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ABSTRACT

With the advent of large language models (LLMs), there has been great interest in
applying them to solve difficult programming tasks. Recent work has demonstrated
their potential at program optimization, a key challenge in programming languages
research. We propose a blackbox adaptation method called Retrieval Augmented
Search (RAS) that performs beam search over candidate optimizations; at each step,
it retrieves in-context examples from a given training dataset of slow-fast program
pairs to guide the LLM. Critically, we find that performing contextual retrieval
based on an LLM-generated natural language description significantly outperforms
retrieval based on the source code. In addition, we propose a method called AEGIS
for improving interpretability by decomposing training examples into “atomic edits’
that are significantly more incremental in nature. We show that RAS performs
up to 2.04 x better than prior state-of-the-art blackbox adaptation strategies on
optimizing C++ programs, and that AEGIS performs 1.37x better while performing
significantly smaller edits. We also show that using RAS improves the mean
runtime percentile of Python programs by 10.27 as compared to other strategies.

s

1 INTRODUCTION

Given the success of large language models (LLMs) in writing code, there has been significant interest
applying them to programming tasks. A particularly interesting task is program optimization, a
long-standing problem in programming languages. Recent work has shown that LLMs have difficulty
with this task out-of-the-box (Shypula et al., 2024)—intuitively, data on program performance is
simply not widely available in traditional training datasets, making adaptation necessary.

To address this problem, they propose the “Performance Improving Edits (PIE)” benchmark, and
use it to test a number of carefully designed adaptation strategies to identify effective algorithms
for improving performance, including blackbox (i.e. prompting-based) adaptation strategies such as
instruction prompting (Mishra et al., 2022), in-context learning (Brown et al.,[2020), chain-of-thought
prompting (Wei et al., 2022), and retrieval augmented generation (Lewis et al., 2020). They find
dynamic code retrieval to be most effective; this approach retrieves a handful of slow-fast program
pair examples from the training set at test time that are most relevant to the current instance (based
on embedding similarity). These pairs are then used as in-context examples to prompt the LLM.
Intuitively, this approach makes effective use of the training set, which contributes to its success.

This existing approach is “end-to-end” in the sense that it takes an input program and asks an LLM
to directly output an optimized version of that program. However, this strategy differs significantly
from how modern compilers work. Rather than making edits inspired by a handful of end-to-end
examples, they systematically modify the program through a series of compiler passes, each of which
is designed to perform a specific kind of optimization. These optimizations are inspired by existing
examples, but in a way that generalizes them so they apply to new programs. Thus, a natural question
is whether breaking end-to-end optimization into more incremental steps can improve performance.

Inspired by modern compiler design, we propose two novel retrieval-based adaptation strategies. First,
we propose retrieval augmented search (RAS), which combines two insights to improve dynamic
retrieval. First, rather than retrieve based on the code itself, it uses contextual retrieval, where it
retrieves examples from the training set based on an LLM-generated natural language description
of the program, abstracting the core algorithms and data structures used by the program from how
they are implemented on a superficial level. Second, rather than retrieve a fixed set of programs,
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we perform beam search by iteratively performing the retrieve-optimize-evaluate loop. These two
techniques result in a state-of-the-art blackbox technique for adapting LLMs to program optimization.

However, this technique still produces large changes that can be hard to interpret. To further address
this issue, we propose Afomic Edit Gulded Search (AEGIS), which leverages a preprocessing step to
distill generalizable insights from the training data. In particular, we prompt the LLM to decompose a
single slow-fast program pair in the training set into a sequence of atomic edits, which are incremental
modifications associated with a natural language description of the edit, and then explain why the
edit might improve performance. The description is intended to be generalizable, abstracting away
specifics of the training example from which they are derived. After generating a dataset of atomic
edits and examples associated with each edit, when given a new program, we use RAS to first search
over incremental edits to this program. Each edit to this program is achieved by retrieving the most
relevant atomic edit in our database and then prompting the LLM to apply this atomic edit to the new
program. We then perform beam search over sequences of incremental edits to select the resulting
program that achieves the greatest performance gain while preserving correctness.

We evaluate our approach using the PIE benchmark (Shypula et al., [2024) for C++ program op-
timization and using the Mercury benchmark (Du et al., 2024) for Python program optimization.
On PIE, we show that RAS significantly outperforms dynamic retrieval, a state-of-the-art blackbox
adaptation strategy, achieving an 8.61 x average speedup compared to 4.23 x for dynamic retrieval
using Qwen3-Coder. Furthermore, AEGIS achieves a 6.08 x average speedup using GPT-40, while
reducing the average edit size (measured by string edit distance) by 17% when compared to RAS
(with GPT-40) and by 30% when restricting to the first edit in the search process (which is the most
substantial one). Hence, RAS performs upto 2.04 x better than dynamic retrieval, while AEGIS
performs 1.37x better. We then show that by executing RAS on Mercury and comparing against our
best-performing baselines, we can improve the mean runtime percentile by 10.27 for Qwen2.5-7B,
significantly narrowing its performance gap as compared to more recent reasoning models. These
results demonstrate that RAS and AEGIS are promising strategies for blackbox adaptation of LLMs
to code optimization.

Related work. Code optimization has long been a problem of interest in programming languages.
However, these approaches typically operate at a lower level of abstraction and are incapable of
producing high-level optimizations such as changing algorithms and data structures. Thus, there has
been recent interest in leveraging LLMs to augment existing, symbolic techniques. One approach that
directly uses LLMs to perform program optimization is the Search-Based LLM (SBLLM) (Gao et al.|
2024)), which proposes an evolutionary search framework to iteratively optimize Python and C++
programs. However, in their framework, retrieval and search are not integrated, and they do not use
contextual retrieval. Furthermore, they only report speedups of 1.55x on the PIE benchmark (using
GPT-4), so even the existing dynamic retrieval approach studied in PIE substantially outperforms their
approach. Finally, Qiu et al.[(2025)) studies capabilities of LLMs for Python program optimization,
finding significant gaps compared to human experts. We focus on optimizing C++ code since
performance can be measured in a reproducible way using a simulator (Shypula et al., 2024)).

Retrieval augmented generation is broadly known to improve code generation (Wang et al., 2024).
The specific idea of dynamically retrieving relevant in-context examples from a larger training set
was first proposed in [Poesia et al.| (2022) and was later shown to be highly effective for program
optimization (Shypula et al.|[2024)). Recently, MapCoder (Islam et al., 2024) has shown that retrieving
“previously seen” programming examples can improve code generation on the HumanEval benchmark.
While contextual retrieval has recently been popularized for LLMs (Anthropicl [2024), the idea of
annotating code to improve code search has long been studied extensively in software engineering.
Older techniques such as Portfolio (McMillan et al., [2011)) rely on information retrieval methods
such as PageRank. The idea of automatically generating the natural descriptions for code snippets
artificially was proposed in CoaCor (Yao et al.;|2019)), which trains a bidirectional LSTM to generate
natural language descriptions optimized for use by a retrieval model.

2 RETRIEVAL AUGMENTED SEARCH

We describe our retrieval augmented search (RAS) algorithm (summary in Figure[T]and Algorithm I).
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Algorithm 1 Retrieval Augmented Search (RAS)

il’lpllt: Do, Htraina Foptv Fcontexta R, ¢
fori e [1,...,m] do
H’L < tOp-k{((p,p/),d¢(pi_1,p)) ‘ (pap/) S Htrain}

J J ) ; _ [k
p; ~ Opt(ﬂ-z‘ yPi—1 (Vj € [k]) > II; = {7Ti j=1
“ 7)
pi < argmax; ¢, R(p;
return p,,,
Test Set Program (p;. LLM Prompt e
g (Pi) P LLM-Generated Description
$include <bits/stdctt.h> You are an expert programmer who has been
using namespace std; provided with a program solving a programming
‘12:‘: ;2:: ; problem, called the source program. You need to |Feontext|7ye algorithm uses dynamic
vectox(long'long> =y identify the algorithm being used to solve the programming with memoization to

problem, and your goal is to generate a JSON

long long meme[100007]; find the minimum cost of jumping
object with the key \"algorithm\" which has the from the first to the
long long solve(long long index) { value as one sentence describing the algorithm last element, where the cost is
if (index==n-1) { used in the code snippet. the absolute difference
return 0;
) between elements, and we can
i (meme [index] !=-1) { Source Program: jump up to 'k' elements ahead.
recurn meme [index]; (pi-1)
}
long long ret = 10000000000000000;
long long sol = 10000000000000000;
for(long long i = 1 ;i<=k ; i++){ (€ \
L€ (indexti<n) { Training Dataset e A
ret = abs (vec(index]- . o)) Description Embedding Vector
vec[index+i]) + solve (index+i); (P, P, Feontext(P), W(F p,

¥
sol = min(sol,ret);
}
return meme[index] = sol;

FAISS (Top-K Similar Training Set Pairs)

5

€ main ()
>n;

cin>>k;
memset (meme, -1, sizeof (meme) ) ;
long long num;
for(long long i = 0 ; i<n ; i++){
cin>>nun;

vec.push_back (num) ; Generation 1 Prompt

}

cout<<solve (0) <<endl;

an expert progran
ne pair of fast an

mize a given program, called the source
example, which

return 0;

rogram with
enerate. Res

Fastest Generated Program (p;)

#include <cstdio>
#include <algorithm>
#include <climits>
using std::min;
#define MAXN 100007
long long vec[MAXN];

the same code:
ding Faster Program py'}

# optimized version of the same code:

Tong long meme MAXN] ;
L]
int main() { L ]
long long n, ki
scanf ("$11d % &n, &k); hd
for (long long i = 0; i < n; ++i) { .
scant ("11d", avec(il); Generation k Prompt

}
meme (n-1] = 0;
for (long long i = n - 2; i >= 0; —=i) {
long long sol = LLONG MAX;
for (long long j = 1; j <= k && i + 3 < n; ++)
{ Fopt
long long ret = abs(vec[i] - vec[i + j]) -
+ meme(i + 317
sol = min(sol, ret);

put anything other

meme[i] = sol;
)

printf("s11d\n", meme[01);
return 0;

¥ optimized version of the same code:

Figure 1: RAS Framework: For a given slow program p;_1, we use Fiopex t0 generate a program
description and WU to generate its corresponding description embedding vector. We retrieve similar
training set programs using FAISS and pass them to Fyp. The fastest program generated by Fip is p;.

Problem formulation. In the program optimization problem, the goal is to take a program p € P
as input, and output an optimized program p’ € P that is semantically equivalent to p. Typically,
we are additionally given a set of test cases {(;,y;)}¥_; to check correctness; then, denoting the
output of program p on input x as p(z), we are searching for programs p such that p(z;) = y; for
all ¢ € {1, ..., k}. While test cases do not guarantee semantic equivalence, they are widely used in
machine learning for checking program equivalence (Chen et all, 2021} ILi et al.}, [2022).

For PIE, we focus on reducing running time, which we denote R(p) € R. Since we want the fastest
correct program, we let R(p) = —oo if p does not pass one of the given test cases. In practice,
measuring a speedup can be difficult due to the stochastic nature of program execution. Recent work
has proposed benchmarks that seek to mitigate this issue. The approach used by the PIE benchmark
is to measure performance using a system simulator (specifically, gem5 (Binkert et al., 2011)), which
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provides deterministic emulation of hardware, enabling fully reproducible results. Finally, we also
set R(p) = —oo if evaluating p in gem5 times out. For Mercury, we set R(p) to be a modified form
of Beyond@1, their runtime percentile metric (described in Section [.T).

To aid adaptation, we assume given a training set of slow-fast program pairs IT = {(p, p’) =1, where
p is an unoptimized program and p’ is a hand-optimized program; e.g., the PIE benchmark con-
structs such a dataset based on sequences of submissions from individual participants in competitive
programming challenges (Shypula et al., 2024). Given a sequence of submissions py, ..., P, they
include pairs (p;, p;7) where ¢ < ¢’ and where p;/ is at least 10% faster than p; according to gem3, i.e.,
R(py) > 1.1 - R(p;). They also provide a subset of high-quality training pairs that achieve a more
substantial speedup by selecting a subset of the pairs (p;/, p;) with the highest speedups R(p;/)/R(p;).
Using their approach, we also construct a training set for Mercury by selecting high-quality pairs.

Finally, we are interested in blackbox adaptation techniques, which do not adjust the weights of the
LLM; instead, they focus on prompting the LLM to improve performance. These prompts can be
dynamic (e.g., include dynamically retrieved training examples), multi-turn (e.g., iteratively refine an
example based on feedback), or incorporate search (e.g., incrementally apply a sequence of prompts.

General framework. We describe the general Retrieval-Augmented Search (RAS) framework for
program optimization. RAS assumes that it is given a training set Iyin = {(p, ")}, of slow-fast
program pairs, and a new program py € P to be optimized. In addition, it assumes it is given a
retrieval strategy, which can be expressed as a distance function d : P x P — R>( between pairs of
programs. Typically, the strategy is defined by an embedding model ¢ : P — R?, in which case we

can define the distance based on the L, distance between the embedding vectors of two programs:

dg(p,q) = [lo(p) — d(q)|

Our framework also assumes blackbox access to an LLM Fg,, which takes as input an in-context
example of a slow-fast program pair 7 € P2, along with a new program p. Then, we can sample
optimized versions p’ ~ Foy (7, p) of p from Fy. In our implementation, Fiy is provided with a
system prompt instructing it to try and optimize p.

Now, RAS performs a variation of beam search to optimize py, where at each step, it additionally
retrieves in-context examples from the training set Ili,;,. In particular, at the ¢th iteration of beam
search (starting from 7 = 1), let p;_; be the current program. Then, we retrieve the top k programs
from Il,;, to form the in-context dataset:

Hz' = top'k{((pap/)ad(pi—hp)) | (pvp,) € Htrain}~

Here, top-k selects the k new slow-fast pairs (p, p’) with the smallest distances d(p;—1,p), using
FAISS (Douze et al.,_2024) for vector search. For any retrieved example 7rf-, we call 7rf anew pair

if Fip did not use 7 to sample an earlier best-performing program poy € {p1,...,pi—1}. Note
that retrieval is performed based on the slow program p; intuitively, we want a slow program that is
similar to p;_1 so we can apply similar optimizations to p;_ as the ones encoded by the pair (p, p’).

Now, for each retrieved example 7] € II;, we sample an optimized version of p;_; using 77

pi ~ Fopt(’rrgapi—l)-
Finally, we choose p; to be the fastest program that correctly passes all test cases:

p; = arg max R(pz),
JE[K]

where [k] = {1, ..., k}. If no program passes all of the test cases (i.e., R(p]) = —oo for all j € [k]),
or if all programs time out, then we set p; = p;_1. We continue this process for m steps, producing
a sequence of programs p1, ..., p,,. Finally, we return p,,. If there is no program at step m that
passes all of the test cases and does not time out, we return the source program pg. Note that
the hyperparameters of our algorithm are the number of in-context examples k and the number of
iterations m; we describe the choices we use in our experiments in Section [4]

Contextual retrieval. Our instantiation of RAS uses contextual retrieval to identify relevant in-
context examples. We compute ¢(p) by first using an LLM Fiopexe to generate a natural language
description (i.e., the “context” in contextual retrieval) of p (denoted s = Fionext(p)), and then applying
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Training Set Program Pair (p, p')

LLM Decomposition Prompt

P (slower program)
#include<iostream>
#include<algorithm>
using namespace std;
int main(){
int n;
int a[5000];
int tmp;
int ans;
while (1) {
cin >> n;
if (n)break;
for (int i=0;i<n;i++){
cin >> alil;
}
ans = al[0];
for(int i=0;i<n;i++){
for (int j <n;j++) {
if(i==j)tmp = alil;
else tmp += aljl;
ans = max (tmp, ans) ;
}
¥
cout << ans << endl;

}

¥

You are an expert programmer who needs to
decompose a sequence of edits to a program
>that have been made to optimize the
program's performance. You are provided
with the source program (the initial state)
and the target program (the final state).
Describe the changes made to the source
program as a sequence of edits in the
format of a JSON file where each key marks
the step in the sequence. For example,
{("1": <description of the first edit in the
<description of the second
sequence>, ... "N":

n of the final edit in the

Make sure to describe each edit
alongside why it may improve performance.
Source Program: (p}

sequence>, "2":
edit in the

Example Pair Generation Prompt

You are an expert programmer who needs to
optimize a given program. You are given the
description of the optimization to be
performed as well as the source code of the
program. Rewrite the source code in a way
that incorporates the optimization and
improves its performance, and return a
JSON-formatted string where the rewritten
code is stored with the key
"optimized_code". Do not output anything
other than C++ code.
Source Program: {p)

lFedk

Optimization: {sj}
Program p;

Example Pair Generation Prompt
You are an expert programmer ....
ip1}

Source Prog
Optimizatio:

JFdecomp

Natural Language Edits

s1: The header file <iostream> is replaced
with <cstdio>. The input and output

functions changed from 'cin',
'scanf', 'printf', respectively
is made because 'scanf' and 'printf

'cout’ to

in C

are generally faster than C++ 'cin' and

p' (faster program):
#include<cstdio>

#include<algorithm>
using namespace std;

int main(){
int n,tmp,ans;
int a[5000]

",&n) && n){
;i<n;i++)scanf ("&d",

for (int i=0;i<n;i++)
for(int j=i;j<n;j++)
if (i==j)tmp = alil;
else tmp += aljl;
ans = max (tmp,ans);
}
printf ("$d\n"
¥

,ans) ;

}

&alil) s

‘cout', especially in competitive
programming scenarios where input and output
operations could be a bottleneck

This changel]

Fedit
Program p;

Example Pair Generation Prompt

You are an expert programmer ....
Source : ipy)
optimization: {s;

I Fedit
Program pj3

Example Pair Generation Prompt

expert programmer

 Fedit

Atomic Edits

ler: To optimize input and output operations
for performance in any C++ program,
substitute the C++ standard I/O header
<iostream> with C's <cstdio>. Replace
instances of 'cin' with 'scanf' and 'cout'
with 'printf'. 'scanf' and 'printf
generally perform faster than 'cin' and
'cout' due to less synchronization overhead
with C++ streams. This adjustment is

particularly beneficial in scenarios such as

Atomic Edits Dataset

competitive programming, where input and

output can be performance bottlenecks
Ensure data types handled by 'scanf' and

Fgen|"rewritten optimization".
g

(e1,p,P1) le—{'printf' match the types expected by the
lprogram.

(e2,P1,P2) °2*
les:

(e3,p2/P3) .
lea:

(e4,P3,P4)

Figure 2: AEGIS Framework: For a given training set program pair (p, p’), we identify the natural
language edits using Fyecomp, and then generate intermediate programs implementing each edit by

Program py

Edit Generalization Prompt

You are an expert programmer. You are
provided with the description of a program
optimization, which, when applied to the
given program, results in an improvement in
program performance. program
optimization so that it can be applied more
generally to any program. Return a JSON-
formatted string where the rewritten
optimization is stored with the key

Do not output

Rewrite the

anything other than JSON.
Program Optimization:

e}

(s1)

Source Program:

You a
Progr

xpert programmer.
imizations (o)
ip1}

You are prov.

sourc ram:

You are an expert programmer.
Program Optimization: (ss)

ram: {pz}

You are provided with ...

soure

You are an expert programmer. You are provided with ...
Program Optimization: (s}
Source Program: {p3}

using Feq;. Finally, the natural language edits are generalized by Fi., to construct atomic edits.

an embedding model ) to obtain a vector ¢(s) € RY, ie., ¢(p) = Y (Fronext(p)). For examples
(p,p") € Miain, We can precompute the embeddings, so the LLM Fqyex Only needs to be run once
for each one. To construct Fionext, We use a blackbox LLM that is instructed to describe features like
the algorithms and data structures used by the program; this prompt is shown in Figure [T] with an
example of a pair (p, s) of program p and its description s. Finally, we also compare to an ablation
used in prior work on program optimization (Shypula et al.,[2024). Here, we directly embed the given

program—i.e., ¢(p) = 1(p) for some embedding model v; we call this approach code retrieval.

3 AtoMic EDIT GUIDED SEARCH

Next, we describe Atomic Edit Gulded Search (AEGIS), which is designed to improve interpretability
of RAS (overview in Figure 2] and pseudocode in Algorithm [2). AEGIS is inspired by modern
compilers, which are designed to perform a sequence of passes, which incrementally transform the
program to improve performance. Breaking down optimizations into smaller steps has the potential to
improve interpretability since the changes from one step to the next may be easier for the programmer
to understand. We propose to generate atomic edits, which comprise pairs of programs (p, p’) that

are assumed to be semantically equivalent and roughly differ by a single code optimization.
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Algorithm 2 Atomic Edit-Guided Search (AEGIS)

inPllt3 Htraim Fdecomp7 Fedily Fgem Fopta Fcontext; R
Hatomic —J
for (p7p/) S Htrain do
[517 cee sr] ~ Fdecomp(pap/)
fori e [1,...,n] do
Pi ~ Feaie(si,pi-1)
€ ~ gen(siapi)
ILiomic < Matomic U {(ei7 (piflapi))}
return I, mic

To realize this goal, AEGIS replaces the original training dataset I1,;, with a dataset of atomic edits
Iatomic, and then uses RAS in conjunction with IIomic. By retrieving atomic edits, we can guide
the underlying LLM F;,; to perform incremental optimizations rather than large changes. AEGIS
constructs ITyomic by using an LLM Fecomp to decompose each pair (p,p") € Iy into atomic edits;
then, it aggregates together all discovered atomic edits into the new training set IL,omic-

Specifically, we instruct Fyecomp to describe the differences between the each slow-fast program pair
(p,p") € Iiain as a list; then, the output of Fiecomp is a list of natural language edits [s1, . .., s, ~
Fiecomp (P, P'), where each s; is a natural language description of an edit in (p, p’). Next, we apply
each edit in sequence to the slow program p to obtain a sequence of programs. We do so by initializing
po = p, and then prompting an LLM F_g; to apply natural language edit s; to p;_; to obtain the next
program p; ~ Fu4i(p;—1, s;) in the sequence; here, Fiq; is instructed to apply the edit to the given
program. Assuming the natural language edits accurately describe how p’ is obtained from p, then
the final program p,. in this sequence should resemble the original optimization p’ of p; in particular,
P, should also be an optimized version of p.

We construct our atomic edit dataset using pairs from the resulting sequence. For each tuple
(8i,Pi—1,Di), we ask an LLM Fj, to generalize s; so it applies to a wider variety of programs; the
resulting description e; ~ Fyen(si, p;) is an atomic edit. Then, our dataset of atomic edits is

Matomic = U {(ei> (piflapi))}'

(p,p") €Minain

Finally, we can use RAS with [T omic, with a slight modification to account for some of the extra
information. Specifically, we modify the LLM Iy, for program optimization to include the atomic
edit—i.e., given atomic edit (e, ) and program p, we sample an optimized version p’ ~ Foy (e, 7, p).
Intuitively, e provides instructions on how to optimize p, and 7 shows one example applying e.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmark. Our experiments are based on the PIE benchmark (Shypula et al., [2024), a dataset
of slow-fast C++ program pairs constructed from submissions by human programmers to CodeNet
(Puri et al.| [2021)). Since competitive programmers iteratively refine their code submissions for
better performance, the authors of PIE construct this dataset by first identifying a sequence of
programs submitted by the same programmer to solve a single problem. They filter out any incorrect
submissions, and then construct slow-fast pairs by executing the C++ submissions on the gem5
simulator (Binkert et al.,[2011) to measure the running time of the code, discarding any pairs whose
difference in performance improvement is less than 10%. We use 4080 high-quality pairs from
the PIE dataset as our training set I, and 973 test set pairs as a held-out test set Il. These
high-quality pairs are constructed by taking up to 4 pairs in the PIE benchmark’s training set with the
highest speedup for each competitive programming problem. Importantly, the train-test split in PIE is
based on the competitive programming problem being solved, so the training and test set programs
are semantically different. For Mercury, we are provided with a training and test set with reference
solutions for each problem. We use the same approach on the 1633 Leetcode problems in the training
set to construct a high-quality training set 1L, of 6372 pairs using Leetcode’s reported runtimes for
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Approach GPT-40 Qwen-3-Coder

pp Mean Best Speedup % Optimized Mean Best Speedup % Optimized
RAS 8.01 0.9640 8.61 0.9774
No Contextual 5.80 0.8520 4.52 0.6927
Dynamic Retrieval 4.43 0.8191 4.23 0.7749
Instruct Only 2.31 0.5447 1.73 0.4018
Human 3.63 0.9887 3.63 0.9887

Table 1: Comparing RAS to baselines on PIE.

Approach GPT-do

pp Mean Best Speedup % Optimized
AEGIS 6.08 0.9065
No Contextual 3.85 0.7554
Instruct Only 2.31 0.5447
Human 3.63 0.9887

Table 2: Comparing AEGIS to baselines on PIE.

the solutions. We evaluate our approaches on the slowest-provided reference solutions for the 256
held-out problems in Mercury’s test set (Du et al.| 2024)).

Baselines. We compare our approach to dynamic retrieval, the highest performing blackbox adap-
tation strategy studied in PIE (Shypula et al., [2024). This approach also dynamically retrieves
in-context examples from Il,;,. There are two key differences between our approach and theirs.
First, they use retrieval based on the embedding of the code itself rather than contextual retrieval
(i.e., code retrieval). Second, they do not perform sequential search; instead, given a program p, they
retrieve k in-context examples 11 C T, to provide to the LLM Fépt, and then take multiple samples

pl, . ph ~ Foo(IL, p). They return the fastest correct program among the h choices.

In addition, we also compare to a “no contextual” ablation of our approach that uses PIE’s strategy
for retrieval but with search; in particular, it performs code retrieval instead of contextual retrieval.
One iteration proceeds as with dynamic retrieval, but we perform multiple iterations. In particular,
let py be the initial program; on the ¢th iteration (starting from ¢ = 1), we sample %k in-context
examples II C Il,, using code retrieval, draw samples pzl, s pzh ~ F! (II;,p;—1), and then let

. ; . ) opt
pi = argmax ¢, R(pj); as in RAS, we let pj = p]_, if R(p]) = —oc forall j € [h].

We also consider a “instruct only” approach from PIE that performs neither retrieval (i.e., does not use
IIain) nor search; instead, we simply instruct the LLM Fé}’,t to optimize the given program p to obtain

an optimized version p’ = Iy (p), i.e., Fyy is an unadapted LLM. The prompt used in the “instruct
only” setting is described in Appendix [A] and the remaining prompts are described in Appendix
Finally, we include the “human” speedup—for an initial program p, it is the speedup achieved by the
fastest correct program p’ written by the human participant who wrote p. For Mercury, we evaluate

on our strongest-baseline, No Contextual, and provide our Instruct Only results for reference.

Hyperparameters. For PIE, in our approaches (RAS and AEGIS with contextual retrieval), we use
k = 8 retrievals and m = 4 beam search steps and take h = 1 sample per generated prompt. For our
baselines, we normalize computation according to the number of calls to the LLM Fop, Fy ., or Fyfy.
In this calculation, note that for I, the number of retrievals k = [II| does not affect the number

of calls Fo’pt(H, p), since all examples are included in a single call. Then, for our dynamic retrieval
baseline, we retrieve k = 4 examples (the same as used in PIE) and take h = 32 samples. For our “no
contextual” ablation, we retrieve k = 4 examples, take h = 8 samples per iteration, and use m = 4
iterations (the same as our approach). For our “instruct only” ablation, we take h = 32 samples and
use m = 1 iterations. We note that this is different from the standard pass@k metric used to evaluate
LLM code performance in previous work (such as (Chen et al.,2021)), where k refers to the number
of samples taken from the LLM, which we denote as h in our case. We use k to denote the number
of retrieved examples used in the prompt, as done in (Shypula et al.}[2024). For Mercury, we only
execute m = 2 iterations of RAS (with k = 8, h = 1) and no contextual (with &k = 4, h = 8) and , so
we set h = 16 for the Instruct Only approach.
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Method Beyond@1 Pass@1
RAS (Qwen2.5-7B) 87.85 98.83
No Contextual (Qwen2.5-7B) 69.26 97.27
Instruct Only (Qwen2.5-7B) (h = 16) 77.58 98.44
Base 58.66 96.88

Table 3: RAS Experiments on Mercury. The base values represent the unoptimized test set programs.

Compute. For all experiments, we use OpenAl’s gpt-40-2024-08-06 as Fiopex for the training
set, as well as Fecomp, Fedit, and Fgep for the PIE atomic edit dataset. We then use the model specified
in the experiment as Fypy, F(;pt, F(;l’,t, and Fionexe While executing the search procedure. We use
OpenAl’s text-embedding—-3-1large as the embedding model ©). We run the gemS5 simulator
on a server with 2x Intel(R) Xeon(R) Gold 6342 CPUs (96 cores total). All C++ programs evaluated
in our experiments are compiled using a g++ compiler with the -O3 flag. We use an AWS t2.2xlarge

instance for measuring runtime percentiles for Mercury.

Metrics. Running gem5 on all test cases to evaluate a single program can be prohibitively compu-
tationally expensive due to the large overhead of running gem5. Instead, we measure running time
averaged across a subset of 5 randomly selected test cases; these 5 test cases are fixed ahead-of-time.
To validate this strategy, we check the correlation between running times on the full test suite vs. our
5 random test cases across all programs in the PIE test set; we find a strong correlation (Pearson’s
r = 0.89, p < 0.001; Spearman’s p = 0.86, p < 0.001), suggesting that 5 test cases suffices to
obtain an accurate estimate of running time. We report results on the held-out test set Il C P of
973 unoptimized programs provided by the PIE benchmark. Our main metric is “mean best speedup”

RunningTime(p’) 1}

Speed )=
pee up(pap ) max{ RunningTime(p) ’

of the final program p’ compared to the original program p, averaged across all test programs p € I,
where The minimum speedup is set to 1 since we can always return p. We also report “% optimized”,
which is the number of test programs p for which the optimized program p’ is at least 1.1x as fast as
p. While this metric is not the main goal of our system, it helps capture the diversity of programs that
can be optimized using a given approach. For Mercury, we report their Pass@1 and Beyond@ 1 (mean
runtime percentile) metrics (Du et al.l 2024)), with the modification that fastest generated program
using each approach is assumed to be the 1 sample generated by the LLM.

4.2 RESULTS

We show C++ results for RAS in Table[T]and for AEGIS in Table 2] and show Python optimization
results for RAS in Table [3] First, note that RAS significantly improves performance compared
to all baselines, when using both the original PIE training set as well as our atomic edit training
set. Dynamic retrieval was by far the best blackbox adaptation approach studied in the original PIE
paper, yet our approach is able to almost double its performance in terms of mean best speedup.
Our ablation demonstrates that both search and contextual retrieval are roughly equally important,
since ablating contextual retrieval about halves the performance improvement compared to dynamic
retrieval. While AEGIS diminishes performance, it still achieves a significant improvement. Indeed,
it outperforms all ablations (both ablations of AEGIS and those of RAS); the only approach it does
not outperform is the full RAS approach. An analysis of the types of programming problems that
RAS and AEGIS fail to optimize in our GPT-40 experiments is presented in Appendix D} For Python
optimization, we observe that RAS increases the mean runtime percentile metric (Beyond@1) by
10.27 for Qwen2.5-7B, significantly narrowing the gap between it and the Instruct Only performance
of larger models. Pass@1 and Beyond@1 results for larger models in the Instruct Only setting are
provided in Appendix [F}

Metrics across beam search iterations. Next, in Figure [3] we study the effect of using search
techniques by reporting our various metrics across iterations of beam search on our GPT-40 C++
experiments. We focus on our results for our approach compared to our “No Contextual” ablation
(since “Dynamic Retrieval” and “Instruct Only” do not perform search). Figure[3](a) shows results for
“Mean Best Speedup”. As can be seen, while the first step of beam search provides the greatest benefit,
it continues to provide benefit for all approaches, especially when using contextual retrieval. Since
we request the LLM Fioeext to describe the algorithm used for the current best-performing program
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Mean Best Speedup Over Beam Search Steps. 9% Optimized Over Beam Search Steps Mean Edit Distance During Beam-Search for Aegis and RAS

500 — RAS (Contextual Retrieval)

RAS (No
—— AEGIS (C
— AEGIS (No

— AEGIS (No

o 1 2 3 o 1 2 3 1 2 3 4
Number of Beam Search Steps Number of Beam Search Steps Step

(a) Mean Best Speedup (b) % Optimized (c) Mean Edit Distance

Figure 3: Mean Best Speedup, %Optimized, and Mean Edit Distance across beam search steps on
GPT-40 experiments.

p; at each iteration 7 of the beam search, we hypothesize that Fi,nex can update its description to
include algorithmic updates made in the previous iteration, thus enabling it to retrieve more relevant
examples. We also see greater continuing improvements for AEGIS, likely because atomic edits
constrain optimization to change the program more slowly. Additional iterations may help further
close the gap between AEGIS and RAS. We provide an example of how AEGIS and RAS both
optimize the same program in Appendix [C} Next, Figure [3] (b) shows results for “% Optimized”.
These results converge substantially more quickly, likely because the first iteration is already enough
to get above 1.1x speedup for most programs. Nevertheless, we continue to see gains for our AEGIS
approach, again suggesting that continuing search may close the performance gap.

Accuracy. RAS and AEGIS are designed to generate programs that pass all test cases; however, this
strategy does not ensure correctness. To quantify the error rate of RAS and AEGIS more rigorously on
PIE in our GPT-40 experiments, we examined if the programs selected at each step of the procedure
would differ if at each iteration of search, we selected the fastest program while ignoring correctness.
Across four iterations of search, while selecting for fastest program without measuring accuracy, for
RAS, 5/973 test set instances choose an incorrect program (so accuracy is 99.5%), while for AEGIS,
0/973 test set instances chose an incorrect program (so accuracy is 100%). These results suggest
that the LLM is highly accurate at producing optimizations that preserve semantic equivalence. We
note that LLM-based program optimization systems are already deployed in practice (Shypula et al.|
2023)), leaving it up to the programmer to validate correctness of the optimizations.

Interpretability. A key motivation for AEGIS is that it should provide greater interpretability by
making smaller edits. To study this objective, we consider two metrics. Our main metric is the
character-level edit distance of pairs of programs (p;, p;+1) encountered as part of the search process,
with lower edit distances indicating more incremental changes; we consider the edit distance averaged
across all pairs of programs and across all programs in the test set. We summarize results for AEGIS
and RAS in Table 5] including results for the “no context” ablations of each approach. As can be seen,
AEGIS significantly reduces mean edit distance in both cases. Furthermore, in Figure [3] we show
how the mean edit distance changes across steps. As can be seen, AEGIS significantly reduces mean
edit distance in the first step, from about 500 to 350. These results suggest that RAS is performing
significant optimizations in the first step, and the subsequent steps have smaller edit distance simply
because the optimizations are more incremental. Even a single uninterpretable step can make the
entire sequence less interpretable, so these results further emphasize the effectiveness of our approach.

5 CONCLUSION

We have proposed RAS and AEGIS, two methods for LLM-guided program optimization that
incorporate beam search and retrieval to iteratively optimize a given program. We achieve significant
speedups in the blackbox setting (i.e., without any fine-tuning), outperforming existing LLM-based
program optimization techniques. AEGIS also aims to improve interpretability by decomposing
training examples into “atomic edits” that represent incremental optimizations rather than large
changes. We believe that our approach provides a compelling strategy for adapting LLMs to code
optimization in the blackbox setting, and may be effective in other code generation tasks as well.
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A COMPARING INSTRUCTION PROMPTING AND EXPERT PROGRAMMER
SYSTEM ROLES

In our “Instruct Only” baseline, we experiment with two prompts: an instruction-prompting approach
(as described in the results of the original PIE benchmark (Shypula et al [2024))), and an “expert
programmer” system role. We provide the exact prompts for our approaches here and whenever
we refer to programs or retrieved natural language optimizations, we enclose them in braces. Our
prompts are as follows:

A.1 INSTRUCTION PROMPTING (IP)

Given the program below, improve its performance:

### Program: {Program to be optimized}

### Optimized Version:

A.2 EXPERT PROGRAMMER SYSTEM ROLE (EPSR)

System Role: You are an expert programmer who needs to optimize a given program. You are given
the source code of the program. Rewrite the source code in a way that optimizes performance such
that the program executes faster, and return a JSON-formatted string where the rewritten code is
stored with the key “optimized_code”. Do not output anything other than C++ code.

User Role: Source Code: {Program to be optimized }

A.3 PROMPT RESULT COMPARISON

We evaluate the two prompts on our dataset of 973 programs by taking £ = 32 samples form =1
iteration of search. Our results are presented in Table 4]

Approach Mean Best Speedup % Optimized

EPSR 2.31 0.5447
IP 2.16 0.5632

Table 4: Results comparing differences in metrics due to prompts in Instruct Only setting

Since we observe a slight increase in Mean Best Speedup in the setting with an expert-level system
role, we use it in all our other prompts for to maximize efficacy. The “Instruct Only” setting results
we report in Tables |1{ & [2 use this expert-programmer system role prompt, which is used by Fé;,[.

B PROMPTS FOR EXPERIMENTAL RESULTS

We present our prompts for our PIE experiments below. For our Mercury experiments, we replace all
instances of the phrase “C++” with “Python”.

12
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B.1 RAS
B.1.1 PROGRAM DESCRIPTION GENERATION

This prompt is used by Frontext-

System Role: You are an expert programmer who has been provided with a program solving a
programming problem, called the source program. You need to identify the algorithm being used to
solve the problem, and your goal is to generate a JSON object with the key ‘“algorithm” which has
the value as one sentence describing the algorithm used in the code snippet.

User Role: Source Program:

{Program to be optimized}

B.1.2 GENERATING PROGRAMS WITH CONTEXTUAL RETRIEVAL

This prompt is used by Fp.

System Role: You are an expert programmer who needs to optimize a given program, called the
source program. You are given one pair of fast and slow programs as an example, which are presented
as a pair where “slower version” refers to the slow code and “optimized version” refers to the faster,
more optimal version of the same program. The last program with the label “slower version” is the
source program whose optimized version you need to generate. Rewrite the source program in a way
that incorporates all of the optimizations in the example, and return a JSON-formatted string where
the rewritten code is stored with the key “optimized_code”. Do not output anything other than C++
code.

User Role:

# slower version:

{Retrieved Slow Program}

# optimized version of the same code:

{Retrieved Faster Program}

# slower version:
{Program to be optimized}
# optimized version of the same code: \n

13
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B.1.3 GENERATING PROGRAMS WITH DYNAMIC CODE RETRIEVAL

This is the prompt used in both the “No Contextual” and ”"Dynamic Retrieval” settings for RAS, as
well as the “"No Contextual” setting for AEGIS. It is passed to the model £y

System Role: You are an expert programmer who needs to optimize a given program, called the
source program. You are given several pairs of fast and slow programs, called examples, which are
presented as pairs where “slower version” refers to the slow code and “optimized version” refers
to the faster, more optimal version of the same program. The very last program with the label
“slower version” is the source program whose optimized version you need to generate. Rewrite the
source program in a way that incorporates all of the optimizations in the examples, and return a
JSON-formatted string where the rewritten code is stored with the key “optimized_code”. Do not
output anything other than C++ code.

User Role:

# slower version:

{Retrieved Slow Program 1}

# optimized version of the same code:

{Retrieved Faster Program 1}

# slower version:

{Retrieved Slow Program 2}

# optimized version of the same code:
{Retrieved Faster Program 2}

# slower version:

{Retrieved Slow Program 3}

# optimized version of the same code:
{Retrieved Faster Program 3}

# slower version:

{Retrieved Slow Program 4}

# optimized version of the same code:
{Retrieved Faster Program 4}

# slower version:
{Program to be optimized}
# optimized version of the same code: \n
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B.2 AEGIS

B.2.1 GENERATING NATURAL LANGUAGE EDITS

This prompt is used by Fyecomp-

System Role: You are an expert programmer who needs to decompose a sequence of edits to a
program that have been made to optimize the program’s performance. You are provided with the
source program (the initial state) and the target program (the final state). Describe the changes made
to the source program as a sequence of edits in the format of a JSON file where each key marks
the step in the sequence. For example, “1”: <description of the first edit in the sequence>, “2”:
<description of the second edit in the sequence>, ... “N”: <description of the final edit in the
sequence>. Make sure to describe each edit alongside why it may improve performance.

User Role:

Source Program: {Slow Program from Training Set Program Pair}

Target Program: {Faster Program from Training Set Program Pair}

B.2.2 GENERATING PROGRAM SEQUENCE FROM NATURAL LANGUAGE EDITS

This prompt is used by Figj.

System Role: You are an expert programmer who needs to optimize a given program. You are given
the description of the optimization to be performed as well as the source code of the program. Rewrite
the source code in a way that incorporates the optimization and improves its performance, and return
a JSON-formatted string where the rewritten code is stored with the key “optimized_code”. Do not
output anything other than C++ code.

User Role:

Source Program: {Previous Program in Sequence }

Optimization: {Optimization to be applied to generate next program in the sequence}

B.2.3 GENERATING ATOMIC EDITS FROM NATURAL LANGUAGE EDITS

This prompt is used by Fiep.

System Role: You are an expert programmer. You are provided with the description of a program
optimization, which, when applied to the given program, results in an improvement in program
performance. Rewrite the program optimization so that it can be applied more generally to any
program. Return a JSON-formatted string where the rewritten optimization is stored with the key
“rewritten_optimization”. Do not output anything other than JSON.

User Role:

Program Optimization: {Natural Language Edit}

Program: {Program in program sequence that the edit was applied to}

B.2.4 GENERATING PROGRAMS WITH CONTEXTUAL RETRIEVAL

This prompt is used by the modified F;, when generating programs with AEGIS.

System Role: You are an expert programmer who needs to optimize a given program, called the
source program. You are given the description of an optimization that is to be performed on the
given program, as well as an example showing how to apply the optimization on an example program
(called the example source) to get a target program (called the example target). Rewrite the source
code in a way that incorporates all of the optimizations, and return a JSON-formatted string where the
rewritten code is stored with the key “optimized_code”. Do not output anything other than C++ code.
User Role: Source Program:

{Program to be optimized}

Optimization:

{Atomic edit retrieved via contextual retrieval }

Example Source:

{Slower program in retrieved example pair}
Example Target:

{Faster program in retrieved example pair}
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Figure 4: We show a randomly selected example optimization trajectory where RAS and AEGIS
implement similar optimizations to achieve similar speedups. The final speedup of RAS is 10.06 %,
compared to 9.58 x for AEGIS. We have highlighted lines that have changed from the previous step
in orange, while lines that change in the next step have been highlighted in red. For reference, the
human speedup on this example is 1.8 x. Here RAS implements an optimization to replace cin and
cout alongside an optimization to ensure that variables are not needlessly updated whenb = cin
Step 1. AEGIS implements a cin and cout replacement in Step 1 and refines it until Step 3, and
then implements the b ! =c check in Step 4.

C COMPARISON BETWEEN RAS AND AEGIS

In Figures @ and [5} we show an example of the optimization trajectory taken by each RAS and
AEGIS in our GPT-40 experiment on the PIE dataset. As can be seen, RAS concentrates a large
number of edits in the first step. In contrast, the edits performed by AEGIS are spread out more evenly
across different steps.
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Test Set Program RAS Step 1 RAS Step 2 RAS Step 3 RAS Step 4

dio.h>

Test Set Program AEGIS Step 1 AEGIS Step 2 AEGIS Step 3 AEGIS Step 4

£
l+abs(alil-ali-il));

}
printf("sd\n®, £(nl);

}
printf ("sd\n”, £(n));

Figure 5: We show a randomly selected example optimization trajectory where RAS significantly
outperforms AEGIS. Here, we demonstrate the improvements made at each step of RAS vs. AEGIS.
The final speedup of RAS on this example is 7.34x, compared to 2.35x for AEGIS. We have
highlighted lines that have changed from the previous step in orange, while lines that change in the
next step have been highlighted in red. For reference, the human speedup on this example is 1.37x.

D FAILURE CATEGORY ANALYSIS OF RAS AND AEGIS

In our GPT-40 experiment on the PIE dataset, for each of our two methods, AEGIS and RAS, we
construct a set of unoptimized programs. The set contains test set programs for whom the final
best speedup after using the method is less than 1.1x. We then study the program descriptions
generated by the LLM Figneex; during contextual retrieval. By examining the LLM-generated program
descriptions of the test set programs in the unoptimized program set, we can measure the frequency of
specific frequently occurring terms. We then compare the frequency of these terms in the unoptimized
program set to the overall test set to measure if each method fails disproportionately on problems
involving certain algorithms or data structures.

AEGIS appears to struggle with optimizing two primary groups of programs: programs that include
dynamic programming algorithms and programs that involve binary search over either sorted lists
or trees. Across the complete test set, programs with descriptions including the term “dynamic
programming” constitute 51.59% of programs and those mentioning “binary search” constitute 4.32
of programs. AEGIS’s set of unoptimized programs constitutes 10.48% of the entire test set. Programs
with descriptions including the term “dynamic programming” constitute 48.04% and those with
descriptions mentioning “binary search” constitute 10.78% of this unoptimized set. These results
suggest that AEGIS fails disproportionately on binary search problems.

For RAS, the unoptimized program set is 3.91% of the entire test sets. When compared to AEGIS,
the percentage of dynamic programming problems in RAS’s unoptimized program set decreases
to 21.05%, while the percentage of binary search problems remains at a similar level at 10.53%.
Additionally, for RAS, we observe a high failure rate for programs whose descriptions mention
Kruskal’s algorithm: while such problems constitute 1.03% of the total test set, they constitute
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15.79% of RAS’s unoptimized program set. Only 2.94% of problems in AEGIS’s unoptimized
program set mention Kruskal’s algorithm, and we observe that RAS fails on a greater number of
problems involving Kruskal’s algorithm as compared to AEGIS.

Thus, we can develop greater insights into their failure modes by analyzing the artifacts produced
during RAS and AEGIS. By identifying algorithms and data structures that cause these failures,
we can subsequently augment the training dataset which we use for retrieval by targeting specific
categories of optimizations for subsequent improvements in performance.

E MEAN EDIT DISTANCE

We show mean edit distances in Table[3]

Method GPT-40 Mean Edit Distance
AEGIS 213.05
RAS 257.77
AEGIS (No Contextual) 203.24
RAS (No Contextual) 221.49

Table 5: Comparisons of edit Distances over Steps between AEGIS and RAS on the PIE Benchmark.

F MERCURY RESULTS FOR LARGER MODELS

We show results of using larger models to optimize programs in the Mercury dataset in the Instruct
Only setting in Table[6]

Method Beyond@1 Pass@1
Instruct Only (Gemma3-12B) (h = 16) 88.76 99.61
Instruct Only (Qwen3-30B) (h = 8) 91.02 99.22
Instruct Only (Qwen-QwQ-32B) (h = 8) 93.13 99.61

Table 6: RAS Experiments on Mercury on larger models.

G LLM USAGE

LLMs were used to generate the code for executing some of the experiments, which was reviewed by
the authors.
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