
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LLM PROGRAM OPTIMIZATION VIA RETRIEVAL AUG-
MENTED SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

With the advent of large language models (LLMs), there has been great interest in
applying them to solve difficult programming tasks. Recent work has demonstrated
their potential at program optimization, a key challenge in programming languages
research. We propose a blackbox adaptation method called Retrieval Augmented
Search (RAS) that performs beam search over candidate optimizations; at each step,
it retrieves in-context examples from a given training dataset of slow-fast program
pairs to guide the LLM. Critically, we find that performing contextual retrieval
based on an LLM-generated natural language description significantly outperforms
retrieval based on the source code. In addition, we propose a method called AEGIS
for improving interpretability by decomposing training examples into “atomic edits”
that are significantly more incremental in nature. We show that RAS performs
up to 2.04× better than prior state-of-the-art blackbox adaptation strategies on
optimizing C++ programs, and that AEGIS performs 1.37× better while performing
significantly smaller edits. We also show that using RAS improves the mean
runtime percentile of Python programs by 10.27 as compared to other strategies.

1 INTRODUCTION

Given the success of large language models (LLMs) in writing code, there has been significant interest
applying them to programming tasks. A particularly interesting task is program optimization, a
long-standing problem in programming languages. Recent work has shown that LLMs have difficulty
with this task out-of-the-box (Shypula et al., 2024)—intuitively, data on program performance is
simply not widely available in traditional training datasets, making adaptation necessary.

To address this problem, they propose the “Performance Improving Edits (PIE)” benchmark, and
use it to test a number of carefully designed adaptation strategies to identify effective algorithms
for improving performance, including blackbox (i.e. prompting-based) adaptation strategies such as
instruction prompting (Mishra et al., 2022), in-context learning (Brown et al., 2020), chain-of-thought
prompting (Wei et al., 2022), and retrieval augmented generation (Lewis et al., 2020). They find
dynamic code retrieval to be most effective; this approach retrieves a handful of slow-fast program
pair examples from the training set at test time that are most relevant to the current instance (based
on embedding similarity). These pairs are then used as in-context examples to prompt the LLM.
Intuitively, this approach makes effective use of the training set, which contributes to its success.

This existing approach is “end-to-end” in the sense that it takes an input program and asks an LLM
to directly output an optimized version of that program. However, this strategy differs significantly
from how modern compilers work. Rather than making edits inspired by a handful of end-to-end
examples, they systematically modify the program through a series of compiler passes, each of which
is designed to perform a specific kind of optimization. These optimizations are inspired by existing
examples, but in a way that generalizes them so they apply to new programs. Thus, a natural question
is whether breaking end-to-end optimization into more incremental steps can improve performance.

Inspired by modern compiler design, we propose two novel retrieval-based adaptation strategies. First,
we propose retrieval augmented search (RAS), which combines two insights to improve dynamic
retrieval. First, rather than retrieve based on the code itself, it uses contextual retrieval, where it
retrieves examples from the training set based on an LLM-generated natural language description
of the program, abstracting the core algorithms and data structures used by the program from how
they are implemented on a superficial level. Second, rather than retrieve a fixed set of programs,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

we perform beam search by iteratively performing the retrieve-optimize-evaluate loop. These two
techniques result in a state-of-the-art blackbox technique for adapting LLMs to program optimization.

However, this technique still produces large changes that can be hard to interpret. To further address
this issue, we propose Atomic Edit GuIded Search (AEGIS), which leverages a preprocessing step to
distill generalizable insights from the training data. In particular, we prompt the LLM to decompose a
single slow-fast program pair in the training set into a sequence of atomic edits, which are incremental
modifications associated with a natural language description of the edit, and then explain why the
edit might improve performance. The description is intended to be generalizable, abstracting away
specifics of the training example from which they are derived. After generating a dataset of atomic
edits and examples associated with each edit, when given a new program, we use RAS to first search
over incremental edits to this program. Each edit to this program is achieved by retrieving the most
relevant atomic edit in our database and then prompting the LLM to apply this atomic edit to the new
program. We then perform beam search over sequences of incremental edits to select the resulting
program that achieves the greatest performance gain while preserving correctness.

We evaluate our approach using the PIE benchmark (Shypula et al., 2024) for C++ program op-
timization and using the Mercury benchmark (Du et al., 2024) for Python program optimization.
On PIE, we show that RAS significantly outperforms dynamic retrieval, a state-of-the-art blackbox
adaptation strategy, achieving an 8.61× average speedup compared to 4.23× for dynamic retrieval
using Qwen3-Coder. Furthermore, AEGIS achieves a 6.08× average speedup using GPT-4o, while
reducing the average edit size (measured by string edit distance) by 17% when compared to RAS
(with GPT-4o) and by 30% when restricting to the first edit in the search process (which is the most
substantial one). Hence, RAS performs upto 2.04× better than dynamic retrieval, while AEGIS
performs 1.37× better. We then show that by executing RAS on Mercury and comparing against our
best-performing baselines, we can improve the mean runtime percentile by 10.27 for Qwen2.5-7B,
significantly narrowing its performance gap as compared to more recent reasoning models. These
results demonstrate that RAS and AEGIS are promising strategies for blackbox adaptation of LLMs
to code optimization.

Related work. Code optimization has long been a problem of interest in programming languages.
However, these approaches typically operate at a lower level of abstraction and are incapable of
producing high-level optimizations such as changing algorithms and data structures. Thus, there has
been recent interest in leveraging LLMs to augment existing, symbolic techniques. One approach that
directly uses LLMs to perform program optimization is the Search-Based LLM (SBLLM) (Gao et al.,
2024), which proposes an evolutionary search framework to iteratively optimize Python and C++
programs. However, in their framework, retrieval and search are not integrated, and they do not use
contextual retrieval. Furthermore, they only report speedups of 1.55× on the PIE benchmark (using
GPT-4), so even the existing dynamic retrieval approach studied in PIE substantially outperforms their
approach. Finally, Qiu et al. (2025) studies capabilities of LLMs for Python program optimization,
finding significant gaps compared to human experts. We focus on optimizing C++ code since
performance can be measured in a reproducible way using a simulator (Shypula et al., 2024).

Retrieval augmented generation is broadly known to improve code generation (Wang et al., 2024).
The specific idea of dynamically retrieving relevant in-context examples from a larger training set
was first proposed in Poesia et al. (2022) and was later shown to be highly effective for program
optimization (Shypula et al., 2024). Recently, MapCoder (Islam et al., 2024) has shown that retrieving
“previously seen” programming examples can improve code generation on the HumanEval benchmark.
While contextual retrieval has recently been popularized for LLMs (Anthropic, 2024), the idea of
annotating code to improve code search has long been studied extensively in software engineering.
Older techniques such as Portfolio (McMillan et al., 2011) rely on information retrieval methods
such as PageRank. The idea of automatically generating the natural descriptions for code snippets
artificially was proposed in CoaCor (Yao et al., 2019), which trains a bidirectional LSTM to generate
natural language descriptions optimized for use by a retrieval model.

2 RETRIEVAL AUGMENTED SEARCH

We describe our retrieval augmented search (RAS) algorithm (summary in Figure 1 and Algorithm 1).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Retrieval Augmented Search (RAS)

input: p0,Πtrain, Fopt, Fcontext, R, ϕ
for i ∈ [1, ...,m] do

Πi ← top-k{((p, p′), dϕ(pi−1, p)) | (p, p′) ∈ Πtrain}
pji ∼ Fopt(π

j
i , pi−1) (∀j ∈ [k]) ▷ Πi = {πj

i }kj=1

pi ← argmaxj∈[k]R(p
j
i)

return pm

𝛙

Fcontext

Description Embedding VectorTraining Dataset
(p, p', Fcontext(p), 𝛙(Fcontext(p))

Test Set Program (pi-1)
#include <bits/stdc++.h>
using namespace std;
long long n;
long long k;
vector<long long> vec;
long long meme[100007];

long long solve(long long index){
 if(index==n-1){
 return 0;
 }
 if(meme[index]!=-1){
 return meme[index];
 }
 long long ret = 10000000000000000;
 long long sol = 10000000000000000;
 for(long long i = 1 ;i<=k ; i++){
 if(index+i<n){
 ret = abs (vec[index]-

 vec[index+i]) + solve(index+i);
 }
 sol = min(sol,ret);
 }
 return meme[index] = sol;
}

int main(){
 cin>>n;
 cin>>k;
 memset(meme,-1,sizeof(meme));
 long long num;
 for(long long i = 0 ; i<n ; i++){
 cin>>num;
 vec.push_back(num);
 }
 cout<<solve(0)<<endl;
 return 0;
}

LLM-Generated Description

The algorithm uses dynamic
programming with memoization to
find the minimum cost of jumping
from the first to the
last element, where the cost is
the absolute difference
between elements, and we can
jump up to 'k' elements ahead.

FAISS (Top-K Similar Training Set Pairs)

Generation 1 Prompt
You are an expert programmer who needs to optimize a given program, called the source program. You are
given one pair of fast and slow programs as an example, which are presented as a pair where \"slower
version\" refers to the slow code and \"optimized version\" refers to the faster, more optimal version
of the same program. The last program with the label \"slower version\" is the source program whose
optimized version you need to generate. Rewrite the source program in a way that incorporates all of the
optimizations in the example, and return a JSON-formatted string where the rewritten code is stored with
the key \"optimized_code\". Do not output anything other than C++ code.
slower version:
{First Retrieved Program p1}

optimized version of the same code:
{Corresponding Faster Program p1'}

slower version:
{pi-1}

optimized version of the same code:

Generation k Prompt
You are an expert programmer who needs to optimize a given program, called the source program. You are given one
pair of fast and slow programs as an example, which are presented as a pair where \"slower version\" refers to
the slow code and \"optimized version\" refers to the faster, more optimal version of the same program. The last
program with the label \"slower version\" is the source program whose optimized version you need to generate.
Rewrite the source program in a way that incorporates all of the optimizations in the example, and return a JSON-
formatted string where the rewritten code is stored with the key \"optimized_code\". Do not output anything other
than C++ code.
slower version:
{First Retrieved Program pk}

optimized version of the same code:
{Corresponding Faster Program pk'}

slower version:
{pi-1}

optimized version of the same code:

LLM Prompt
You are an expert programmer who has been
provided with a program solving a programming
problem, called the source program. You need to
identify the algorithm being used to solve the
problem, and your goal is to generate a JSON
object with the key \"algorithm\" which has the
value as one sentence describing the algorithm
used in the code snippet.

Source Program:
{pi-1}

Fastest Generated Program (pi)
#include <cstdio>
#include <algorithm>
#include <climits>
using std::min;
#define MAXN 100007
long long vec[MAXN];
long long meme[MAXN];

int main() {
 long long n, k;
 scanf("%lld %lld", &n, &k);
 for (long long i = 0; i < n; ++i) {
 scanf("%lld", &vec[i]);
 }
 meme[n-1] = 0;
 for (long long i = n - 2; i >= 0; --i) {
 long long sol = LLONG_MAX;
 for (long long j = 1; j <= k && i + j < n; ++j)

{
 long long ret = abs(vec[i] - vec[i + j])

 + meme[i + j];
 sol = min(sol, ret);
 }
 meme[i] = sol;
 }
 printf("%lld\n", meme[0]);
 return 0;
}

Fopt

Figure 1: RAS Framework: For a given slow program pi−1, we use Fcontext to generate a program
description and Ψ to generate its corresponding description embedding vector. We retrieve similar
training set programs using FAISS and pass them to Fopt. The fastest program generated by Fopt is pi.

Problem formulation. In the program optimization problem, the goal is to take a program p ∈ P
as input, and output an optimized program p′ ∈ P that is semantically equivalent to p. Typically,
we are additionally given a set of test cases {(xi, yi)}ki=1 to check correctness; then, denoting the
output of program p on input x as p(x), we are searching for programs p such that p(xi) = yi for
all i ∈ {1, ..., k}. While test cases do not guarantee semantic equivalence, they are widely used in
machine learning for checking program equivalence (Chen et al., 2021; Li et al., 2022).

For PIE, we focus on reducing running time, which we denote R(p) ∈ R. Since we want the fastest
correct program, we let R(p) = −∞ if p does not pass one of the given test cases. In practice,
measuring a speedup can be difficult due to the stochastic nature of program execution. Recent work
has proposed benchmarks that seek to mitigate this issue. The approach used by the PIE benchmark
is to measure performance using a system simulator (specifically, gem5 (Binkert et al., 2011)), which

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

provides deterministic emulation of hardware, enabling fully reproducible results. Finally, we also
set R(p) = −∞ if evaluating p in gem5 times out. For Mercury, we set R(p) to be a modified form
of Beyond@1, their runtime percentile metric (described in Section 4.1).

To aid adaptation, we assume given a training set of slow-fast program pairs Π = {(p, p′)}nj=1, where
p is an unoptimized program and p′ is a hand-optimized program; e.g., the PIE benchmark con-
structs such a dataset based on sequences of submissions from individual participants in competitive
programming challenges (Shypula et al., 2024). Given a sequence of submissions p1, ..., pk, they
include pairs (pi, pi′) where i < i′ and where pi′ is at least 10% faster than pi according to gem5, i.e.,
R(pi′) ≥ 1.1 ·R(pi). They also provide a subset of high-quality training pairs that achieve a more
substantial speedup by selecting a subset of the pairs (pi′ , pi) with the highest speedupsR(pi′)/R(pi).
Using their approach, we also construct a training set for Mercury by selecting high-quality pairs.

Finally, we are interested in blackbox adaptation techniques, which do not adjust the weights of the
LLM; instead, they focus on prompting the LLM to improve performance. These prompts can be
dynamic (e.g., include dynamically retrieved training examples), multi-turn (e.g., iteratively refine an
example based on feedback), or incorporate search (e.g., incrementally apply a sequence of prompts.

General framework. We describe the general Retrieval-Augmented Search (RAS) framework for
program optimization. RAS assumes that it is given a training set Πtrain = {(p, p′)}nj=1 of slow-fast
program pairs, and a new program p0 ∈ P to be optimized. In addition, it assumes it is given a
retrieval strategy, which can be expressed as a distance function d : P × P → R≥0 between pairs of
programs. Typically, the strategy is defined by an embedding model ϕ : P → Rd, in which case we
can define the distance based on the L2 distance between the embedding vectors of two programs:

dϕ(p, q) = ∥ϕ(p)− ϕ(q)∥

Our framework also assumes blackbox access to an LLM Fopt, which takes as input an in-context
example of a slow-fast program pair π ∈ P2, along with a new program p. Then, we can sample
optimized versions p′ ∼ Fopt(π, p) of p from Fopt. In our implementation, Fopt is provided with a
system prompt instructing it to try and optimize p.

Now, RAS performs a variation of beam search to optimize p0, where at each step, it additionally
retrieves in-context examples from the training set Πtrain. In particular, at the ith iteration of beam
search (starting from i = 1), let pi−1 be the current program. Then, we retrieve the top k programs
from Πtrain to form the in-context dataset:

Πi = top-k{((p, p′), d(pi−1, p)) | (p, p′) ∈ Πtrain}.

Here, top-k selects the k new slow-fast pairs (p, p′) with the smallest distances d(pi−1, p), using
FAISS (Douze et al., 2024) for vector search. For any retrieved example πj

i , we call πj
i a new pair

if Fopt did not use πj
i to sample an earlier best-performing program popt ∈ {p1, . . . , pi−1}. Note

that retrieval is performed based on the slow program p; intuitively, we want a slow program that is
similar to pi−1 so we can apply similar optimizations to pi−1 as the ones encoded by the pair (p, p′).
Now, for each retrieved example πj

i ∈ Πi, we sample an optimized version of pi−1 using πj
i :

pji ∼ Fopt(π
j
i , pi−1).

Finally, we choose pi to be the fastest program that correctly passes all test cases:

pi = argmax
j∈[k]

R(pji),

where [k] = {1, ..., k}. If no program passes all of the test cases (i.e., R(pji) = −∞ for all j ∈ [k]),
or if all programs time out, then we set pi = pi−1. We continue this process for m steps, producing
a sequence of programs p1, ..., pm. Finally, we return pm. If there is no program at step m that
passes all of the test cases and does not time out, we return the source program p0. Note that
the hyperparameters of our algorithm are the number of in-context examples k and the number of
iterations m; we describe the choices we use in our experiments in Section 4.

Contextual retrieval. Our instantiation of RAS uses contextual retrieval to identify relevant in-
context examples. We compute ϕ(p) by first using an LLM Fcontext to generate a natural language
description (i.e., the “context” in contextual retrieval) of p (denoted s = Fcontext(p)), and then applying

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Fgen

Fedit

Fedit

Fdecomp

LLM Decomposition Prompt
You are an expert programmer who needs to
decompose a sequence of edits to a program
that have been made to optimize the
program's performance. You are provided
with the source program (the initial state)
and the target program (the final state).
Describe the changes made to the source
program as a sequence of edits in the
format of a JSON file where each key marks
the step in the sequence. For example,
{"1": <description of the first edit in the
sequence>, "2": <description of the second
edit in the sequence>, ... "N":
<description of the final edit in the
sequence>}. Make sure to describe each edit
alongside why it may improve performance.
Source Program: {p}

Training Set Program Pair (p, p')
p (slower program):
#include<iostream>
#include<algorithm>
using namespace std;
int main(){
 int n;
 int a[5000];
 int tmp;
 int ans;
 while(1){
 cin >> n;
 if(!n)break;
 for(int i=0;i<n;i++){
 cin >> a[i];
 }
 ans = a[0];
 for(int i=0;i<n;i++){
 for(int j=i;j<n;j++){

if(i==j)tmp = a[i];
else tmp += a[j];
ans = max(tmp,ans);

 }
 }
 cout << ans << endl;
 }
}

p' (faster program):
#include<cstdio>
#include<algorithm>
using namespace std;

int main(){
 int n,tmp,ans;
 int a[5000];
 while(scanf("%d",&n) && n){
 for(int i=0;i<n;i++)scanf("%d",&a[i]);
 ans = a[0];
 for(int i=0;i<n;i++)
 for(int j=i;j<n;j++){

if(i==j)tmp = a[i];
else tmp += a[j];
ans = max(tmp,ans);

 }
 printf("%d\n",ans);
 }
}

Natural Language Edits
s1: The header file <iostream> is replaced
with <cstdio>. The input and output
functions changed from 'cin', 'cout' to
'scanf', 'printf', respectively. This change
is made because 'scanf' and 'printf' in C
are generally faster than C++ 'cin' and
'cout', especially in competitive
programming scenarios where input and output
operations could be a bottleneck.

s2:

s3:

s4:

Example Pair Generation Prompt
You are an expert programmer who needs to
optimize a given program. You are given the
description of the optimization to be
performed as well as the source code of the
program. Rewrite the source code in a way
that incorporates the optimization and
improves its performance, and return a
JSON-formatted string where the rewritten
code is stored with the key
"optimized_code". Do not output anything
other than C++ code.
Source Program: {p}
Optimization: {s1}

Program p1

Example Pair Generation Prompt
You are an expert programmer
Source Program: {p1}

Optimization: {s2}

Fedit
Program p2

Example Pair Generation Prompt
You are an expert programmer
Source Program: {p2}

Optimization: {s3}

Program p3

Example Pair Generation Prompt
You are an expert programmer
Source Program: {p3}

Optimization: {s4}

Fedit
Program p4

Edit Generalization Prompt
You are an expert programmer. You are
provided with the description of a program
optimization, which, when applied to the
given program, results in an improvement in
program performance. Rewrite the program
optimization so that it can be applied more
generally to any program. Return a JSON-
formatted string where the rewritten
optimization is stored with the key
"rewritten_optimization". Do not output
anything other than JSON.
Program Optimization: {s1}

Source Program: {p}

You are an expert programmer. You are provided with ...
Program Optimization: {s2}

Source Program: {p1}

You are an expert programmer. You are provided with ...
Program Optimization: {s3}

Source Program: {p2}

You are an expert programmer. You are provided with ...
Program Optimization: {s4}

Source Program: {p3}

Atomic Edits
e1: To optimize input and output operations
for performance in any C++ program,
substitute the C++ standard I/O header
<iostream> with C's <cstdio>. Replace
instances of 'cin' with 'scanf' and 'cout'
with 'printf'. 'scanf' and 'printf'
generally perform faster than 'cin' and
'cout' due to less synchronization overhead
with C++ streams. This adjustment is
particularly beneficial in scenarios such as
competitive programming, where input and
output can be performance bottlenecks.
Ensure data types handled by 'scanf' and
'printf' match the types expected by the
program.

e2:

e3:

e4:

Atomic Edits Dataset

(e1,p,p1)

(e2,p1,p2)

(e3,p2,p3)

(e4,p3,p4)

Figure 2: AEGIS Framework: For a given training set program pair (p, p′), we identify the natural
language edits using Fdecomp, and then generate intermediate programs implementing each edit by
using Fedit. Finally, the natural language edits are generalized by Fgen to construct atomic edits.

an embedding model ψ to obtain a vector ψ(s) ∈ Rd, i.e., ϕ(p) = ψ(Fcontext(p)). For examples
(p, p′) ∈ Πtrain, we can precompute the embeddings, so the LLM Fcontext only needs to be run once
for each one. To construct Fcontext, we use a blackbox LLM that is instructed to describe features like
the algorithms and data structures used by the program; this prompt is shown in Figure 1 with an
example of a pair (p, s) of program p and its description s. Finally, we also compare to an ablation
used in prior work on program optimization (Shypula et al., 2024). Here, we directly embed the given
program—i.e., ϕ(p) = ψ(p) for some embedding model ψ; we call this approach code retrieval.

3 ATOMIC EDIT GUIDED SEARCH

Next, we describe Atomic Edit GuIded Search (AEGIS), which is designed to improve interpretability
of RAS (overview in Figure 2 and pseudocode in Algorithm 2). AEGIS is inspired by modern
compilers, which are designed to perform a sequence of passes, which incrementally transform the
program to improve performance. Breaking down optimizations into smaller steps has the potential to
improve interpretability since the changes from one step to the next may be easier for the programmer
to understand. We propose to generate atomic edits, which comprise pairs of programs (p, p′) that
are assumed to be semantically equivalent and roughly differ by a single code optimization.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Atomic Edit-Guided Search (AEGIS)

input: Πtrain, Fdecomp, Fedit, Fgen, Fopt, Fcontext, R
Πatomic ← ∅
for (p, p′) ∈ Πtrain do

[s1, . . . sr] ∼ Fdecomp(p, p
′)

for i ∈ [1, ..., n] do
pi ∼ Fedit(si, pi−1)
ei ∼ Fgen(si, pi)
Πatomic ← Πatomic ∪ {(ei, (pi−1, pi))}

return Πatomic

To realize this goal, AEGIS replaces the original training dataset Πtrain with a dataset of atomic edits
Πatomic, and then uses RAS in conjunction with Πatomic. By retrieving atomic edits, we can guide
the underlying LLM Fopt to perform incremental optimizations rather than large changes. AEGIS
constructs Πatomic by using an LLM Fdecomp to decompose each pair (p, p′) ∈ Πtrain into atomic edits;
then, it aggregates together all discovered atomic edits into the new training set Πatomic.

Specifically, we instruct Fdecomp to describe the differences between the each slow-fast program pair
(p, p′) ∈ Πtrain as a list; then, the output of Fdecomp is a list of natural language edits [s1, . . . , sr] ∼
Fdecomp(p, p

′), where each si is a natural language description of an edit in (p, p′). Next, we apply
each edit in sequence to the slow program p to obtain a sequence of programs. We do so by initializing
p0 = p, and then prompting an LLM Fedit to apply natural language edit si to pi−1 to obtain the next
program pi ∼ Fedit(pi−1, si) in the sequence; here, Fedit is instructed to apply the edit to the given
program. Assuming the natural language edits accurately describe how p′ is obtained from p, then
the final program pr in this sequence should resemble the original optimization p′ of p; in particular,
pr should also be an optimized version of p.

We construct our atomic edit dataset using pairs from the resulting sequence. For each tuple
(si, pi−1, pi), we ask an LLM Fgen to generalize si so it applies to a wider variety of programs; the
resulting description ei ∼ Fgen(si, pi) is an atomic edit. Then, our dataset of atomic edits is

Πatomic =
⋃

(p,p′)∈Πtrain

{(ei, (pi−1, pi))}.

Finally, we can use RAS with Πatomic, with a slight modification to account for some of the extra
information. Specifically, we modify the LLM Fopt for program optimization to include the atomic
edit—i.e., given atomic edit (e, π) and program p, we sample an optimized version p′ ∼ Fopt(e, π, p).
Intuitively, e provides instructions on how to optimize p, and π shows one example applying e.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Benchmark. Our experiments are based on the PIE benchmark (Shypula et al., 2024), a dataset
of slow-fast C++ program pairs constructed from submissions by human programmers to CodeNet
(Puri et al., 2021). Since competitive programmers iteratively refine their code submissions for
better performance, the authors of PIE construct this dataset by first identifying a sequence of
programs submitted by the same programmer to solve a single problem. They filter out any incorrect
submissions, and then construct slow-fast pairs by executing the C++ submissions on the gem5
simulator (Binkert et al., 2011) to measure the running time of the code, discarding any pairs whose
difference in performance improvement is less than 10%. We use 4080 high-quality pairs from
the PIE dataset as our training set Πtrain, and 973 test set pairs as a held-out test set Πtest. These
high-quality pairs are constructed by taking up to 4 pairs in the PIE benchmark’s training set with the
highest speedup for each competitive programming problem. Importantly, the train-test split in PIE is
based on the competitive programming problem being solved, so the training and test set programs
are semantically different. For Mercury, we are provided with a training and test set with reference
solutions for each problem. We use the same approach on the 1633 Leetcode problems in the training
set to construct a high-quality training set Πtrain of 6372 pairs using Leetcode’s reported runtimes for

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Approach GPT-4o Qwen-3-Coder
Mean Best Speedup % Optimized Mean Best Speedup % Optimized

RAS 8.01 0.9640 8.61 0.9774
No Contextual 5.80 0.8520 4.52 0.6927
Dynamic Retrieval 4.43 0.8191 4.23 0.7749
Instruct Only 2.31 0.5447 1.73 0.4018
Human 3.63 0.9887 3.63 0.9887

Table 1: Comparing RAS to baselines on PIE.

Approach GPT-4o
Mean Best Speedup % Optimized

AEGIS 6.08 0.9065
No Contextual 3.85 0.7554
Instruct Only 2.31 0.5447

Human 3.63 0.9887

Table 2: Comparing AEGIS to baselines on PIE.

the solutions. We evaluate our approaches on the slowest-provided reference solutions for the 256
held-out problems in Mercury’s test set (Du et al., 2024).

Baselines. We compare our approach to dynamic retrieval, the highest performing blackbox adap-
tation strategy studied in PIE (Shypula et al., 2024). This approach also dynamically retrieves
in-context examples from Πtrain. There are two key differences between our approach and theirs.
First, they use retrieval based on the embedding of the code itself rather than contextual retrieval
(i.e., code retrieval). Second, they do not perform sequential search; instead, given a program p, they
retrieve k in-context examples Π ⊆ Πtrain to provide to the LLM F ′

opt, and then take multiple samples
p1, ..., ph ∼ F ′

opt(Π, p). They return the fastest correct program among the h choices.

In addition, we also compare to a “no contextual” ablation of our approach that uses PIE’s strategy
for retrieval but with search; in particular, it performs code retrieval instead of contextual retrieval.
One iteration proceeds as with dynamic retrieval, but we perform multiple iterations. In particular,
let p0 be the initial program; on the ith iteration (starting from i = 1), we sample k in-context
examples Π ⊆ Πtrain using code retrieval, draw samples p1i , ..., p

h
i ∼ F ′

opt(Πi, pi−1), and then let
pi = argmaxj∈[h]R(p

j
i); as in RAS, we let pji = pji−1 if R(pji) = −∞ for all j ∈ [h].

We also consider a “instruct only” approach from PIE that performs neither retrieval (i.e., does not use
Πtrain) nor search; instead, we simply instruct the LLM F ′′

opt to optimize the given program p to obtain
an optimized version p′ = F ′′

opt(p), i.e., F ′′
opt is an unadapted LLM. The prompt used in the “instruct

only” setting is described in Appendix A, and the remaining prompts are described in Appendix B.
Finally, we include the “human” speedup—for an initial program p, it is the speedup achieved by the
fastest correct program p′ written by the human participant who wrote p. For Mercury, we evaluate
on our strongest-baseline, No Contextual, and provide our Instruct Only results for reference.

Hyperparameters. For PIE, in our approaches (RAS and AEGIS with contextual retrieval), we use
k = 8 retrievals and m = 4 beam search steps and take h = 1 sample per generated prompt. For our
baselines, we normalize computation according to the number of calls to the LLM Fopt, F ′

opt, or F ′′
opt.

In this calculation, note that for F ′
opt, the number of retrievals k = |Π| does not affect the number

of calls F ′
opt(Π, p), since all examples are included in a single call. Then, for our dynamic retrieval

baseline, we retrieve k = 4 examples (the same as used in PIE) and take h = 32 samples. For our “no
contextual” ablation, we retrieve k = 4 examples, take h = 8 samples per iteration, and use m = 4
iterations (the same as our approach). For our “instruct only” ablation, we take h = 32 samples and
use m = 1 iterations. We note that this is different from the standard pass@k metric used to evaluate
LLM code performance in previous work (such as (Chen et al., 2021), where k refers to the number
of samples taken from the LLM, which we denote as h in our case. We use k to denote the number
of retrieved examples used in the prompt, as done in (Shypula et al., 2024). For Mercury, we only
execute m = 2 iterations of RAS (with k = 8, h = 1) and no contextual (with k = 4, h = 8) and , so
we set h = 16 for the Instruct Only approach.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Beyond@1 Pass@1

RAS (Qwen2.5-7B) 87.85 98.83
No Contextual (Qwen2.5-7B) 69.26 97.27
Instruct Only (Qwen2.5-7B) (h = 16) 77.58 98.44
Base 58.66 96.88

Table 3: RAS Experiments on Mercury. The base values represent the unoptimized test set programs.

Compute. For all experiments, we use OpenAI’s gpt-4o-2024-08-06 as Fcontext for the training
set, as well as Fdecomp, Fedit, and Fgen for the PIE atomic edit dataset. We then use the model specified
in the experiment as Fopt, F ′

opt, F
′′
opt, and Fcontext while executing the search procedure. We use

OpenAI’s text-embedding-3-large as the embedding model ψ. We run the gem5 simulator
on a server with 2× Intel(R) Xeon(R) Gold 6342 CPUs (96 cores total). All C++ programs evaluated
in our experiments are compiled using a g++ compiler with the -O3 flag. We use an AWS t2.2xlarge
instance for measuring runtime percentiles for Mercury.

Metrics. Running gem5 on all test cases to evaluate a single program can be prohibitively compu-
tationally expensive due to the large overhead of running gem5. Instead, we measure running time
averaged across a subset of 5 randomly selected test cases; these 5 test cases are fixed ahead-of-time.
To validate this strategy, we check the correlation between running times on the full test suite vs. our
5 random test cases across all programs in the PIE test set; we find a strong correlation (Pearson’s
r = 0.89, p < 0.001; Spearman’s ρ = 0.86, p < 0.001), suggesting that 5 test cases suffices to
obtain an accurate estimate of running time. We report results on the held-out test set Πtest ⊆ P of
973 unoptimized programs provided by the PIE benchmark. Our main metric is “mean best speedup”

Speedup(p, p′) = max

{
RunningTime(p′)
RunningTime(p)

, 1

}
of the final program p′ compared to the original program p, averaged across all test programs p ∈ Πtest,
where The minimum speedup is set to 1 since we can always return p. We also report “% optimized”,
which is the number of test programs p for which the optimized program p′ is at least 1.1× as fast as
p. While this metric is not the main goal of our system, it helps capture the diversity of programs that
can be optimized using a given approach. For Mercury, we report their Pass@1 and Beyond@1 (mean
runtime percentile) metrics (Du et al., 2024), with the modification that fastest generated program
using each approach is assumed to be the 1 sample generated by the LLM.

4.2 RESULTS

We show C++ results for RAS in Table 1 and for AEGIS in Table 2, and show Python optimization
results for RAS in Table 3. First, note that RAS significantly improves performance compared
to all baselines, when using both the original PIE training set as well as our atomic edit training
set. Dynamic retrieval was by far the best blackbox adaptation approach studied in the original PIE
paper, yet our approach is able to almost double its performance in terms of mean best speedup.
Our ablation demonstrates that both search and contextual retrieval are roughly equally important,
since ablating contextual retrieval about halves the performance improvement compared to dynamic
retrieval. While AEGIS diminishes performance, it still achieves a significant improvement. Indeed,
it outperforms all ablations (both ablations of AEGIS and those of RAS); the only approach it does
not outperform is the full RAS approach. An analysis of the types of programming problems that
RAS and AEGIS fail to optimize in our GPT-4o experiments is presented in Appendix D. For Python
optimization, we observe that RAS increases the mean runtime percentile metric (Beyond@1) by
10.27 for Qwen2.5-7B, significantly narrowing the gap between it and the Instruct Only performance
of larger models. Pass@1 and Beyond@1 results for larger models in the Instruct Only setting are
provided in Appendix F.

Metrics across beam search iterations. Next, in Figure 3, we study the effect of using search
techniques by reporting our various metrics across iterations of beam search on our GPT-4o C++
experiments. We focus on our results for our approach compared to our “No Contextual” ablation
(since “Dynamic Retrieval” and “Instruct Only” do not perform search). Figure 3 (a) shows results for
“Mean Best Speedup”. As can be seen, while the first step of beam search provides the greatest benefit,
it continues to provide benefit for all approaches, especially when using contextual retrieval. Since
we request the LLM Fcontext to describe the algorithm used for the current best-performing program

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 1 2 3
Number of Beam Search Steps

1

2

3

4

5

6

7

8

M
ea

n
Be

st
 S

pe
ed

up

Mean Best Speedup Over Beam Search Steps

RAS (Contextual Retrieval)
RAS (No Contextual)
AEGIS (Contextual Retrieval)
AEGIS (No Contextual)

0 1 2 3
Number of Beam Search Steps

0.0

0.2

0.4

0.6

0.8

1.0

%
 O

pt
im

ize
d

% Optimized Over Beam Search Steps

RAS (Contextual Retrieval)
RAS (No Contextual)
AEGIS (Contextual Retrieval)
AEGIS (No Contextual)

1 2 3 4
Step

100

150

200

250

300

350

400

450

500

M
ea

n
Ed

it
Di

st
an

ce

Mean Edit Distance During Beam-Search for Aegis and RAS
RAS (Contextual Retrieval)
RAS (No Contextual)
Aegis (Contextual Retrieval)
Aegis (No Contextual)

(a) Mean Best Speedup (b) % Optimized (c) Mean Edit Distance

Figure 3: Mean Best Speedup, %Optimized, and Mean Edit Distance across beam search steps on
GPT-4o experiments.

pi at each iteration i of the beam search, we hypothesize that Fcontext can update its description to
include algorithmic updates made in the previous iteration, thus enabling it to retrieve more relevant
examples. We also see greater continuing improvements for AEGIS, likely because atomic edits
constrain optimization to change the program more slowly. Additional iterations may help further
close the gap between AEGIS and RAS. We provide an example of how AEGIS and RAS both
optimize the same program in Appendix C. Next, Figure 3 (b) shows results for “% Optimized”.
These results converge substantially more quickly, likely because the first iteration is already enough
to get above 1.1× speedup for most programs. Nevertheless, we continue to see gains for our AEGIS
approach, again suggesting that continuing search may close the performance gap.

Accuracy. RAS and AEGIS are designed to generate programs that pass all test cases; however, this
strategy does not ensure correctness. To quantify the error rate of RAS and AEGIS more rigorously on
PIE in our GPT-4o experiments, we examined if the programs selected at each step of the procedure
would differ if at each iteration of search, we selected the fastest program while ignoring correctness.
Across four iterations of search, while selecting for fastest program without measuring accuracy, for
RAS, 5/973 test set instances choose an incorrect program (so accuracy is 99.5%), while for AEGIS,
0/973 test set instances chose an incorrect program (so accuracy is 100%). These results suggest
that the LLM is highly accurate at producing optimizations that preserve semantic equivalence. We
note that LLM-based program optimization systems are already deployed in practice (Shypula et al.,
2025), leaving it up to the programmer to validate correctness of the optimizations.

Interpretability. A key motivation for AEGIS is that it should provide greater interpretability by
making smaller edits. To study this objective, we consider two metrics. Our main metric is the
character-level edit distance of pairs of programs (pi, pi+1) encountered as part of the search process,
with lower edit distances indicating more incremental changes; we consider the edit distance averaged
across all pairs of programs and across all programs in the test set. We summarize results for AEGIS
and RAS in Table 5, including results for the “no context” ablations of each approach. As can be seen,
AEGIS significantly reduces mean edit distance in both cases. Furthermore, in Figure 3, we show
how the mean edit distance changes across steps. As can be seen, AEGIS significantly reduces mean
edit distance in the first step, from about 500 to 350. These results suggest that RAS is performing
significant optimizations in the first step, and the subsequent steps have smaller edit distance simply
because the optimizations are more incremental. Even a single uninterpretable step can make the
entire sequence less interpretable, so these results further emphasize the effectiveness of our approach.

5 CONCLUSION

We have proposed RAS and AEGIS, two methods for LLM-guided program optimization that
incorporate beam search and retrieval to iteratively optimize a given program. We achieve significant
speedups in the blackbox setting (i.e., without any fine-tuning), outperforming existing LLM-based
program optimization techniques. AEGIS also aims to improve interpretability by decomposing
training examples into “atomic edits” that represent incremental optimizations rather than large
changes. We believe that our approach provides a compelling strategy for adapting LLMs to code
optimization in the blackbox setting, and may be effective in other code generation tasks as well.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthropic (2024). Contextual retrieval. https://web.archive.
org/web/20250121234912/https://www.anthropic.com/news/
contextual-retrieval. Accessed: 2025-01-23.

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K., Saidi, A., Basu, A., Hestness, J., Hower,
D. R., Krishna, T., Sardashti, S., et al. (2011). The gem5 simulator. ACM SIGARCH computer
architecture news, 39(2):1–7.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P.,
Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in Neural
Information Processing Systems, 33:1877–1901.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., Edwards, H., Burda, Y., Joseph,
N., Brockman, G., et al. (2021). Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374.

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G., Mazaré, P.-E., Lomeli, M., Hosseini, L.,
and Jégou, H. (2024). The faiss library. arXiv preprint arXiv:2401.08281.

Du, M., Luu, A. T., Ji, B., Liu, Q., and Ng, S.-K. (2024). Mercury: A code efficiency benchmark
for code large language models. Advances in Neural Information Processing Systems, 37:16601–
16622.

Gao, S., Gao, C., Gu, W., and Lyu, M. (2024). Search-based llms for code optimization. In 2025
IEEE/ACM 47th International Conference on Software Engineering (ICSE), pages 254–266. IEEE
Computer Society.

Islam, M. A., Ali, M. E., and Parvez, M. R. (2024). MapCoder: Multi-agent code generation for
competitive problem solving. In Ku, L.-W., Martins, A., and Srikumar, V., editors, Proceedings
of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 4912–4944, Bangkok, Thailand. Association for Computational Linguistics.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis, M., Yih,
W.-t., Rocktäschel, T., et al. (2020). Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems, 33:9459–9474.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J.,
Gimeno, F., Dal Lago, A., et al. (2022). Competition-level code generation with alphacode. Science,
378(6624):1092–1097.

McMillan, C., Grechanik, M., Poshyvanyk, D., Xie, Q., and Fu, C. (2011). Portfolio: finding relevant
functions and their usage. In Proceedings of the 33rd International Conference on Software
Engineering, pages 111–120.

Mishra, S., Khashabi, D., Baral, C., Choi, Y., and Hajishirzi, H. (2022). Reframing instructional
prompts to gptk’s language. In Findings of the Association for Computational Linguistics: ACL
2022, pages 589–612.

Poesia, G., Polozov, A., Le, V., Tiwari, A., Soares, G., Meek, C., and Gulwani, S. (2022). Syn-
chromesh: Reliable code generation from pre-trained language models. In The Tenth International
Conference on Learning Representations.

Puri, R., Kung, D., Janssen, G., Zhang, W., Domeniconi, G., Zolotov, V., Dolby, J., Chen, J.,
Choudhury, M., Decker, L., Thost, V., Buratti, L., Pujar, S., Ramji, S., Finkler, U., Malaika, S., and
Reiss, F. (2021). Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks.

Qiu, R., Zeng, W. W., Tong, H., Ezick, J., and Lott, C. (2025). How efficient is llm-generated code?
a rigorous & high-standard benchmark. The Thirteenth International Conference on Learning
Representations.

Shypula, A., Madaan, A., Zeng, Y., Alon, U., Gardner, J., Hashemi, M., Neubig, G., Ranganathan, P.,
Bastani, O., and Yazdanbakhsh, A. (2025). Automated high-level code optimization for warehouse
performance. IEEE Micro.

10

https://web.archive.org/web/20250121234912/https://www.anthropic.com/news/contextual-retrieval
https://web.archive.org/web/20250121234912/https://www.anthropic.com/news/contextual-retrieval
https://web.archive.org/web/20250121234912/https://www.anthropic.com/news/contextual-retrieval

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shypula, A., Madaan, A., Zeng, Y., Alon, U., Gardner, J. R., Yang, Y., Hashemi, M., Neubig, G.,
Ranganathan, P., Bastani, O., and Yazdanbakhsh, A. (2024). Learning performance-improving
code edits. In The Twelfth International Conference on Learning Representations.

Wang, Z. Z., Asai, A., Yu, X. V., Xu, F. F., Xie, Y., Neubig, G., and Fried, D. (2024). Coderag-bench:
Can retrieval augment code generation? arXiv preprint arXiv:2406.14497.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al. (2022).
Chain-of-thought prompting elicits reasoning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Yao, Z., Peddamail, J. R., and Sun, H. (2019). Coacor: Code annotation for code retrieval with
reinforcement learning. In The world wide web conference, pages 2203–2214.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A COMPARING INSTRUCTION PROMPTING AND EXPERT PROGRAMMER
SYSTEM ROLES

In our “Instruct Only” baseline, we experiment with two prompts: an instruction-prompting approach
(as described in the results of the original PIE benchmark (Shypula et al., 2024)), and an “expert
programmer” system role. We provide the exact prompts for our approaches here and whenever
we refer to programs or retrieved natural language optimizations, we enclose them in braces. Our
prompts are as follows:

A.1 INSTRUCTION PROMPTING (IP)

Given the program below, improve its performance:

Program: {Program to be optimized}

Optimized Version:

A.2 EXPERT PROGRAMMER SYSTEM ROLE (EPSR)

System Role: You are an expert programmer who needs to optimize a given program. You are given
the source code of the program. Rewrite the source code in a way that optimizes performance such
that the program executes faster, and return a JSON-formatted string where the rewritten code is
stored with the key “optimized code”. Do not output anything other than C++ code.
User Role: Source Code: {Program to be optimized}

A.3 PROMPT RESULT COMPARISON

We evaluate the two prompts on our dataset of 973 programs by taking k = 32 samples for m = 1
iteration of search. Our results are presented in Table 4.

Approach Mean Best Speedup % Optimized

EPSR 2.31 0.5447
IP 2.16 0.5632

Table 4: Results comparing differences in metrics due to prompts in Instruct Only setting

Since we observe a slight increase in Mean Best Speedup in the setting with an expert-level system
role, we use it in all our other prompts for to maximize efficacy. The “Instruct Only” setting results
we report in Tables 1 & 2 use this expert-programmer system role prompt, which is used by F ′′

opt.
.

B PROMPTS FOR EXPERIMENTAL RESULTS

We present our prompts for our PIE experiments below. For our Mercury experiments, we replace all
instances of the phrase “C++” with “Python”.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.1 RAS

B.1.1 PROGRAM DESCRIPTION GENERATION

This prompt is used by Fcontext.
System Role: You are an expert programmer who has been provided with a program solving a
programming problem, called the source program. You need to identify the algorithm being used to
solve the problem, and your goal is to generate a JSON object with the key “algorithm” which has
the value as one sentence describing the algorithm used in the code snippet.
User Role: Source Program:
{Program to be optimized}

B.1.2 GENERATING PROGRAMS WITH CONTEXTUAL RETRIEVAL

This prompt is used by Fopt.
System Role: You are an expert programmer who needs to optimize a given program, called the
source program. You are given one pair of fast and slow programs as an example, which are presented
as a pair where “slower version” refers to the slow code and “optimized version” refers to the faster,
more optimal version of the same program. The last program with the label “slower version” is the
source program whose optimized version you need to generate. Rewrite the source program in a way
that incorporates all of the optimizations in the example, and return a JSON-formatted string where
the rewritten code is stored with the key “optimized code”. Do not output anything other than C++
code.
User Role:
slower version:
{Retrieved Slow Program}
optimized version of the same code:
{Retrieved Faster Program}

slower version:
{Program to be optimized}
optimized version of the same code: \n

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.1.3 GENERATING PROGRAMS WITH DYNAMIC CODE RETRIEVAL

This is the prompt used in both the “No Contextual” and ”Dynamic Retrieval” settings for RAS, as
well as the ”No Contextual” setting for AEGIS. It is passed to the model F ′

opt.

System Role: You are an expert programmer who needs to optimize a given program, called the
source program. You are given several pairs of fast and slow programs, called examples, which are
presented as pairs where “slower version” refers to the slow code and “optimized version” refers
to the faster, more optimal version of the same program. The very last program with the label
“slower version” is the source program whose optimized version you need to generate. Rewrite the
source program in a way that incorporates all of the optimizations in the examples, and return a
JSON-formatted string where the rewritten code is stored with the key “optimized code”. Do not
output anything other than C++ code.
User Role:
slower version:
{Retrieved Slow Program 1}
optimized version of the same code:
{Retrieved Faster Program 1}

slower version:
{Retrieved Slow Program 2}
optimized version of the same code:
{Retrieved Faster Program 2}

slower version:
{Retrieved Slow Program 3}
optimized version of the same code:
{Retrieved Faster Program 3}

slower version:
{Retrieved Slow Program 4}
optimized version of the same code:
{Retrieved Faster Program 4}

slower version:
{Program to be optimized}
optimized version of the same code: \n

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B.2 AEGIS

B.2.1 GENERATING NATURAL LANGUAGE EDITS

This prompt is used by Fdecomp.
System Role: You are an expert programmer who needs to decompose a sequence of edits to a
program that have been made to optimize the program’s performance. You are provided with the
source program (the initial state) and the target program (the final state). Describe the changes made
to the source program as a sequence of edits in the format of a JSON file where each key marks
the step in the sequence. For example, “1”: <description of the first edit in the sequence>, “2”:
<description of the second edit in the sequence>, ... “N”: <description of the final edit in the
sequence>. Make sure to describe each edit alongside why it may improve performance.
User Role:
Source Program: {Slow Program from Training Set Program Pair}
Target Program: {Faster Program from Training Set Program Pair}

B.2.2 GENERATING PROGRAM SEQUENCE FROM NATURAL LANGUAGE EDITS

This prompt is used by Fedit.
System Role: You are an expert programmer who needs to optimize a given program. You are given
the description of the optimization to be performed as well as the source code of the program. Rewrite
the source code in a way that incorporates the optimization and improves its performance, and return
a JSON-formatted string where the rewritten code is stored with the key “optimized code”. Do not
output anything other than C++ code.
User Role:
Source Program: {Previous Program in Sequence}
Optimization: {Optimization to be applied to generate next program in the sequence}

B.2.3 GENERATING ATOMIC EDITS FROM NATURAL LANGUAGE EDITS

This prompt is used by Fgen.
System Role: You are an expert programmer. You are provided with the description of a program
optimization, which, when applied to the given program, results in an improvement in program
performance. Rewrite the program optimization so that it can be applied more generally to any
program. Return a JSON-formatted string where the rewritten optimization is stored with the key
“rewritten optimization”. Do not output anything other than JSON.
User Role:
Program Optimization: {Natural Language Edit}
Program: {Program in program sequence that the edit was applied to}

B.2.4 GENERATING PROGRAMS WITH CONTEXTUAL RETRIEVAL

This prompt is used by the modified Fopt when generating programs with AEGIS.
System Role: You are an expert programmer who needs to optimize a given program, called the
source program. You are given the description of an optimization that is to be performed on the
given program, as well as an example showing how to apply the optimization on an example program
(called the example source) to get a target program (called the example target). Rewrite the source
code in a way that incorporates all of the optimizations, and return a JSON-formatted string where the
rewritten code is stored with the key “optimized code”. Do not output anything other than C++ code.
User Role: Source Program:
{Program to be optimized}
Optimization:
{Atomic edit retrieved via contextual retrieval}

Example Source:
{Slower program in retrieved example pair}
Example Target:
{Faster program in retrieved example pair}

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

AEGIS Step 1

#include <cstdio>
using namespace std;

int main()
{
 long long int n, m, i, r, s = 0,
b, c, j;
 scanf("%lld", &n);
 long long int a[n + 10];
 long long int ar[100001] = {0};

 for (i = 0; i < n; i++) {
 scanf("%lld", &a[i]);
 s += a[i];
 ar[a[i]]++;
 }

 scanf("%lld", &m);
 for (i = 0; i < m; i++) {
 scanf("%lld %lld", &b, &c);
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 printf("%lld\n", s);
 }

 return 0;
}

AEGIS Step 2

#include <cstdio>

int main()
{
 long long int n, m, i, r, s = 0,
b, c, j
 std::scanf("%lld", &n);
 long long int a[n + 10];
 long long int ar[100001] = {0};
 for (i = 0; i < n; i++) {
 std::scanf("%lld", &a[i]);
 s += a[i];
 ar[a[i]]++;
 }
 std::scanf("%lld", &m);
 for (i = 0; i < m; i++) {
 std::scanf("%lld %lld", &b,
&c);
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 std::printf("%lld\n", s);
 }
 return 0;
}

AEGIS Step 3

#include <cstdio>

int main()
{
 long long int n, m, i, s = 0, b,
c;
 std::scanf("%lld", &n);
 long long int a[n + 10];
 long long int ar[100001] = {0};
 for (i = 0; i < n; i++) {
 std::scanf("%lld", &a[i]);
 s += a[i];
 ar[a[i]]++;
 }
 std::scanf("%lld", &m);
 for (i = 0; i < m; i++) {
 std::scanf("%lld %lld", &b,
&c);
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 std::printf("%lld\n", s);
 }
 return 0;
}

AEGIS Step 4

#include <cstdio>
#include <algorithm>
#define fast
ios_base::sync_with_stdio(false);cin.tie(0);
#define int long long
#define mod 1000000007
const int N = 100001;
int cnt[N];

int32_t main() {
 int n, m, s = 0;
 std::scanf("%lld", &n);
 for (int i = 0; i < n; ++i) {
 int x;
 std::scanf("%lld", &x);
 s += x;
 cnt[x]++;
 }
 std::scanf("%lld", &m);
 for (int i = 0; i < m; ++i) {
 int b, c;
 std::scanf("%lld %lld", &b, &c);
 if (b != c && cnt[b] > 0) {
 s += (c - b) * cnt[b];
 cnt[c] += cnt[b];
 cnt[b] = 0;
 }
 std::printf("%lld\n", s);
 }
 return 0;
}

RAS Step 1

#include <cstdio>
#include <algorithm>
using namespace std;
long long ar[100001] = {0};

inline long long read() {
 long long s = 0;
 char c = getchar();
 while (c < '0' || c > '9') c =
getchar();
 while (c >= '0' && c <= '9') s =
(s * 10) + c - '0', c = getchar();
 return s;
}

int main() {
 long long n = read();
 long long s = 0;
 for (int i = 0; i < n; ++i) {
 int a = read();
 s += a;
 ar[a]++;
 }
 long long m = read();
 while (m--) {
 int b = read();
 int c = read();
 if (b != c) {
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 }
 printf("%lld\n", s);
 }
 return 0;
}

RAS Step 2

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

long long ar[100001] = {0};
char input_buffer[8000000], *input_ptr
= input_buffer;

inline long long read() {
 long long s = 0;
 char c = *input_ptr++;
 while (c < '0' || c > '9') c =
*input_ptr++;
 while (c >= '0' && c <= '9') s =
(s * 10) + c - '0', c = *input_ptr++;
 return s;
}

void buffered_print(long long x) {
 char out_buffer[20];
 char *out_ptr = out_buffer;
 if (x == 0) {
 putchar('0');
 } else {
 while (x > 0) {
 *out_ptr++ = '0' + (x %
10);
 x /= 10;
 }
 while (out_ptr != out_buffer)
{
 putchar(*--out_ptr);
 }
 }
 putchar('\n');
}

int main() {
 fread(input_buffer, 1, 8000000,
stdin);
 long long n = read();
 long long s = 0;
 for (int i = 0; i < n; ++i) {
 int a = read();
 s += a;
 ar[a]++;
 }
 long long m = read();
 while (m--) {
 int b = read();
 int c = read();
 if (b != c) {
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 }
 buffered_print(s);
 }
 return 0;
}

RAS Step 3
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

long long ar[100001] = {0};
char input_buffer[8000000], *input_ptr
= input_buffer;

inline long long read() {
 long long s = 0;
 char c = *input_ptr++;
 while (c < '0' || c > '9') c =
*input_ptr++;
 while (c >= '0' && c <= '9') s =
(s * 10) + c - '0', c = *input_ptr++;
 return s;
}

void buffered_print(long long x) {
 static char out_buffer[20];
 static char *out_ptr = out_buffer;
 if (x == 0) {
 putchar('0');
 } else {
 while (x > 0) {
 *out_ptr++ = '0' + (x %
10);
 x /= 10;
 }
 while (out_ptr != out_buffer)
{
 putchar(*--out_ptr);
 }
 }
 putchar('\n');
}

int main() {
 fread(input_buffer, 1, 8000000,
stdin);
 long long n = read();
 long long s = 0;
 for (int i = 0; i < n; ++i) {
 int a = read();
 s += a;
 ar[a]++;
 }

 long long m = read();
 while (m--) {
 int b = read();
 int c = read();
 if (b != c) {
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 }
 buffered_print(s);
 }
 return 0;
}

RAS Step 4

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

long long ar[100001] = {0};
char input_buffer[8000000], *input_ptr =
input_buffer;

inline long long read_int() {
 long long s = 0;
 char c = *input_ptr++;
 while (c < '0' || c > '9') c =
*input_ptr++;
 while (c >= '0' && c <= '9') s = (s *
10) + c - '0', c = *input_ptr++;
 return s;
}

void write_long(long long x) {
 static char out_buffer[20];
 static char *out_ptr = out_buffer;
 if (x == 0) {
 putchar('0');
 } else {
 while (x > 0) {
 *out_ptr++ = '0' + (x % 10);
 x /= 10;
 }
 while (out_ptr != out_buffer) {
 putchar(*--out_ptr);
 }
 }
 putchar('\n');
}

int main() {
 fread(input_buffer, 1,
sizeof(input_buffer) - 1, stdin);
 long long n = read_int();
 long long s = 0;
 for (int i = 0; i < n; ++i) {
 int a = read_int();
 s += a;
 ar[a]++;
 }

 long long m = read_int();
 while (m--) {
 int b = read_int();
 int c = read_int();
 if (b != c) {
 s += (c - b) * ar[b];
 ar[c] += ar[b];
 ar[b] = 0;
 }
 write_long(s);
 }
 return 0;
}

Test Set Program

#include<bits/stdc++.h>
using namespace std;

int main()
{
 long long int n,m,i,r,s=0,b,c,j;
 scanf("%lld",&n);
 long long int a[n+10];
 long long int ar[100001]={0};

 for(i=0;i<n;i++){
 cin>>a[i];
 s+=a[i];
 ar[a[i]]++;
 }

 cin>>m;
 long long int f[m+10];

 for(i=0;i<m;i++){
 cin>>b>>c;
 s+=(c-b)*ar[b];
 ar[c]+=ar[b];
 ar[b]=0;
 cout<<s<<endl;
 }
}

Test Set Program

#include<bits/stdc++.h>
using namespace std;
int main()
{
 long long int n,m,i,r,s=0,b,c,j;
 scanf("%lld",&n);
 long long int a[n+10];
 long long int ar[100001]={0};

 for(i=0;i<n;i++){
 cin>>a[i];
 s+=a[i];
 ar[a[i]]++;
 }

 cin>>m;
 long long int f[m+10];

 for(i=0;i<m;i++){
 cin>>b>>c;
 s+=(c-b)*ar[b];
 ar[c]+=ar[b];
 ar[b]=0;
 cout<<s<<endl;
 }
}

Figure 4: We show a randomly selected example optimization trajectory where RAS and AEGIS
implement similar optimizations to achieve similar speedups. The final speedup of RAS is 10.06×,
compared to 9.58× for AEGIS. We have highlighted lines that have changed from the previous step
in orange, while lines that change in the next step have been highlighted in red. For reference, the
human speedup on this example is 1.8×. Here RAS implements an optimization to replace cin and
cout alongside an optimization to ensure that variables are not needlessly updated when b = c in
Step 1. AEGIS implements a cin and cout replacement in Step 1 and refines it until Step 3, and
then implements the b!=c check in Step 4.

C COMPARISON BETWEEN RAS AND AEGIS

In Figures 4 and 5, we show an example of the optimization trajectory taken by each RAS and
AEGIS in our GPT-4o experiment on the PIE dataset. As can be seen, RAS concentrates a large
number of edits in the first step. In contrast, the edits performed by AEGIS are spread out more evenly
across different steps.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

AEGIS Step 1

#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
const int N = 100005;
int f[N], a[N];

int main()
{
 int n, k;
 scanf("%d%d", &n, &k);
 memset(f, 0x3f, sizeof(f));
 for (int i = 1; i <= n; i++)
 scanf("%d", &a[i]);
 f[1] = 0;
 for (int i = 2; i <= n; i++) {
 for (int j = 1; j <= k; j++) {
 if (i - j >= 1)
 f[i] = min(f[i], f[i -
j] + abs(a[i] - a[i - j]));
 }
 }
 printf("%d\n", f[n]);
 return 0;
}

AEGIS Step 2

#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
const int N = 100005;
int f[N], a[N];

int main()
{
 int n, k;
 scanf("%d%d", &n, &k);
 memset(f, 0x3f, sizeof(f));
 for (int i = 1; i <= n; i++)
 scanf("%d", &a[i]);
 f[1] = 0;
 for (int i = 2; i <= n; i++) {
 for (int j = 1; j <= k; j++) {
 if (i - j >= 1)
 f[i] = min(f[i], f[i -
j] + abs(a[i] - a[i - j]));
 }
 }
 printf("%d\n", f[n]);
 return 0;
}

AEGIS Step 3
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005;
int f[N], a[N];

inline void updateMinimum(int &target,
int source) {
 target = min(target, source);
}

int main()
{
 int n, k;
 scanf("%d%d", &n, &k);
 memset(f, 0x3f, sizeof(f));
 for (int i = 1; i <= n; i++)
 scanf("%d", &a[i]);
 f[1] = 0;
 // Optimized loop to only iterate
over relevant parts
 for (int i = 2; i <= n; i++) {
 for (int j = min(i - 1, k); j
>= 1; j--) {
 updateMinimum(f[i], f[i -
j] + abs(a[i] - a[i - j]));
 }
 }
 printf("%d\n", f[n]);
 return 0;
}

AEGIS Step 4
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 100005;
int f[N], a[N];

inline void updateMinimum(int &target,
int source) {
 target = min(target, source);
}

int main()
{
 int n, k;
 std::scanf("%d%d", &n, &k);
 memset(f, 0x3f, sizeof(f));
 for (int i = 1; i <= n; i++)
 std::scanf("%d", &a[i]);
 f[1] = 0;
 // Optimized loop to only iterate
over relevant parts
 for (int i = 2; i <= n; i++) {
 for (int j = min(i - 1, k); j
>= 1; j--) {
 updateMinimum(f[i], f[i -
j] + abs(a[i] - a[i - j]));
 }
 }
 std::printf("%d\n", f[n]);
 return 0;
}

RAS Step 1

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#define INF 0x3f3f3f3f

int min(int a, int b) {
 return a < b ? a : b;
}

int main() {
 int n, k;
 scanf("%d%d", &n, &k);
 int a[n];
 int f[n];
 memset(f, 0x3f, sizeof(f));
 for (int i = 0; i < n; i++)
scanf("%d", &a[i]);
 f[0] = 0;
 for (int i = 1; i < n; i++) {
 for (int j = 1; j <= k; j++) {
 if (i - j >= 0) f[i] =
min(f[i], f[i - j] + abs(a[i] - a[i -
j]));
 }
 }
 printf("%d\n", f[n - 1]);
 return 0;
}

RAS Step 2

#include <stdio.h>
#include <stdlib.h>
#define INF 0x3f3f3f3f

int min(int a, int b) {
 return a < b ? a : b;
}

int main() {
 int n, k;
 scanf("%d%d", &n, &k);
 int *a = (int *)malloc(n *
sizeof(int));
 int *f = (int *)malloc(n *
sizeof(int));
 for (int i = 0; i < n; i++)
scanf("%d", &a[i]);
 f[0] = 0;
 for (int i = 1; i < n; i++) {
 int min_cost = INF;
 for (int j = 1; j <= k && i -
j >= 0; j++) {
 min_cost = min(min_cost,
f[i - j] + abs(a[i] - a[i - j]));
 }
 f[i] = min_cost;
 }
 printf("%d\n", f[n - 1]);
 free(a);
 free(f);
 return 0;
}

RAS Step 3

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>
int min(int a, int b) {
 return a < b ? a : b;
}

int main() {
 int n, k;
 scanf("%d%d", &n, &k);
 int *a = (int *)malloc(n *
sizeof(int));
 int *f = (int *)malloc(n *
sizeof(int));
 for (int i = 0; i < n; i++)
scanf("%d", &a[i]);
 f[0] = 0;
 for (int i = 1; i < n; i++) {
 int min_cost = INT_MAX;
 for (int j = 1; j <= k && i -
j >= 0; j++) {
 min_cost = min(min_cost,
f[i - j] + abs(a[i] - a[i - j]));
 }
 f[i] = min_cost;
 }
 printf("%d\n", f[n - 1]);
 free(a);
 free(f);
 return 0;
}

RAS Step 4

#include <cstdio>
#include <cstdlib>
#include <limits.h>
#include <algorithm>

int main() {
 int n, k;
 scanf("%d%d", &n, &k);
 int *a = (int *)malloc(n *
sizeof(int));
 int *f = (int *)malloc(n *
sizeof(int));
 for (int i = 0; i < n; ++i)
scanf("%d", &a[i]);
 f[0] = 0;
 for (int i = 1; i < n; ++i) {
 f[i] = INT_MAX;
 for (int j = 1; j <= k && i -
j >= 0; ++j) {
 f[i] = std::min(f[i], f[i
- j] + std::abs(a[i] - a[i - j]));
 }
 }
 printf("%d\n", f[n - 1]);
 free(a);
 free(f);
 return 0;
}

Test Set Program

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int N=100005;
int f[N],a[N];

int main()
{

int n,k;
scanf("%d%d",&n,&k);
memset(f,0x3f,sizeof(f));
for(int i=1;i<=n;i++)

 scanf("%d",&a[i]);
f[1]=0;
for(int i=2;i<=n;i++){

for(int j=1;j<=k;j++){
if(i-j>=1)

 f[i]=min(f[i],f[i-
j]+abs(a[i]-a[i-j]));

}
}
printf("%d\n",f[n]);

}

Test Set Program

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
const int N=100005;
int f[N],a[N];

int main()
{

int n,k;
scanf("%d%d",&n,&k);
memset(f,0x3f,sizeof(f));
for(int i=1;i<=n;i++)

scanf("%d",&a[i]);
f[1]=0;
for(int i=2;i<=n;i++){

for(int j=1;j<=k;j++){
if(i-j>=1)

f[i]=min(f[i],f[i-j]+abs(a[i]-a[i-
j]));

}
}
printf("%d\n",f[n]);

}

Figure 5: We show a randomly selected example optimization trajectory where RAS significantly
outperforms AEGIS. Here, we demonstrate the improvements made at each step of RAS vs. AEGIS.
The final speedup of RAS on this example is 7.34×, compared to 2.35× for AEGIS. We have
highlighted lines that have changed from the previous step in orange, while lines that change in the
next step have been highlighted in red. For reference, the human speedup on this example is 1.37×.

D FAILURE CATEGORY ANALYSIS OF RAS AND AEGIS

In our GPT-4o experiment on the PIE dataset, for each of our two methods, AEGIS and RAS, we
construct a set of unoptimized programs. The set contains test set programs for whom the final
best speedup after using the method is less than 1.1×. We then study the program descriptions
generated by the LLM Fcontext during contextual retrieval. By examining the LLM-generated program
descriptions of the test set programs in the unoptimized program set, we can measure the frequency of
specific frequently occurring terms. We then compare the frequency of these terms in the unoptimized
program set to the overall test set to measure if each method fails disproportionately on problems
involving certain algorithms or data structures.

AEGIS appears to struggle with optimizing two primary groups of programs: programs that include
dynamic programming algorithms and programs that involve binary search over either sorted lists
or trees. Across the complete test set, programs with descriptions including the term “dynamic
programming” constitute 51.59% of programs and those mentioning “binary search” constitute 4.32
of programs. AEGIS’s set of unoptimized programs constitutes 10.48% of the entire test set. Programs
with descriptions including the term “dynamic programming” constitute 48.04% and those with
descriptions mentioning “binary search” constitute 10.78% of this unoptimized set. These results
suggest that AEGIS fails disproportionately on binary search problems.

For RAS, the unoptimized program set is 3.91% of the entire test sets. When compared to AEGIS,
the percentage of dynamic programming problems in RAS’s unoptimized program set decreases
to 21.05%, while the percentage of binary search problems remains at a similar level at 10.53%.
Additionally, for RAS, we observe a high failure rate for programs whose descriptions mention
Kruskal’s algorithm: while such problems constitute 1.03% of the total test set, they constitute

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

15.79% of RAS’s unoptimized program set. Only 2.94% of problems in AEGIS’s unoptimized
program set mention Kruskal’s algorithm, and we observe that RAS fails on a greater number of
problems involving Kruskal’s algorithm as compared to AEGIS.

Thus, we can develop greater insights into their failure modes by analyzing the artifacts produced
during RAS and AEGIS. By identifying algorithms and data structures that cause these failures,
we can subsequently augment the training dataset which we use for retrieval by targeting specific
categories of optimizations for subsequent improvements in performance.

E MEAN EDIT DISTANCE

We show mean edit distances in Table 5.

Method GPT-4o Mean Edit Distance

AEGIS 213.05
RAS 257.77

AEGIS (No Contextual) 203.24
RAS (No Contextual) 221.49

Table 5: Comparisons of edit Distances over Steps between AEGIS and RAS on the PIE Benchmark.

F MERCURY RESULTS FOR LARGER MODELS

We show results of using larger models to optimize programs in the Mercury dataset in the Instruct
Only setting in Table 6.

Method Beyond@1 Pass@1

Instruct Only (Gemma3-12B) (h = 16) 88.76 99.61
Instruct Only (Qwen3-30B) (h = 8) 91.02 99.22
Instruct Only (Qwen-QwQ-32B) (h = 8) 93.13 99.61

Table 6: RAS Experiments on Mercury on larger models.

G LLM USAGE

LLMs were used to generate the code for executing some of the experiments, which was reviewed by
the authors.

18

	Introduction
	Retrieval Augmented Search
	Atomic Edit Guided Search
	Experiments
	Experimental Setup
	Results

	Conclusion
	Comparing Instruction Prompting and Expert Programmer System Roles
	Instruction Prompting (IP)
	Expert Programmer System Role (EPSR)
	Prompt Result Comparison

	Prompts for Experimental Results
	RAS
	Program Description Generation
	Generating Programs With Contextual Retrieval
	Generating Programs With Dynamic Code Retrieval

	Aegis
	Generating Natural Language Edits
	Generating Program Sequence from Natural Language Edits
	Generating Atomic Edits from Natural Language Edits
	Generating Programs With Contextual Retrieval

	Comparison Between RAS and Aegis
	Failure Category Analysis of RAS and Aegis
	Mean Edit Distance
	Mercury Results for Larger Models
	LLM Usage

