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Abstract

Message Passing Graph Neural Networks are known to suffer from two problems
that are sometimes believed to be diametrically opposed: over-squashing and
over-smoothing. The former results from topological bottlenecks that hamper the
information flow from distant nodes and are mitigated by spectral gap maximization,
primarily, by means of edge additions. However, such additions often promote over-
smoothing that renders nodes of different classes less distinguishable. Inspired by
the Braess phenomenon, we argue that deleting edges can address over-squashing
and over-smoothing simultaneously. This insight explains how edge deletions can
improve generalization, thus connecting spectral gap optimization to a seemingly
disconnected objective of reducing computational resources by pruning graphs for
lottery tickets. To this end, we propose a computationally effective spectral gap
optimization framework to add or delete edges and demonstrate its effectiveness
on the long range graph benchmark and on larger heterophilous datasets.

1 Introduction

Graphs are ubiquitous data structures that can model data from diverse fields ranging from chemistry
(Reiser et al., 2022), biology (Bongini et al., 2023) to even high-energy physics (Shlomi et al., 2021).
This has led to the development of deep learning techniques for graphs, commonly referred to as
Graph Neural Networks (GNNs). The most popular GNNs follow the message-passing paradigm
(Gori et al., 2005; Scarselli et al., 2009; Gilmer et al., 2017; Bronstein et al., 2021), where arbitrary
differentiable functions, parameterized by neural networks, are used to diffuse information on the
graph, consequently learning a graph-level representation. This representation can then be used for
various downstream tasks like node classification, link prediction, and graph classification. Different
types of GNNs (Kipf & Welling, 2017; Hamilton et al., 2017; Veličković et al., 2018; Xu et al.,
2019; Bodnar et al., 2021a,b; Bevilacqua et al., 2022), all tackling a variety of problems in various
domains have been proposed with varied degree of success. Despite their widespread use, GNNs
have a number of inherent problems. These include limited expressivity, (Leman, 1968; Morris et al.,
2019), over-smoothing (Li et al., 2019; NT & Maehara, 2019; Oono & Suzuki, 2020; Zhou et al.,
2021), and over-squashing (Alon & Yahav, 2021; Topping et al., 2022).

The phenomenon of over-squashing, first studied heuristically by Alon & Yahav (2021) and later
theoretically formalized by Topping et al. (2022), is caused by the presence of structural bottlenecks in
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the graph. These bottlenecks can be attributed to the first non-zero eigenvalue of the normalized graph
Laplacian, also known as the spectral gap. The smaller the gap, the more susceptible a graph is to over-
squashing. Recent work has explored rewiring the input graph to address these bottlenecks (Topping
et al., 2022; Arnaiz-Rodríguez et al., 2022; Giraldo et al., 2023; Nguyen et al., 2023; Karhadkar et al.,
2023), but suggest there has to be a trade-off between over-squashing and over-smoothing (Keriven,
2022). Instead, we propose to leverage the Braess paradox (Braess, 1968; Eldan et al., 2017) that
posits certain edge deletions can maximize the spectral gap. We propose to approximate the spectral
change in a computationally efficient manner by leveraging Matrix Perturbation Theory (Stewart &
Sun, 1990). Our proposed framework allows us to jointly address the problem of over-squashing,
by increasing the spectral gap, and over-smoothing, by slowing down the rate of smoothing. We
find that our method is especially effective in heterophilic graph settings, where we delete edges
between nodes of different labels, thus preventing unnecessary aggregation. We empirically show
that our proposed method outperforms other graph rewiring methods on node classification and graph
classification tasks. We also show that spectral gap based edge deletions can help identify graph
lottery tickets (GLTs) (Frankle & Carbin, 2019), that is, sparse sub-networks that can match the
performance of dense networks.

1.1 Contributions

1. Inspired by the Braess phenomenon, we prove that, contrary to common assumptions, over-
smoothing and over-squashing are not necessarily diametrically opposed. By deriving a
minimal example, we show that both can be mitigated by spectral based edge deletions.

2. Leveraging matrix perturbation theory, we propose a Greedy graph pruning algorithm
(PROXYDELETE) that maximizes the spectral gap in a computationally efficient way. Sim-
ilarly, our algorithm can also be utilized to add edges in a joint framework. We compare
this approach with a novel graph rewiring scheme based on Eldan’s criterion (Eldan et al.,
2017) that provides guarantees for edge deletions and a stopping criterion for pruning, but is
computationally less efficient.

3. Our results connect literature on three seemingly disconnected topics: over-smoothing,
over-squashing, and graph lottery tickets, which explain observed improvements in gener-
alization performance by graph pruning. Utilizing this insight, we demonstrate that graph
sparsification based on our proxy spectral gap update can perform better than or on par with
a contemporary baseline (Chen et al., 2021) that takes additional node features and labels
into account. This highlights the feasibility of finding winning subgraphs at initialization.

2 Related work

Over-squashing. Alon & Yahav (2021); Topping et al. (2022) have observed that over-squashing,
where information from distant nodes are not propagated due to topological bottlenecks in the graph,
hampers the performance of GNNs. A promising line of work that attempts to alleviate this issue
is graph rewiring. This task aims to modify the edge structure of the graph either by adding or
deleting edges. Gasteiger et al. (2019) propose to add edges according to graph diffusion kernel, such
as personalized PageRank, to rely less on messages from only one-hop neighbors, thus alleviating
over-squashing. Topping et al. (2022) propose Stochastic Discrete Ricci Flow (SDRF) to rewire the
graph based on curvature. Banerjee et al. (2022) resort to measuring the spectral expansion with
respect to the number of rewired edges and propose a random edge flip algorithm that transforms
the given input graph into an Expander graph. Contrarily, Deac et al. (2022) show that negatively
curved edges might be inevitable for building scalable GNNs without bottlenecks and advocate the
use of Expander graphs for message passing. Arnaiz-Rodríguez et al. (2022) introduces two new
intermediate layers called CT-LAYER and GAP-LAYER, which can be interspersed between GNN
layers. The layers perform edge re-weighting (which minimizes the gap) and introduce additional
parameters. Karhadkar et al. (2023) propose FoSR, a graph rewiring algorithm that sequentially adds
edges to maximize the first-order approximation of the spectral gap. A recent work by Black et al.
(2023) explores the idea of characterizing over-squashing through the lens of effective resistance
(Chandra et al., 1996). Giovanni et al. (2023) provide a comprehensive account of over-squashing
and studies the interplay of depth, width and the topology of the graph.

Over-smoothing. It is a known fact that increasing network depth (He et al., 2016) often leads to better
performance in the case of deep neural networks. However, naively stacking GNN layers often seems
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to harm generalization. And one of the reasons is over-smoothing (Li et al., 2019; Oono & Suzuki,
2020; NT & Maehara, 2019; Zhou et al., 2021; Rusch et al., 2023a), where repeated aggregation
leads to node features, in particular nodes with different labels, becoming indistinguishable. Current
graph rewiring strategies, such as FoSR (Karhadkar et al., 2023), which rely on iteratively adding
edges based on spectral expansion, may help mitigate over-squashing but also increase the smoothing
induced by message passing. Curvature based methods such as Nguyen et al. (2023); Giraldo et al.
(2023) aim to optimize the degree of smoothing by graph rewiring, as they assume that over-smoothing
is the result of too much information propagation, while over-squashing is caused by too little. Within
this framework, they assume that edge deletions always reduce the spectral gap. In contrast, we
show and exploit that some deletions can also increase it. Furthermore, we rely on a different, well
established concept of over-smoothing (Keriven, 2022) that also takes node features into account
and is therefore not diametrically opposed to over-squashing. As we show, over-smoothing and
over-squashing can be mitigated jointly. Moreover, we propose a computationally efficient approach
to achieve this with spectral rewiring. In contrast to our proposal, curvature based methods (Nguyen
et al., 2023; Giraldo et al., 2023) do not scale well to large graphs. For instance, Nguyen et al. (2023)
propose a batch Ollivier-Ricci (BORF) curvature based rewiring approach to add and delete edges,
which solves optimal transport problems and runs in cubic time.

Graph sparsification and lottery tickets. Most GNNs perform recursive aggregations of neighbor-
hood information. This operation becomes computationally expensive when the graphs are large and
dense. A possible solution for this is to extract a subset of the graph which is representative of the
dense graph, either in terms of their node distribution (Eden et al., 2018) or graph spectrum (Adhikari
et al., 2017). Zheng et al. (2020); Li et al. (2020) formulate graph sparsification as an optimization
problem by resorting to learning surrogates and ADMM respectively. With the primary aim to reduce
the computational resource requirements of GNNs, a line of work that transfers the lottery ticket
hypothesis (LTH) by Frankle & Carbin (2019) to GNNs (Chen et al., 2021; Hui et al., 2023), prunes
the model weights in addition to the adjacency matrix. The resulting winning graph lottery ticket
(GLT) can match or surpass the performance of the original dense model. While our theoretical
understanding of GLTs is primarily centered around their existence (Ferbach et al., 2022; Burkholz
et al., 2022; Burkholz, 2022b,a), our insights inspired by the Braess paradox add a complementary
lens to our understanding of how generalization can be improved, namely by reducing over-squashing
and over-smoothing with graph pruning. So far, the spectral gap has only been employed to maintain
a sufficient degree of connectivity of bipartite graphs that are associated with classic feed-forward
neural network architectures (Pal et al., 2022; Hoang et al., 2023). We highlight that the spectral
gap can also be employed as a pruning at initialization technique (Frankle et al., 2021) that does not
take node features into account and can achieve computational resource savings while reducing the
generalization error, which is in line with observations for random pruning of CNNs (Gadhikar et al.,
2023; Gadhikar & Burkholz, 2024).

3 Theoretical insights into spectral rewiring

To prove our claim that over-smoothing and over-squashing can both be alleviated jointly, we provide
a minimal example as illustrated in Figure 1. Utilizing the Braess paradox, we achieve this by
the deletion of an edge. In contrast, an edge addition that addresses over-squashing still causes
over-smoothing, yet less drastically than another edge addition that worsens over-squashing.

Reducing over-squashing via the spectral gap. From a spectral perspective, bottlenecks, which
hamper the information flow by over-squashing, can be characterized by the spectral gap of the
(symmetric) normalized graph Laplacian LG , where G = (V, E). The Laplacian of the graph is
L = D − A, where A is the adjacency matrix and D the diagonal degree matrix. The symmetric
normalized graph Laplacian is defined as LG = D−1/2LD−1/2. Let {λ0 < λ1 < λ2, ...λn} be the
eigenvalues of LG arranged in ascending order and let λ1(LG) be the first non-zero eigenvalue of the
normalized graph Laplacian, which is also called the spectral gap of the graph. For a graph where
distant network components are connected only by a few bridging edges, all the information has
to be propagated via these edges. The information flow through edges is encoded by the Cheeger
(1971) constant hS = minS⊂V

|∂S|
min{V ol(S),V ol(S\V )} where ∂S = {(u, v) : u ∈ S, v ∈ V\S} and

V ol(S) =
∑

u∈S du, being du the degree of the node u. The spectral gap is bounded by the Cheeger

inequality 2hG ≥ λ1 ≥ h2
G
2 , which motivates it as a measure of over-squashing.
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Figure 1: Braess’ paradox. We derive a simple example where deleting an edge from G to obtain G−

yields a higher spectral gap. Alternatively, we add a single edge to the base graph to either increase
(G+) or to decrease (G̃+) the spectral gap. The relationship between the four graphs is highlighted by
arrows when an edge is added/deleted.

Braess’ paradox. Braess (1968) found a counter-intuitive result for road networks: even if all
travelers behave selfishly, the removal of a road can still improve each of their individual travel times.
That is, there is a violation of monotonicity in the traffic flow with respect to the number of edges of
a network. For instance, Chung & Young (2010) has shown that Braess’ paradox occurs with high
probability in Erdős-Rényi random graphs, and Chung et al. (2012) have confirmed it for a large class
of Expander graphs. The paradox can be analogously applied to related graph properties such as the
spectral gap of the normalized Laplacian. Eldan et al. (2017) have studied how the spectral gap of
a random graph changes after edge additions or deletions, proving a strictly positive occurrence of
the paradox for typical instances of ER graphs. This result inspires us to develop an algorithm for
rewiring a graph by specifically eliminating edges that increase this quantity, which we can expect
to carry out with high confidence in real-world graphs. Their Lemma 3.2 (when reversed) states a
sufficient condition that guarantees a spectral gap increase in response to a deletion of an edge.
Lemma 3.1. Eldan et al. (2017): Let G = (V, E) be a finite graph, with f denoting the eigenvector
and λ1(LG) the eigenvalue corresponding to the spectral gap. Let {u, v} /∈ V be two vertices that
are not connected by an edge. Denote Ĝ = (V, Ê), the new graph obtained after adding an edge
between {u, v}, i.e., Ê := E ∪ {u, v}. Denote with Pf := ⟨f, f̂0⟩ the projection of f onto the top
eigenvector of Ĝ. Define g (u, v,LG) :=

−P2
fλ1(LG)− 2(1− λ1(LG))

(√
du + 1−

√
du√

du + 1
f2
u +

√
dv + 1−

√
dv√

dv + 1
f2
v

)
+

2fufv√
du + 1

√
dv + 1

.

If g (u, v,LG) > 0, then λ1(LG) > λ1(LĜ).

As a showcase example of the Braess phenomenon, let us analyze the behaviour of the spectral gap in
terms of an edge perturbation on the ring graph of n nodes Rn. We consider the ring R8 as G−, the
deletion of an edge from graph G in Figure 1.
Proposition 3.2. The spectral gap of G increases with the deletion of edge {0, 3}, i.e., λ1(LG−) >
λ1(LG). It also increases with the addition of edge {0, 5} or decreases with the addition of edge
{4, 7}, i.e., λ1(LG+) > λ1(LG) and λ1(LG̃+) < λ1(LG).

We leverage Eldan’s Lemma 3.1 in Appendix A.1 and apply the spectral graph proxies in our
derivations starting from an explicit spectral analysis of the ring graph. While these derivations
demonstrate that we can reduce over-squashing (i.e., increase the spectral gap) by edge deletions, we
show next that edge deletions can also alleviate over-smoothing.

Slowing detrimental over-smoothing. For GNNs with mean aggregation, increasing the spectral gap
usually promotes smoothing and thus leads to higher node feature similarity. Equating a high node
feature similarity with over-smoothing would thus imply a trade-off between over-smoothing and
over-squashing. Methods by Giraldo et al. (2023); Nguyen et al. (2023) seek to find the right amount
of smoothing by adding edges to increase the gap and deleting edges to decrease it. Contrarily, we
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(a) Smoothing test for graphs in Figure 1. (b) Smoothing test for the Texas dataset.

Figure 2: We plot the MSE vs order of smoothing for our four synthetic graphs (2(a)), and for a real
heterophilic dataset with the result of different rewiring algorithms to it: FoSR (Karhadkar et al.,
2023) and PROXYADD for adding (200 edges), and our PROXYDELETE for deleting edges (5 edges)
(2(b)). We find that deleting edges helps reduce over-smoothing, while still mitigating over-squashing
via the spectral gap increase.

argue that deleting edges can also increase the gap while adding edges could decrease it, as our
previous analysis demonstrates. Thus, both edge deletions and additions allow to control which node
features are aggregated, while mitigating over-squashing. Such node features are central to a more
nuanced concept of over-smoothing that acknowledges that increasing the similarity of nodes that
share the same label, while keeping nodes with different labels distinguishable, aids the learning task.

To measure over-smoothing, we adopt the Linear GNN test bed proposed by Keriven (2022), which
uses a linear ridge regression (LRR) setup with mean squared error (MSE) as the loss. We assign two
classes to nodes according to their color in Figure 1, and one-dimensional features that are drawn
independently from normal distributions N (1, 1) and N (−1, 1), respectively. Figure 2(a) compares
how our exemplary graphs (see Figure 1) influence over-smoothing in this setting. While adding
edges can accelerate the rate of smoothing, pruning strikingly aids in reducing over-smoothing —and
still reduces over-squashing by increasing the spectral gap. Note that the real world heterophilic
graph example shows a similar trend and highlights the utility of the spectral pruning algorithm
PROXYDELETE, which we describe in the next section, over edge additions by the strong baseline
FoSR. Additional real world examples along with cosine distance between nodes of different labels
before and after spectral pruning and plots for Dirichlet energy can be found in Appendix D.

In the following, we discuss and analyze rigorously the reasons for this finding. Consider again the
ring graph G−, which has an inter-class edge pruned from our base graph G; this avoids a problematic
aggregation step and in this way mitigates over-smoothing. Instead of deleting an edge, we could
also add an edge arriving at G+, which would lead to a higher spectral gap than the edge deletion.
Yet, it adds an edge between nodes with different labels and therefore leads to over-smoothing. We
also prove this relationship rigorously for one step of mean aggregation.

Proposition 3.3. As more edges are added (from G− to G, or from G to G+ or G̃+), the average value
over same-class node representations after a mean aggregation round becomes less informative.

The proof is presented in Appendix A.2. We argue that similar situations arise particularly in
heterophilic learning tasks, where spectral gap optimization would frequently delete inter-class
edges but also add inter-class edges. Thus, mostly edge deletions can mitigate over-squashing and
over-smoothing simultaneously.

Clearly, this argument relies on the specific distribution of labels. Other scenarios are analyzed in
Appendix B to also highlight potential limitations of spectral rewiring that does not take node labels
into account.

Following this argument, however, we could ask if the learning task only depends on the label
distribution. The following proposition highlights why spectral gap optimization is justified beyond
label distribution considerations.

Proposition 3.4. After one round of mean aggregation, the node features of G+ are more informative
compared to G̃+.
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Note that G̃+ decreases the spectral gap, while G+ increases it relative to G. However, the label
configuration of G̃+ seems more advantageous because, for the changed nodes, the number of
neighbors of the same class label remains in the majority in contrast to G+. Still, the spectral gap
increase seems to aid the learning task compared to the spectral gap decrease.

4 Braess-inspired graph rewiring

We introduce two algorithmic approaches to perform spectral rewiring. Our main proposal is
computationally more efficient and more effective in spectral gap approximation than baselines, as
we also showcase in Table 14. The other approach based on Eldan’s Lemma is also analyzed, as it
provides theoretical guarantees for edge deletions. However, it does not scale well to larger graphs.

Greedy approach to modify edges. Evaluating all potential subsets of edges that we could add
or delete is computationally infeasible due to the combinatorially exploding number of possible
candidates. Therefore, we resort to a Greedy approach, in which we add or delete a single edge
iteratively. In every iteration, we rank candidate edges according to a proxy of the spectral gap change
that would be induced by the considered rewiring operation, as described next.

4.1 Graph rewiring with Proxy spectral gap updates

Update of eigenvalues and eigenvectors. Calculating the eigenvalues for every normalized graph
Laplacian obtained by the inclusion or exclusion of a single edge would be a highly costly method.
The ability to use the spectral gap directly as a criterion to rank edges requires a formula to efficiently
estimate it for one edge flip. For this we resort to Matrix Perturbation Theory (Stewart & Sun, 1990;
von Luxburg, 2007) to capture the change in eigenvalues and eigenvectors approximately. Our update
scheme is similar to the proposal by Bojchevski & Günnemann (2019) in the context of adversarial
flips. The change in the eigenvalue and eigenvector for a single edge flip (u, v) is given by

λ́ ≈ λ+∆wu,v((fu − fv)
2 − λ(f2

u + f2
v )), (1)

where λ is the initial eigenvalue; {fu, fv} are entries of the leading eigenvector, ∆wu,v = 1 if we
add an edge and ∆wu,v = −1 if we delete an edge. Note that this proxy is only used to rank edges
efficiently. After adding/deleting the top M edges (where M = 1 in our experiments), we update
the eigenvector and the spectral gap by performing a few steps of power iteration. To this end, we
initialize the function eigsh of the scipy sparse library in Python, which is based on the Implicitly
Restarted Lanczos Method (Lehoucq et al., 1998), with our current estimate of the leading eigenvector.
Both our resulting algorithms, PROXYDELETE for deleting edges and PROXYADD for adding edges,
are detailed in Appendix C.

Time Complexity of PROXYDELETE. The algorithm runs in O (N · (|E|+ s(G))) where N is the
number of edges to delete, and s(G) denotes the complexity of the algorithm that updates the leading
eigenvector and eigenvalue at the end of every iteration. In our setting, this requires a constant number
of power method iterations, which is of complexity s(G) = O(|E|). Note that, because we choose to
only delete one edge, the ranking does not need to be sorted to obtain its maximum. By having an
O(1) proxy measure to score candidate edges, we are able to improve the overall runtime complexity
from the original O (N · |E| · s(G)). Furthermore, even though this does not impact the asymptotic
complexity, deleting edges instead of adding them makes every iteration run on a gradually smaller
graph, which can further induce computational savings for the downstream task.

Time Complexity of PROXYADD. The run time analysis consists of the same elements as the edge
deletion algorithm. The key distinction is that the ranking is conducted on the complement of the
graph’s edges, Ē . Since the set of missing edges is usually larger than the existing edges in real world
settings, to save computational overhead, it is possible to only sample a constant amount of edges.
See Section F for empirical runtimes.

4.2 Graph rewiring with Eldan’s criterion

Lemma 3.1 states a sufficient condition for the Braess paradox. It naturally defines a scoring function
of edges to rank them according to their potential to maximize the spectral gap based on the function
g. However, the computation of this ranking is significantly more expensive than other considered
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Figure 3: We instantiate a toy ER graph with 30 nodes and 58 edges. We compare FoSR (Karhadkar
et al., 2023), our proxy spectral gap based methods, and our Eldan’s criterion based edge methods.

Table 1: Results on Long Range Graph Benchmark datasets.

Method PascalVOC-SP
( Test F1 ↑)

Peptides-Func
(Test AP ↑)

Peptides-Struct
(Test MAE ↓)

Baseline-GCN 0.1268±0.0060 0.5930±0.0023 0.3496±0.0013
DRew+GCN 0.1848±0.0107 0.6996±0.0076 0.2781±0.0028
FoSR+GCN 0.2157±0.0057 0.6526±0.0014 0.2499±0.0006

ProxyAdd+GCN 0.2213±0.0011 0.6789±0.0002 0.2465±0.0004
ProxyDelete+GCN 0.2170±0.0015 0.6908±0.0007 0.2470±0.0080

algorithms, as each scoring operation needs access to the leading eigenvector of the perturbed graph
with an added or deleted edge. In case of edge deletions, we also need to approximate the spectral
gap similar to our Proxy algorithms. As the involved projection Pf is a dot product of eigenvectors,
it requires O(|V|) operations. Even though this algorithm does not scale well to large graphs without
focusing on a small random subset of candidate edges, we still consider it as baseline, as it defines a
more conservative criterion to assess when we should stop deleting edges. The precise algorithms are
stated in Appendix C.

4.3 Approximation quality

To check whether the proposed edge modification algorithms are indeed effective in the spectral
gap expansion, we conduct experiments on an Erdös-Rényi (ER) graph with (|V|, |E|) = (30, 58) in
Figure 3. Our ideal baseline that scores each candidate with the correct spectral gap change would
usually be computationally too expensive, because each edge scoring requires O(|E|) computations.
For our small synthetic test bed, we still compute it to assess the approximation quality of the
proposed algorithms, and of the competitive baseline FoSR (Karhadkar et al., 2023). For both edge
additions (Figure 3(a)) and deletions (Figure 3(b)), we observe that the Proxy method outlined in
Algorithm 1 usually leads to a better spectral expansion approximation. In addition, we report the
spectral gaps that different methods obtain on real world data in Table 16 in the Appendix, which
highlights that our proposals are consistently most effective in increasing the spectral gap.

5 Experiments

5.1 Long Range Graph Benchmark

The Long Range Graph Benchmark (LRGB) was introduced by Dwivedi et al. (2023) specifically to
create a test bed for over-squashing. We compare our proposed PROXYADD and PROXYDELETE
methods with DRew (Gutteridge et al., 2023), a recently proposed strong baseline for addressing
over-squashing using a GCN as our backbone architecture in Table 1. We adopt the experimental
setting of Tönshoff et al. (2023), we adopt DRew baseline results from the original paper. We evaluate
on the following datasets and tasks: 1) PascalVOC-SP - Semantic image segmentation as a node
classification task operating on superpixel graphs. 2) Peptides-func - Peptides modeled as molecular
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Table 2: Node classification on Roman-Empire dataset.

Method #EdgesAdded Accuracy #EdgesDeleted Accuracy Layers

GCN - 70.30±0.73 - 70.30±0.73 5
GCN+FoSR 50 73.60±1.11 - - 5
GCN+Eldan 50 72.11±0.80 50 79.14±0.73 5

GCN+ProxyGap 50 77.54±0.74 20 77.45±0.68 5

GAT - 80.89±0.70 - 80.89±0.70 5
GAT+FoSR 50 81.88±1.07 - - 5
GAT+Eldan 50 81.13±0.50 100 82.12±0.69 5

GAT+ProxyGap 50 86.07±0.46 20 86.00±0.36 5

GCN - 68.89±0.77 - 68.89±0.77 10
GCN+FoSR 100 73.85±1.26 - - 10
GCN+Eldan 100 75.39±0.96 100 80.40±0.54 10

GCN+ProxyGap 20 78.31±0.47 20 78.19±0.71 10

GAT - 80.23±0.59 - 80.23±0.59 10
GAT+FoSR 100 81.37±1.14 - - 10
GAT+Eldan 100 87.19±0.38 20 86.90±0.37 10

GAT+ProxyGap 20 83.45±0.42 20 86.44±0.40 10
GCN - 67.77±0.90 - 67.77±0.90 20

GCN+FoSR 100 75.14±1.43 - - 20
GCN+Eldan 100 75.52±1.16 20 80.37±0.70 20

GCN+ProxyGap 50 77.96±0.65 20 78.03±0.71 20

GAT - 79.22±0.70 - 79.22±0.70 20
GAT+FoSR 100 80.64±1.12 - 80.64±1.12 20
GAT+Eldan 100 86.79±0.58 50 86.70±0.50 20

GAT+ProxyGap 10 86.25±0.63 20 86.15±0.61 20

Table 3: Node classification on Amazon-Ratings.

Method #EdgesAdded Accuracy #EdgesDeleted Accuracy Layers

GCN - 47.20±0.33 - 47.20±0.33 10
GCN+FoSR 25 49.68±0.73 - - 10
GCN+Eldan 25 48.71±0.99 100 50.15±0.50 10

GCN+ProxyGap 10 49.72±0.41 50 49.75±0.46 10

GAT - 47.43±0.44 - 47.43±0.44 10
GAT+FoSR 25 51.36±0.62 - - 10
GAT+Eldan 25 51.68±0.60 50 51.80±0.27 10

GAT+ProxyGap 20 49.06±0.92 100 51.72±0.30 10
GCN - 47.32±0.59 - 47.32±0.59 20

GCN+FoSR 100 49.57±0.39 - - 20
GCN+Eldan 50 49.66±0.31 20 48.32±0.76 20

GCN+ProxyGap 50 49.48±0.59 500 49.58±0.59 20

GAT - 47.31±0.46 - 47.31±0.46 20
GAT+FoSR 100 51.31±0.44 - - 20
GAT+Eldan 20 51.40±0.36 20 51.64±0.44 20

GAT+ProxyGap 50 47.53±0.90 20 51.69±0.46 20

Table 4: Node classification on Minesweeper.

Method #EdgesAdded Accuracy #EdgesDeleted Test ROC Layers

GCN - 88.57± 0.64 - 88.57± 0.64 10
GCN+FoSR 50 90.15±0.55 - - 10
GCN+Eldan 100 90.11±0.50 50 89.49±0.60 10

GCN+ProxyGap 20 89.59±0.50 20 89.57±0.49 10

GAT - 93.60±0.64 - 93.60±0.64 10
GAT+FoSR 100 93.14±0.43 - - 10
GAT+Eldan 50 93.26±0.48 100 93.82±0.56 10

GAT+ProxyGap 20 93.60±0.69 20 93.65±0.84 10
GCN - 87.41±0.65 - 87.41±0.65 20

GCN+FoSR 100 89.64±0.55 - - 20
GCN+Eldan 72 89.70±0.57 10 88.90±0.44 20

GCN+ProxyGap 20 89.46±0.50 50 89.35±0.30 20

GAT - 93.92±0.52 - 93.92±0.52 20
GAT+FoSR 50 93.56±0.64 - - 20
GAT+Eldan 10 93.92±0.44 20 95.48±0.64 20

GAT+ProxyGap 20 94.89±0.67 20 94.64±0.81 20

graphs. The task is graph classification. 3) Peptides-struct - Peptides modeled as molecular graphs.
The task is to predict various molecular properties, hence a graph regression task.

The top performance is highlighted in bold. Evidently, our proposed rewiring methods outperform
DRew (Gutteridge et al., 2023) and FoSR (Karhadkar et al., 2023) on PascalVOC and Peptides-struct,
and achieves comparable performance on Peptides-func.

In addition, Table 10 in the appendix compares different rewiring strategies for node classification
on other commonly used datasets and graph classification (§E.2) for adding edges, since FoSR
(Karhadkar et al., 2023) was primarily tested on this task.

Node classification on large heterophilic datasets. Platonov et al. (2023) point out that most
progress on heterophilic datasets is unreliable since many of the used datasets have drawbacks,
including duplicate nodes in Chameleon and Squirrel datasets, which lead to train-test data leakage.
The sizes of the small graph sizes also lead to high variance in the obtained accuracies. Consequently,
we also test our proposed algorithms on 3/5 of their newly introduced larger datasets and use GCN
(Kipf & Welling, 2017) and GAT (Veličković et al., 2018) as our backbone architectures. As a
higher depth potentially increases over-smoothing, we also analyze how our methods fares with
varied number of layers. To that end, we adopt the code base and experimental setup of Platonov
et al. (2023); the datasets are divided into 50/25/25 split for train/test/validation respectively. The
test accuracy is reported as an average over 10 runs. To facilitate training deeper models, skip
connections and layer normalization are employed. We compare FoSR (Karhadkar et al., 2023) and
our proposals based on the Eldan criterion as well as PROXYADD and PROXYDELETE in Tables 2,3,4.
The top performance is highlighted in bold. Evidently, for increasing depth, even though the GNN
performance should degrade because of over-smoothing, we achieve a significant boost in accuracy
compared to baselines, which we attribute to the fact that our methods delete inter-class edges —thus
slowing down detrimental smoothing.
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Table 5: Pruning for lottery tickets comparing UGS to our ELDANDELETE pruning and our PROXY-
DELETE pruning. We report Graph Sparsity (GS), Weight Sparsity (WS), and Accuracy (Acc).

Method Cora Citeseer Pubmed

Metrics GS WS Acc GS WS Acc GS WS Acc

UGS 79.85% 97.86% 68.46±1.89 78.10% 97.50% 66.50±0.60 68.67% 94.52% 76.90±1.83
ELDANDELETE-UGS 79.70% 97.31% 68.73±0.01 77.84% 96.78% 64.60±0.00 70.11% 93.17% 78.00±0.42
PROXYDELETE-UGS 78.81% 97.24% 69.26±0.63 77.50% 95.83% 65.43±0.60 78.81% 97.24% 75.25±0.25

Pruning for graph lottery tickets. In Sections §3 and §5, we have shown that graph pruning can
improve generalization, mitigate over-squashing and also help slow down the rate of smoothing. Can
we also use our insights to find lottery tickets (Frankle & Carbin, 2019)?

To what degree is graph pruning feature data dependent? The first extension of the Lottery
Ticket Hypothesis to GNNs, called Unified Graph Sparsification (UGS) (Chen et al., 2021), prunes
connections in the adjacency matrix and model weights that are deemed less important for a prediction
task. Note that UGS relies on information that is obtained in computationally intensive prune-train
cycles that take into account the data and the associated masks. In the context of GNNs, the input
graph plays a central role in determining a model’s performance at a downstream task. Naively
pruning the adjacency matrix without characterizing what constitutes important edges is a pitfall we
would want to avoid (Hui et al., 2023), yet resorting to expensive train-prune-rewind cycles to identify
importance is also undesirable. This brings forth the questions: To what extent does the pruning
criterion need to depend on the data? Is it possible to formulate a data/feature agnostic pruning
criterion that optimizes a more general underlying principle to find lottery tickets? Morcos et al.
(2019) and Chen et al. (2020) show, in the context of computer vision and natural language processing
respectively, that lottery tickets can have universal properties that can even provably (Burkholz et al.,
2022) transfer to related tasks.

Lottery tickets that rely on the spectral gap. However, even specialized structures need to maintain
and promote information flow through their connections. This fact has inspired works like Pal
et al. (2022); Hoang et al. (2023) to analyze how well lottery ticket pruning algorithms maintain the
Ramanujan graph property of bipartite graphs, which is intrinsically related to the Cheeger constant
and thus the spectral gap. They have further shown that rejecting pruning steps that would destroy a
proxy of this property can positively impact the training process.

In the context of GNNs, we show that we can base the graph pruning decision even entirely on the
spectral gap, but rely on a computationally cheaper approach to obtain a proxy. By replacing the
magnitude pruning criterion for the graph with the Eldan criterion and PROXYDELETE to prune edges,
in principle, we can avoid the need for additional data features and labels. This has the advantage
that we could also prune the graph at initialization and thus benefit from the computational savings
from the start. We use our proposed methods to prune the graph at initialization to the requisite
sparsity level and then feed it to the GNN where the weights are pruned in an iterative manner. Our
results are presented in Table 18, where we compare IMP based UGS (Chen et al., 2021) with our
methods for different graph and weight sparsity levels. Note that, even though our method does
not take any feature information into account and prunes purely based on the graph structure, our
results are comparable. For datasets like Pubmed, we even slightly outperform the baseline. Table 5
shows results for jointly pruning the graph and parameter weights, which leads to better results due
to potential positive effects of overparameterization on training (Gadhikar & Burkholz, 2024).

Stopping criterion. The advantage of using spectral gap based pruning (especially the Eldan
criterion) is patent: It helps identify problematic edges that cause information bottlenecks and
provides a framework to prune those edges. Unlike UGS, our proposed framework also has the
advantage that we can couple the overall pruning scheme with a stopping criterion that follows
naturally from our setup. We stop pruning the input graph when no available edges satisfy our
criterion anymore.

6 Conclusion

Our work connects two seemingly distinct branches of the literature on GNNs: rewiring graphs
to mitigate over-squashing and pruning graphs for lottery tickets to save computational resources.
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Contributing to the first branch, we highlight that, contrary to the standard rewiring practice, not
only adding but also pruning edges can increase the spectral gap of a graph exploiting the Braess
paradox. By providing a minimal example, we prove that this way it is possible to address over-
squashing and over-smoothing simultaneously. Experiments on large-scale heterophilic graphs
confirm the practical utility of this insight. Contributing to the second branch, these results explain
how pruning graphs moderately can improve the generalization performance of GNNs, in particular
for heterophilic learning tasks. To utilize these insights, we have proposed a computationally efficient
graph rewiring framework, which also induces a competitive approach to prune graphs for lottery
tickets at initialization.
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A Proofs

A.1 Proof of Proposition 3.2

Spectral analysis for general n.

For all n, the (normalized) Laplacian matrix of Rn is circulant: all rows consist of the same elements,
and each row is shifted to the right with respect to the previous one. The first row of L(Rn) is
rn =

(
1,− 1

2 , 0, . . . , 0,−
1
2

)
. All circulant matrices satisfy that their eigenvectors are made up of

powers of the nth-roots of unity, and that its eigenvalues are the DFT of the matrix’s first row (Gray,
2005). With this we easily obtain that its spectral gap is

λ1 =

n−1∑
k=0

rn(k) · e−i2π
k
n = 1− 1

2

(
e−i2π

1
n + e−i2π

−1
n

)
= 1− cos

(
2π

n

)
.

As stated before, one possible set of eigenvectors is ωj(k) = exp
(
i 2πjkn

)
. Because their

conjugates and their linear combinations are also eigenvectors, we can get real eigenvectors as
xj(k) =

ωj(k)−ω−j(k)
2i = sin 2πjk

n . Alternatively, we can get yj(k) =
ωj(k)+ω−j(k)

2 = cos 2πjk
n .

We only need to focus on the (pair of) eigenvectors for j = 1. Note that they are orthogonal to each
other. Because they are both eigenvectors with the same eigenvalue λ1, all linear combinations of
them will also be eigenvectors with eigenvalue λ1. This multiplicity lets us choose any of these
vectors to fulfill Eldan’s criterion. A limitation of our algorithm is that, in cases of multiplicity, we
can only choose one of them, potentially giving that edge a disadvantage —the Lemma holds as long
as there exists one that fulfills it, but not necessarily the one we have chosen.

The norms of x1 and y1 are
√

n
2 . Therefore, the norm of any linear combination of them is

∥µx1 + νy1∥ =
√

n
2

√
µ2 + ν2. We denote the normalized linear combination of x1 and y1 as

f
(µ,ν)
1 =

√
2(µx1 + νy1)√
n(µ2 + ν2)

Our choice will be µ = 3, ν = 1, i.e., f (3,1)
1 = (3x1+y1)√

5n
.

Elements of the criterion for general n. As per Eldan et al. (2017), the first eigenvector of the new

graph’s normalized Laplacian is f̂0 = D̂
1
21/

√∑
d̂i. In our case: f̂0(k) =

√
3√

2(n+1)
if k ∈ {u, v},

and
√
2√

2(n+1)
if k /∈ {u, v}. With it we calculate the projection, dependent on the eigenvector f1:

Pf1 =

n−1∑
k=0

f1(k)f̂0(k) =

n−1∑
k=0, k ̸=u,v

√
2√

2(n+ 1)
f1(k) +

√
3√

2(n+ 1)
(f1(u) + f1(v))

=

√
3−

√
2√

2(n+ 1)
(f1(u) + f1(v)) .

We also have, for all n, u and v, that
√
du+1−

√
du√

du+1
=

√
dv+1−

√
dv√

dv+1
=

√
3−

√
2√

3
= 1 −

√
2
3 . We can

update the criterion with these considerations: g(u, v,Rn) =

= −P2
f1λ1 − 2(1− λ1)

(√
du + 1−

√
du√

du + 1
f1(u)

2 +

√
dv + 1−

√
dv√

dv + 1
f1(v)

2

)
+

2f1(u)f1(v)√
du + 1

√
dv + 1

= −

( √
3−

√
2√

2(n+ 1)

)2(
1− cos

(
2π

n

))
(f1(u) + f1(v))

2

− 2 cos

(
2π

n

)(
1−

√
2

3

)(
f1(u)

2 + f1(v)
2
)
+

2f1(u)f1(v)

3
.
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Case n = 8, (u, v) = {0, 3}. We choose f1 := f
(3,1)
1 = (3x1+y1)√

40
. We have f1(0) = 1

2
√
10

and
f1(3) =

1
2
√
5

. Then:

(f1(u) + f1(v))
2
=

(
1

2
√
10

+
1

2
√
5

)2

=
3 + 2

√
2

40(
f1(u)

2 + f1(v)
2
)
=

(
1

2
√
10

)2

+

(
1

2
√
5

)2

=
3

40

f1(u)f1(v) =
1

2
√
10

1

2
√
5
=

√
2

40

Finally, Eldan’s criterion for n = 8, (u, v) = {0, 3}, and our choice of f1 is g(0, 3, R8) =

= −

(√
3−

√
2√

18

)2 (
1− cos

(π
4

))
(f1(u) + f1(v))

2 − 2 cos
(π
4

)(
1−

√
2

3

)(
f1(u)

2 + f1(v)
2
)

+
2f1(u)f1(v)

3
= −

(√
3−

√
2√
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)2(
1−

√
2

2

)
3 + 2

√
2

40
−

√
2

(
1−

√
2

3

)
3

40
+

2

3

√
2

40

≈ −0.0002395− 0.0194635 + 0.0235702 ≈ 0.0038672 > 0.

In Table 6 we check Eldan’s criterion computationally for all examples; we also check whether
both our proxy estimates truthfully indicate the sign of the real spectral gap difference. Eldan’s
criterion g(u, v, ·) is calculated from the sparser graph’s spectral properties, as well as ∆PROXYADD
—estimating the spectral gap’s difference when that edge is added. Meanwhile, ∆PROXYDELETE is
calculated from the denser graph and tries to estimate the spectral gap of the pruned one.

When g(u, v, ·) > 0, it theoretically guarantees that ∆λ1 < 0, i.e., that the addition of said edge is
NOT desired. This holds in our table for the first and third rows, where the addition of each edge
lowers the spectral gap. Our proxy values reflect it in both directions: ∆PROXYADD is negative
because the edge should not be added, and ∆PROXYDELETE is positive because the edge should be
pruned.

Note that, because of the aforementioned multiplicity of the ring’s eigenvectors, if we choose another
f1 for the first row, Eldan’s criterion might not be satisfied. For example, using the eigenvectors given
by the library function np.linalg.eigh, the criterion yields a value of ≈ −0.005904.

The second row shows an example of an edge that is desirable to be added. In this case, it is
guaranteed that Eldan’s criterion is negative. Our proxy values are again accurately descriptive of
reality: ∆PROXYADD is positive and ∆PROXYDELETE is negative.

Table 6: Computationally calculated criteria for the toy graph examples.

Sparser graph Denser graph {u, v} Eldan’s g(u, v, ·) ∆PROXYDELETE ∆PROXYADD ∆λ1

G− G {0, 3} 0.003867 0.027992 -0.017678 -0.01002
G G+ {0, 5} -0.146246 -0.064550 0.415994 0.071632
G G̃+ {4, 7} 0.004952 0.032403 -0.024739 -0.011584

A.2 Proof of Propositions 3.3 and 3.4

We choose one-dimensional features to follow normal distributions dependent on their class: Xi ∼
N (1, 1) for class (+), and Xi ∼ N (−1, 1) for class (−). After one round of mean aggregation, class
(+) nodes with two intra-class neighbors will still have an expected mean value of 1, because they
will aggregate three features that follow the same distribution: from themselves and the two neighbors.
However, nodes like X2, which have one neighbor of each class, will have a lower expected value:
2−1
3 = 1

3 . In general, if a (class (+)) node has p same-class neighbors and q different-class neighbors,
their representation after an aggregation round will follow a normal distribution N ( 1+p−q

1+p+q ,
1

1+p+q ).
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The smaller its expected mean is, the more it deviates from the original mean, and the less informative
it gets. In Table 7 we show the expected values of each configuration dependent on the neighbors’
classes as they appear on our four considered graphs. The class (−) configurations are omitted
because they are the same as the ones shown but with the opposite sign.

Table 7: Expected mean values of each neighboring configuration after one round of mean aggregation.

Name Neighboring configuration Expected Mean

A + + + 1+1+1
3 = 1

B + + − 1+1−1
3 = 1

3

C + +

−
+

1+1+1−1
4 = 1

2

D − −
+

+
1+1−1−1

4 = 0

E − −
+

+
+

1+1+1−1−1
5 = 1

5

B
A

A

B
-B

-A

-A

-B

(a) G− neighboring conf.

B
A

C

B
-B

-C

-A

-B

(b) G neighboring conf.

B
A

E

B
-B

-C

-A

-D

(c) G+ neighboring conf.

B
C

C

B
-B

-C

-C

-B

(d) G̃+ neighboring conf.

Figure 4: Neighboring configurations on each of the four graphs from Figure 1.

Now we consider again the four graphs from Figure 1. In Figure 4 we specify which nodes have
which configuration from the set {A, B, C, D, E} as named in Table 7. We arbitrarily choose orange
nodes to be the negative class. After one round of mean aggregation on each of them, we can estimate
the amount of class information remaining on the two classes by averaging the corresponding node
representations of each node per class —that is, we average the four expected means for purple nodes
and the four expected means for orange nodes. We calculate these values in Table 8. As we intended
to prove, they tend towards non-informative zero for both classes as the number of edges increases,
and they follow the same order as the smoothing rate curves plotted in Figure 2(a). Proposition 3.3
is proved because values tend to zero —so both classes’ averages get closer together— from G− to
G, and from G to both G+ and G̃+. Proposition 3.4 is proved because the values from G+ are more
informative/further apart than the values from G̃+.

B How other label configurations affect the rings’ smoothing rates

In Figure 5 we show how different configuration of labels for our example graphs affect their
smoothing rate tests. In particular, we will analyze the result when added edges are intra-class instead
of inter-class, as well as when the label distribution actively goes against the graph structure.

As a first modification (Figure 5(c)), we rotate the labels so that edge {0, 3} is now intra-class; this
makes edge {4, 7} from G̃+ intra-class, too. It is reflected in its smoothing rate plot in two main ways.
First, the distance between graph G− and G is not as wide, because the extra intra-edge in G does
not cause as much smoothing as the inter-class edge from the original configuration does. Second,
graph G̃+ is now the least smoothed. This might be because the two edges aid in isolating the flow of
information between the two, very distinct classes; note that this graph also has the smallest spectral
gap, so the configuration of labels and the graph structure work towards the same goal.
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Table 8: Neighboring configurations for each graph, and their average value after a round of mean
aggregation.

Node G− G G+ G̃+

X6 B: 1
3 B: 1

3 B: 1
3 B: 1

3

X7 A: 1 A: 1 A: 1 C: 1
2

X0 A: 1 C: 1
2 E: 1

5 C: 1
2

X1 B: 1
3 B: 1

3 B: 1
3 B: 1

3

Average: 2+ 2
3

4 ≈ 0.667
1+ 2

3+
1
2

4 =≈ 0.542
1+ 2

3+
1
5

4 =≈ 0.467
2
3+

2
2

4 =≈ 0.417

X2 -B: − 1
3 -B: − 1

3 -B: − 1
3 -B: − 1

3

X3 -A: −1 -C: − 1
2 -C: − 1

2 -C: − 1
2

X4 -A: −1 -A: −1 -A: −1 -C: − 1
2

X5 -B: − 1
3 -B: − 1

3 -D: 0 -B: − 1
3

Average: − 2+ 2
3

4 ≈ −0.667 − 1+ 2
3+

1
2

4 ≈ −0.542 − 1+ 1
3+

1
2

4 ≈ −0.458 −
2
3+

2
2

4 ≈ −0.417
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Figure 5: Different configurations of labels/features for the example graphs of Figure 1, as well as
their respective smoothing rate tests akin to Figure 2(a). Figure 5(a) is the original configuration, for
direct comparison. Figure 5(c) rotates the labels and achieves more intra-class edges. Figure 5(e)
achieves the same amount of intra-class edges but separates nodes with the same labels. Figure 5(g)
alternates between classes and is a worse configuration to learn.

As a second modification (Figure 5(e)), we alternate classes two by two nodes at a time. This makes
{0, 3} and {4, 7} intra-class again, so it is directly comparable to the previous disposition. However,
the edges in G̃+ are not dividing the two classes so distinctively. This makes its smoothing occur
more quickly than before, now on par with the base graph. We consider this phenomenon to be
directly related to its lower spectral gap. Another relevant aspect of this graph is that, still, the pruned
graph G− smooths less than G, even when the pruned edge is intra-class, and even if the spectral gap
has increased; it is another instance of both mitigating over-smoothing and over-squashing.

Lastly (Figure 5(g)), we propose a configuration that is actively counterproductive to the structure of
the ring, by alternating nodes of different classes one by one. As much as the spectral gap increases
with the deletion of edge {0, 3}, the ring G− is a worse structure for the right kind of information to
flow, and worse to avoid getting dissipated in this particular case. This unveils the ultimate limitation
of not taking into account the task in a rewiring method, which is a trade-off to assume.
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C Algorithms

Here we include the corresponding algorithms: PROXYDELETE (1), PROXYADD (2), ELDANADD
(3), and ELDANDELETE (4).

Algorithm 1 Proxy Spectral Gap based Greedy Graph Sparsification (PROXYDELETE)
Require: Graph G = (V, E), num. edges to prune N , spectral gap λ1(LG), second eigenvector f .

repeat
for (u, v) ∈ E do

Consider Ĝ = G \ (u, v).
Calculate proxy value for the spectral gap of Ĝ based on Eq. (1):
λ1(LĜ) ≈ λ1(LG)− ((fu − fv)

2 − λ1(LG) · (f2
u + f2

v ))
end for
Find the edge that maximizes the proxy: (u−, v−) = argmax

(u,v)∈E
λ1(LĜ).

Update graph edges: E = E \ (u−, v−).
Update degrees: du− = du− − 1, dv− = dv− − 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges deleted.
Output : Sparse graph Ĝ = (V, Ê).

Algorithm 2 Proxy Spectral Gap based Greedy Graph Addition (PROXYADD)
Require: Graph G = (V, E), num. edges to add N , spectral gap λ1(LG), second eigenvector f of G.

repeat
for (u, v) ∈ Ē do

Consider Ĝ = G ∪ (u, v).
Calculate proxy value for the spectral gap of Ĝ based on Eq. (1):
λ1(LĜ) ≈ λ1(LG) + ((fu − fv)

2 − λ1(LG) · (f2
u + f2

v ))
end for
Find the edge that maximizes the proxy: (u+, v+) = argmax

(u,v)∈Ē
λ1(LĜ).

Update graph edges: E = E ∪ (u+, v+).
Update degrees: du+ = du+ + 1, dv+ = dv+ + 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges added.
Output : Denser graph Ĝ = (V, Ê).

Algorithm 3 Eldan based Greedy Graph Addition (ELDANADD)
Require: Graph G = (V, E), num. edges to add N , spectral gap λ1(LG), top eigenvector f of G.

repeat
for edges(u, v) ∈ Ē do

Consider Ĝ = G ∪ (u, v).
Compute projection P2

f = ⟨f, f̂0⟩.
Compute Eldan’s criterion g(u, v,LG).

end for
Find the edge that minimizes the criterion: (u+, v+) = argmax

(u,v)∈Ē
−g(u, v,LG).

E = E ∪ (u+, v+).
Update degrees du+ = du+ + 1, dv+ = dv+ + 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges added.
Output : Denser graph Ĝ = (V, Ê).
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Algorithm 4 Eldan based Greedy Graph Sparsification (ELDANDELETE)
Require: Graph G = (V, E), num. edges to prune N , spectral gap λ1(LG), top eigenvector f of G.

repeat
for edges(u, v) ∈ E do

Consider Ĝ = G \ (u, v).
{Note that the denser graph is the original G, so we require approximations of f̂ and λ1(LĜ)

from the sparser Ĝ.}
Estimate eigenvector f̂ from f based on the power iteration method.
Estimate corresponding eigenvalue λ1(LĜ) based on Eq. (1).
Compute projection P2

f = ⟨f̂ , f0⟩.
Compute Eldan’s criterion g(u, v,LĜ).

end for
Find the edge that maximizes the criterion: (u−, v−) = argmax

(u,v)∈E
g(u, v,LĜ)

Ê = Ê \ (u−, v−).
Update degrees du− = du− − 1, dv− = dv− − 1
Update eigenvectors and eigenvalues of G accordingly.

until N edges deleted.
Output : Sparse graph Ĝ = (V, Ê).

D Spectral pruning can slow down the rate of smoothing

In section §3 we have demonstrated the possibility of addressing both over-squashing and over-
smoothing via spectral gap based pruning in a simple toy graph setting. Below we present the results
on real-world graphs, where spectral pruning can help slow down the rate of smoothing. We adopt
the same Linear GNN setup (Keriven, 2022). In Figure 6, we present two homophilic datasets (Cora
and Citeseer) and two heterophilic graphs (Texas and Chameleon). For each of these experiments
we add edges using FoSR (Karhadkar et al., 2023) and PROXYADD and delete edges using our
proposed PROXYDELETE method. FoSR, which optimizes the spectral gap by adding edges, aids
in mitigating over-squashing but inevitably leads to accelerating the smoothing rate. Conversely,
if we delete edges using our PROXYDELETE method, the rate of smoothing is slowed down. It
is also evident that our pruning method is more effective in heterophilous graph settings. This is
likely due to the deletion of edges between nodes with different labels, thus preventing detrimental
smoothing. We substantiate this by measuring the distance between nodes that have different labels,
which should stay distinguishable. That is, our method deletes edges between nodes of different
labels thus preventing unnecessary aggregation. We report the cosine distance for heterophilic graphs
in Table 9 before training, after training on the original graph, and after training on the pruned graph.
From the table it is clear that pruning edges increases the distance between nodes of different labels.
Another popular metric in the literature to measure over-smoothing is Dirichlet energy, which can
only measure the degree of smoothing, but not whether it is helpful for a learning task. To keep up
with the trend, we plot the Dirichlet energy vs. Layers (Roth & Liebig, 2023) in Figure 7 on Cora
and Texas. It is clear from the figure that our method slows down the decay of Dirichlet energy. Note
that, since our method works purely on the graph topology, it cannot improve the Dirichlet energy
like specialised methods (Zhou et al., 2021; Roth & Liebig, 2023; Rusch et al., 2023b).

In a recent work by Azabou et al. (2023), the authors also show similar experiments by introducing
additional nodes to slow down the rate of message passing and thus slowing down the rate of
smoothing. We achieve a similar effect just by pruning edges instead of introducing additional nodes.

E Additional results

E.1 Node classification.

We perform semi-supervised node classification on the following datasets: Cora (McCallum et al.,
2000), Citeseer (Sen et al., 2008) and Pubmed (Namata et al., 2012). We report results on Chameleon,
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(a) Cora dataset with 200 edges added
(FoSR, PROXYADD) and 20 deleted
(PROXYDELETE).

(b) Citeseer dataset with 200 edges
added (FoSR, PROXYADD) and 100
deleted (PROXYDELETE).

(c) Texas dataset with 200 edges added
(FoSR, PROXYADD) and 5 deleted
(PROXYDELETE) .

(d) Chameleon dataset with 200 edges
added (FoSR, PROXYADD) and 250
deleted (PROXYDELETE).

Figure 6: We show on real-world graphs that spectral pruning can not only mitigate over-squashing
by improving the spectral gap but also slows down the rate of smoothing, thus effectively preventing
over-smoothing as well.

Table 9: Cosine distance between nodes of different labels before and after deleting edges using
PROXYDELETE.

Dataset Before
Training

After
Training

(OriginalGraph)

After
Training

(PrunedGraph)

Cornell 0.72 0.87 0.83
Wisconsin 0.72 0.77 0.86

Texas 0.68 0.62 0.80
Chameleon 0.99 0.91 0.96

Squirrel 0.98 0.82 0.89
Actor 0.83 0.95 0.99

Squirrel, Actor and the WebKB datasets consisting of Cornell, Wisconsin and Texas. Our baselines
include GCN (Kipf & Welling, 2017) without any modifications to the original graph, DIGL by
Gasteiger et al. (2019), SDRF by Topping et al. (2022), and FoSR by Karhadkar et al. (2023). We
adopt the public implementations available and tune the hyperparameters to improve the performance
if possible. Our results are presented in Table 10. We compare GCN with no edge modifications,
GCN+DIGL, GCN+SDRF, GCN+FoSR, GCN+RandomDelete, GCN+ELDANDELETE where we
delete the edges, GCN+ELDANADD where we add the edges according to the criterion from Lemma
3.1 and PROXYADD and PROXYDELETE which use Equation (1) to optimize the spectral gap directly.
The results for GCN+BORF (Nguyen et al., 2023) are taken from the paper directly, hence NA for
some datasets. The top performance is highlighted in bold. GCN+FoSR outperforms all methods
on Cora, Citeseer and Pubmed, which are homophilic. Yet, GCN+PROXYADD is more effective in
increasing the spectral gap (see Table 16). On the remaining six datasets, our proposed methods
both with edge deletions and additions outperform FoSR and SDRF, while outperforming all other
baselines on all datasets. For training details and hyperparameters, please refer to the Appendix 19.

E.2 Graph classification with GCN and R-GCN

We conduct experiments on graph classification with a GCN (Kipf & Welling, 2017) and R-GCN
(Battaglia et al., 2018) backbone to demonstrate the effectiveness of our proposed rewiring algorithms.
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(a) Cora dataset with 50 edges
added (FoSR) and 50 deleted
(PROXYDELETE).

(b) Texas dataset with 50 edges
added (FoSR) and 100 deleted
(PROXYDELETE) .

Figure 7: We measure the Dirichlet energy and plot it for increasing depth on a homophilic dataset,
Cora and a heterophilic dataset, Texas. For increasing depth, we can see PROXYDELMAX slows the
decay of Dirichlet energy.

Table 10: We compare the performance of GCN augmented with different graph rewiring methods on
node classification.

Method Cora
H = 0.8041

Citeseer
H = 0.7347

Pubmed
H = 0.8023

Cornell
H = 0.1227

Wisconsin
H = 0.1777

Texas
H = 0.060

Actor
H = 0.2167

Chameleon
H = 0.2474

Squirrel
H = 0.2174

GCN 87.22±0.40 77.35±0.70 86.96±0.17 50.74±1.63 53.52±1.50 50.40±1.47 29.12±0.24 31.15±0.84 26.00±0.69
GCN+DIGL 83.21±0.79 73.29±0.17 78.84±0.008 42.04±4.43 44.22±5.02 57.35±6.46 26.33±1.22 38.95±0.99 32.45±0.88
GCN+SDRF 87.84±0.68 78.43±0.62 87.36±0.14 53.54±2.65 58.78±3.22 60.25±4.97 31.67±0.36 41.30±1.36 38.98±0.46
GCN+FoSR 91.44±0.39 82.13±0.31 91.49±0.10 53.91±1.47 58.63±1.46 63.50±1.75 38.01±0.21 46.64±0.63 50.73±0.37

GCN+ELDANDELETE 87.60±0.18 78.68±0.54 87.33±0.07 65.13±1.50 67.84±1.45 70.53±1.23 43.65±0.21 52.51±0.55 48.89±0.40
GCN+ELDANADD 88.38±0.12 79.45 ±0.37 87.17±0.14 69.05±1.50 64.08±1.63 67.10±1.13 43.64±0.25 48.09±0.59 51.66±0.45
GCN+PROXYADD 89.10±0.70 78.94±0.54 87.54±0.24 66.54±1.41 67.75±1.64 74.21±1.25 43.45±0.20 54.30±0.59 48.85±0.39

GCN+PROXYDELETE 87.51±0.81 78.68 ±0.55 87.39±0.11 66.60 ± 1.67 66.36±1.33 72.36±1.35 43.52±0.22 55.88±0.70 48.90±0.39
GCN+RANDOMDELETE 87.30±0.31 78.34±0.38 87.15±0.16 63.97±2.50 61.71±2.73 63.97±5.41 29.57±0.44 44.07±1.04 40.63±0.41

GCN+BORF 87.50±0.20 73.80±0.20 NA 50.80±1.11 50.30±0.90 49.40±1.20 NA 61.50±0.40 NA

Our experimental setting is the same as that of FoSR by Karhadkar et al. (2023), with the difference
being we tune our hyperparameters on 10 random splits instead of 100. The final test accuracy
is averaged over 5 random splits of data. We compare our results with FoSR by Karhadkar et al.
(2023). For the IMDB-BINARY, REDDIT-BINARY and COLLAB datasets there are no node features
available and have to be created. For fair comparison we run FoSR on these datasets. For ENZYMES
and MUTAG the results are taken from the values reported in the paper. The results are reported in
Table 11 and 12. From the tables it is clear that our proposed algorithms are effective in increasing
the generalization performance even for graph classification tasks.

Table 11: Graph classification with GCN comparing FoSR, ELDANADD and PROXYADD.

Method ENZYMES MUTAG IMDB-BINARY REDDIT-BINARY COLLAB PROTEINS

GCN+FoSR 25.06±0.50 80.00±0.80 68.80±4.04 80.01±0.02 80.30±0.00 73.42 ± 0.41
GCN+ELDANADD 26.36±0.01 82.16±0.03 75.84±0.01 81.03±0.02 81.82±0.97 70.53±0.86
GCN+PROXYADD 27.39±0.01 85.00±0.00 75.00±0.02 78.20±0.01 79.52±0.01 76.53±0.02

Table 12: Graph classification with R-GCN comparing FoSR, ELDANADD and PROXYADD.

Method ENZYMES MUTAG IMDB-BINARY REDDIT-BINARY COLLAB PROTEINS

R-GCN+FoSR 35.63±0.58 84.45±0.77 70.16±3.67 80.01±0.02 78.04±0.84 73.79±0.35
R-GCN+ELDANADD 30.55±0.16 85.80±0.20 76.32±0.07 79.76±0.17 80.69±0.01 72.01±0.04
R-GCN+PROXYADD 33.12±2.74 78.0±5.51 73.96±2.25 87.93±0.61 80.22±1.13 73.32±2.78

E.3 Node classification using Relational-GCN

In Table 13 we compare FoSR (Karhadkar et al., 2023) and our proposed methods that use Eldan’s
criterion for adding edges and the PROXYADD method with a Relational-GCN backbone on 9 datasets.
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We adopt the experimental setup and code base of (Karhadkar et al., 2023), with the exception of
averaging over 10 random splits of data instead of 100.

Table 13: Node classification using Relational-GCNs comparing FoSR, Eldan’s criterion and PROX-
YADD.

Method Cora Citeseer Pubmed Cornell Wisconsin Texas Actor Chameleon Squirrel

R-GCN+FoSR 87.28±0.67 73.81±0.10 88.61±0.28 71.62±2.88 76.07±5.16 75.40±3.77 35.19±0.49 39.83±2.70 34.80±1.34
R-GCN+ELDANADD 87.38±1.03 73.72±1.15 88.58±0.20 73.78±6.30 77.45±3.19 78.37±2.75 34.75±0.40 43.20±1.24 33.79±0.81
R-GCN+PROXYADD 87.42±0.01 75.82±0.09 89.17 ± 0.42 70.00±0.20 77.45±0.40 75.67±0.40 35.05±0.35 42.58±1.20 33.03±1.40

F Update period, empirical runtimes and spectral gap comparisons

In §4.1, we have discussed the time complexity analysis of our proposed algorithms. Recall, that
our algorithm has a hyperparameter M , the number of edges to delete after ranking the edges using
our proxy. For edge additions, the candidate edges that can be added are large, thus we can resort
to sampling a constant set of edges to speed up the process. All of our experiments in §5 were
conducted with M = 1. However, it is possible to further reduce the overall runtimes by tuning
the value of M , that is, how many edges we can modify before we have to recalculate the proxy to
rank the edges again. This is shown in Table 15, where we compare our algorithms with M = 1
and M = 10, for 50 edge modifications. It is clear that although M = 1 leads to better spectral gap
improvement, M = 10 is also a valid updating period which induces enough spectral gap change
while simultaneously bringing down the runtime (also presented in Table 14) considerably, especially
for large graphs. To further evaluate the trade-off between the update period and its effect on GNN
test accuracy, we use PROXYADD and PROXYDELETE with different M updates on Cora and Texas
datasets to modify 50 and 20 edges respectively. This is shown in Figure 8. Although a more frequent
update points to better test accuracy, update periods with {5, 10} also yield competitive results. Thus
reinforcing the fact that our proposed methods can be computationally efficient and can help in
improving the generalization. In Table 16 we report the spectral gap changes induced by FoSR
(Karhadkar et al., 2023), our proposed Eldan criterion based addition and deletions and also the Proxy
versions of addition and deletions. In Table 17 we provide the runtimes for large heterophilic datasets
(Platonov et al., 2023).

(a) Test accuracy for Cora with M =
{1, 5, 10, 25} update periods. We ad-
d/delete 50 edges.

(b) Test accuracy for Texas with M =
{1, 5, 10, 20} update periods. We ad-
d/delete 20 edges.

Figure 8: We investigate the trade-off between how frequently we need to update the ranking criterion
vs. the test accuracy for GCN on Cora and Texas for node classification.

Table 14: Runtimes for 50 edge modifications in seconds.

Method Cora Citeseer Chameleon Squirrel

FoSR 4.69 5.33 5.04 19.48
SDRF 19.63 173.92 17.93 155.95

PROXYADD 4.30 3.13 1.15 9.12
PROXYDELETE 1.18 0.86 1.46 7.26
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Table 15: Empirical runtime (RT) comparisons with different update periods for the criterion for 50
edges. We also report the spectral gap before (SG.B) and after rewiring (SG.A).

Method Cora Citeseer Chameleon Squirrel

Measures SG.B SG.A RT SG.B SG.A RT SG.B SG.A RT SG.B SG.A RT

PROXYADD (M=1) 0.00478 0.0240 41.82 0.0015 0.012 27.70 0.0063 0.018 9.24 0.051 0.069 75.89
PROXYDELETE (M=1) 0.00478 0.0059 12.82 0.0015 0.0018 5.47 0.0063 0.0064 7.51 0.051 0.053 66.00

PROXYADD (M=10) 0.00478 0.018 4.30 0.0015 0.0067 3.13 0.0063 0.0160 1.15 0.051 0.058 9.12
PROXYDELETE (M=10) 0.00478 0.0074 1.04 0.0015 0.0021 0.86 0.0063 0.0065 1.46 0.051 0.0527 7.26

Table 16: We compare the spectral gap improvements of different rewiring methods for 50 edge
modifications. From the table it is evident that our proposed PROXYADD and PROXYDELETE
methods improve the spectral gap much better than FoSR.

Method Cora Citeseer Chameleon Squirrel

Spectral Gap Changes SG. Before SG. After SG. Before SG. After SG. Before SG. After SG. Before SG. After

FoSR 0.0047 0.0099 0.0015 0.0027 0.0063 0.0085 0.051 0.052
PROXYADD 0.0047 0.024 0.0015 0.012 0.0063 0.018 0.051 0.069

PROXYDELETE 0.0047 0.0059 0.0015 0.0018 0.0063 0.0064 0.051 0.053
ELDANADD 0.0047 0.0047 0.0015 0.0039 0.0063 0.0085 0.051 0.052

ELDANDELETE 0.0047 0.0074 0.0015 0.0099 0.0063 0.0059 0.051 0.053

Table 17: Spectral gap changes and empirical runtimes for Large Heterophilic Datasets.

Dataset SG. Before #EdgesAdded SG. After AddingTime #EdgesDeleted SG. After PruningTime

Roman-Empire 3.6842e-07 5 7.5931e-07 124.34 20 3.6875e-07 9.23
Amazon-Ratings 0.000104825 10 0.000230704 380.62 50 0.000104840 62.69

Minesweeper 0.000376141 20 0.000375844 164.44 20 0.000376141 15.5

G Pruning at initialization for graph lottery tickets

In Table 18, we present the results for Pruning at Initialization for finding graph lottery tickets. We
first prune the input graph to the required sparsity level and then the weights are iteratively pruned
by magnitude similar to the approach proposed by (Chen et al., 2021). From the table it is clear
that, at least for moderate graph sparsity (GS) levels for Cora dataset, that is around GS = 18.75%,
our proposed ELDANDELETE-UGS and PROXYDELETE attain comparable performance to UGS.
On Pubmed for different graph sparsity levels we outperform UGS. Meanwhile, our method fails to
identify winning tickets for Citeseer. We use the public implementation by the authors (Chen et al.,
2021) for all our lottery ticket experiments. For all experiments we report the test accuracy on node
classification averaged over 3 runs. Except for Pubmed which could only be averaged over 2 runs.

Table 18: We perform pruning at initialization to find graph lottery tickets. We compare UGS with
our proposed methods for varying graph sparsity (GS) and weight sparsity (WS) levels.

Cora - GS(18.75%); WS(89.88%) Citeseer - GS(19.46%);WS(89.80%) Pubmed - GS(19.01%);WS(89.33%)

Method Acccuracy Method Accuracy Method Accuracy

UGS 79.54±1.20 UGS 72.20±0.60 UGS 77.75±1.04
Eldan-UGS 79.10±0.07 Eldan-UGS 68.15±0.65 Eldan-UGS 79.80±0.00

ProxyDelete-UGS 78.66±0.73 PROXYDELETE-UGS 69.76±0.65 ProxyDelete-UGS 78.20±0.20

Cora - GS(57.59%) WS(98.31%) Citeseer- GS(59.12%);WS(98.12%) Pubmed - GS(56.47%);WS(98.21%)

UGS 72.65±0.55 UGS 68.70±0.20 UGS 76.80±0.00
Eldan-UGS 72.40±0.40 Eldan-UGS 66.55±0.15 Eldan-UGS 77.70±0.00

ProxyDelete-UGS 70.49±0.27 PROXYDELETE-UGS 67.96±1.72 ProxyDelete-UGS 77.80±0.00

Cora - GS(78.81%) WS(98.23%) Citeseer- GS(82.63%);WS(98.59%) Pubmed - GS(81.01%);WS(97.19%)

UGS 68.65±0.95 UGS 66.05±0.45 UGS 76.25±0.45
Eldan-UGS 67.20±0.10 Eldan-UGS 62.60±0.60 Eldan-UGS 72.80±0.00

ProxyDelete-UGS 64.46±0.47 PROXYDELETE-UGS 61.19±0.29 ProxyDelete-UGS 74.70±0.00
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H Training details and hyperparameters

We instantiate a 2-layered GCN (Kipf & Welling, 2017) for semi-supervised node classification, the
Planetoid datasets (Cora, Citeseer and Pubmed) are available as pytorch geometric datasets. For the
WebKB datasets we use the updated ones given by Platonov et al. (2023). We use a 60/20/20 split for
training/testing/validation respectively for all datasets. We perform extensive hyperparameter tuning
on the validation set and finally report test accuracy averaged over 10 splits of the data (Chen et al.,
2018). We use the largest connected component wherever available. The same experimental settings
hold for other baselines DIGL, SDRF and FoSR. For node classification using R-GCNs, we also use
a 3 layered GCN, this is highlighted in Table 20 with other hyperparameters. For graph classification,
we use the same experimental setup as (Karhadkar et al., 2023), we use a 4-layered GCN and R-GCN
versions. For the larger heterophilic datasets, we use the experimental setup given by the authors
(Platonov et al., 2023). We set the learning rate to {3e − 3, 3e − 4}, dropout to 0.32, and the
hidden dimension size to 512. For GATs, the attention heads are set to 8. The datasets are split into
50%/25%/25% for train, test and validation respectively. We tune our edge modification algorithms
on the validation set. The final test accuracy is reported as averaged over 10 random splits run for
1000 steps. Skip connections and normalization (Ba et al., 2016) is used to facilitate training deeper
models. We use PyTorch Geometric and DGL library for our experiments. All experiments were done
on 2 V100 GPUs. Our code https://github.com/RelationalML/SpectralPruningBraess
is available.

Table 19: Hyperparameters for GCN+our proposed rewiring algorithms.

Dataset LR HiddenDimension Dropout ELDANADD ELDANDELETE PROXYADD PROXYDELETE

Cora 0.01 32 0.3130296 50 20 100 100
Citeseer 0.01 32 0.4130296 50 20 50 50
Pubmed 0.01 128 0.3130296 50 100 20 50
Cornell 0.001 128 0.4130296 100 5 50 20

Wisconsin 0.001 128 0.5130296 100 5 50 10
Texas 0.001 128 0.4130296 100 5 50 76
Actor 0.001 128 0.2130296 100 10 25 500

Chameleon 0.001 128 0.2130296 100 50 50 200
Squirrel 0.001 128 0.5130296 50 100 10 1000

Table 20: Hyperparameters for R-GCN+PROXYADD on node classification

Dataset LR Layers HiddenDimension Dropout PROXYADD

Cora 0.01 2 32 0.3130296 50
Citeseer 0.01 2 64 0.3130296 250
Pubmed 0.01 2 32 0.4130296 100
Cornell 0.001 3 128 0.3130296 05

Wisconsin 0.001 3 128 0.3130296 25
Texas 0.01 3 128 0.3130296 20
Actor 0.001 3 128 0.5130296 25

Chameleon 0.001 3 128 0.4130296 100
Squirrel 0.001 3 128 0.3130296 5

Table 21: Hyperparameters for graph classifica-
tion with GCN+EldanAdd

Dataset LR Dropout Hidden
Dimension EldanAdd

ENZYMES 0.001 0.2130296 32 20
MUTAG 0.001 0.3130296 32 20

IMDB-BINARY 0.001 0.3130296 32 10
REDDIT-BINARY 0.001 0.2130296 32 10

COLLAB 0.001 0.21 32 10
PROTEINS 0.001 0.3130296 32 10

Table 22: Hyperparameters for graph classifica-
tion with GCN + PROXYADD

Dataset LR Dropout Hidden
Dimension ProxyAdd

ENZYMES 0.001 0.2130296 32 20
MUTAG 0.001 0.3130296 32 20

IMDB-BINARY 0.001 0.3130296 32 10
REDDIT-BINARY 0.001 0.2130296 32 10

COLLAB 0.001 0.21 32 10
PROTEINS 0.001 0.3130296 32 10
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Table 23: Hyperparameters for SDRF.

Dataset LR Dropout Hidden
Dimension

SDRF
Iterations τ C+

Cora 0.01 0.3130296 32 100 163 0.95
Citeseer 0.01 0.2130296 32 84 180 0.22
Pubmed 0.01 0.4130296 128 166 115 1443
Cornell 0.001 0.2130296 128 126 145 0.88

Wisconsin 0.001 0.2130296 128 89 22 1.64
Texas 0.001 0.2130296 128 136 12 7.95
Actor 0.01 0.4130296 128 3249 106 7.91

Chameleon 0.01 0.2130296 128 2441 252 2.84
Squirrel 0.01 0.2130296 128 1396 436 5.88

Table 24: Hyperparameters for FoSR.

Dataset LR Dropout Hidden
Dimension

FoSR
Iterations

Cora 0.01 0.5130296 128 50
Citeseer 0.01 0.3130296 128 10
Pubmed 0.01 0.4130296 128 50
Cornell 0.001 0.2130296 128 100

Wisconsin 0.001 0.2130296 128 100
Texas 0.001 0.4130296 128 100
Actor 0.01 0.4130296 128 100

Chameleon 0.01 0.4130296 128 100
Squirrel 0.01 0.2130296 128 100

Table 25: Hyperparameters for DIGL.

Dataset LR Dropout Hidden
Dimension α κ

Cora 0.01 0.41 32 0.0773 128
Citeseer 0.01 0.31 32 0.1076 -
Pubmed 0.01 0.41 128 0.1155 128
Cornell 0.001 0.41 128 0.1795 64

Wisconsin 0.001 0.31 128 0.1246 -
Texas 0.001 0.41 128 0.0206 32
Actor 0.01 0.21 128 0.0656 -

Chameleon 0.01 0.41 128 0.0244 64
Squirrel 0.01 0.41 128 0.0395 32

Table 26: Hyperparameters for graph classifica-
tion with R-GCN+EldanAdd

Dataset LR Dropout Hidden
Dimension EldanAdd

ENZYMES 0.001 0.2130296 64 50
MUTAG 0.001 0.3130296 64 40

IMDB-BINARY 0.001 0.3130296 32 50
REDDIT-BINARY 0.001 0.2130296 32 50

COLLAB 0.01 0.4130296 32 05
PROTEINS 0.01 0.4130296 32 05

Table 27: Hyperparameters for graph classifica-
tion with R-GCN + PROXYADD

Dataset LR Dropout Hidden
Dimension ProxyAdd

ENZYMES 0.001 0.2130296 32 10
MUTAG 0.001 0.3130296 32 10

IMDB-BINARY 0.001 0.3130296 32 10
REDDIT-BINARY 0.001 0.2130296 32 20

COLLAB 0.01 0.4130296 32 10
PROTEINS 0.01 0.4130296 32 10
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide both theoretical and experimental proof to substantiate claims
made in the abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss computational efficiency of our proposed algorithms and its
approximation quality.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Informal proofs provided in the main paper. Formal proofs provided in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the hyperparameters and our code base to reproduce the results
reported in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the code base with the instructions to reproduce our results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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• The assumptions made should be given (e.g., Normally distributed errors).
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