese data, the distribution across differ-373

ent domains is more balanced, with each domain374

featuring both holistic and aggregated texts. The375

WebText and Law domains contain a notable num-376

ber of chaotic texts. Detailed statistical information377

is available in Appendix B.378

Length Figure 5 illustrates the distribution of the379

number of data entries and the number of tokens380

Holistic Aggregated Chaotic Total

EN 0.97 0.87 0.81 0.91
ZH 0.97 0.58 0.79 0.80

Table 2: The correlation between manual validation and
the classification method we proposed

across different lengths within the LongWanjuan 381

dataset. During pre-training, the training data is 382

generally truncated to a maximum length of 4K 383

tokens, and entries of this length account for less 384

than 0.1% of the dataset in LongWanjuan. In terms 385

of the number of tokens, more than 50% of the 386

data spans lengths between 8K and 32K tokens. 387

Furthermore, over 10% of the data exceeds a length 388

of 128K tokens. With regard to the number of data 389

entries, more than 50% of the documents fall within 390

the 8K to 16K token range. The trend in data entries 391

by length initially increases before decreasing, and 392

due to longer documents containing more tokens, 393

the smallest quantity of tokens is observed in the 394

48K to 64K range. 395

5 Experiments 396

5.1 Manual Validation 397

Complementary to the following training and eval- 398

uating results, we conduct human validation by 399

manually annotating the type of 200 long texts 400

from SlimPajama (Soboleva et al., 2023) and Wan- 401

juan (He et al., 2023) and then calculating the clas- 402

sification accuracy. The verification set includes 403

120 items in English and 80 items in Chinese, cov- 404

ering various domains as well as all three types 405

of long texts in SlimPajama and Wanjuan. The 406

verification results are shown in Table 2. 407

The quantitative metrics we proposed can effec- 408

tively distinguish the three types of long texts in 409

6



EN ZH Text Code Total

LongChat-v1.5-7B-32K 37.13 14.88 27.63 54.15 33.22
Yi-6B-200K 37.65 15.12 28.04 64.55 35.72
InternLM2-7B 51.61 34.07 40.91 62.86 45.43
ChatGLM3-6B-32K 55.36 42.43 46.26 57.10 48.05

LLaMA2-7B with LongWanjuan 33.92 18.94 25.15 62.90 33.10
InternLM2-7B with LongWanjuan 56.64 39.31 46.26 65.26 50.26

Table 3: Comparison between our proposed training strategy with other open-sourced LLMs on LongBench. The
terms HOL, AGG, and CHA respectively denote holistic texts, aggregated texts, and chaotic texts.

EN ∆ ZH ∆ Text ∆

LLaMA2-7B-4K 28.55 13.62 21.41
HOL. + AGG. + CHA. 32.86 +15.11% 17.18 +26.20% 24.30 +13.46%
HOL. 33.17 +16.20% 18.44 +35.44% 24.63 +15.02%
HOL. + AGG. 33.66 +17.91% 17.14 +25.88% 24.99 +16.70%
HOL. + Upsampling AGG. 33.92 +18.80% 18.94 +39.09% 25.15 +17.45%

InternLM2-7B 51.61 34.07 40.91
HOL. + AGG. + CHA. 55.03 +6.63% 36.63 +7.52% 44.49 +8.74%
HOL. 55.12 +6.81% 36.97 +8.51% 44.61 +9.04%
HOL. + AGG. 55.54 +7.62% 37.36 +9.67% 44.79 +9.46%
HOL. + Upsampling AGG. 56.64 +9.76% 39.31 +15.38% 46.26 +13.07%

Table 4: Comparison of different training strategies data on LongBench. We also report relative improvements over
the pre-trained LLMs in the same way as LLaMA2Long (Xiong et al., 2023). The terms HOL, AGG, and CHA
respectively denote holistic texts, aggregated texts, and chaotic texts.

SlimPajama and Wanjuan. Specifically, for Chi-410

nese, the accuracy of the aggregated long text is411

relatively low. This is because the ‘TextBook’ do-412

main in Wanjuan contains a large amount of classi-413

cal Chinese texts, which have inherent differences414

compared to modern Chinese texts. On one hand,415

it is challenging for models and rule-based scoring416

methods to accurately distinguish between them.417

On the other hand, there exist difficulties and biases418

in human annotation of these data. As a result, the419

relatively lower accuracy is reasonable. Overall,420

our proposed method can still effectively differenti-421

ate the three types of long texts in general Chinese422

and English language data. In other words, long423

texts can be classified into these three types from424

the perspectives of coherence, cohesion, and com-425

plexity.426

5.2 Setup427

We conduct experiments on LLaMA2-7B-4K (Tou-428

vron et al., 2023b) and InternLM2-7B (Team, 2023)429

corresponding to LLMs with and without long con-430

text capability respectively. Detailed training hyper-431

parameters can be found in Appendix E.432

For both LLaMA2-7B and InternLM2-7B, we433

use a 9:1 ratio of English to Chinese language data.434

For SlimPajama, we follow the data mixtures used435

for LLaMA pre-training (Touvron et al., 2023a).436

Due to the limited amount of Chinese data, we sam- 437

ple data uniformly from Wanjuan. We excluded 438

chaotic texts and upsample aggregated texts to bal- 439

ance the holistic and aggregated texts as our pro- 440

posed recipe. 441

We compare our proposed data mixing recipe 442

with the following three strategies: 1. Training on 443

long texts from all categories. 2. Training LLM 444

with only the holistic long texts. 3. Excluding 445

chaotic texts and employing holistic and aggregated 446

texts for training. 447

5.3 Main Results 448

We first compare the training results of LLaMA2- 449

7B and InternLM2-7B with our data mixing recipe 450

mentioned above on LongWanjuan with other 451

long-context LLMs, such as LongChat-v1.5-7B- 452

32K (Li et al., 2023), Yi-6B-200K (01-ai, 2023) 453

and ChatGLM3-6B-32K (Zeng et al., 2023), on 454

LongBench (Bai et al., 2023), a widely accepted 455

benchmark dataset for long-context LLM. Long- 456

Bench includes different languages (Chinese and 457

English) and application areas (such as single-doc 458

QA, multi-doc QA, summarization, few-shot learn- 459

ing tasks, synthetic tasks, and code completion) 460

to provide a comprehensive evaluation of the lan- 461

guage model’s capabilities in handling long con- 462

texts. During the evaluation, we limit the maximum 463
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Single-doc Multi-doc Sum Few-shot Synthetic

LLaMA2-7B-4K 18.43 11.50 15.24 52.36 5.34
HOL. + AGG. + CHA. 23.71 12.54 17.32 59.23 3.45
HOL. 23.57 12.87 19.43 57.79 4.38
HOL. + AGG. 22.35 12.38 20.42 59.68 4.96
HOL. + Upsampling AGG. 22.56 12.74 19.97 61.14 3.86

InternLM2-7B 43.50 37.10 23.70 59.95 40.33
HOL. + AGG. + CHA. 42.05 39.96 23.73 61.43 58.67
HOL. 40.46 40.83 24.03 62.07 59.00
HOL. + AGG. 42.63 40.35 24.66 61.83 57.50
HOL. + Upsampling AGG. 44.20 40.15 25.28 62.70 63.05

Table 5: Comparison of different training strategies data on the major task categories in LongBench. The terms
HOL, AGG, and CHA respectively denote holistic texts, aggregated texts, and chaotic texts.

input length to 4K tokens for pre-trained LLaMA2-464

7B-4K and 32K tokens for other models. We apply465

the truncation from the middle used in LongBench.466

The results are shown in Table 3, and detailed467

scores for each subtask can be found in the Ap-468

pendix D. Despite the strong long-text capabilities469

of InternLM2-7B, continuing training on Long-470

Wanjuan using our recipe leads to performance471

improvements across all domains. Moreover, we472

surpassed ChatGLM3-6B-32K overall, achieving a473

new state-of-the-art performance on LongBench.474

5.4 Analysis475

Then we compare the training results of LLaMA2-476

7B and InternLM2-7B with the three strategies477

mentioned above. The results are shown in Ta-478

ble 4, and detailed scores for each subtask can479

be found in Appendix D. Since our work mainly480

focuses on the quality of long text, we do not em-481

phasize the improvement in code-related abilities.482

We observed that training solely on holistic texts483

yielded only marginal improvements compared to484

using data from all categories without any filtering.485

Incorporating aggregated texts leads to a slight de-486

crease in performance for LLaMA-2 in the Chinese487

domain. When upsampling aggregated texts, both488

LLaMA-2 and InternLM-2 exhibits performance489

enhancements in both Chinese and English do-490

mains, achieving the optimal performance among491

these strategies.492

We analyze the performance of these data mix-493

ing strategies across different tasks in Table 5. For494

LLaMA2, the removal of chaotic texts results in495

improvements across multi-doc QA, summariza-496

tion, few-shot learning tasks, and synthetic tasks.497

Additionally, incorporating aggregated texts along-498

side training solely on holistic texts enhances per-499

formance on these tasks. Although our proposed500

recipe excels primarily in few-shot learning tasks, 501

it demonstrates overall superior performance. Re- 502

garding InternLM2, our proposed recipe achieves 503

optimal performance across all tasks except for 504

multi-doc QA. We attribute the differing perfor- 505

mances between the two models to the relatively 506

lower proportion of Chinese in LLaMA2’s pretrain- 507

ing corpus compared to our continued training with 508

a 10% Chinese ratio. Despite this distinction, our 509

recipe yields the best overall performance on both 510

these models. 511

We evaluate the performance of models fine- 512

tuned on long texts across multiple short task 513

benchmarks with a length of less than 2K tokens. 514

Our findings indicate that the average performance 515

fluctuation remains within 1.5 percentage points. 516

Furthermore, incorporating aggregated texts proves 517

to be effective in enhancing performance on short 518

tasks. For detailed performance metrics and bench- 519

mark test results, please refer to the Appendix F. 520

6 Conclusion 521

We try to systematically analyze the quality of long 522

texts from three linguistic dimensions: coherence, 523

cohesion, and complexity. Inspired by these dimen- 524

sions, we develop a series of metrics based on statis- 525

tics and pre-trained models to quantitatively assess 526

the quality of long texts. Utilizing SlimPajama and 527

Wanjuan, we construct the LongWanjuan dataset 528

and categorize texts into three types: holistic, aggre- 529

gated, and chaotic texts, according to our proposed 530

metrics. We introduce a data mixture recipe based 531

on the LongWanjuan dataset to address the issue 532

of the imbalance between holistic long texts and 533

aggregated long texts, achieving state-of-the-art 534

performance on the LongBench benchmark. Our 535

experimental analysis further validates the effec- 536

tiveness of the proposed recipe. 537
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Limitations538

We utilize SlimPajama and Wanjuan to construct539

LongWanjuan, with the Chinese data still remain-540

ing relatively limited. Based on the scalability and541

generalizability of our approach, additional Chi-542

nese datasets and datasets from other languages543

can be incorporated on top of deduplication. We544

alleviate the imbalance between the quantities of545

holistic and aggregated texts by upsampling aggre-546

gated texts. However, we did not attempt to provide547

an optimal ratio, leaving this for future work.548

Ethics Statement549

LongWanjuan is constructed based on Wanjuan550

(under the CC BY 4.0 license) and SlimPajama551

(under the Apache 2.0 license), both of which per-552

mit open and free usage. We plan to open-source553

LongWanjuan under the CC BY 4.0 license.554

Throughout the dataset construction process,555

there are 3 annotators involved, all of whom are au-556

thors. The annotators are all native Chinese speaker557

and proficient in reading and understanding En-558

glish. They consent to contribute their efforts to559

building LongWanjuan.560
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A Connectives and Pronouns 889

The connectives and pronouns utilized in our metric 890

calculations are outlined in Table 6 and Table 7, 891

respectively. 892

B Detailed Statistics 893

We give an overview of the dataset statistics in 894

the Chinese and English parts of LongWanjuan in 895

Table 8 and Table 9, respectively. 896

C Distribution of Texts across Metrics 897

In this section, we report the distribution features 898

with more characteristics, including Cohesionconn, 899

Cohesionpron, CohesionDMR, Complexitypara, in 900

Figure 6 to Figure 12. We take the C4 domain and 901

the ChinaNews domain as an example of English 902

and Chinese texts respectively. 903

Figure 6: Distribution of texts with different character-
istics on the Cohesionpron metric in the C4 domain.

Figure 7: Distribution of texts with different character-
istics on the CohesionDMR metric in the C4 domain.

Figure 8: Distribution of texts with different character-
istics on the Complexitypara metric in the C4 domain.

D Detailed Results 904

Detailed results of all the models we tested are 905

shown in Table 10, Table 11 and Table 12. 906
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Conn. in English ’but ’, ’whereas’, ’however’, ’though’, ’yet’, ’nevertheless’, ’still’, ’despite’,
’nonetheless’, ’notwithstanding’, ’regardless of’, ’in spite of’, ’apart from’,
’in any case’, ’in any event’, ’supposedly’, ’provided’, ’otherwise’, ’unless’, ’once’,
’as long as’, ’because’, ’so ’, ’since’, ’thus’, ’therefore’, ’as a result’,
’accordingly’, ’thereafter’, ’thereby’, ’hence’, ’given’, ’due to’, ’owing to’,
’on account of’, ’in light of’, ’as a matter of fact’, ’in other words’, ’alternatively,’,
’alternately,’, ’optionally,’, ’namely,’, ’that is to say’, ’in contrast’, ’on the contrary’,
’in turn’, ’by contrast’, ’conversely,’, ’by comparison’, ’for example’, ’for instance’,
’typically,’, ’specifically,’, ’especially,’, ’particularly,’, ’in particular’,
’until’, ’while’, ’when’, ’recently,’, ’presently,’, ’currently,’, ’in the meantime’,
’previously,’, ’initially,’, ’originally,’, ’subsequently,’, ’later’, ’consequently,’,
’finally,’, ’ultimately,’, ’eventually,’, ’in the end’, ’lately,’, ’lastly,’,
’firstly,’, ’secondly,’, ’thirdly,’, ’next’, ’on one hand’, ’on the other hand’,
’moreover’, ’in addition’, ’additionally,’, ’besides’, ’furthermore’,
’in sum’, ’in summary’, ’overall’, ’in short’, ’in conclusion’, ’in brief’, ’in detail’,
’personally,’, ’luckily,’, ’thankfully,’, ’fortunately,’, ’hopefully,’, ’preferably,’,
’surprisingly,’, ’ironically,’, ’amazingly,’, ’oddly,’, ’sadly,’, ’historically,’,
’traditionally,’, ’theoretically,’, ’practically,’, ’realistically,’, ’actually,’,
’generally,’, ’ideally,’, ’technically,’, ’honestly,’, ’frankly,’, ’basically,’,
’admittedly,’, ’undoubtedly,’, ’importantly,’, ’essentially,’, ’naturally,’, ’arguably,’,
’remarkably,’, ’in fact’, ’in essence’, ’in practice’, ’in general’, ’by doing this’.

Conn. in Chinese ’至今为止，’, ’目前’, ’这样一来’, ’详细地’, ’与此同时，’, ’起初’, ’换言之’, ’此刻’,
’鉴于’, ’其中，’, ’例如，’, ’突然’, ’那么，’, ’不久，’, ’并且’, ’确实，’, ’尽管’,
’而不是’, ’总体上，’, ’第一，’, ’无论’, ’最近’, ’无论如何’, ’简而言之’, ’这里，’,
’有时候，’, ’除非’, ’结果，’, ’然后，’, ’除开’, ’当然，’, ’很快，’, ’但是，’,
’另一方面，’, ’换句话说，’, ’理论上’, ’历史上’, ’虽然’, ’不管’, ’所以，’,
’首先’, ’而且’, ’而’, ’由于’, ’第三，’, ’可是，’, ’但’, ’由此可见，’, ’而是’,
’最初，’, ’最终，’, ’后来，’, ’即使’, ’只有这样，’, ’但事实上，’, ’相反’,
’总的来说，’, ’只是’, ’取决于’, ’这时，’, ’用来’, ’以便’, ’基本上，’, ’不料’,
’就像’, ’接下来’, ’老实说’, ’相比之下，’, ’本质上’, ’否则，’, ’从某种意义上’,
’之前’, ’当时’, ’以前’, ’以至于’, ’特别是’, ’尤其是’, ’实际上，’, ’只要’,
’理想情况’, ’或者，’, ’不仅如此，’, ’幸运’, ’事实上，’, ’然而，’, ’一方面，’,
’比如，’, ’通常’, ’原因是’, ’从长远来看’, ’此后’, ’其次’, ’渐渐地，’, ’直到’,
’不论’, ’大多数情况下’, ’之后，’, ’显然’, ’也就是说，’, ’以及’, ’随后，’, ’没想到’,
’不过，’, ’除此之外’, ’无疑’, ’第二，’, ’反过来，’, ’若是’, ’以上就是’, ’也许’,
’假如’, ’可’, ’如果’, ’一如既往’, ’结果就是’, ’通过这样’, ’类似地，’, ’一般来说，’,
’除了’, ’据说’, ’另外，’, ’同样地’, ’反之，’, ’总之，’, ’进一步’, ’可以说’, ’于是，’,
’最后，’, ’既然’, ’尽管如此，’, ’这意味着’, ’同时，’, ’因此，’, ’某种程度上’,
’综上，’, ’随着’, ’此外，’, ’即便如此’, ’有时，’, ’同样，’.

Table 6: The connectives we use to calculate Cohesionconn. These words and phrases are collected from the list of
connective words in Ru et al. (2023).

Pron. in English ’one’, ’ones’, ’i’, ’me’, ’my’, ’mine’, ’myself’, ’you’, ’your’, ’yours’, ’yourself’,
’he’, ’him’, ’his’, ’himself’, ’she’, ’her’, ’hers’, ’herself’, ’it’, ’its’, ’itself’,
’we’, ’us’, ’our’, ’ours’, ’ourselves’, ’they’, ’them’, ’their’, ’theirs’, ’themselves’,
’this’, ’that’, ’these’, ’those’, ’who’, ’whom’, ’whose’.

Pron. in Chinese ’我’, ’自己’, ’你’, ’他’, ’她’, ’它’, ’这’, ’那’, ’这个’, ’那个’, ’那里’, ’彼此’, ’您’,
’我们’, ’你们’, ’他们’, ’她们’, ’它们’, ’这些’, ’那些’.

Table 7: The pronouns we use to calculate Cohesionpron.

E Hyper-parameters907

We use 64 A100 GPUs and adopt ZeRO3 strate-908

gies (Rajbhandari et al., 2020) to tune a 7B model.909

We use AdamW (Loshchilov and Hutter, 2017)910

with β1 = 0.9 and β2 = 0.95. We set the learn-911

ing rate to 3 × 10−5 with a cosine learning rate912

schedule with a 20-step warmup. We set the max913

gradient norm to 1 and the weight decay to zero.914

We fine-tune both LLaMA2-7B-4K and915

InternLM2-7B with 5B tokens using the next token 916

prediction objective. We set the global batch size 917

to 2M tokens, with a max length of 32K tokens. 918

Specifically, for the fine-tuning of LLaMA2-7B 919

to achieve context over 32K tokens, we adjust the 920

base of the rotation angle in RoPE (Su et al., 2024) 921

to 500000 based on LLaMA2Long (Xiong et al., 922

2023) and ScalingRoPE (Liu et al., 2023b). 923
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Domain #Docs #Tokens
Holistic Aggregated Chaotic Total Holistic Aggregated Chaotic Total

CommonCrawl 4740880 638363 36664 5415907 76.5B 9.9B 719.8M 87.2B
C4 632819 88119 2732 723670 7.0B 1.1B 36.6M 8.2B
ArXiv 1045806 3274 287 1049367 25.4B 153.9M 68.3M 25.6B
Book 187396 7369 252 195017 24.2B 893.9M 80.7M 25.1B
Wikipedia 146469 29745 1883 178097 2.9B 654.4M 97.8M 3.7B
StackExchange 5295 1750 659 7704 60.6M 21.9M 11.3M 93.8M
Total 6856817 786654 48564 7692035 137.6B 13.0B 1.2B 151.8B

Table 8: An overview of the dataset statistics in the English part of LongWanjuan. The number of tokens is
calculated with the tokenizer in InternLM2-7B (Team, 2023).

Domain #Docs #Tokens
Holistic Aggregated Chaotic Total Holistic Aggregated Chaotic Total

ChinaNews 5211 1331 240 6782 51.3M 15.5M 4.3M 71.1M
Law 24575 5212 1310 31097 276.3M 58.1M 69.4M 403.8M
Patent 44922 2956 682 48560 438.0M 31.6M 9.9M 479.5M
TextBook 4746 693 0 5439 496.0M 119.3M 0.0M 615.3M
WebText 18698 7842 3855 30395 180.6M 93.0M 91.4M 365.1M
Total 98152 18034 6087 122273 1.4B 317.4M 175.1M 1.9B

Table 9: An overview of the dataset statistics in the Chinese part of LongWanjuan. The number of tokens is
calculated with the tokenizer in InternLM2-7B (Team, 2023).

Narrative Qasper MF_en MF_zh Hotpot 2Wikim Musique Dureader
QA QA QA

LLaMA2-7B-4K 16.86 15.35 23.78 19.08 7.85 10.54 4.27 23.34
HOL. + AGG. + CHA. 22.61 20.39 30.60 22.96 9.34 10.78 6.01 24.01
HOL. 15.36 19.12 35.04 27.64 9.74 10.83 6.00 24.89
HOL. + AGG. 19.15 19.68 29.60 22.78 10.36 10.49 5.47 23.19
HOL. + Upsampling AGG. 16.93 20.16 26.43 27.68 9.63 10.82 6.75 23.77

InternLM2-7B 24.02 41.97 47.95 61.16 52.98 37.89 28.02 29.52
HOL. + AGG. + CHA. 26.86 39.95 41.28 59.90 54.76 43.03 31.04 31.00
HOL. 22.52 40.46 39.99 58.76 54.77 45.07 32.28 31.18
HOL. + AGG. 27.25 40.29 42.92 60.14 53.75 44.53 30.87 32.25
HOL. + Upsampling AGG. 29.93 39.62 50.17 58.57 53.68 42.31 32.14 32.46

LongChat-v1.5-7B-32K 16.90 27.70 41.40 29.10 31.50 20.60 9.70 19.50
Yi-6B-200K 12.36 26.41 36.78 22.36 46.57 40.38 25.78 14.73
ChatGLM3-6B-32K 9.21 43.07 50.86 60.33 55.33 43.73 38.94 41.89

Table 10: Results on single-doc and multi-doc QA subtasks in Longbench including NarrativeQA, Qasper, Multi-
Field_en (MF_en), MultiField_zh (MF_zh), HotpotQA, 2WikimQA, Musique, and Dureader.

Figure 9: Distribution of texts with different charac-
teristics on the Cohesionconn metric in the ChinaNews
domain.

F Performance on Short Tasks924

To verify that the LLM trained on long text in our925

proposed strategies can still achieve good perfor-926

Figure 10: Distribution of texts with different charac-
teristics on the Cohesionpron metric in the ChinaNews
domain.

mance on short-text tasks, we also evaluate our 927

fine-tuned LLaMA2-7B and InternLM2-7B with a 928

maximum input context of 2K tokens on short tasks, 929
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Gov QMSum MultiNews VCSum TREC Trivia SAM LSHT
Report QA Sum

LLaMA2-7B-4K 27.09 20.63 3.21 10.02 68.00 89.09 32.09 20.25
HOL. + AGG. + CHA. 29.54 21.75 6.61 11.37 70.00 86.75 39.15 41.00
HOL. 28.66 21.35 16.34 11.36 69.00 88.44 32.71 41.00
HOL. + AGG. 30.72 21.58 18.26 11.11 71.00 88.36 39.36 40.00
HOL. + Upsampling AGG. 28.87 22.14 16.46 12.42 71.50 88.78 39.78 44.50

InternLM2-7B 30.02 23.09 26.46 15.23 75.50 92.36 30.94 41.00
HOL. + AGG. + CHA. 33.69 25.03 27.14 9.05 76.00 89.41 37.99 42.33
HOL. 33.68 25.29 27.04 10.12 77.00 89.17 38.85 43.25
HOL. + AGG. 33.49 25.64 27.54 11.95 77.00 89.07 37.43 43.83
HOL. + Upsampling AGG. 32.96 25.49 27.84 14.81 77.00 91.29 41.00 41.50

LongChat-v1.5-7B-32K 30.80 22.70 26.40 9.90 63.50 82.30 34.20 23.20
Yi-6B-200K 29.34 20.65 27.14 8.14 73.50 86.94 9.85 37.50
ChatGLM3-6B-32K 35.99 24.68 27.44 15.83 79.00 87.39 17.72 42.00

Table 11: Results on summarization and few-shot learning subtasks in Longbench including GovReport, QMSum,
MultiNews, VCSum, TREC, TriviaQA, SAMSum, and LSHT.

PC PR_en PR_zh LCC Repobench-p

LLaMA2-7B-4K 1.50 5.52 9.00 68.22 62.25
HOL. + AGG. + CHA. 2.05 4.55 3.75 65.17 60.91
HOL. 2.00 5.38 5.75 65.97 61.33
HOL. + AGG. 1.50 7.62 5.75 65.10 60.52
HOL. + Upsampling AGG. 2.50 3.82 5.25 65.93 59.86

InternLM2-7B 7.00 56.50 57.50 63.90 61.81
HOL. + AGG. + CHA. 2.00 96.50 77.50 69.96 64.58
HOL. 0.00 98.50 78.50 69.42 65.39
HOL. + AGG. 0.50 96.00 76.00 69.13 65.06
HOL. + Upsampling AGG. 3.14 97.50 88.50 66.80 63.71

LongChat-v1.5-7B-32K 1.00 30.50 7.60 53.00 55.30
Yi-6B-200K 2.50 6.00 7.97 66.10 63.00
ChatGLM3-6B-32K 2.00 98.50 94.50 60.07 54.12

Table 12: Results on synthetic and code subtasks in Longbench including PassageCount (PC), PassageRetrieval_en
(PR_en), PassageRetrieval_zh (PR_zh), LCC and Repobench-p.

Figure 11: Distribution of texts with different charac-
teristics on the CohesionDMR metric in the ChinaNews
domain.

including ARC-easy/challenge (Clark et al., 2018),930

Hellaswag (Zellers et al., 2019), Winogrande (Sak-931

aguchi et al., 2021), TruthfulQA (Lin et al., 2022),932

SuperGLUE (Wang et al., 2019), GSM8K (Cobbe933

et al., 2021) and MMLU (Hendrycks et al., 2020).934

The results are shown in Table 13.935

Figure 12: Distribution of texts with different charac-
teristics on the Complexitypara metric in the ChinaNews
domain.
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GSM8K ARC-e ARC-c HS WG TQA SG MMLU Average

LLaMA2-7B-4K 16.30 52.73 36.95 69.24 61.25 35.09 50.43 46.78 46.10
HOL. + AGG. + CHA. 16.45 53.09 34.24 65.11 61.01 36.11 51.25 44.13 45.17
HOL. 15.54 53.09 33.90 65.46 61.40 34.80 51.40 42.71 44.79
HOL. + AGG. 16.76 54.67 35.93 65.90 61.01 36.40 50.60 44.74 45.75
HOL. + Upsampling AGG. 17.13 53.97 33.22 65.86 60.30 36.26 49.50 44.49 45.09

InternLM2-7B 69.83 51.50 42.37 54.87 77.35 39.62 78.83 65.60 60.00
HOL. + AGG. + CHA. 69.67 58.38 41.69 64.46 78.93 37.43 78.43 64.45 61.68
HOL. 70.20 50.26 42.37 56.87 77.90 38.30 79.01 64.75 59.96
HOL. + AGG. 70.43 55.56 40.34 61.64 77.43 37.57 78.85 64.11 60.74
HOL. + Upsampling AGG. 68.99 57.14 41.69 65.46 78.61 38.30 79.20 64.11 61.69

Table 13: Results on 0-shot ARC-easy/challenge, Hellaswag (HS), Winogrande (WG), TruthfulQA (TQA), Super-
GLUE (SG), 4-shot GSM8K and 5-shot MMLU.
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