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Abstract

To enable AI agents to interact seamlessly with humans and
3D environments, they must accurately perceive 3D spaces
and align language with spatial representations. While
prior work has made significant progress by integrating lan-
guage features into geometrically detailed 3D scene rep-
resentations using 3D Gaussian Splatting (GS), these ap-
proaches rely on computationally intensive offline prepro-
cessing of language features for each input image, limit-
ing adaptability to new environments. In this work, we
introduce Online Language Splatting, the first framework
enabling near real-time, open-vocabulary language map-
ping within a 3DGS-SLAM system without requiring pre-
generated language features. The key challenge lies in
efficiently fusing high-dimensional language features into
3D representations while balancing the computation speed,
memory usage, rendering quality and open-vocabulary ca-
pability. To this end, we innovatively design: (1) a high-
resolution CLIP embedding module capable of generating
detailed language feature maps in 18ms per frame, and
(2) a two-stage online auto-encoder that compresses 768-
dimensional CLIP features to 15 dimensions while preserv-
ing open-vocabulary capabilities. Experiments show our
online method not only surpasses the state-of-the-art offline
methods in accuracy but also achieves more than 40× effi-
ciency boost, demonstrating the potential for dynamic and
interactive AI applications.

1. Introduction
Radiance Fields [7, 13, 16] have transformed 3D scene rep-
resentation, with 3D Gaussian Splatting (GS) [7] emerging
as a leading method for its efficiency and high-quality ren-
dering. However, while radiance fields excel at photoreal-
istic rendering, they lack the semantic information essential
for human interaction.

The integration of language features into 3D scene
representations has recently enabled open-vocabulary lan-
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guage queries, improving interpretability and interactivity
in human-computer interaction [8, 14, 17, 20]. For example,
LangSplat [14] embeds CLIP-based language features [15]
into 3DGS, including both RGB and language channels per
Gaussian. However, existing Lang-GS methods typically
rely on computationally intensive preprocessing to gener-
ate pixel-wise language features using multimodal founda-
tion models like SAM+CLIP, which can require minutes per
frame, limiting their use to offline scenarios where language
features must be precomputed.

While offline language mapping is sufficient for static,
predefined environments, many real-world applications de-
mand immediate scene understanding. For instance, a ser-
vice robot entering a new environment must quickly per-
ceive the 3D surroundings to follow commands, and aug-
mented reality (AR) systems need to deliver instant, inter-
active feedback as users explore new spaces. Recent ad-
vancements in combining Gaussian Splatting with online
mapping [1, 4, 6, 12, 19] have enabled detailed geometric
and textured maps to be created in near real-time. How-
ever, these approaches do not incorporate language fea-
tures, focusing solely on geometry and texture. Alterna-
tively, methods that use pre-annotated ground-truth seman-
tic maps [5, 9, 10] simplify the problem but are limited to
closed-vocabulary settings, lacking the flexibility required
for open-vocabulary commanding.

The key challenge in online 3D language mapping is
efficiently integrating language features while preserving
open-vocabulary capabilities. To address this, we intro-
duce Online Language Splatting, the first framework to
achieve near real-time, open-vocabulary 3D language map-
ping within a SLAM-GS system, eliminating the need for
pre-generated language maps. Fig. 1 illustrates the pro-
posed framework. In particular, our method addresses three
core sub-challenges: (1) Real-time High-Resolution CLIP
Embedding: Since offline, segment-centric CLIP feature
preparation is a major runtime bottleneck, we replace it with
a single-stage CLIP embedding and a Super-Resolution De-
coder (SRD) module, enabling the generation of detailed,
pixel-aligned CLIP maps in 18 ms per frame (Sec. 2.1). (2)
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Figure 1. Online Language Splatting Pipeline. Our pipeline integrates 3D Gaussian Splatting with SLAM, using 3D Gaussians as the
sole mapping elements. Left(Training): Raw images pass through a High-Resolution (HR) CLIP embedding module, which generates
real-time HR language features. These are compressed via a two-stage CLIP compression module into low-dimensional maps for efficient
optimization while preserving open-vocabulary capabilities. Right(Inference): The rendered low-dimensional language map is decoded in
two-stages to reconstruct the full-resolution CLIP feature map, enabling open-vocabulary object queries.

Open-Vocabulary-Preserving Feature Compression in
Novel Scenes: Unlike offline methods, which allow feature
compression modules to be trained on the test scene, online
methods must generalize to unseen data. However, due to
domain gaps, a single pre-trained autoencoder may strug-
gle to maintain open-vocabulary capabilities when com-
pressing CLIP features for online mapping. To address
this online-specific generalization challenge, we introduce a
two-stage autoencoder, where the second stage, an Online-
Learned AutoEncoder (OLAE), dynamically adapts to the
dominant data variance of the current scene. This further
reduces feature dimensions while preserving critical infor-
mation (Sec. 2.2).Building on these designs, our extensive
experiments demonstrate that our approach not only sur-
passes prior state-of-the-art (SoTA) offline Lang-GS meth-
ods in text-queried 2D and 3D object localization and seg-
mentation but also delivers a 40× to 200× efficiency boost.

2. Online Language Splatting

Our approach enables near real-time, high-resolution,
Open-Vocabulary (OV) language mapping within a 3DGS
framework, facilitating language-driven spatial understand-
ing for robotics and AR applications. As shown in Fig. 1,
our pipeline consists of three main components during the
training and optimization phase, addressing the key chal-
lenges outlined in Sec. 1.

The pipeline begins with standard RGB-D SLAM in-
put streams. Color images are processed through a pixel-
wise CLIP encoder to generate low-resolution language
features. These features, combined with hierarchical en-
coder outputs, are then refined by a Super-Resolution De-
coder (SRD) to produce pixel-aligned, high-resolution lan-
guage maps. Next, the CLIP Compression module, im-
plemented as a Two-Stage Autoencoder, significantly re-

Figure 2. Importance of Feature Map Resolution. Top: Com-
pared to the Low Resolution (LR) query heatmap from the pixel-
wise encoder output (left), the High Resolution (HR) heatmap
from SRD output (right) improves localization and differentiation.
Middle & Bottom: Query heatmaps from rendered maps after GS
mapping. GS mapping from LR exhibits feature bleeding, while
mapping from HR preserves structural details, better localization.

duces the dimensionality of CLIP features for efficient on-
line mapping while preserving essential information for OV
queries. The second stage, an Online-Learned Autoencoder
(OLAE), further enhances generalization to novel scenes.
Finally, Disentangled Optimization separates gradient flows
for color and language, enabling independent optimization
of Gaussian parameters. This improves rendering quality
across both modalities. During inference, the rendered low-
dimensional language map can be passed through the Two-
Stage Autoencoder to reconstruct full CLIP features, allow-
ing OV queries for locating target objects.

2.1. High-Resolution CLIP Embedding
Unlike offline methods that require multiple passes and
complex mask generation, our approach leverages a
ConvNeXt-based pixel-wise CLIP Encoder [18] to gener-
ate a coarse CLIP embedding map, which is then refined



by a lightweight Super-Resolution Decoder (SRD) to pro-
duce dense, high-quality language maps. This design pre-
serves conceptual integrity while enabling real-time oper-
ation. The SRD takes a coarse CLIP map along with the
intermediate outputs from layers 1 and 2 of the pixel-wise
encoder as inputs, progressively enhancing the CLIP fea-
ture map resolution through two convolutional upsampling
blocks that align with hierarchical encoder features.

The SRD is trained using high-resolution CLIP fea-
ture maps as supervision, following [14]. It is dataset-
agnostic, requiring only diverse images—without annota-
tions—to learn generalizable upsampling. On rich datasets
like COCO [11], this preserves CLIP’s open-vocabulary ca-
pability. Our CLIP embedding module (pixel-wise encoder
+ SRD) is efficient, running in 18 ms and using 1.6 GB
of memory on an RTX-3090, with SRD contributing just
2 ms while enhancing feature quality. This improves both
accuracy and IoU (see Table 1, Fig.2). While similar to
FeatUp[3], our SRD uses supervised hierarchical guidance,
achieving better performance with greater efficiency.

2.2. Two-Stage Online CLIP Compression

Since CLIP features are high-dimensional (768) vectors, a
key challenge is how to effectively compress them to enable
real-time integration while preserving OV capabilities.

To address this, we first develop a generalized language
compressor that leverages the redundancy in language em-
beddings. Using diverse datasets (e.g., COCO), we train
a simple autoencoder baseline with a multi-layer MLP to
compress the dimensionality from 768 to a 32-dimensional
code balancing semantic preservation and data compres-
sion. Due to the domain gap between the pretraining dataset
and the test scenes, the output dimension cannot be too low,
as excessive compression may compromise OV capabilities
when applied to new domains.

While the generalized language compressor effectively
reduces dimensionality, the resulting code size remains
too large for efficient integration into an online Lang-GS
framework. To further compress the CLIP feature while
preserving their OV capability, we introduce an Online-
Learned AutoEncoder (OLAE) as a second-stage com-
pressor, which adapts dynamically to testing scenes by
compressing features into a smaller 15-dimensional code.
This leverages the observation that scene-specific variance
can often be captured in fewer dimensions, discarding
less relevant directions. The OLAE begins with 200 it-
erations (6 ms/iter) and incrementally updates using se-
lected keyframes. For each iteration, two additional ran-
dom keyframes are incorporated, ensuring retention of pre-
viously learned features and preventing catastrophic forget-
ting. By combining a generalized compressor (for broad
vocabulary preservation) and an online-learned compressor
(for scene adaptability), our approach maintains OV capa-

Table 1. Comparison to Lang-GS SoTA on Replica. Our method
is compared to the SoTA Lang-GS methods on the Replica dataset
in terms of image-based localization accuracy and per-frame run-
ning time. We also analyze the impact of key introduced modules,
including Super-Resolution Decoder (SRD) in CLIP Embedding
and Online Learning of AutoEncoder (OLAE) in feature compres-
sion. The variants without OLAE train a single AE from other
scenes in Replica Dataset.

Method Modules Query Loc. Time
SRD OLAE mIOU Loc

LangSplat [14] − − 0.417 0.720 2.8 min/fr
Feature3DGS [20] − − 0.359 0.755 2.3 min/fr
LEGaussian [17] − − 0.245 0.682 32 s/fr

Ours

✗ ✗ 0.400 0.754

0.8 s/fr
COCO ✗ 0.475 0.782
COCO ✓ 0.479 0.759
Omni ✗ 0.485 0.802
Omni ✓ 0.487 0.826

Table 2. Comparison to Lang-GS SoTA on TUM RGB-D. Our
method is compared to the Lang-GS SoTA method LangSplat on
image-based localization accuracy and running time.

TUM RGB-D Scene1 Scene2 Time
mIOU Loc mIOU Loc

LangSplat [14] 0.646 0.850 0.538 0.7825 2.1 min/fr
Ours 0.599 0.917 0.535 0.7905 0.6 s/fr

bilities while significantly reducing memory cost, making
real-time applications feasible.

3. Experiments

Baselines. Since we introduce the first online Language
Gaussian Splatting (Lang-GS) method, we primarily com-
pare our approach to state-of-the-art (SoTA) offline Lang-
GS methods, including LangSplat [14], Feature3DGS[20],
and LEGaussian[17], in text-based object localization.
Since LEGaussian uses re-annotated ground truth for
Replica, we re-evaluate it for fairness. Datasets. We eval-
uate on Replica (synthetic) and TUM RGB-D (real-world)
datasets, conducting both qualitative and quantitative analy-
sis. For Replica, we test the 10 most frequent classes, sam-
pling 21 frames per sequence. In TUM RGB-D, we man-
ually annotate test frames to generate ground-truth masks
for language queries. Training leverages COCO[11] and
Omnidata[2] for broad generalization across diverse scenes
and objects. Evaluation Metrics. For text-based object
localization, we follow LangSplat and use mIoU and local-
ization accuracy (Loc), considering localization successful
if the highest-relevancy pixel falls within the ground-truth
bounding box. Runtime is measured per-frame.
Implementation Details. We use a pre-trained CLIP ViT-
L model [15] with a ConvNeXt-L hierarchical encoder [18]
to extract 768D features from 640×640 RGBD images, pro-
ducing a 24×24×768 feature map. The SRD then enhances



it to 192×192×768, preserving semantic context. We train
two SRD models: one on 7% COCO[11] and another on
30% Omnidata-Tiny[2], using four A5000 GPUs (batch size
12 per GPU). For feature compression, we use an 8-layer
MLP autoencoder to reduce language features to 32D. The
online compressor uses a 2-layer MLP, further compress-
ing to 15D, trained online with Adam (LR: 1 × 10−3). It
initializes with 200 iterations on 10 keyframes and updates
with 1 iteration per frame. For fair comparison, we upgrade
LangSplat’s OpenCLIP to 768D (from 512D), increase code
size to 15 (from 3), and train offline on the full Replica and
TUM RGBD datasets, sampling every 10th image per se-
quence.

Figure 3. Qualitative comparison with offline SoTA: Top: On
the TUM RGB-D dataset, our method successfully segments the
paper in the top-right corner, which LangSplat fails to detect. Bot-
tom: On the Replica dataset, we accurately localize the carpet,
whereas LangSplat misidentifies a different object. Black box:
ground-truth box; red dot: maximal feature response as the pre-
dicted localization.

3.1. Comparison with the State of the Art
Comparison to Lang-GS SoTA Methods. The compari-
son between our method and previous SoTA offline Lang-
GS methods is presented in Table 1 and Table 2. As ob-
served, our method establishes a new SoTA performance on
the Replica dataset, significantly surpassing offline meth-
ods, regardless of whether SRD is trained on COCO or
Omnidata datasets. It also leads to improved localization
accuracy and competitive mIoU scores on the TUM-RGBD
dataset upon LangSplat. As an online method, our approach
is 40× to 200× more efficient than SoTA offline methods.
Qualitatively, Fig. 3 shows that our method correctly iden-
tifies objects that LangSplat either misses or misidentifies.
The ablation study of key modules are further discussed in
Sec 3.2. We attribute the performance gains to pixel-aligned
features, which are more robust for large objects—where
SAM-based segmentation often fails to capture contextual
cues that pixel-aligned feature maps preserve.

On the other hand, our performance advantage on the
TUM-RGBD dataset is less pronounced. This is primar-
ily due to challenges such as motion blur and lower image

quality, which complicate online camera tracking. These
conditions favor offline approaches that rely on extensive
global optimization (e.g., 30k iterations) of both 3D Gaus-
sian parameters and camera poses.
Runtime Analysis. Our entire network module runs at
23ms per frame on an RTX-3090 GPU, including 15ms
for CLIP encoding, 2ms for super-resolution decoding, and
6ms for online compression with online training. Although
the overall pipeline speed is bottlenecked by the MonoGS
baseline, leading to 0.6–0.8s per frame, a much higher
speed can be achieved with advancements in the SLAM-GS
system. In contrast, the offline method LangSplat requires
approximately 168s per frame (2.8 minutes), including 35s
for SAM, 10s for post-processing, and an additional 123s
per frame (amortized) for training the dense CLIP autoen-
coder on the testing scene. This total runtime underscores
the significant computational cost of an offline approach.

3.2. Ablation Study
Super-Reso Decoder (SRD) in CLIP Embedding We an-
alyze SRD’s impact on the Replica dataset Table 1. SRD
significantly improves both mIoU and Loc metrics from our
basic online baseline. The underlying reasons for these im-
provements are evident through visual comparisons in Fig. 2
and Fig. 3. From Fig. 2, we can see that high-resolution lan-
guage maps greatly enhance localization of small or distant
objects.
Online Learning of AutoEncoding (OLAE). Table 1 sum-
marizes OLAE’s effect in CLIP compression. To assess the
impact of removing online encoding, we train a single au-
toencoder using 4-fold cross-validation on Replica, hold-
ing out two sequences per fold for testing. This ensures
exposure to the Replica domain while keeping test scenes
unseen. OLAE outperforms even in-domain fine-tuned au-
toencoders, preserving semantic concepts more effectively.

4. Conclusion
In this work, we introduce Online Language Splatting, a
framework that enables online language-aware 3D map-
ping through key innovations. First, a real-time Super-
Resolution Decoder (SRD) enhances CLIP embeddings,
generating detailed language maps. Second, an highly ef-
fective and efficient two-stage CLIP compression preserv-
ing open-vocabulary capabilities. Our experimental results
demonstrate that our online approach not only outperforms
offline SoTA Lang-GS methods, but also leads to orders of
magnitude efficiency improvement.
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