
FM-Delta: Lossless Compression for Storing Massive
Fine-tuned Foundation Models

Wanyi Ning1 Jingyu Wang1∗ Qi Qi1∗ Mengde Zhu1 Haifeng Sun1

Daixuan Cheng1 Jianxin Liao1 Ce Zhang2
1 Beijing University of Posts and Telecommunications 2 University of Chicago
{ningwanyi, wangjingyu, qiqi8266, arnoldzhu, hfsun}@bupt.edu.cn
daixuancheng6@gmail.com, liaojx@bupt.edu.cn, cez@uchicago.edu

Abstract

Pre-trained foundation models, particularly large language models, have achieved
remarkable success and led to massive fine-tuned variants. These models are
commonly fine-tuned locally and then uploaded by users to cloud platforms such
as HuggingFace for secure storage. However, the huge model number and their
billion-level parameters impose heavy storage overhead for cloud with limited
resources. Our empirical and theoretical analysis reveals that most fine-tuned
models in cloud have a small difference (delta) from their pre-trained models. To
this end, we propose a novel lossless compression scheme FM-Delta specifically
for storing massive fine-tuned models in cloud. FM-Delta maps fine-tuned and
pre-trained model parameters into integers with the same bits, and entropy codes
their integer delta. In this way, cloud only needs to store one uncompressed pre-
trained model and other compressed fine-tuned models. Extensive experiments
have demonstrated that FM-Delta efficiently reduces cloud storage consumption
for massive fine-tuned models by an average of around 50% with only negligible
additional time in most end-to-end cases. For example, on up to 10 fine-tuned
models in the GPT-NeoX-20B family, FM-Delta reduces the original storage
requirement from 423GB to 205GB, significantly saving cloud storage costs.

1 Introduction

The widespread success of pre-trained foundational models, particularly large language models(LLM),
has led to the proliferation of fine-tuning(1; 2; 3; 4). An increasing number of end-users download
pre-trained models from cloud platforms such as HuggingFace(5), and fine-tune them using their
local relevant data. After fine-tuning, these fine-tuned models are usually uploaded to cloud storage
by users for future use. This trend imposes a heavy storage overhead in the cloud. From Figure 1, we
can see that the total number of models stored on HuggingFace has rapidly increased from 33,187 in
2022 to 574,270 in 2024, reflecting the prominent storage overhead on cloud providers. Among these
models, fine-tuned models account for a large proportion, which exist in two forms: full fine-tuned
models and parameter-efficient fine-tuned (PEFT) models(6; 7). PEFT model is generally a subset
network of the original model and has much fewer parameters, so they do not exert undue strain on
cloud storage. By contrast, the full fine-tuned models which have the original size place a substantial
storage burden on the cloud.

We collect the fine-tuning statistical information in HuggingFace for six popular model families
in Table 1, which shows the numbers of full fine-tuned and PEFT models for a certain pre-trained
model. We also present the proportion of "inactive" full fine-tuned models with less than 10 monthly
downloads. The approximate disk storage consumption is computed under a loose assumption that

∗Corresponding authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

20
22

-03

20
22

-06

20
22

-09

20
22

-12

20
23

-03

20
23

-06

20
23

-09

20
23

-12

20
24

-03

100k

200k

300k

400k

500k

600k

Total Num of Models
 in HuggingFace

Pre-trained model

Cloud

optimum on pre-trained data

optimum on fine-tuned data

...

Full fine-tuned models

PEFT models ...

Fine-tune

Figure 1: Pre-trained models are fine-tuned into thou-
sands of model variants and stored in cloud.

Table 1: Fine-tuning statistical informa-
tion in HuggingFace for the six most
popular models on different tasks. "Inac-
tive" refers to models with less than 10
monthly downloads.

Model Model
size

Full
num.

PEFT
num. Inact.

Falcon-40B 40B 79 48 82%
GPT-NeoX 20B 51 22 84%
GPT-J 6B 284 75 88%
LLaMA-7B 7B 5112 1170 91%
Bert-large 336M 260 159 88%
Stable Diff. 860M 1606 65 64%
Approx. disk storage 159TB 4TB 89%

PEFT models hold 10% trainable parameters. It can be seen that although users tend to adopt PEFT
methods for larger models, the key pain point in cloud storage lies in the storage overhead for full
fine-tuned models. And 89% of these models are inactive. If cloud providers use the most popular
SSD, SAMSUNG 870, for storage, which costs about $60 for 1TB, storing just the full fine-tuned
models in Table 1 would cost $9,540, not to mention the additional costs for disk management. It is
obvious that storing all the models in HuggingFace is definitely a huge expense. With the further
development of LLMs, this issue will become increasingly prominent. Therefore, how to reduce the
storage space of those massive fine-tuned models becomes a significant challenge for cloud providers.

The fundamental premise of reducing cloud storage costs is to safely protect the intellectual property
of users (i.e., without any model alteration), since cloud providers are accountable for preserving
the data integrity of all the users(8; 9). Therefore, lossless compression is a natural solution which
perfectly reconstructs the original data(10; 11; 12; 13; 14). Lossless compression has been widely
used to reduce the storage size of images, sound, and text, which often contain redundant data such
as transparent backgrounds in images. However, we observe that directly applying traditional lossless
compression techniques on models has almost no compression effect, since model itself seems to
have little redundant bytes such as high element similarity suitable for compression. To apply lossless
compression to massive fine-tuned models in cloud, it is desired to figure out the characteristics
of those fine-tuned models and design an efficient lossless compression scheme specifically for
fine-tuned models.

In this paper, we aim at mine the relationship among massive fine-tuned models in cloud and mitigate
the heavy storage overhead through lossless compression. We primarily focus on compressing full
fine-tuned models in cloud since PEFT models are inherently lightweight. Despite of little redundancy
of model itself, we find that most fine-tuned models in cloud are much similar with their pre-trained
models. Then by further analyzing the model difference theoretically, we reveal that the difference
(delta) between fine-tuned and pre-trained models grows with a slow speed O(T

1
4) as the fine-tuning

steps T increase. This slow growth speed results in most fine-tuned models not differing significantly
from their pre-trained models, since fine-tuning is usually conducted on a similar data domain with
moderate iteration steps.

Motivated by the finding, we propose a novel lossless compression scheme FM-Delta2 to compress
the bit-redundant delta between fine-tuned and pre-trained models. Specifically, FM-Delta maps the
float parameters of the two models into integers with the same bits and then entropy codes the integer
delta. In this way, for a certain family, the cloud only needs to hold a complete pre-trained model and
other compressed fine-tuned variants, significantly reducing the storage consumption of massive full
fine-tuned models. We conduct extensive experiments to demonstrate that FM-Delta can significantly
reduce the cloud storage consumption by approximately 50% for massive full fine-tuned models,
achieving a compression throughput of around 109MB/s. In our implementation, model compression
and decompression processes are parallel with network transfer. This ensures that the total end-to-end
time for users with a network bandwidth below 800Mbps remains nearly unchanged, with only a
negligible increase in pre-trained model loading time. The 800Mbps bandwidth threshold corresponds
to the compression and decompression throughput. Actually, it is the common case in the real world
considering the latest global average internet bandwidth 80Mbps(15). If compression is performed

2Our code is available in https://github.com/ningwanyi/FM-Delta.

2

https://github.com/ningwanyi/FM-Delta

on the user side, the total time for model downloading or uploading can even be significantly reduced
to as low as 70% of the original time. In addition, we give a approximate cost analysis of storage and
computation in cloud, concluding that the total cost savings of the cloud can be at least 40%.

To the best of our knowledge, we are the first to reduce the cloud storage consumption of massive
fine-tuned models through lossless compression. With the further explosion of fine-tuned models, the
demand for efficient model storage in cloud will definitely become more prominent in the future. We
hope that our work will stimulate further research in this area, efficiently storing the massive large
fine-tuned models with much less cost for cloud.

2 Related Work

Lossless Compression. Traditional lossless compression schemes mainly include Huffman
coding(16), run-length coding(17), entropy coding(16) and LZ77(18). Based on these traditional
schemes, researchers continuously propose new lossless compression algorithms to improve the com-
pression rate and speed. Here we introduce five common algorithms, including LZMA(10), Gzip(12),
Zlib(11), Bzip2(13), and FPzip(14). LZMA, known for its high compression rate, combines LZ77
with context modeling techniques. Gzip is a combination of LZ77 and Huffman coding, widely used
in network protocols and Unix-based systems. Zlib is based on the DEFLATE algorithm(19), which
also combines LZ77 and Huffman coding. Bzip2 is based on the Burrows-Wheeler transform(20) and
Huffman coding. The above four algorithms compress byte streams directly without considering the
data format. FPzip specifically targets scientific data and compresses the delta of adjacent elements
through Lorenzo predictor(21), achieving effective compression for floating-point arrays. However,
when compressing models, these lossless compression algorithms have minimal effectiveness. The
existing works on applying lossless compression to models have mostly focused on compressed
models that have already been quantized or sparsified(22; 23). Although Hershcovitch et al. concur-
rently propose a byte grouping method and apply the stardard compressors to compress float models,
its compression rate is limited without reporting the actual compression speed(24). In contrast,
FM-Delta is the first lossless compression algorithm specifically for fine-tuned models, achieving
significant storage reduction in cloud.

Delta Compression. Delta compression is a popular compression technique which encodes a
target file relative to one or more reference files through exploiting the high redundancy between
them(14; 25; 26; 27; 28; 29; 30; 31). It has been also used in the context of neural networks to
compress the model updates and has demonstrated potential in accelerating model synchronization in
distributed training(27; 28), accelerating multi-model serving(31; 32), and reducing the transmission
and storage of model checkpoints or versions(29; 30). In the latter case which also considers storage,
models are continually updated on the same data domain, with the primary focus on meeting the
accuracy requirements of the final model checkpoint. Therefore, these researches use lossy techniques
like quantization to compress delta between two checkpoints. In contrast, cloud storage service for
massive fine-tuned models is a totally novel issue, where storage requires the data of users "exactly
lossless". Besides, it is still yet to be mined about the numerical relationship between fine-tuned
and pre-trained models which have different data domains. Therefore, we investigate delta between
fine-tuned and pre-trained models in detail and apply lossless compression.

3 Difference between Fine-tuned and Pre-trained Models
3.1 Empirical Results
We download four common model families for different learning tasks from the popular cloud provider
HuggingFace, including Stable Diffusion(33), GPT2(34), Bert-large-uncased(35), and ResNet50(36).
Firstly, we measure the average cosine similarity between the fine-tuned and pre-trained models and
show the results in Figure 2(a). It can be seen the similarity on all four families is higher than 0.98,
which reflects that the fine-tuned model is much similar with the pre-trained model after fine-tuning.
Furthermore, we show the distribution of the weight difference between fine-tuned and pre-trained
models in Figure 2(b) on Pokemon Stable Diffusion(37), Wikitext103 GPT2(38), SST2 BERT(39),
and FER2013 ResNet50(40). It can be seen that all the element differences are less than 1 and on
SST2 Bert-large-uncased even less that 0.01. In Figure 2(c), we show the residual matrix of different
layers on Wikitext103 GPT2. The element of the residual is basically an order of magnitude below
10−2. All the above observations confirm that there is usually a small difference between most
fine-tuned and pre-trained models stored in cloud. For further investigation, we have fine-tuned

3

Stab
le

 Diffu
sio

n GPT2
Bert

-

lar
ge

Res
Net5

0

0.985

0.990

0.995

1.000

Co
si

ne
 S

im
ila

ri
ty

Pokemon
Arcane

Pony Wikitext103

Gossip
IMDB cola

conll2003

sst2

FER2013

Eurosat
memes

(a) Cosine similarity.

10 4 10 2 100

Weight Difference

0.0

0.5

1.0

CD
F

Stable Diffusion
GPT2

Bert-large
ResNet50

(b) Distribution of the
weight difference.

0 500 1000 1500 2000
0

100
200
300
400
500
600
700

h.0.attn.c_attn.weight
0 500 1000 1500 2000 2500 3000

0
100
200
300
400
500
600
700

h.0.mlp.c_fc.weight 0 500 1000 1500 2000
0

100
200
300
400
500
600
700

h.11.attn.c_attn.weight

0.0

0.1

(c) Residual matrix of GPT-2 on Wikitext103.

Figure 2: Difference information between the fine-
tuned and pre-trained models.

0 2 4
Epochs

3.0

3.2

3.4

3.6

Lo
ss

wiki2 imdb

0 2 4
Epochs

0.5

1.0

1.5

av
g_

w_
di

st
an

ce

1e-3

(a) GPT2

0 2 4
Epochs

0.0

0.5

1.0

1.5

Lo
ss

conll sst2

0 2 4
Epochs

0.5

1.0

av
g_

w_
di

st
an

ce

1e-3

(b) Bert-large-uncased

Figure 3: Fine-tuning different models.

two models on different datasets for each as shown in Figure 3. We measure the average parameter
element difference ∆̄(wp,wf) between these two models as the training processes as follows:

∆̄(wp,wf) =
1

L

L∑
j=1

1

dj

dj∑
i=1

∣∣∣wj
p,i − wj

f,i

∣∣∣ , (1)

where dj is the number of elements in the jth layer and L is the number of layers. It can be seen
that the difference grows with a slow speed as fine-tuning processes. Since most fine-tuning tasks
use a small learning rate and a limited number of steps, the difference between most fine-tuned and
pre-trained models in the cloud is relatively small. We present more empirical results in Appendix B.

3.2 Theoretical Analysis

Based on the above empirical observations, we next present our theoretical analysis under the
following common assumptions(41; 42), to further understand the difference between fine-tuned and
pre-trained model parameters.

Assumption 1. For the loss function f , there exists w∗ ∈ Rd such that f(w) ≥ f(w∗), for all w.

Assumption 2. f satisfies that for all w,v ∈ Rd, f(w)− f(v) ≤ (w − v)T∇f(v) + β
2 ∥w − v∥2.

Assumption 3. Given a data distribution D, the variance of stochastic gradient is bounded:
Eξ∼D ∥G(w; ξ)−∇f(w)∥2 ≤ σ2.
Theorem 1 (Growth Rate for Model Difference.). Let wp and wf are the parameters of the pre-
trained and fine-tuned models, respectively. The fine-tuning stage involves T training steps. With
learning rate ηt =

1
β
√
t
, t = 1, 2, ..., T , the distance between wp and wf is

E [||wf −wp||] ≤
√
3σ

β
+ C1(lnT)

1
2 + C2T

1
4 . (2)

where || · || is l2-norm; f is the β-smooth convex loss function on the fine-tuning dataset; w∗ is
the optimal model parameter on the fine-tuning task; C1 and C2 are the constants related to the

pre-trained model, which are C1 =
(

9σ2

4β2 +
f(wp)−f(w∗)

2β

) 1
2

and C2 =
(

σ2

β2 +
2(f(wp)−f(w∗))

β

) 1
2

We present the full proof of Theorem 1 in Appendix C.1, whereas here we present the key points. We
start from β-smoothness of f to connect the gradient bound ||∇f(w)||2 with the loss function f(w)

as ||∇f(w)||2 ≤ 2
2η−βη2 (f(w)− f(w∗)) + βησ2

2−βη , where the learning rate satisfies 0 < η < 2
β .

Furthermore, we utilize the model optimization step wf = wp −
∑T

t=0 ηtG(wt) in stochastic
gradient descent (SGD)(43) to connect the model weight distance with the stochastic gradient. With
learning rate ηt =

1
β
√
t
, t = 1, 2, ..., T , we have,

4

Table 2: Comparison of a certain element value in the ith position
of the pre-trained model (wp) and the fine-tuned model (wf) re-
spectively. The delta of the two original element bytes contains a
large number of redundant "0" bits.

byte number 1 2 3 4
wf 0.0316 int(wp) 3d 01 6f 00
wp 0.0309 int(wf) 3c fd 21 ff

wf − wp 0.0007 int(wf − wp) 3a 37 80 34
int(wf)-int(wp) 00 04 4d 01

0 19 32
Significant bit

0

1000

2000

Co
un

ts

Figure 4: Most significant
bit distribution of the first
convolutional-layer delta.

E
[
||wf −wp||2

]
≤ 3σ2

β2
+

σ2

2β2

(
4 ln(T)+2

√
T+

1

2
ln(T)

)
+
2
√
T+ 1

2 ln(T)

β
(f(wp)−f(w∗)).

(3)
Rearranging the above inequality and taking the square root, we derive Theorem 1, which demon-
strates the growth speed O(T

1
4) of model difference ||wf −wp|| with the number of fine-tuning

steps T , which is consistent with our empirical results in Figure 3.

If we further have the assumptions of domain adaptation(44), we can relate the model difference to
the two data distributions of the pre-trained TP and fine-tuned TF domains as follows:

fTF
(wp) ≤ f̂TP

(wp)+

√
4

m

(
d log

2em

d
+log

4

δ

)
+ dH∆H (DP ,DF)+λ, (4)

where f̂TP
(wp) is the empirical loss of the pre-trained model wp on the pre-trained dataset with m

samples; fTF
(wp) is equivalent to f(wp) in C1 and C2 of Theorem 1. We provide more theoretical

details in Appendix C.2. It can be seen that C1 and C2 increase monotonically with fTF
(wp).

Therefore, we conclude that there are two key factors affecting the model distance, including (1) the
number of fine-tuning steps T , and (2) the data distribution divergence between the fine-tuned and
pre-trained domains dH△H(DF ,DP). Generally, the data distribution divergence between the two
domains exists but is not huge(45; 46). Besides, the number of fine-tuning steps T is also not large
in many downstream tasks, leading to a small difference between most fine-tuned and pre-trained
models as in our empirical finding. This finding motivates FM-Delta to compress such a difference
for storing massive fine-tuned models.

4 FM-Delta

4.1 Algorithm

Mapping Float into Integer for Delta. Given a full model pair <pre-trained model Mp, fine-tuned
model Mf>, the key idea of FM-Delta is to losslessly compress their delta, since most fine-tuned
models stored in cloud are similar with their pre-trained models as analyzed in Section 3. However,
directly performing parameter-level subtraction will result in a float delta that lacks bit-redundancy
and could even lead to lossiness(47; 14). As shown in Table 2, floating-point subtraction does not
yield bit-redundant delta, while the bit-level integer subtraction yields the integer delta with a lot of
"0" bits. Therefore, we determine to regard the mapped integer delta as the compression object.

As in (14), we firstly keep the same bit stream to convert the original floating-point parameters of
the fine-tuned and pre-trained models to signed integers. Furthermore, to deal with complement
arithmetic implemented on most platforms, we secondly map the signed integer to the unsigned
integer, by flipping the most significant bit for positive floats and flipping all bits for negative floats to
scale the signed range [−231, 231) with 32 bits to the unsigned range [0, 232), as illustrated in the left
half of Figure 5. This transformation monotonically maps floats to unsigned integers, maintaining
both the order and the linearity of differences for floats with the same sign and exponent. Finally, we
conduct the unsigned integer subtraction to obtain our compression object – the bit-redundant integer
delta. Figure 4 shows the most significant bit distribution of delta in the most popular fine-tuned
Stable Diffusion model(37) in HuggingFace. The most significant bit is the bit in a binary number

5

0 0 1 1 1 1

10 1 1 1 1 1 1

0 1 0

0 1 1 1 1 0 0 1

....00 0 0 0 0 0

....

Sign Exponent (8 bit) Fraction (23 bit)
0.0316

0.0309

(float32)

1 Unsigned Integer Mapping

1 Unsigned Integer Mapping

00 0 0 0 1 0 10 0 0 0 0 0 0 0

00 0 1 1 1 0 00 0 0 0 0 0 0 0
k=22

k=19

Compressed

s =

k = raw bits

Range Coding symbols <s, k> + raw bits

<-1, n> ... <-1, 1> <0, 0> <1, 1> ... <1, n>

Step 0

Step �

Mapping into Integer Delta

Probability Modeling Update symbol probabilities dynamically 0

2n

<s, k> raw bits

OutputUpdate

Figure 5: The lossless compression workflow of FM-Delta. The FM-Delta scheme (1) maps the
two floating-point parameter elements at the same position of fine-tuned and pre-trained models into
unsigned integers, and performs integer subtraction to obtain the bit-redundant delta element. Then it
(2) regards the sign s and the most significant bit k of delta as symbols. With a quasi-static probability
modeler, it encodes the symbols and scales the range to involve raw bits on all delta elements, leading
to the compressed fine-tuned model.

that has the highest value position. It can be seen that the most significant bits of most delta elements
are around 19, which is significantly below the full 32-bit representation, imbuing potential for further
compression.

Compression with Range Coding. Since each delta element in the array is represented by a
fixed 32 or 16 bit number and the redundant "0" bits appear in the high position, we determine to
entropy code the most significant bit with range coding(48) and as in (14) to store the range coded
symbols and the remaining raw bits in the lower position as the compressed fine-tuned model delta.
As with most range coding processes, our compression algorithm mainly consists of the following
steps. Firstly, we set an initial range interval and use the quasistatic probability modeler in (48) for
probability modeling. Secondly, we define the 2n+ 1 symbols by grouping the delta elements into a
small set of intervals, where n is the number of bits. The ith integer delta element can be represented
as:

∆̂i = ŵf,i − ŵp,i = s
(
2k +m

)
∈ [−2n, 2n) (5)

where s encodes the sign of ∆̂i, 0 ≤ k ≤ n is the position of the most significant bit, and m is the
remaining raw bit stream. We symbolize g = s(k + 1) for the range coding. Initially, each symbol is
assigned an equal frequency. As we encode the data, the probability modeler will update the symbol
frequencies dynamically based on the processed data. It should be noted that to avoid running out of
finite initial range [l, l + r), the most significant byte will be periodically output so as to scale the
range. Thirdly, we determine how to encode the whole delta matrix. In general, except for the most
significant bit that can be used as symbols, the remaining raw bits of delta elements do not have much
regularity for further compression(14). Therefore, the compressed bytes include both the encoded
symbol interval bytes through range coding and the remaining raw bits of the delta.

Similarly for the decoding procedure, with the same equal-frequency initialization, range coding maps
the encoded model parameters back to the original symbol range and termly updates the probability
model. Then we get the original float-point fine-tuned model through reverse-mapping delta. Up to
this point, the design of FM-Delta is complete. We present its workflow in Figure 5 which illustrates
the key points discussed above.

4.2 Robustness to Difference Range

To further assess the robustness of FM-Delta across a wide range of differences between fine-
tuned and pre-trained model parameters, we present the following theorem, which relates the most
significant bit position r of the integer delta to the original model parameters.
Theorem 2 (Bit-Redundancy of Delta). Given a specific floating-point encoding format, it has
ns bits for the sign part, ne bits for the exponent part, and nm bits for the fraction part. Let
wf = (−1)sf × 2ef ×mf and wp = (−1)sp × 2ep ×mp are the floating-point parameter elements

6

Table 3: Given a base value 0.001, the most significant bit position r of the integer delta, corresponding
to the range intervals of different tuned values.

Value (0.001, 0.002) [0.002, 0.004) [0.004, 0.016) [0.016, 0.256) [0.256, 65.536)
r (1, 23) 24 25 26 27

in the same position of the fine-tuned and pre-trained models, respectively. Let ŵf and ŵp are the
unsigned integers mapped from wf . Assuming that wf > wp, let r is the most significant bit position
of the integer delta, we have

r =
⌈
log2

(
2(ne+nm)(sf ⊕ sp) + 2nm(ef − ep) + m̂f − m̂p

)⌉
≤

⌈
nm + log2

(
log2

(
wf

wp

)
+ 2

)⌉
, sf ⊕ sp = 0

ns + ne + nm, sf ⊕ sp = 1

(6)

where ⌈·⌉ is the ceiling function; ⊕ is the XOR function; m̂f and m̂p are the integer values with the
same bit streams as mf and mp.

The full proof of Theorem 2 is provided in Appendix C.3, which is derived based on the encoding
standards for floats and integers. The impact on r can be observed to diminish successively in
sign, exponent, and fraction. Taking the 32-bit floating-point number as an example, following the
most common IEEE 754 standard(49), there are respectively 1, 8, 23 bits in the sign, exponent, and
fractional parts (e.g. ns = 1, ne = 8, and nm = 23). According to Inequality (6), with the same sign,
the upper bound for the most significant bit position of the integer delta r is 25 when wf

wp
= 22, is 26

when wf

wp
= 26, and is 27 when wf

wp
= 214, which is rare as experimentally and theoretically analyzed

in Section 3. From wf

wp
= 22 to wf

wp
= 214, wf differs from wp with numerically 212× scaling, while

the upper bound bit r for delta only increases two bits. For the sake of clarity, we further illustrate in
Table 3 the most significant bit position r corresponding to different ranges of fine-tuned element
values, given a base (i.e. pre-trained) element value of 0.001. It can be observed that FM-Delta can
accommodate a vast range of difference, with the most significant bit increasing by only 4 bits even in
an extreme case where the value changes from 0.001 to 65.536. Therefore, we deduce that although
FM-Delta benefits more with small tuning steps which has a higher similarity between models, it
nonetheless exhibits considerable robustness for a large range of model differences.

5 Experiments

Setup. We implemented FM-Delta for models in PyTorch(50) format. Our experiments were
run on AMD Ryzen 9 5950X 16-Core Processors@2.2GHz (32 logical processors) with 251GB
of main memory. In our end-to-end simulation, we simulate the communication between cloud
and users through Python "socket" library. Model compression and decompression processes are
parallel with network transfer through reading and writing models in chunks. We download seven
popular model families in HuggingFace, including Falcon-40B(51), GPT-NeoX-20B(52), GPT-J(53),
GPT-2(54), Bert-large-uncased(35), Stable-Diffusion(33), and ResNet50(36). We collect a varying
number of their fine-tuned models ranging from 5 to 100, involving various downstream tasks. We
primarily select the fine-tuned variants based on download counts, since the more popular model is
intuitively more likely to ensure quality. We compare FM-Delta with the five state-of-the-art lossless
compression schemes, including LZMA(10), GZip(12), Zlib(11), FPZip(14), and BZip2(13). We
apply these schemes on the fine-tuned model parameters to show their compression rates.

Overall Compression Rates. We report the overall compression rate r under the different number of
fine-tuned models in Table 4, which is obtained as r = (1+n)·M

M+
∑n

i=0 Q(M⟩)
, where n is the number of

fine-tuned models, M is the pre-trained model size, and Q(M⟩) is the ith compressed fine-tuned
model size. It can be seen that the traditional lossless compression schemes applied directly to model
bytes have little compression effect with a compression rate about 90%. Surprisingly, FM-Delta
significantly reduces storage consumption by approximately 50% to 60% of the original. Besides, the
more fine-tuned models are stored, the more pronounced the compression effect becomes, since the
proportion of storage occupied by pre-trained models correspondingly decreases.

7

Table 4: Overall compression rates and throughput of six lossless compression schemes on different
model families.

Family Pretrained
Size

Finetuned
Num.

Original
Storage (GB)

Storage after Compression (GB)

LZMA Gzip Zlib FPZip BZip2 FM-Delta

Falcon-40B
(fp16) 40B

5 461.6 349.3 373.4 373.4 456.9 342.7 270.8 (59%)
10 846.3 621.7 669.9 669.9 837.8 608.5 473.9 (56%)

GPT-NeoX
(fp16) 20B

5 230.8 162.9 177.2 176.4 213.4 158.6 112.4 (49%)
10 423.2 298.7 324.9 323.4 391.2 290.7 205.2 (48%)

GPT-J
(fp16) 6B

5 68.4 57.2 60.6 60.6 61.2 58.7 44.6 (65%)
10 125.3 104.8 111 111 112.2 107.6 73.8 (59%)

GPT-2 124M
50 24.2 21.8 22 22 21.9 22.5 15 (62%)

100 48 43.2 43.5 43.5 43.4 44.5 28.7 (60%)

Bert-large-
uncased 336M

50 63.7 58.6 59.1 59.1 58.9 60.4 41.3 (65%)
100 126.1 116.1 117.1 117.1 116.6 119.6 82.1 (65%)

Stable-Diffusion
UNet 860M

5 19.2 17.7 17.8 17.8 17.8 18.3 12.8 (67%)
10 35.2 32.5 32.7 32.7 32.6 33.5 23.5 (67%)

ResNet50 26M
10 1.1 0.9 0.9 0.9 0.9 0.9 0.7 (68%)
20 2 1.7 1.7 1.7 1.7 1.8 1.3 (66%)

Avg. Compression Throughput (MB/s) 4.9 36.1 35.6 83.5 12.1 109.7
Avg. Decompression Throughput (MB/s) 24.8 236.6 260.8 80.6 23.8 100.9

Baize

OAS.&Dol.

&Syt. OASST
WizardLM

Alpaca&Dolly
0.0

0.5

1.0

Co
m

pr
es

sio
n

Ra
te

Falcon-40B

Erebus
Chat

Skein
OASST

Instru
ctio

n
0.0

0.5

1.0
GPT-NeoX-20B

Janeway

CoT&P3&NI
OASST

Skein

Adventure
0.0

0.5

1.0
GPT-J-6B

IMDB

Wikitext103

CNN-DailyMail

CommonGen
SQuAD

0.0

0.5

1.0
GPT-2

CoNLL2003 NLI

Wikipedia SST2
MRPC

0.0

0.5

1.0
BERT-large-uncased

Waltz Oscar

CloneWars SJH

Kurzgesagt
0.0

0.5

1.0
SD UNet

Memes

BrainTumor
FER2013

Eurosat

NCT-CRC-

HE-100K

0.0

0.5

1.0
ResNet50

LZMA GZip Zlib FPZip BZip2 FM-Delta

Figure 6: The single compression rates of the six lossless compression schemes on different down-
stream fine-tuned models.

Single Compression Rates. Figure 6 shows the single compression rate of the top-5 most popular
fine-tuned models in each family. The single compression rate ri on the fine-tuned model Mi is
obtained as ri = Q(Mi)/M. We can observe that directly applying traditional lossless compression
algorithms to the model yields similarly marginal compression effects, irrespective of the task setting.
In contrast, FM-Delta always outperforms those traditional lossless compression algorithms with a
significant compression rate.
Compression & Decompression Throughput. We also report the throughput of compressing from
memory to disk and decompressing from disk to memory in Table 4, which includes disk writing
and reading process through pickling in the binary with "pickle" library. Among all the schemes,
FM-Delta shows its superiority with the highest throughput 109.7MB/s in compression and the third
highest throughput 100.9MB/s in decompression.

Compression Rates of Baselines on Different Objects. We apply the five lossless compression base-
lines to four different compression objects on the model pair <"bert-large-uncased", "Jorgeutd/bert-
large-uncased-finetuned-ner">, including "float model parameters", "float delta", "signed int delta",
and "unsigned int delta". FPzip is specifically for floating-point array, so we only show its results on
float parameters and delta. Table 5 shows that delta becomes more bit-redundant after the mapping
from float to unsigned integer, resulting in a better compression effect.

Different Data Types. Table 6 shows the compression rate of FM-Delta on Bert-large-uncased
under three different data types. We can see that the compression effectiveness ranks from high to
low as follows: bfloat16, float16, float32. This result is reasonable since parameter in float32 retains
more fine-grained difference between the fine-tuned and pre-trained models, and bfloat16 has more
exponent bits compared with float16, leading to a larger dynamic range with lower precision. It
is worth mentioning that nowadays many users fine-tune models in float16 or bfloat16 to reduce
computation overhead, benefits more from FM-Delta.

8

Table 5: Compression rates the five base-
lines on different objects. The compres-
sion rate of FM-Delta is 68%.

Compressor Float
Params

Float
Delta

Int
Delta

Uint
Delta

LZMA 92% 78% 74% 72%
Gzip 92% 86% 83% 82%
Zlib 92% 86% 83% 82%

FPzip 92% 92% - -
Bzip2 94% 79% 77% 74%

0 500 1000
Steps

20

40

60

Pe
rp

le
xi

ty

0 500 1000
Steps

0.0

0.5

1.0

1.5

Eu
cli

de
an

 D
ist

an
ce

0 500 1000
Steps

0.00

0.25

0.50

0.75

1.00

Co
m

pr
es

sio
n

Ra
te

PTB Wikitext2 Wikitext103 LAMBADA 1BW

Figure 7: Three metrics over the iteration steps T when
fine-tuning GPT-2 on different datasets.

Table 6: Compression rates of
FM-Delta under three different data
types on Bert-large-uncased.

Finetuned
Model & Num. FP32 FP16 BF16

CoNLL2003(58) 68% 55% 37%
NLI(59) 63% 45% 27%
Wikipedia(60) 65% 49% 32%
SST2(39) 63% 49% 27%
MRPC(61) 57% 39% 22%

100 65% 50% 33%

50M 300M 500M 800M 1G

User Bandwidth (bps)

0

50

100

150

200

250

Ti
m

e
(s

)

Comp.
Decomp.
Load pre.
Full
Compressed

(a) Time for key pro-
cedures.

50M 300M 500M 800M 1G

User Bandwidth (bps)

0

50

100

150

200

250

To
ta

l T
im

e
(s

)

NoComp.
FM-Delta
FM-DeltaU

(b) Total time for up-
load.

50M 300M 500M 800M 1G

User Bandwidth (bps)

0

50

100

150

200

250

To
ta

l T
im

e
(s

)

NoComp.
FM-Delta
FM-DeltaU

(c) Total time for
download.

Figure 8: End-to-end time under different user bandwidths.

Robustness in Fine-tuning. To observe how the compression rate of FM-Delta changes during
fine-tuning, we fine-tune GPT-2 in float32 type on five different datasets(55; 56; 56; 34; 57). As
shown in Figure 7, the Euclidean distance between the two models grows slowly as the number of
fine-tuning steps increases, which is consistent with our analysis in Section 3. It can be seen that
the compression rate of FM-Delta grows from around 60% once fine-tuning starts at an extremely
slow speed with the number of steps. For example, the compression rate on PTB only increases from
60.7% to 64.8% after 1,000 fine-tuning steps. Among these datasets, the difference in Euclidean
distance is obvious while the difference in compression rate is much small, up to 2%.

Compression & Decompression in Users. We discuss another special but common case where users
have cached pre-trained models and conduct compression or decompression. We name this variant
as FM-DeltaU . We explore different user bandwidths on <Bert-large-uncased(35), Jorgeutd/bert-
large-uncased-finetuned-ner(58). We provide the detailed time for the key procedures in Figure
8(a), the total time for model upload and download in Figure 8(b) and Figure 8(c). It can be seen
that transferring compressed model significantly decreases the transfer time from 204s to 143s
under 50Mbps bandwidth. The total time with FM-Delta increases only by a negligible amount
for pre-trained model loading when the bandwidth is less than 800Mbps, which is corresponding
to the compression and decompression throughput around 100MB/s. The latest report shows that
global average broadband speeds are 80Mbps for download and 35Mbps for upload, which are far
below 800Mbps(15). Therefore, most users won’t be significantly affected, and even those with
higher speeds can tolerate the additional transfer time since model transfer isn’t as speed-critical as
streaming media.

Table 7: RES and total runtime under different numbers of parallel decompression requests. Each
decompression task is assigned to one CPU processor.

Parallelism 1 2 8 16 24

RES 1.9GB 3.4GB 12.5GB 24.1GB 39.7GB
Total Time 11.9s 12.4s 16.8s 19.1s 28.5s

Cloud Cost Analysis. In the real cloud system, it is inevitable that multiple users may download
or upload at the same time. We assess the total runtime of decompression with varying parallelism
levels in Table 7. The result shows that the total time increases slightly with the number of parallel
processes due to extra I/O operations. Although we hold that the real-world cloud has powerful
elastic computing resources(62), we give the following analysis on storage and computing hardware
cost for better understanding. Assuming that the server stores a model of size M with n fine-

9

tuned variants, we aim to maximize loadable models n while ensuring the probability of concurrent
compression/decompression tasks exceeding the server threshold is below 1%, i.e.,

∑n
k=t P (X =

k) ≤ 0.01. Regarding task concurrency as a binomial distribution, we find the maximum nmax =
35, 300 with python "scipy" library. With a compression rate of 50% for FM-Delta and 89%
inactive models referring to Table 1, we can get the saved storage cost cs for those inactive models is
$5522. Considering our server purchase on Amazon costs $1179, if compressing inactive models
from the 35300 6GB models, the total cost is saved at least $4343 ($5522 - $1179). This reduces the
total cost to 60% of the original. This underscores the significant cost benefits from FM-Delta in
real-world cloud scenarios. The detailed analysis is presented in Appendix E.7.

6 Conclusion and Limitation

In this paper, we empirically and theoretically investigate the difference delta between fine-tuned and
pre-trained models. Based on our analysis of the slowly-growing delta, we propose FM-Delta, the
first lossless compression scheme specifically for storing massive fine-tuned foundation models in
cloud. Our experiments on up to 100 fine-tuned models demonstrate that FM-Delta can efficiently
reduce cloud storage space by around 50% (e.g., from 423GB to 205GB for GPT-NeoX). This
reduction incurs only negligible pre-trained model loading time in the most common case where user
bandwidth is below 800Mbps. If the fine-tuned models are compressed and decompressed on the
user side, the total time for model upload and download can even be reduced under low bandwidths.
In terms of limitations, our method does not provide a compression support for models in GPU, as it
is not necessary in our target scenario of cloud storage reduction. These are natural directions for
future work to dynamically compressing massive fine-tuned models during training or inference.

Acknowledgments and Disclosure of Funding

This work was done during Wanyi Ning’s visiting study at ETH Zurich. We are sincerely grateful to
everyone who supported us. This work is funded in part by the National Natural Science Foundation
of China under Grants (U23B2001, 62101064, 62171057, 62201072, 62001054, 62071067), the
Ministry of Education and China Mobile Joint Fund (MCM20200202, MCM20180101), and the
China Scholarship Council program (Project ID: 202206470044).

References
[1] L. Zou, S. Zhang, H. Cai, D. Ma, S. Cheng, S. Wang, D. Shi, Z. Cheng, and D. Yin, “Pre-trained

language model based ranking in baidu search,” in Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining, 2021, pp. 4014–4022.

[2] J. Dodge, G. Ilharco, R. Schwartz, A. Farhadi, H. Hajishirzi, and N. Smith, “Fine-tuning
pretrained language models: Weight initializations, data orders, and early stopping,” arXiv
preprint arXiv:2002.06305, 2020.

[3] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman, “Dreambooth: Fine tuning
text-to-image diffusion models for subject-driven generation,” arXiv preprint arXiv:2208.12242,
2022.

[4] M. Sun, K. Zhou, X. He, Y. Wang, and X. Wang, “Gppt: Graph pre-training and prompt tuning
to generalize graph neural networks,” in Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2022, pp. 1717–1727.

[5] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz et al., “Huggingface’s transformers: State-of-the-art natural language processing,”
arXiv preprint arXiv:1910.03771, 2019.

[6] S. Mangrulkar, S. Gugger, L. Debut, Y. Belkada, and S. Paul, “Peft: State-of-the-art parameter-
efficient fine-tuning methods,” https://github.com/huggingface/peft, 2022.

[7] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora:
Low-rank adaptation of large language models,” in The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
2022. [Online]. Available: https://openreview.net/forum?id=nZeVKeeFYf9

10

https://github.com/huggingface/peft
https://openreview.net/forum?id=nZeVKeeFYf9

[8] Y. Yang, M. Cheng, Y. Ding, and W. Zhang, “A visually meaningful image encryption scheme
based on lossless compression spiht coding,” IEEE Transactions on Services Computing, vol. 16,
no. 4, pp. 2387–2401, 2023.

[9] S. Luo, G. Zhang, C. Wu, S. U. Khan, and K. Li, “Boafft: Distributed deduplication for big data
storage in the cloud,” IEEE Transactions on Cloud Computing, vol. 8, no. 4, pp. 1199–1211,
2020.

[10] E. J. Leavline and D. Singh, “Hardware implementation of lzma data compression algorithm,”
International Journal of Applied Information Systems (IJAIS), vol. 5, no. 4, pp. 51–56, 2013.

[11] P. Deutsch and J.-L. Gailly, “Zlib compressed data format specification version 3.3,” Tech. Rep.,
1996.

[12] P. Deutsch, “Gzip file format specification version 4.3,” Tech. Rep., 1996.

[13] J. Gilchrist, “Parallel data compression with bzip2,” in Proceedings of the 16th IASTED in-
ternational conference on parallel and distributed computing and systems, vol. 16, no. 2004.
Citeseer, 2004, pp. 559–564.

[14] P. Lindstrom and M. Isenburg, “Fast and efficient compression of floating-point data,” IEEE
transactions on visualization and computer graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[15] K. MacMillan, T. Mangla, J. Saxon, N. P. Marwell, and N. Feamster, “A comparative analysis
of ookla speedtest and measurement labs network diagnostic test (ndt7),” Proceedings of the
ACM on Measurement and Analysis of Computing Systems, vol. 7, no. 1, pp. 1–26, 2023.

[16] D. E. Knuth, “Dynamic huffman coding,” Journal of algorithms, vol. 6, no. 2, pp. 163–180,
1985.

[17] S. Golomb, “Run-length encodings (corresp.),” IEEE transactions on information theory, vol. 12,
no. 3, pp. 399–401, 1966.

[18] S. Rigler, W. Bishop, and A. Kennings, “Fpga-based lossless data compression using huffman
and lz77 algorithms,” in 2007 Canadian conference on electrical and computer engineering.
IEEE, 2007, pp. 1235–1238.

[19] S. Oswal, A. Singh, and K. Kumari, “Deflate compression algorithm,” International Journal of
Engineering Research and General Science, vol. 4, no. 1, pp. 430–436, 2016.

[20] G. Manzini, “An analysis of the burrows—wheeler transform,” Journal of the ACM (JACM),
vol. 48, no. 3, pp. 407–430, 2001.

[21] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core compression and decom-
pression of large n-dimensional scalar fields,” Computer Graphics Forum, vol. 22, pp. 343–348,
06 2003.

[22] X. Zhang, R. Yang, D. He, X. Ge, T. Xu, Y. Wang, H. Qin, and J. Zhang, “Boosting neural repre-
sentations for videos with a conditional decoder,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 2556–2566.

[23] Y. Mao, W. Wang, H. Du, N. Guan, and C. J. Xue, “On the compressibility of quantized large
language models,” arXiv preprint arXiv:2403.01384, 2024.

[24] M. Hershcovitch, L. Choshen, A. Wood, I. Enmouri, P. Chin, S. Sundararaman, and
D. Harnik, “Lossless and near-lossless compression for foundation models,” arXiv preprint
arXiv:2404.15198, 2024.

[25] V. Engelson, P. Fritzson, and D. Fritzson, Lossless compression of high-volume numerical data
from simulations. Linköping University Electronic Press, 2000.

[26] P. Shilane, G. Wallace, M. Huang, and W. Hsu, “Delta compressed and deduplicated storage
using stream-informed locality.” in HotStorage, 2012.

11

[27] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani, “Fedpaq: A
communication-efficient federated learning method with periodic averaging and quantiza-
tion,” in International Conference on Artificial Intelligence and Statistics. PMLR, 2020, pp.
2021–2031.

[28] J. Wang, B. Yuan, L. Rimanic, Y. He, T. Dao, B. Chen, C. Ré, and C. Zhang, “Fine-tuning
language models over slow networks using activation quantization with guarantees,” Advances
in Neural Information Processing Systems, vol. 35, pp. 19 215–19 230, 2022.

[29] Z. Hu, X. Zou, W. Xia, S. Jin, D. Tao, Y. Liu, W. Zhang, and Z. Zhang, “Delta-dnn: Efficiently
compressing deep neural networks via exploiting floats similarity,” in Proceedings of the 49th
International Conference on Parallel Processing, 2020, pp. 1–12.

[30] Y. Chen, Z. Liu, B. Ren, and X. Jin, “On efficient constructions of checkpoints,” arXiv preprint
arXiv:2009.13003, 2020.

[31] X. Yao and A. Klimovic, “Deltazip: Multi-tenant language model serving via delta compression,”
arXiv preprint arXiv:2312.05215, 2023.

[32] L. Chen, Z. Ye, Y. Wu, D. Zhuo, L. Ceze, and A. Krishnamurthy, “Punica: Multi-tenant lora
serving,” Proceedings of Machine Learning and Systems, vol. 6, pp. 1–13, 2024.

[33] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthe-
sis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2022, pp. 10 684–10 695.

[34] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are
unsupervised multitask learners,” 2019.

[35] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional
transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018. [Online].
Available: http://arxiv.org/abs/1810.04805

[36] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp.
770–778.

[37] Lambda, “lambdalabs/sd-pokemon-diffusers.” https://huggingface.co/lambdalabs/
sd-pokemon-diffusers, huggingFace model.

[38] N. . LTI/CMU, “neulab/gpt2-finetuned-wikitext103.” https://huggingface.co/neulab/
gpt2-finetuned-wikitext103, huggingFace model.

[39] AssemblyAI. assemblyai/bert-large-uncased-sst2. [Online]. Available: https://huggingface.co/
assemblyai/bert-large-uncased-sst2

[40] C. xcx. Celal11/resnet-50-finetuned-fer2013-0.0033. [Online]. Available: https://huggingface.
co/Celal11/resnet-50-finetuned-FER2013-0.003

[41] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on non-iid
data,” arXiv preprint arXiv:1907.02189, 2019.

[42] C. T. Dinh, N. H. Tran, M. N. Nguyen, C. S. Hong, W. Bao, A. Y. Zomaya, and V. Gramoli,
“Federated learning over wireless networks: Convergence analysis and resource allocation,”
IEEE/ACM Transactions on Networking, vol. 29, no. 1, pp. 398–409, 2020.

[43] L. Bottou, “Stochastic gradient descent tricks,” Neural Networks: Tricks of the Trade: Second
Edition, pp. 421–436, 2012.

[44] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of representations for domain
adaptation,” Advances in neural information processing systems, vol. 19, 2006.

[45] L. Chen, F. Yuan, J. Yang, X. He, C. Li, and M. Yang, “User-specific adaptive fine-tuning for
cross-domain recommendations,” IEEE Transactions on Knowledge and Data Engineering,
vol. 35, no. 3, pp. 3239–3252, 2021.

12

http://arxiv.org/abs/1810.04805
https://huggingface.co/lambdalabs/sd-pokemon-diffusers
https://huggingface.co/lambdalabs/sd-pokemon-diffusers
https://huggingface.co/neulab/gpt2-finetuned-wikitext103
https://huggingface.co/neulab/gpt2-finetuned-wikitext103
https://huggingface.co/assemblyai/bert-large-uncased-sst2
https://huggingface.co/assemblyai/bert-large-uncased-sst2
https://huggingface.co/Celal11/resnet-50-finetuned-FER2013-0.003
https://huggingface.co/Celal11/resnet-50-finetuned-FER2013-0.003

[46] Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie, “Large scale fine-grained categorization
and domain-specific transfer learning,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 4109–4118.

[47] J. H. Wilkinson, “Error analysis of floating-point computation,” Numerische Mathematik, vol. 2,
pp. 319–340, 1960.

[48] M. Schindler, “Range encoder version 1.3, 2000.” http://www.compressconsult.com/rangecoder/,
october 1999.

[49] W. Kahan, “Ieee standard 754 for binary floating-point arithmetic,” Lecture Notes on the Status
of IEEE, vol. 754, no. 94720-1776, p. 11, 1996.

[50] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning
library,” Advances in neural information processing systems, vol. 32, 2019.

[51] E. Almazrouei, H. Alobeidli, A. Alshamsi, A. Cappelli, R. Cojocaru, M. Debbah, E. Goffinet,
D. Heslow, J. Launay, Q. Malartic, B. Noune, B. Pannier, and G. Penedo, “Falcon-40B: an open
large language model with state-of-the-art performance,” 2023.

[52] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding, H. He, C. Leahy,
K. McDonell, J. Phang, M. Pieler, U. S. Prashanth, S. Purohit, L. Reynolds, J. Tow, B. Wang,
and S. Weinbach, “Gpt-neox-20b: An open-source autoregressive language model,” 2022.
[Online]. Available: https://arxiv.org/abs/2204.06745

[53] B. Wang and A. Komatsuzaki, “GPT-J-6B: A 6 Billion Parameter Autoregressive Language
Model,” https://github.com/kingoflolz/mesh-transformer-jax, May 2021.

[54] K. Lagler, M. Schindelegger, J. Böhm, H. Krásná, and T. Nilsson, “Gpt2: Empirical slant delay
model for radio space geodetic techniques,” Geophysical research letters, vol. 40, no. 6, pp.
1069–1073, 2013.

[55] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large annotated corpus of
English: The Penn Treebank,” Computational Linguistics, vol. 19, no. 2, pp. 313–330, 1993.
[Online]. Available: https://www.aclweb.org/anthology/J93-2004

[56] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel mixture models,” 2016.

[57] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson, “One billion
word benchmark for measuring progress in statistical language modeling,” 2014.

[58] J. L. Grisman, “Jorgeutd/bert-large-uncased-finetuned-ner.” https://huggingface.co/Jorgeutd/
bert-large-uncased-finetuned-ner, huggingFace model.

[59] P. N. group. princeton-nlp/sup-simcse-bert-large-uncased. [Online]. Available: https:
//huggingface.co/princeton-nlp/sup-simcse-bert-large-uncased

[60] ——. princeton-nlp/unsup-simcse-bert-large-uncased. [Online]. Available: https://huggingface.
co/princeton-nlp/unsup-simcse-bert-large-uncased

[61] Y. Matsubara. yoshitomo-matsubara/bert-large-uncased-mrpc. [Online]. Available: https:
//huggingface.co/yoshitomo-matsubara/bert-large-uncased-mrpc

[62] E. F. Coutinho, F. R. de Carvalho Sousa, P. A. L. Rego, D. G. Gomes, and J. N. de Souza,
“Elasticity in cloud computing: a survey,” annals of telecommunications-annales des télécom-
munications, vol. 70, pp. 289–309, 2015.

[63] A. Shahbahrami, R. Bahrampour, M. S. Rostami, and M. A. Mobarhan, “Evaluation of
huffman and arithmetic algorithms for multimedia compression standards,” arXiv preprint
arXiv:1109.0216, 2011.

[64] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “GLUE: A multi-task
benchmark and analysis platform for natural language understanding,” 2019, in the Proceedings
of ICLR.

13

http://www.compressconsult.com/rangecoder/
https://arxiv.org/abs/2204.06745
https://github.com/kingoflolz/mesh-transformer-jax
https://www.aclweb.org/anthology/J93-2004
https://huggingface.co/Jorgeutd/bert-large-uncased-finetuned-ner
https://huggingface.co/Jorgeutd/bert-large-uncased-finetuned-ner
https://huggingface.co/princeton-nlp/sup-simcse-bert-large-uncased
https://huggingface.co/princeton-nlp/sup-simcse-bert-large-uncased
https://huggingface.co/princeton-nlp/unsup-simcse-bert-large-uncased
https://huggingface.co/princeton-nlp/unsup-simcse-bert-large-uncased
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-mrpc
https://huggingface.co/yoshitomo-matsubara/bert-large-uncased-mrpc

[65] M. A. Lab. (2020, January) Bean disease dataset. [Online]. Available: https://github.com/
AI-Lab-Makerere/ibean/

[66] Hugging Face, “bert-base-cased,” https://huggingface.co/bert-base-cased, 2018.

[67] ——, “google/vit-base-patch16-224-in21k,” https://huggingface.co/google/
vit-base-patch16-224-in21k, 2020.

[68] ——, “Transformers: State-of-the-art natural language processing for PyTorch and TensorFlow,”
https://github.com/huggingface/transformers, 2022.

[69] KoboldAI, “Koboldai/gpt-neox-20b-erebus.” https://huggingface.co/KoboldAI/
GPT-NeoX-20B-Erebus, huggingFace model.

14

https://github.com/AI-Lab-Makerere/ibean/
https://github.com/AI-Lab-Makerere/ibean/
https://huggingface.co/bert-base-cased
https://huggingface.co/google/vit-base-patch16-224-in21k
https://huggingface.co/google/vit-base-patch16-224-in21k
https://github.com/huggingface/transformers
https://huggingface.co/KoboldAI/GPT-NeoX-20B-Erebus
https://huggingface.co/KoboldAI/GPT-NeoX-20B-Erebus

A Extended Statistics from HuggingFace

In Table 8, we provide the statistical results of the ten more model families and show the proportion
of full models on these families, further underscoring that the number of full fine-tuned models still
occupy the majority in the HuggingFace repository. In Table 9, we roughly calculate the portion
of pre-trained and fine-tuned models in HuggingFace. Specifically, based on model creation time,
we iterate 10,000 models respectively in both ascending (old to new) and descending (new to old)
order. Among these models, we only count the models that have explicitly stated their identity (i.e.,
pre-trained or fine-tuned) in their "README.md" file. We can see that fine-tuned models occupy
a significant portion (81% and 99%) of the model hub. Furthermore, the results of the descending
order indicates that fine-tuned models have become overwhelmingly dominant currently.

Table 8: The number of full fine-tuned and PEFT models in the ten additional model families, along
with the proportion of full models on these families.

Model # Full # PEFT Proportion of Full
Gemma-9b 315 121 72%
Gemma-2b 3,836 279 93%
Bloom-7b1 163 105 60%
Bloom-1b7 130 61 68%
Pythia-12b 120 131 47%
Pythia-6.9b 316 93 77%
T5-xxl 106 62 63%
T5-large 1,277 203 86%
Llama-2-70b 214 96 69%
Mistral-7b 6,972 2,027 77%

AVG 71%

Table 9: The portion of pre-trained and fine-tuned models in the 10,000 models from HuggingFace,
counted in ascending and descending order.

Ascending (old to new) Descending (new to old)
Pretrained # Finetuned # Pretrained # Finetuned

Num. 501 2,082 52 4,295
Portion 19% 81% 1% 99%

B Detailed Empirical Results about Delta

Here we present the detailed empirical results about delta between fine-tuned and pre-trained models.
Figure 10 shows the detailed residual matrix of different layers on Wikitext103 GPT-2. Figure 9
shows that the average parameter element difference on four model families, which grows with a
slow speed as the fine-tuning processes.

C Theoretical Derivations

C.1 Proof of Theorem 1

Before deriving Theorem 1, we first relate the gradient and the loss through the following derivation.

Since f is β-smooth, for any w,v ∈ Rd, we have

f(w)− f(v)−∇f(v)⊤(w − v) ≤ β

2
∥w − v∥2.

For one step of gradient descent wt+1 = wt − 1
βG(wt), we have

f(wt+1)− f(wt) ≤ ∇f(wt)
⊤(wt+1 −wt) +

β

2
∥wt+1 −wt∥2

15

0 1 2 3 4
Epochs

0.25

0.50

0.75

Lo
ss

dogs
sunglasses

0 1 2 3 4
Epochs

2

4

6

av
g_

w_
di

st
an

ce

1e-5

(a) Stable Diffusion

0 2 4
Epochs

3.0

3.2

3.4

3.6

Lo
ss

wiki2 imdb

0 2 4
Epochs

0.5

1.0

1.5
av

g_
w_

di
st

an
ce

1e-3

(b) GPT2

0 2 4
Epochs

0.0

0.5

1.0

1.5

Lo
ss

conll sst2

0 2 4
Epochs

0.5

1.0

av
g_

w_
di

st
an

ce

1e-3

(c) Bert-large-uncased

0 5 10 15 20
Epochs

0

2

4

Lo
ss

eurosat
fer2013

0 5 10 15 20
Epochs

0

1

2

av
g_

w_
di

st
an

ce

1e-3

(d) ResNet50

Figure 9: Fine-tuning results on different models.

Layer 1 Layer 2 Layer 11 Layer 12

. . .attn.c_attn

attn.c_proj

. . .

. . .

mlp.c_fc

mlp.c_proj

. . .

. . .

Figure 10: Residual matrix of GPT-2 on Wikitext103.

16

≤ ∇f(wt)
T (−ηG(wt)) +

βη2

2
||G(wt)||2.

Taking the expectation before t, we have

E [f(wt+1)]− E [f(wt)]

≤ ∇f(wt)
T (−η∇f(wt)) +

βη2

2
E
[
||G(wt)||2

]

≤ −η||∇f(wt)||2 +
βη2

2

(
||E [G(wt)] ||2 + σ2

)
≤ (

βη2

2
− η)||∇f(wt)||2 +

βη2σ2

2
.

(7)

Let g(w) = f(w)− f(w∗) ≥ 0. The gradient of g(w) is ∇g(w) = ∇f(w)−∇f(w∗) = ∇f(w).
Therefore, g(w) also satisfies the assumption of bounded variance Eξ∼D ∥G(w; ξ)−∇f(w)∥2 ≤
σ2. Substituting g(w) into the above inequality, we have

E [g(wt+1)− g(wt)] ≤ (
βη2

2
− η)||∇g(wt)||2 +

βη2σ2

2

−E [g(w)] ≤ (
βη2

2
− η)||∇g(wt)||2 +

βη2σ2

2
.

We arrange the above inequality and get(
2η − βη2

)
||∇f(w)−∇f(w∗)||2 ≤ 2

(
f(w)− f(w∗)−∇f(w∗)T (w −w∗)

)
+ βη2σ2.

Since 0 < η < 2
β , we have 2η − βη2 > 0. Therefore, the above inequality can be further written as

||∇f(w)||2 ≤ 2

2η − βη2
(f(w)− f(w∗)) +

βησ2

2− βη
.

Thus, we have related the gradient ∇f(w) to the loss f(w). Then give the proof of Theorem 1 as the
following:

Proof. Since wf = wp −
∑T

t=0 ηtG(wt), we have

||wf −wp||2

≤
T∑

t=1

||ηt (G(wt)−∇f(wt) +∇f(wt)) ||2

≤
T∑

t=1

η2t
(
σ2 + ||∇f(wt)||2

)

(a)

≤
T∑

t=1

η2t σ
2 +

T∑
t=1

η2t

(
2

2ηt − βη2t
(f(w)− f(w∗)) +

βηtσ
2

2− βηt

)

=

T∑
t=1

σ2

β2t
+

T∑
t=1

σ2

2β2
· 1

t(
√
t− 1

2)︸ ︷︷ ︸
(I)

+

T∑
t=1

(
1

β
(√

t− 1
2

) (f(w)− f(w∗))

)
︸ ︷︷ ︸

(II)

,
(8)

where (a) follows from the above remark.

17

For the item (I), we have

T∑
t=1

σ2

β2t
+

T∑
t=1

σ2

2β2
· 1

t(
√
t− 1

2)

=

T∑
t=1

σ2

β2

(
1

t
+ 2 ·

(
1√
t− 1

2

− 1√
t
−

1
2

t

))

≤ 2σ2

β2
+

T∑
t=2

2σ2

β2

(
1√
t− 1

2

− 1√
t+ 1

2

)

=
2σ2

β2
+

T∑
t=2

2σ2

β2
· 1

t− 1
4

(a)

≤ 2σ2

β2
+

2σ2

β2
·
∫ T

1

1

t− 1
4

dt

≤ 2σ2

β2
+

2σ2

β2
·
(
ln

(
T − 1

4

)
− ln(

3

4
)

)
,

where (a) follows from that for a monotonically decreasing function f over the region [a− 1, b+ 1],
it holds that

∫ b

a−1
f(x)dx >

∑b
i=a f(i).

For the item (II), we have

T∑
t=1

(
1

β
(√

t− 1
2

) (f(wt)− f(w∗))

)

=

T∑
t=1

1

β
(√

t− 1
2

) (f(wt)− f(wp)) +
2

β
(f(wp)− f(w∗)) +

T∑
t=2

1

β
(√

t− 1
2

) (f(wp)− f(w∗))

(a)

≤
T∑

t=1

1

β
(√

t− 1
2

) (f(wt)− f(wp)) +
2

β
(f(wp)− f(w∗)) +

f(wp)− f(w∗)

β

∫ T

1

1√
t− 1

2

dt

=

T∑
t=1

1

β
(√

t− 1
2

) (f(wt)− f(wp)) +
−2 + ln 2 + 2

√
T + ln(

√
T − 1

2)

β
(f(wp)− f(w∗)),

where (a) follows from that for a monotonically decreasing function f over the region [a− 1, b+ 1],
it holds that

∫ b

a−1
f(x)dx >

∑b
i=a f(i).

Taking the expectation and summing up the inequality (7) for t steps, we have

T∑
t=1

(
1

β
(√

t− 1
2

)E (f(wt)− f(w∗))

)

≤
T∑

t=1

1

β
(√

t− 1
2

) · σ2

2β
+

−2 + ln 2 + 2
√
T + ln(

√
T− 1

2)

β
(f(wp)−f(w∗))

≤ σ2

β2
+

σ2

2β2
·
∫ T

1

1√
t− 1

2

dt+
−2 + ln 2 + 2

√
T + ln(

√
T − 1

2)

β
(f(wp)− f(w∗))

=
σ2

2β2
·
(
ln 2 + 2

√
T + ln(

√
T − 1

2
)

)
+

−2 + ln 2 + 2
√
T + ln(

√
T − 1

2)

β
(f(wp)− f(w∗))

18

Combining the above two items, we can write the expectation of the inequality (8) as
E
[
||wf −wp||2

]
≤ 2σ2

β2

(
1+2 ln 2−ln 3+ln

(
T− 1

4

))
+

σ2

2β2
·
(
ln 2+2

√
T+ln(

√
T− 1

2
)

)
+
−2+ln 2+2

√
T+ln(

√
T − 1

2)

β
(f(wp)−f(w∗))

=
σ2

2β2
(4 + 9 ln 2− 4 ln 3) +

σ2

2β2

(
4 ln(T − 1

4
) + 2

√
T + ln(

√
T − 1

2
)

)
+

−2 + ln 2 + 2
√
T + ln(

√
T − 1

2)

β
(f(wp)− f(w∗))

≤ 3σ2

β2
+

σ2

2β2

(
4 ln(T)+2

√
T+

1

2
ln(T)

)
+
2
√
T+ 1

2 ln(T)

β
(f(wp)−f(w∗)).

(9)

From the expression of variance D(x) = E
[
||x||2

]
− E [||x||]2, we have

E [||wf −wp||] ≤
√
3σ

β
+

√
9σ2

4β2
+

f(wp)− f(w∗)

2β
·
√
ln(T)+

√
σ2

β2
+

2(f(wp)− f(w∗))

β
· T 1

4

This completes the proof of Theorem 1.

C.2 Theorem 1 in Domain adaptation

We first give some definitions and assumptions as the previous works(44) in domain adaptation. Let
X ⊂ Rp be the input space and Y ⊂ R be the output space. T denotes a domain (or task), which
consists of a data distribution D over X . We consider a binary classification task with the hypothesis
class and the loss function is Huber loss l(ŷ, y) = |ŷ − y|. Let h : X → Y denote a hypothesis
that maps inputs to predicted labels, and H ⊆ {h : X → Y} denote a hypothesis class. The
H△H := {h(x)⊕h′(x), h, h′ ∈ H} is defined as the symmetric difference hypothesis space, where
⊕ denotes the XOR operator. AH△H is a set of measurable subsets for ∀h(x)⊕h′(x) ∈ H△H. Then
dH△H(D,D′) := 2 supA∈AH△H

|PrD(A)− PrD′(A)| is defined as the distribution divergence
induced by the symmetric difference hypothesis space, given two distributions D and D′.

From the generation bound in (44), we first give a variant based on the two data distributions of the
source and target domain. Let TS and TT be the source and target domains, whose data distributions
are DS and DT respectively. Let H ⊆ {h : X → Y} denote a hypothesis class with VC-dimension d.
Then with probability at least 1− δ, ∀h ∈ H:

ϵT (h) ≤ ϵ̂S(h) +

√
4

m

(
d log

2em

d
+ log

4

δ

)
+ dH∆H (DS ,DT) + λ, (10)

where e is the base of the natural logarithm, ϵ̂S(h)=Ex,y∼DS
|h(x)−y| is the empirical error of the

source domain based on m observable samples, and λ = minh∈H(ϵT (h) + ϵS(h)) is the optimal
error on the two domains.

We regard the pre-trained and fine-tuned domains as the source and target domains respectively.
The pre-trained model with parameters wp can be regarded as the hypothesis. Therefore, based on
Inequality (10), we have

fTF
(wp)≤ f̂TP

(wp) +

√
4

m

(
d log

2em

d
+ log

4

δ

)
+ dH∆H (DP ,DF) + λ. (11)

Inequality (9) can be equivalently written as

E
[
||wf −wp||2

]
≤ 3σ2

β2
+

σ2

2β2

(
9

2
lnT + 2

√
T

)
+

fTF
(wp)− fTF

(w∗)

β

·
(
1

2
lnT + 2

√
T

)
.

Applying (11) to the above inequality, we relate the model difference to the data distribution diver-
gence between the fine-tuned and pre-trained domains.

19

C.3 Proof of Theorem 2

Proof. We first give the most widely used IEEE floating-point standard representation:
n = (−1)s ×m× 2e,

where s is the sign, e is the exponent value using a biased representation, and m is the fractional part.
If we map wf and wp into the integers ŵf and ŵp while keeping the same bit stream, we have

r =
⌈
log2 ∆̂

⌉
=
⌈
log2

(
2(ne+nm)(sf ⊕ sp) + 2nm(ef − ep) + m̂f − m̂p

)⌉
.

When wf and wp have the same sign (i.e., sf ⊕ sp = 0), we have
r = ⌈log2 (2nm(ef − ep) + m̂f − m̂p)⌉
≤ ⌈log2 (2nm(ef − ep) + 2nm)⌉
= ⌈nm + log2 (ef − ep + 1)⌉
(a)
=

⌈
nm + log2

(
log2

(
wf

wp
· mp

mf

)
+ 1

)⌉
(b)

≤
⌈
nm + log2

(
log2

(
wf

wp
· 2
)
+ 1

)⌉
=

⌈
nm + log2

(
log2

(
wf

wp

)
+ 2

)⌉
,

where (a) is from that wf

wp
=

2ef ·mf

2ep ·mp
= 2(ef−ep) · mf

mp
; (b) is from that the fraction m of float is in

[1, 2). This completes the proof of Theorem 2.

D Algorithm Details

Table 10 provides the mapping examples of FM-Delta. We detail the mapping process as the
following two steps. Firstly, convert floats to signed integers while retaining the same byte string.
Secondly, monotonically map signed integers into unsigned integers. For positive values, the
representation range is [00000000..., 01111111...), i.e. [0, 231). Both signed and unsigned integers
are monotonically increasing in this interval. We just need to map the [0, 231) of signed integers to
the [231, 232) of unsigned integers. Therefore, we flip the most significant bit for positive values,
so the range becomes [10000000..., 11111111...). For negative values, the representation range is
[11111111..., 10000000...), i.e. [−231, 0). The monotonicity of signed and unsigned integers is
opposite. Therefore, we flip all the bits of the negative integer to meet the alignment of monotonicity,
so the range becomes [00000000..., 01111111...).

Table 10: Example of mapping positive and negative floats.
Float Signed Integer Unsigned Integer

0.0316 00111101000000010110111100000000 10111101000000010110111100000000
-0.0316 10111101000000010110111100000000 01000010111111101001000011111111

E Experiment Details

E.1 Model Compression Details

Table 11 presents the detailed information of the top-5 fine-tuned models in the seven families from
HuggingFace, corresponding to the compression results in Figure 6.

E.2 Compression Rates on Different Layers

We present the compression rates of FM-Delta on different model layers in Figure 11, which shows
that for a specific model, the compression rate on each layer generally fluctuates around a certain
value.

20

Table 11: Model details of the top-5 fine-tuned models in the seven families from HuggingFace, and
the single compression rates of FM-Delta on them.

Family Model Type Datasets Model ID in HuggingFace Comp. Rate

Falcon-40B

Pretrained RefinedWeb tiiuae/falcon-40b

Finetuned

Baize tiiuae/falcon-40b-instruct 50%
OAS.& Dol.&Syt. OpenAssistant/falcon-40b-sft-mix-1226 53%
OASST h2oai/h2ogpt-oasst1-falcon-40b 43%
WizardLM ehartford/WizardLM-Uncensored-Falcon-40b 48%
Alpaca&Dolly falcon-40b-ft-alpaca-dolly-dutch 48%

GPT-NeoX-20B

Pretrained The Pile EleutherAI/gpt-neox-20b

Finetuned

Erebus KoboldAI/GPT-NeoX-20B-Erebus 30%
Chat togethercomputer/GPT-NeoXT-Chat-Base-20B 42%
Skein KoboldAI/GPT-NeoX-20B-Skein 28%
OASST dvruette/oasst-gpt-neox-20b-1000-steps 46%
Instruction jordiclive/instruction-tuned-gpt-neox-20b 53%

GPT-J-6B

Pretrained The Pile EleutherAI/gpt-j-6b

Finetuned

Janeway KoboldAI/GPT-J-6B-Janeway 52%
CoT&P3&NI togethercomputer/GPT-JT-6B-v1 60%
OASST reciprocate/gpt-j_rm_format-oa 55%
Skein KoboldAI/GPT-J-6B-Skein 56%
Adventure KoboldAI/GPT-J-6B-Adventure 59%

GPT-2

Pretrained WebText gpt2

Finetuned

IMDB rajkumarrrk/gpt2-fine-tuned-on-imdb-positive-reviews 68%
Wikitext103 neulab/gpt2-finetuned-wikitext103 75%
CNN-DailyMail gavin124/gpt2-finetuned-cnn-summarization-v2 78%
CommonGen mrm8488/GPT-2-finetuned-common_gen 71%
SQuAD anas-awadalla/gpt2-span-head-finetuned-squad 62%

Bert-large-uncased

Pretrained BookCorpus bert-large-uncased

Finetuned

CoNLL2003 Jorgeutd/bert-large-uncased-finetuned-ner 68%
MNLI&SNLI princeton-nlp/sup-simcse-bert-large-uncased 63%
Wikipedia princeton-nlp/unsup-simcse-bert-large-uncased 65%
SST2 assemblyai/bert-large-uncased-sst2 63%
MRPC yoshitomo-matsubara/bert-large-uncased-mrpc 58%

Stable Diffusion

Pretrained LAION-Aesthetics runwayml/stable-diffusion-v1-5

Finetuned

Waltz mikesmodels/Waltz_with_Bashir_Diffusion 59%
Oscar iriscope/oscarvatar 62%
CloneWars questcoast/clone-wars-diffusion-v1 63%
SJH ProGamerGov/Min-Illust-Background-Diffusion 60%
Kurzgesagt questcoast/SD-Kurzgesagt-style-finetune 58%

ResNet50

Pretrained ImageNet-1k microsoft/resnet-50

Finetuned

Memes jayanta/resnet50-finetuned-memes 66%
BrainTumor Alia-Mohammed/resnet-50-finetuned-brain-tumor 67%
FER2013 Celal11/resnet-50-finetuned-FER2013-0.003 83%
Eurosat keithanpai/resnet-50-finetuned-eurosat 59%
NCT-CRC-HE-100K polejowska/resnet-50-finetuned-nct-crc-he-45k 69%

0 100 200 300 400 500 600 700
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n

Ra
te

pokemon
waifu

papercut
logo

voxel
sjh

(a) UNet of Stable Diffusion.

0 2 4 6 8 10
Layer

0.0

0.2

0.4

0.6

0.8

1.0

Co
m

pr
es

sio
n

Ra
te

imdb
goss

wiki103
covid

comp2
banking77

(b) Transformer layers of GPT2.

0 2 4 6 8 10
Layer

0.68
0.69
0.70
0.71
0.72
0.73

Co
m

pr
es

sio
n

Ra
te

attn.c_attn
attn.c_proj
mlp.c_fc
mlp.c_proj

(c) Sublayers in a transformer.

Figure 11: Compression rates of FM-Delta on different model layers.

21

E.3 Further Discussion on Throughput

Table 4 shows that FM-Delta ranks third in decompression throughput, lower than Zlib and Gzip.
Here we give a further explanation about the reason.

Among all the compressors, Zlib and Gzip have similar performances since both of them use
the DEFLATE algorithm, which consists of two main components: LZ77 and Huffman coding.
Differently, FM-Delta is mainly based on the compression algorithm specifically for floating-point
data, which uses the range coding to compress array data. Since range coding involves dealing with
floating-point numbers and maintaining the current encoding interval, Huffman coding typically has
a faster decompression speed than range coding(63), resulting in a higher decompression throughput
of Zlib and Gzip.

E.4 Extended Fine-tuning Results

In Figure 12, we present the additional fine-tuning results on GPT2-1.5B(34). Since the model is
bigger than that in the main paper, it can be seen that it overfits on the relatively simple datasets,
including PTB(55) and Wikitext2(56). The simplicity of the two datasets results in their larger model
difference due to their larger distribution divergence with the original data for training GPT2-1.5B,
which is also analyzed in Section 3.

0 500 1000
Steps

20

40

Pe
rp

le
xi

ty

0 500 1000
Steps

0.0

0.5

1.0

1.5

Eu
cli

de
an

 D
ist

an
ce

0 500 1000
Steps

0.0

0.5

1.0

Co
m

pr
es

sio
n

Ra
te

PTB Wikitext2 Wikitext103 LAMBADA 1BW

Figure 12: Three metrics over the iteration steps T when fine-tuning GPT2-1.5B on different datasets.

Table 12: Finetuning results for Bert-base-cased on MRPC and SST2, and google/vit-base-patch16-
224-in21k on Beans.

Task Steps Loss Euc. Distance Comp. Rate

Bert-base-cased on MRPC(64)

0 0.95 0 -
400 0.38 0.66 46.9%
800 0.21 0.71 48.5%

1200 0.14 0.74 48.9%

Bert-base-cased on SST2(64)

0 0.74 0 -
400 0.34 0.65 45.3%
800 0.28 0.69 46.5%

1200 0.25 0.71 47.2%

google/vit-base-patch16-224-in21k on Beans(65)

0 1.03 0 -
400 0.15 0.21 62.5%
800 0.17 0.24 63.1%

1200 0.04 0.25 63.2%

In Table 12, we provide more fine-tuning experiment results on both Bert-base-cased(66) and
google/vit-base-patch16-224-in21k(67) using the official example script from the "transformers"
github repository(68). Under these two commonly used models, FM-Delta still shows good com-
pression results. In fact, the small delta is caused by the fine-tuning itself. The pre-trained model
parameters already have strong inference capabilities, so fine-tuning does not make much difference.

22

E.5 Compression on Atypical models

To confirm the robustness of FM-Delta, we download two user-uploaded GPT-2 models from
Huggingface: “vicgalle/gpt2-alpaca-gpt4’ is a popular instruction-tuned model with high quality,
and “jacksee/gpt2-finetuned-biochemistry’ is an unpopular low-qualified model without any more
information. Besides, we generate several atypical models by adding random tensors with noise
values from 0 to {1, 10, 100, 1000} to the GPT-2 pre-trained model.

Table 13: Compression Rates and Perplexity on the popular, unpopular, and atypical models.
Model Comp. rate of FM-Delta WikiText2 (ppl↓)
vicgalle/gpt2-alpaca-gpt4 65.4% 44.7223
jacksee/gpt2-finetuned-biochemistry 59.4% 24564191.2047
gpt2 with noise (0,1) 85.3% NaN
gpt2 with noise (0,10) 87.0% NaN
gpt2 with noise (0,100) 92.2% NaN
gpt2 with noise (0,1000) 91.5% NaN

It can be seen in Table 13 that even on the GPT-2 added with huge noise (0,1000), FM-Delta can
still compress the model into 91.5% of the original. This is consistent with our robustness analysis
in Section 4, which illustrates that FM-Delta can accommodate a vast range of difference. Thus,
FM-Delta is robust and reliable enough across diverse massive models in the cloud hub.

E.6 Extended Time Results

Figure 13 presents the detailed time for model upload and download under different user band-
widths on <EleutherAI/gpt-neox-20b(52), KoboldAI/GPT-NeoX-20B-Erebus(69)>. When the user’s
bandwidth is below approximately 800Mbps, the total time is nearly equivalent to that of the
non-compression solution for FM-Delta, and it is significantly reduced for FM-DeltaU due to the
decreased data transfer volume. When the user’s bandwidth exceeds around 800Mbps, the total
time is limited by the compression throughput due to the transmission speed being faster than the
compression speed (approximately 100MB/s).

50M 300M 500M 800M 1G

User Bandwidth (bps)

0

20

40

60

80

100

120

Ti
m

e
(m

in
)

Comp.
Decomp.
Load pre.
Full
Compressed

(a) Time for loading pre-trained
model, model compression, de-
compression and transfer.

50M 300M 500M 800M 1G

User Bandwidth (bps)

0

25

50

75

100

125

150

To
ta

l T
im

e
(m

in
)

NoComp.
FM-Delta
FM-DeltaU

(b) The total time for model
upload with non-compression,
FM-Delta, and FM-DeltaU .

50M 300M 500M 800M 1G

User Bandwidth (bps)

0

25

50

75

100

125

150

To
ta

l T
im

e
(m

in
)

NoComp.
FM-Delta
FM-DeltaU

(c) The total time for model
download with non-compression,
FM-Delta, and FM-DeltaU .

Figure 13: End-to-end time under different user bandwidths on GPT-NeoX-20B.

E.7 Cost Analysis

All the experiment results show that FM-Delta can achieve a compression rate around 50% in most
cases with around 100MB/s throughput. There is an interesting question raising — in practice for
the cloud, what would be the cost of decompressing the models and would it be less than the cost of
storing them decompressed in the cloud? We mainly discuss the cloud cost in terms of storage and
computation.

23

We assume that in cloud there is a model with size M , having n fine-tuned variants. And p of those
fine-tuned variants are inactive (monthly downloads<10). We give a loose definition that requests
received in the same minute we treat as concurrent requests. Assuming that the 10 downloads of
inactive models are not concurrent, the probability of a single inactive model being downloaded in
a certain minute is 10

30∗24∗60 . k represents the number of concurrent download requests in a given
minute and each request corresponds to a different fine-tuned model. Then we can think of model
download as a binomial distribution:

P (X = k) = Ck
n ·
(

10

30× 24× 60

)k

·
(
1− 10

30× 24× 60

)n−k

. (12)

Our goal is to determine the maximum total number n of loadable models on the current server,
which ensures that the probability of the concurrency number exceeding the server threshold t is less
than 1%, i.e.,

∑n
k=t P (X = k) ≤ 0.01. Referring to Table 7, we set the threshold to 16, since its

total time consumption is no more than twice that of a single task. We utilize python "scipy" library
to compute and get the maximum value nmax = 35300.

We refers to Table 1 to set the inactive proportion at p = 89%. The model which can be compressed
with FM-Delta in a minute is about 6GB, so we set the model storage size 4M = 6GB. If 1TB costs
60 dollars, we give the original storage cost on inactive models without compression:

corigin = 6/1024 ∗ 35300 ∗ 89% ∗ $60 = $11044.

With the compression rate 50% of FM-Delta, the current storage cost is

cfmdelta = 6/1024 ∗ 35300 ∗ 89% ∗ 50% ∗ $60 = $5522.

In addition, we directly present the purchase price of the current computing server to give the reader
a more intuitive sense, even though the cloud server has a lot of computing power and we assume
that there are idle computing resources. Our current server mainly consists of the cpu (one AMD
Ryzen 9 5950X) and memory bars (Kingston Fury Beast 32GB×8), whose price in Amazon are $379
and 8×$100 respectively. Therefore, the purchase cost cserver of the server is

cserver = 379 + 8 ∗ 100 = $1179.

From the above analysis we can conclude that the total cost of the cloud server is at least saved
11044 − 5522 − 1179 = 4343 dollars on 35,300 inactive 6GB models. The example shows the
storage costs are down to 57%. Such cost savings through lossless compression is certainly promising
for the cloud in the real world.

24

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Please check Section 1, especially the last paragraph.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please check Section 6 for limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

25

Justification: Please check Theorem 1 and Theorem 2, along with their proof in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please check the experiment settings in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

26

Answer: [Yes]

Justification: Please check the github link https://github.com/ningwanyi/FM-Delta for our
code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Please check the experiment settings in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our lossless compression algorithm does not involve any training errors.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

27

https://github.com/ningwanyi/FM-Delta
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Please check the experiment settings in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research is fully with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Please check our contribution in Section 1. Our lossless compression scheme
will significantly reduce storage costs for cloud providers with minimal impact on user
experience.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

28

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our lossless compression poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all the involved researches, datasets and models.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

29

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We provide our code in the github link https://github.com/ningwanyi/FM-Delta.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

https://github.com/ningwanyi/FM-Delta

	Introduction
	Related Work
	Difference between Fine-tuned and Pre-trained Models
	Empirical Results
	Theoretical Analysis

	FM-Delta
	Algorithm
	Robustness to Difference Range

	Experiments
	Conclusion and Limitation
	Extended Statistics from HuggingFace
	Detailed Empirical Results about Delta
	Theoretical Derivations
	Proof of Theorem 1
	Theorem 1 in Domain adaptation
	Proof of Theorem 2

	Algorithm Details
	Experiment Details
	Model Compression Details
	Compression Rates on Different Layers
	Further Discussion on Throughput
	Extended Fine-tuning Results
	Compression on Atypical models
	Extended Time Results
	Cost Analysis

