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Abstract

Current approaches to open-set object detec-
tion heavily rely on vision-language fusion
paradigms, yet this methodology faces an in-
herent challenge: many objects are difficult
to describe accurately through language alone.
While recent research has attempted to incor-
porate visual information to address this limi-
tation, existing models still struggle with fine-
grained object discrimination. In response, we
introduce VINO (Visual Intersection Network
for OSOD), a novel DETR-based pure vision
model that constructs a multi-image visual bank
to preserve semantic intersections across cate-
gories and facilitates the fusion of category and
region semantics through a multi-stage mech-
anism. Furthermore, we implement a simple
replacement strategy to ensure the model learns
alignment capabilities rather than semantic ap-
proximation. With an image consumption of
only 0.84M, VINO achieves competitive per-
formance on par with vision-language models
on benchmarks such as LVIS and ODinW35.
Additionally, the successful integration of a seg-
mentation head demonstrates the broad appli-
cability of visual intersection across various
visual tasks.

1 Introduction

Open-set object detection (OSOD) fundamentally
aims to align region semantics with target object se-
mantics. Current mainstream approaches (Li et al.,
2022a; Zhang et al., 2022) leverage frozen large
language models (LLMs) for their semantic gener-
alization capabilities, encouraging visual extractors
to align with LLMs’ semantic space. However,
this paradigm inherently constrains the model’s
object discrimination ability to the semantic resolu-
tion of LLMs, particularly struggling with objects
that defy precise linguistic description. Moreover,
bridging the modality gap between vision models
and LLMs demands extensive pretraining, requir-
ing substantial image consumption ranging from

How to describe us?
A blue/yellow cat?
Doraemon/Dorami?

How to describe me?
A cat? Doraemon?

Figure 1: Illustration of the linguistic description chal-
lenge in fine-grained object detection, where similar
visual characteristics make it difficult to distinguish be-
tween closely related objects using language or visual
instructions in single image.

11.52M (APE-A) to 200M (X-Decoder (Zou et al.,
2022)).

To address these semantic description limita-
tions, several studies have explored the use of
visual prompts. Some works (Xu et al., 2023;
Kang et al., 2019) employ visual prompts as auxil-
iary information to enrich textual representations.
However, these approaches rely heavily on visual-
language fusion to perform cross-modal multi-
head attention between high-dimensional words
and regions, resulting in increased memory con-
sumption and computational complexity. Other
researchers (Jiang et al., 2024; Li et al., 2023;
Ren et al., 2024) have investigated interactive
visual instructions (e.g., points or boxes) to en-
hance detection performance. While these interac-
tive approaches enable semantic learning through
position-aware cross-attention, they are constrained
to single-image scenarios, failing to capture seman-
tic generalization across multiple images. Addition-
ally, some methods (Li et al., 2022b; Zang et al.,
2022) utilizing image-level prompts with siamese
network architectures are primarily limited to few-
shot learning scenarios.

We are motivated to work as shown in Fig-
ure 1. Object semantics can be effectively cap-
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Figure 2: Comparison of various object detection models under visual and textual prompts. The figure highlights the
challenges faced by existing models. In contrast, Vision Intersection Network (VINO) effectively addresses these
challenges by leveraging the semantic intersection of multi-image visual prompts, enhancing detection accuracy and

generalization in open-set environments.

tured through visual representations, spanning from
coarse-grained categories (e.g., dog) to fine-grained
distinctions (e.g., Corgi). By leveraging the se-
mantic intersection of corresponding categories,
we can circumvent the limitations of linguistic de-
scriptions, cross-modal fusion, and single-image
interaction, while naturally accommodating multi-
granular object discrimination. An image is worth
a thousand words. More images say more. Visual
representations inherently contain richer semantic
information than textual descriptions, particularly
for fine-grained object recognition. As illustrated
in Figure 2, our approach achieves fine-grained
detection through detailed visual prompts, distin-
guishing it from previous methods.

To realize this vision, we propose VINO (Visual
Intersection Network for Open Set Object Detec-
tion), a novel region classifier architecture that pre-
serves visual information. At its core, we design
a multi-image visual bank to maintain category
semantic information across multiple time steps.
However, limited images pose challenges in com-
prehensively describing target objects, and static
object semantics during training can lead to overfit-
ting. To address this, we introduce a novel mecha-
nism for updating multi-image prompts, ensuring
semantic quality and discriminability through care-
ful image selection.

To enhance semantic matching capabilities and
balance the disparity between inference (<10) and
training ( > 1k) visual prompt numbers, we im-
plement a simple yet effective replacement strat-
egy. Our experiments demonstrate that this ap-

proach significantly improves semantic matching
capability, achieving a 5.5-point improvement on
Objects365v1. Furthermore, to minimize the fea-
ture discrepancy between CLIP-extracted small im-
age features and EVA-CLIP-extracted large image
features, we design a multi-stage fusion mecha-
nism that facilitates effective integration of visual
prompts and target image features.

By pre-training on the Objects365v1, ODinW-
35 and LVIS datasets, VINO has achieved perfor-
mance comparable to existing vision-language and
vision-vision methods. To verify the general ap-
plicability of semantic intersections in enhancing
label semantics, we added a segmentation head to
the model. By pre-training VINO on the COCO
dataset, the segmentation results are comparable to
current methods, demonstrating the broad applica-
bility of semantic intersections in visual tasks. In
summary, our contributions are as follows:

* We pioneer the learning of semantic inter-
sections from multiple images for OSOD,
moving beyond traditional single-image or
language-based representations. Our ap-
proach demonstrates its broad applicabil-
ity across various visual tasks, as validated
through extensive experiments including ob-
ject detection and segmentation. This repre-
sents a fundamental shift in how semantic in-
formation is captured and utilized in open-set
scenarios.

* We propose VINO (Visual Intersection Net-
work for Open Set Detection). On the visual



prompt side, we construct a multi-image vi-
sual bank with a novel update mechanism
to maintain and refine semantic information
across time steps, on the target image side,
we design a multi-stage fusion mechanism to
effectively bridge the feature gap between vi-
sual prompts and target objects, facilitating
robust semantic matching.

* We conduct extensive experiments and visual-
ization analyses, demonstrating our model’s
ability to handle open-set object detection
tasks. Specifically, VINO achieved an AP
of 38.1 on Obj365 vl , 29.2 on the LVIS
v1 validation set, and 24.5 on the ODinW-35
validation set, comparable to current vision-
language and vision-vision methods.

2 Related Work

2.1 Open-Vocabulary Object Detection

With the emergence of large pre-trained vision-
language models like CLIP (Radford et al., 2021)
and ALIGN (Jia et al., 2021), methods based on vi-
sion and language (Kamath et al., 2021; Zhang
et al., 2023) have gained significant popularity
in the field of open-vocabulary object detection
(OVOD). These methods locate objects using lan-
guage queries while effectively handling open-
set problems. OV-DETR is the first end-to-end
Transformer-based open-vocabulary detector, com-
bining CLIP embeddings from both images and
text as object queries for the DETR decoder. GLIP
treats object detection as a grounding problem
and achieves significant success by semantically
aligning phrases with regions. To address the lim-
itations of single-stage fusion in GLIP, Ground-
ing DINO (Liu et al., 2024) enhances feature fu-
sion at three stages: neck, query initialization,
and head phases, thus tackling the issue of incom-
plete multimodal information fusion. Furthermore,
APE (Shen et al., 2023) scales the model prompts
to thousands of category vocabularies and region
descriptions, significantly improving the model’s
query efficiency for large-scale textual prompts.
The language-based models aim to enhance the se-
mantic description of language queries to adapt to
various visual environments, achieving remarkable
progress in zero-shot and few-shot settings. How-
ever, relying solely on text poses limitations due
to language ambiguity and potential mismatches
between textual descriptions and complex visual

scenes. This underscores the ongoing need for im-
proved integration of visual inputs to achieve more
accurate and comprehensive results. Recent ad-
vancements suggest that incorporating richer visual
prompts and enhancing multimodal fusion tech-
niques are crucial for overcoming these challenges
and pushing the boundaries of OVOD further.

2.2 Object Detection by Visual Queries

Building on language-based object detectors, some
methods (Zhou et al., 2022a,b) have introduced vi-
sual elements to enhance detection accuracy and
semantic richness. MQ-Det utilizes image exam-
ples as visual prompts to enhance textual semantics,
thereby enabling more effective open-vocabulary
object detection (OVOD). However, it remains con-
strained by textual semantics. Additionally, some
methods explore the possibility of object detection
using only visual prompts. This approach primarily
addresses few-shot object detection and typically
employs a two-branch Siamese network. For ex-
ample, FCT (Han et al., 2022) uses a two-branch
Siamese network to process target images and vi-
sual queries in parallel, computing the similarity
between image regions and a few examples for
few-shot object detection. OWL-ViT (Minderer
et al., 2022) leverages CLIP’s parallel paradigm
and uses detection datasets for fine-tuning to adopt
image examples for one-shot image-conditioned
object detection. Similarly, DINOv expands on
this concept by employing visual instructions (such
as boxes, points, masks, doodles, and specified
regions referencing another image) to handle open-
set segmentation. These visual methods often adopt
a Siamese network architecture, which has limita-
tions in zero-shot learning capability. To address
these limitations and improve semantic understand-
ing, our goal is to learn the semantic intersection of
multiple images. VINO enriches visual semantics
by retaining semantic information in all time steps
using a multi-image visual bank. This approach
not only improves the model’s ability to understand
complex visual scenes but also enhances its robust-
ness and generalization in open-set scenarios.

3 Method

This section presents VINO, our proposed DETR-
based detection framework that preserves seman-
tic intersections of visual prompts across tempo-
ral steps. By learning to match region features
with semantic intersections derived from multiple
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Figure 3: The model architecture of VINO with multi-image visual bank.

images, our approach enhances detection perfor-
mance through improved category discrimination.
We begin by introducing the cornerstone of our
architecture, the multi-image visual bank, which
serves as the fundamental building block for se-
mantic intersection learning This is followed by
a detailed overview of the overall architecture of
VINO as Fig 3.

3.1

Rethinking Features in the Multi-image Visual
Bank: Our approach addresses the limitations
of single-timestep visual instructions in capturing
comprehensive category semantics. To aggregate
features across multiple timesteps, we construct
a feature bank that preserves temporal semantic
information. However, as instances of the same cat-
egory accumulate, maintaining semantic represen-
tations for all categories becomes impractical due
to memory constraints. A straightforward FIFO
(first-in, first-out) approach would result in the loss
of valuable semantic information from previous
timesteps, compromising the integrity of category
descriptions over time.

To overcome this challenge, we introduce a
multi-image update mechanism that efficiently
compresses and preserves critical semantic infor-
mation across temporal steps while optimizing
memory utilization. Leveraging the categorical
distinctions within our Multi-image Visual Bank,
our approach naturally facilitates multi-granular
category discrimination through semantic intersec-
tion learning. While our visual prompts utilize ROI
features, the framework remains compatible with

Multi-image Visual Bank

investigated interactive visual instructions. Indeed,
current interactive approaches can be viewed as
special cases of our framework, equivalent to FIFO
updates with a prompt number of one. Ablation
studies demonstrate that our Multi-image Visual
Bank effectively addresses the limitations inherent
in single-timestep approaches.

Initialization and Updating of the Multi-
image Visual Bank: During initialization, all en-
tries in the multi-image visual bank are set to
zero. Formally, the multi-image visual bank is
represented as f, = (fr1,, fr,,---, f1y), wWhere
f1, € R™, |Iy| represents the number of cat-
egories, n is the number of visual prompts, and d
is the dimension of the visual features. This ini-
tial state ensures a clean slate, ready to incorporate
meaningful features as they are processed. When
new features f,, are received, they are integrated
into the corresponding f7, based on their category
I;. The integration process(as Algorithm ??) is
carefully designed to ensure efficient and effective
updating of the visual bank while maintaining the
semantic intersections of each category.

Direct Replacement of Zero Entries: If any
sub-feature in f7, is zero, it indicates that this slot
is currently unused. The new feature f), is directly
placed into this slot, ensuring all slots are utilized
as new data arrives.

Similarity-Based Updating: If all sub-features in
f1, are non-zero, a more efficient approach is re-
quired to integrate the new feature without losing
valuable information from previous time steps. To
achieve this, we calculate the cosine similarity be-



tween f, and each sub-feature in f7,. The cosine
similarity s, for the m-th sub-feature is computed
as:

Sm = cos(fp, fi1,m)) ™ € [1,n]. (D

This step identifies the sub-feature that is most
similar to the new feature, indicating redundancy
or relevance in the semantic space.

Averaging and Updating: Once the sub-feature
with the highest cosine similarity is identified (de-
noted as k = argmax(s,,)), we update this sub-
feature by averaging it with the new feature f,,.

fir.k) = average(fp, fir, 1) (2)
This averaging process helps in retaining both the
new and existing semantic information, thereby
preserving temporal context and reducing noise.
To address the significant disparity between
training and inference scenarios where category
labels can number in the thousands during train-
ing but are limited to dozens or even single digits
during inference, we implement an adaptive re-
placement strategy. Specifically, when the number
of elements received by f, exceeds a predeter-
mined threshold, we directly substitute f{7, » with
fp- This dynamic replacement mechanism ensures
continuous evolution of category features during
training, encouraging the model to learn seman-
tic alignment capabilities between visual prompts
and target images, rather than merely developing
fixed closed-set classification abilities against static
visual prompts.

3.2 The framework of VINO

Our model architecture comprises several key com-
ponents designed to facilitate effective open-set
object detection. Given a target image I, the frame-
work incorporates: (1) the Image Backbone, a vi-
sual encoder that extracts rich feature representa-
tions from the target image; (2) the Prompt Encoder,
which processes and encodes visual prompts; and
(3) the Multi-image Visual Bank, a sophisticated
memory mechanism that maintains visual prompt
information for each category and synthesizes their
semantic intersections. The architecture is further
enhanced by (4) the DETR Encoder, which facil-
itates feature fusion between visual prompts and
target images, and (5) the DETR Decoder, which
identifies and localizes proposed regions while ex-
tracting their semantic information. Through align-
ing the semantic content of proposed regions with

the synthesized semantic intersections from visual
prompts, our model effectively assigns categorical
labels to each detected region.

Specifically, the model takes the target im-
age I; € R and the set of labels
R = {ry,re,... ,r‘R|} as input. Here, r; =
(x1,y1,22,Y2, ;) € R® represents the coordinates
of the top-left and bottom-right corners, along with
the corresponding category label.

Feature Extraction and Region Proposal: For
the target image I;, the initial step involves fea-
ture extraction using the Image Backbone to
produce the feature representation f;: f; =
Image Backbone(I;), where f; € RP*P, with bs
representing the batch size and D denoting the di-
mensionality of the feature vectors.

To facilitate effective semantic fusion between
target images and visual prompts, we introduce a
multi-stage fusion mechanism. The process begins
by computing a consolidated visual prompt rep-
resentation f,;; through averaging f; across both
quantity and category dimensions. We then im-
plement a cross-attention mechanism where this
aggregated representation f,;; serves as the query,
while the target image features f; act as both key
and value matrices. This cross-modal interaction is
followed by a self-attention operation on f;, yield-
ing refined feature representations ft. Finally, we
select the top-k elements from ft based on feature
magnitude, which serve as learnable tokens for the
subsequent DETR Decoder stage in object detec-
tion.

The DETR-like decoder operates by decoding
the features f"t into two outputs: the coordinates
of the proposed regions bbox € RP$***4 and the
corresponding feature representations of these pro-
posed regions f, € RP*¥*D To further validate
the broad applicability of semantic intersections
in visual tasks, we extend the model by incor-
porating a segmentation head. This addition al-
lows the model to also output predicted masks
M e Rbsxkxhxw‘

Feature Fusion: For the set of labels R =
{r1,72, ..., 7Ry}, we first use the Prompt Encoder
to extract the features from each region: f, =
Prompt Encoder(R, I;).

Next, we perform feature fusion by updating the
multi-image visual bank f[[ﬂc] with the features
extracted from the regions, aligning them with the
same category in the visual bank, as described in
the previous section. This fusion process integrates
the new region features into the existing visual



bank, ensuring that the updated bank retains and
reflects the latest semantic information.

After the fusion, we average and align the di-
mensions to obtain the final average feature repre-
sentation fyyerage:

faverage = MLP(Average(fA[I“k} )) (3)

Label Assignment:Finally, we use the Align-
ment Head to match the features of the proposed
regions f, with the averaged features fyyerqge tO
determine the semantic labels:

Iresults = SOftmax(fr@ I ) 4

average

This step outputs I esyies € RP*F*UNI agsign-
ing the most probable semantic labels to each pro-
posed region.

Training Objective: Our model employs a uni-
fied loss function that accommodates both detec-
tion and segmentation tasks, with segmentation loss
defaulting to zero when no segmentation task is
present. The total loss function comprises classifi-
cation, localization, and segmentation components,
formulated as:

L= »Cclass + Ebbox + »Cgiou + »Cmask + ['dice (5)

encoder and decoder last layer of decoder

where L1,5s employs Focal Loss to align the
fused features of visual prompts with target image
encodings. The localization component consists of
Lpbox and Loy, utilizing L1 loss and Generalized
IoU loss respectively for bounding box regression.
For mask segmentation, £ a5k and Lgice implement
cross-entropy loss and dice loss respectively.

4 Experiments

4.1 Setup

Dataset and Settings. To evaluate our model’s
performance in open-set detection, we develop
VINO-D, which is pre-trained on three large-
scale datasets: COCO (Lin et al., 2015) (80 cat-
egories, 110K images), LVIS (Gupta et al., 2019)
(1,203 categories, sharing images with COCO),
and Objects365v1 (Dong et al., 2024) (365 cate-
gories, 600K images). The model is evaluated on
ODinW35 (Li et al., 2022a), a collection of 35 di-
verse datasets specifically designed to assess model
performance in real-world scenarios. To investigate
the broader applicability of semantic intersections,

we extend our framework to segmentation tasks by
developing VINO-S with an additional segmenta-
tion head. VINO-S is pre-trained for both open-set
detection and segmentation on the COCO dataset
( 110K images with object detection and panoramic
segmentation annotations) and evaluated on the
LVIS v1 validation set for both detection and seg-
mentation tasks.

Training Details. Both VINO-D and VINO-S
architectures incorporate APE-D weights for tar-
get image processing, with ViT-L as the backbone
architecture. We employ a frozen CLIP-L model
as the prompt encoder. The frameworks are con-
figured with 5 prompts and 900 object queries.
Model training is conducted on 2 x A100 GPUs
with a batch size of 12, utilizing the AdamW op-
timizer with a learning rate of 5e-5. Both variants
complete one epoch of training on their respec-
tive datasets. To mitigate the significant domain
shift introduced by the prompt encoder processing
cropped images (Li et al., 2023), we implement
strict resolution controls for visual prompts: main-
taining a minimum resolution of 2000 pixels for
the initial prompt image and 1600 pixels for subse-
quent visual prompts.

4.2 Results on detection and segmentation

4.2.1 Object Detection

In Table 1, we present the detection results of our
VINO-D model, which achieves comparable per-
formance across the evaluated datasets(Du et al.,
2024). Specifically, VINO-D attains an AP® of
43.6 on the Objects365 dataset, 47.8 on LVIS vl
validation, and 24.5 on ODinW35.

When compared with current vision-language
models such as GLIP and UNINEXT(Yan et al.,
2023), VINO-D demonstrates highly competitive
results. For instance, while GLIP achieves strong
AP? on Objects365 by leveraging language queries,
VINO-D performs exceptionally well using vision-
based queries, highlighting its capacity to learn
robust semantic intersections from multiple images.
This ability to model semantic intersections allows
VINO-D to maintain high detection accuracy with-
out relying on textual input, further showcasing its
robustness in vision-dominated tasks.

In comparison with other vision-only methods,
VINO-D significantly surpasses DINOv(L) by 8.8
points and MQ-GLIP-L by 0.6 points in terms of
AP? on the ODinW35 dataset. DINOv(L) empha-
sizes the challenges posed by domain shifts, partic-



. objects365 LVISvlval Odinw35 val
Method Backbone Semantic Data Type AP AP’ Angmge
GLIP Swin-L FourODs+... Text Open-set 36.2 26.9 234
UNINEXT ViT-H 0365v2+COCO+... Text Open-set 23 14 -
OpenSeeD-L Swin-L 0365v2+COCO+... Text Open-set - 23 15.2
MQ-GLIP-L Swin-L 0365 Text and visual - 347 23.9 (3-shot)
LaMI-DETR  ConVNext-L object365+VG Text and visual 21.9 41.3 -
DINOv (L) Swin-L SAM+COCO+... Visual Prompt - - 15.7
VINO-D(ours) ViT-L COCO+0365+LVIS  Visual Prompt 43.6 47.8 24.5

Table 1: Open-set segmentation results for different methods.

TERL]

indicates that the work does not have a reported

number.
. COCO LVIS v1 val

Method Backbone Semantic Data Type AP AP™ AP™

GLIPv2 Swin-H 0365+COCOH+... Text Open-set  64.1 474 -
UNINEXT ViT-H 0365v2+COCO Text Open-set  60.6  51.8 12.2

APE (D) ViT-L 0365v2+COCO+...  Text Open-set 583  49.3 53

DINOv (L) Swin-L COCO+SA-1B Visual Prompt 542 504 -
DINO-X Pro ViT-L Grounding-100M visual Prompt  56.0 37.9 38.5
VIOSD-S(ours) ViT-L COCO+LVIS Visual Prompt  62.9  53.7 414

Table 2: Open-set segmentation results for different methods.

number.

ularly those arising from differences in resolution
between cropped and target images. However, our
approach addresses this issue by effectively learn-
ing multi-step semantic intersections across multi-
ple images. On the other hand, while MQ-GLIP-
L employs visual prompts to enhance text-based
representations, its reliance on textual semantics
introduces constraints, as evidenced by its lower
performance in the 3-shot setting when compared
to our zero-shot results.

4.2.2 Object Segmentation

In Table 2, we present the segmentation results
of our VINO-S model, designed with an inte-
grated segmentation head. VINO-S achieves an
AP of 53.7 on the COCO dataset, outperform-
ing UNINEXT by 1.9 points and DINOv(L) by
3.3 points, thereby achieving comparable or supe-
rior performance relative to current leading vision-
language and vision-only methods. On the LVIS v1
validation set, VINO-S achieves an AP of 41.4,
significantly outperforming UNINEXT and deliv-
ering results comparable to advanced models such
as DINO-X Pro and APE.

These results underscore the effectiveness of our
model design, where the semantic intersections en-
abled by the multi-image visual bank yield substan-
tial improvements for segmentation tasks. Over-
all, the VINO framework demonstrates its capa-
bility to advance both object detection and seg-
mentation by leveraging robust multi-image visual
representations without relying heavily on exter-

9

indicates that the work does not have a reported

nal text-based prompts, bridging the gap between
vision-dominated tasks and real-world deployment
scenarios.

4.3 Ablations Experiments

Type

Prompt Num AP’ on COCO
1(FIFN) 53.72
1 62.61
5 62.73
10 62.75
20 62.86

Update Mechanisms AP’ on COCO
FIFN 55.64
Average(no update) 60.92
Average(with update) 62.73

Updata Threshold AP’ on COCO
50 62.81
100 62.73
200 62.50
None 60.92

Reduce Visual Tokens AP’ on COCO lvis
MLP 63.03 6.63
Sliding Convolution 62.81 8.44
Average 62.739.92

Table 3: Ablations Experiments

The ablation experimental results on the COCO
dataset after one round of fine-tuning are shown in
Table 3. Through our ablation studies, we investi-
gated several crucial aspects:

Single-Image vs. Multi-Image Visual Interac-



tion: With vision prompts number set to 1 and
FIFN update strategy, the model is limited to single-
image visual interaction, resulting in the lowest AP.
The introduction of averaging mechanism breaks
through the single-image limitation, significantly
enhancing detection performance. However, after
adopting the averaging strategy, increasing the num-
ber of vision prompts (from 1 to 20) only yields a
marginal improvement of 0.27 in AP.

Visual Semantic Enhancement: With vision
prompts number fixed at 5, although FIFN strategy
overcomes the single-image constraint, it under-
performs in semantic fusion, showing a 5.28-point
decrease compared to Average(no update) strategy.
Without an update mechanism, the continuous ac-
cumulation of vision prompts leads to excessive
semantic similarity in the multi-image vision bank,
compromising the model’s discriminative ability.
The update mechanism effectively addresses this is-
sue, transitioning the model from simple semantic
approximation to more precise semantic alignment.

Impact of Visual Semantic Redundancy: The
experiments demonstrate a consistent performance
degradation as the update cycle decreases from 50
to no update mechanism. While moderately reduc-
ing multi-image visual semantic redundancy can
enhance model performance, excessive reduction
(as in FIFN strategy) proves detrimental. Our find-
ings suggest that maintaining moderate semantic
variation rates while keeping low semantic similar-
ity is crucial for improving detection performance.

Visual Tokens Compression Mechanism: The
compression of visual tokens has garnered sig-
nificant attention across various domains. In our
work, visual token compression is specifically im-
plemented during the feature fusion process of
multiple instances within the same category in
the multi-image visual bank. We conducted ex-
periments involving one epoch of training on the
COCO dataset, followed by zero-shot evaluation
on the LVIS vl validation set. While sophisticated
mechanisms such as MLP and Sliding Convolution
enhance model alignment capabilities, they signif-
icantly compromise the model’s zero-shot gener-
alization ability. Notably, the simple yet efficient
feature averaging strategy demonstrates superior
performance in preserving semantic information,
suggesting that architectural simplicity can often
lead to more robust and generalizable solutions in
visual feature fusion tasks.

Figure 4: The Visualization of VINO-D.

4.4 Visualization

The qualitative results presented in Figure 4 demon-
strate our model’s effectiveness across diverse sce-
narios. The examples showcase: (1) accurate
single-prompt detection capabilities, (2) robust
multi-instance detection across various categories,
and (3) precise discrimination between semanti-
cally similar categories.

5 Conclusion

By dynamically integrating and updating multi-
image visual prompts, VINO not only addresses
the limitations associated with textual descriptions
and single-image interaction but also effectively
narrows the contextual gap between cropped and
full images. This ongoing refinement of feature
representations ensures that VINO adapts flexibly
to new information, achieving robust generaliza-
tion capabilities even with unseen objects. Experi-
mental results show that VINO exhibits strong per-
formance in open set object detection, achieving
results comparable to current vision-language and
vision-only methods. We hope that more studies
will explore the application of semantic intersec-
tions in visual tasks, further expanding the capabil-
ities and understanding of visual models in diverse
environments.
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