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Abstract001

Current approaches to open-set object detec-002
tion heavily rely on vision-language fusion003
paradigms, yet this methodology faces an in-004
herent challenge: many objects are difficult005
to describe accurately through language alone.006
While recent research has attempted to incor-007
porate visual information to address this limi-008
tation, existing models still struggle with fine-009
grained object discrimination. In response, we010
introduce VINO (Visual Intersection Network011
for OSOD), a novel DETR-based pure vision012
model that constructs a multi-image visual bank013
to preserve semantic intersections across cate-014
gories and facilitates the fusion of category and015
region semantics through a multi-stage mech-016
anism. Furthermore, we implement a simple017
replacement strategy to ensure the model learns018
alignment capabilities rather than semantic ap-019
proximation. With an image consumption of020
only 0.84M, VINO achieves competitive per-021
formance on par with vision-language models022
on benchmarks such as LVIS and ODinW35.023
Additionally, the successful integration of a seg-024
mentation head demonstrates the broad appli-025
cability of visual intersection across various026
visual tasks.027

1 Introduction028

Open-set object detection (OSOD) fundamentally029

aims to align region semantics with target object se-030

mantics. Current mainstream approaches (Li et al.,031

2022a; Zhang et al., 2022) leverage frozen large032

language models (LLMs) for their semantic gener-033

alization capabilities, encouraging visual extractors034

to align with LLMs’ semantic space. However,035

this paradigm inherently constrains the model’s036

object discrimination ability to the semantic resolu-037

tion of LLMs, particularly struggling with objects038

that defy precise linguistic description. Moreover,039

bridging the modality gap between vision models040

and LLMs demands extensive pretraining, requir-041

ing substantial image consumption ranging from042

Figure 1: Illustration of the linguistic description chal-
lenge in fine-grained object detection, where similar
visual characteristics make it difficult to distinguish be-
tween closely related objects using language or visual
instructions in single image.

11.52M (APE-A) to 200M (X-Decoder (Zou et al., 043

2022)). 044

To address these semantic description limita- 045

tions, several studies have explored the use of 046

visual prompts. Some works (Xu et al., 2023; 047

Kang et al., 2019) employ visual prompts as auxil- 048

iary information to enrich textual representations. 049

However, these approaches rely heavily on visual- 050

language fusion to perform cross-modal multi- 051

head attention between high-dimensional words 052

and regions, resulting in increased memory con- 053

sumption and computational complexity. Other 054

researchers (Jiang et al., 2024; Li et al., 2023; 055

Ren et al., 2024) have investigated interactive 056

visual instructions (e.g., points or boxes) to en- 057

hance detection performance. While these interac- 058

tive approaches enable semantic learning through 059

position-aware cross-attention, they are constrained 060

to single-image scenarios, failing to capture seman- 061

tic generalization across multiple images. Addition- 062

ally, some methods (Li et al., 2022b; Zang et al., 063

2022) utilizing image-level prompts with siamese 064

network architectures are primarily limited to few- 065

shot learning scenarios. 066

We are motivated to work as shown in Fig- 067

ure 1. Object semantics can be effectively cap- 068
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Figure 2: Comparison of various object detection models under visual and textual prompts. The figure highlights the
challenges faced by existing models. In contrast, Vision Intersection Network (VINO) effectively addresses these
challenges by leveraging the semantic intersection of multi-image visual prompts, enhancing detection accuracy and
generalization in open-set environments.

tured through visual representations, spanning from069

coarse-grained categories (e.g., dog) to fine-grained070

distinctions (e.g., Corgi). By leveraging the se-071

mantic intersection of corresponding categories,072

we can circumvent the limitations of linguistic de-073

scriptions, cross-modal fusion, and single-image074

interaction, while naturally accommodating multi-075

granular object discrimination. An image is worth076

a thousand words. More images say more. Visual077

representations inherently contain richer semantic078

information than textual descriptions, particularly079

for fine-grained object recognition. As illustrated080

in Figure 2, our approach achieves fine-grained081

detection through detailed visual prompts, distin-082

guishing it from previous methods.083

To realize this vision, we propose VINO (Visual084

Intersection Network for Open Set Object Detec-085

tion), a novel region classifier architecture that pre-086

serves visual information. At its core, we design087

a multi-image visual bank to maintain category088

semantic information across multiple time steps.089

However, limited images pose challenges in com-090

prehensively describing target objects, and static091

object semantics during training can lead to overfit-092

ting. To address this, we introduce a novel mecha-093

nism for updating multi-image prompts, ensuring094

semantic quality and discriminability through care-095

ful image selection.096

To enhance semantic matching capabilities and097

balance the disparity between inference (<10) and098

training ( > 1k) visual prompt numbers, we im-099

plement a simple yet effective replacement strat-100

egy. Our experiments demonstrate that this ap-101

proach significantly improves semantic matching 102

capability, achieving a 5.5-point improvement on 103

Objects365v1. Furthermore, to minimize the fea- 104

ture discrepancy between CLIP-extracted small im- 105

age features and EVA-CLIP-extracted large image 106

features, we design a multi-stage fusion mecha- 107

nism that facilitates effective integration of visual 108

prompts and target image features. 109

By pre-training on the Objects365v1, ODinW- 110

35 and LVIS datasets, VINO has achieved perfor- 111

mance comparable to existing vision-language and 112

vision-vision methods. To verify the general ap- 113

plicability of semantic intersections in enhancing 114

label semantics, we added a segmentation head to 115

the model. By pre-training VINO on the COCO 116

dataset, the segmentation results are comparable to 117

current methods, demonstrating the broad applica- 118

bility of semantic intersections in visual tasks. In 119

summary, our contributions are as follows: 120

• We pioneer the learning of semantic inter- 121

sections from multiple images for OSOD, 122

moving beyond traditional single-image or 123

language-based representations. Our ap- 124

proach demonstrates its broad applicabil- 125

ity across various visual tasks, as validated 126

through extensive experiments including ob- 127

ject detection and segmentation. This repre- 128

sents a fundamental shift in how semantic in- 129

formation is captured and utilized in open-set 130

scenarios. 131

• We propose VINO (Visual Intersection Net- 132

work for Open Set Detection). On the visual 133
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prompt side, we construct a multi-image vi-134

sual bank with a novel update mechanism135

to maintain and refine semantic information136

across time steps, on the target image side,137

we design a multi-stage fusion mechanism to138

effectively bridge the feature gap between vi-139

sual prompts and target objects, facilitating140

robust semantic matching.141

• We conduct extensive experiments and visual-142

ization analyses, demonstrating our model’s143

ability to handle open-set object detection144

tasks. Specifically, VINO achieved an AP145

of 38.1 on Obj365 v1 , 29.2 on the LVIS146

v1 validation set, and 24.5 on the ODinW-35147

validation set, comparable to current vision-148

language and vision-vision methods.149

2 Related Work150

2.1 Open-Vocabulary Object Detection151

With the emergence of large pre-trained vision-152

language models like CLIP (Radford et al., 2021)153

and ALIGN (Jia et al., 2021), methods based on vi-154

sion and language (Kamath et al., 2021; Zhang155

et al., 2023) have gained significant popularity156

in the field of open-vocabulary object detection157

(OVOD). These methods locate objects using lan-158

guage queries while effectively handling open-159

set problems. OV-DETR is the first end-to-end160

Transformer-based open-vocabulary detector, com-161

bining CLIP embeddings from both images and162

text as object queries for the DETR decoder. GLIP163

treats object detection as a grounding problem164

and achieves significant success by semantically165

aligning phrases with regions. To address the lim-166

itations of single-stage fusion in GLIP, Ground-167

ing DINO (Liu et al., 2024) enhances feature fu-168

sion at three stages: neck, query initialization,169

and head phases, thus tackling the issue of incom-170

plete multimodal information fusion. Furthermore,171

APE (Shen et al., 2023) scales the model prompts172

to thousands of category vocabularies and region173

descriptions, significantly improving the model’s174

query efficiency for large-scale textual prompts.175

The language-based models aim to enhance the se-176

mantic description of language queries to adapt to177

various visual environments, achieving remarkable178

progress in zero-shot and few-shot settings. How-179

ever, relying solely on text poses limitations due180

to language ambiguity and potential mismatches181

between textual descriptions and complex visual182

scenes. This underscores the ongoing need for im- 183

proved integration of visual inputs to achieve more 184

accurate and comprehensive results. Recent ad- 185

vancements suggest that incorporating richer visual 186

prompts and enhancing multimodal fusion tech- 187

niques are crucial for overcoming these challenges 188

and pushing the boundaries of OVOD further. 189

2.2 Object Detection by Visual Queries 190

Building on language-based object detectors, some 191

methods (Zhou et al., 2022a,b) have introduced vi- 192

sual elements to enhance detection accuracy and 193

semantic richness. MQ-Det utilizes image exam- 194

ples as visual prompts to enhance textual semantics, 195

thereby enabling more effective open-vocabulary 196

object detection (OVOD). However, it remains con- 197

strained by textual semantics. Additionally, some 198

methods explore the possibility of object detection 199

using only visual prompts. This approach primarily 200

addresses few-shot object detection and typically 201

employs a two-branch Siamese network. For ex- 202

ample, FCT (Han et al., 2022) uses a two-branch 203

Siamese network to process target images and vi- 204

sual queries in parallel, computing the similarity 205

between image regions and a few examples for 206

few-shot object detection. OWL-ViT (Minderer 207

et al., 2022) leverages CLIP’s parallel paradigm 208

and uses detection datasets for fine-tuning to adopt 209

image examples for one-shot image-conditioned 210

object detection. Similarly, DINOv expands on 211

this concept by employing visual instructions (such 212

as boxes, points, masks, doodles, and specified 213

regions referencing another image) to handle open- 214

set segmentation. These visual methods often adopt 215

a Siamese network architecture, which has limita- 216

tions in zero-shot learning capability. To address 217

these limitations and improve semantic understand- 218

ing, our goal is to learn the semantic intersection of 219

multiple images. VINO enriches visual semantics 220

by retaining semantic information in all time steps 221

using a multi-image visual bank. This approach 222

not only improves the model’s ability to understand 223

complex visual scenes but also enhances its robust- 224

ness and generalization in open-set scenarios. 225

3 Method 226

This section presents VINO, our proposed DETR- 227

based detection framework that preserves seman- 228

tic intersections of visual prompts across tempo- 229

ral steps. By learning to match region features 230

with semantic intersections derived from multiple 231
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Figure 3: The model architecture of VINO with multi-image visual bank.

images, our approach enhances detection perfor-232

mance through improved category discrimination.233

We begin by introducing the cornerstone of our234

architecture, the multi-image visual bank, which235

serves as the fundamental building block for se-236

mantic intersection learning This is followed by237

a detailed overview of the overall architecture of238

VINO as Fig 3.239

3.1 Multi-image Visual Bank240

Rethinking Features in the Multi-image Visual241

Bank: Our approach addresses the limitations242

of single-timestep visual instructions in capturing243

comprehensive category semantics. To aggregate244

features across multiple timesteps, we construct245

a feature bank that preserves temporal semantic246

information. However, as instances of the same cat-247

egory accumulate, maintaining semantic represen-248

tations for all categories becomes impractical due249

to memory constraints. A straightforward FIFO250

(first-in, first-out) approach would result in the loss251

of valuable semantic information from previous252

timesteps, compromising the integrity of category253

descriptions over time.254

To overcome this challenge, we introduce a255

multi-image update mechanism that efficiently256

compresses and preserves critical semantic infor-257

mation across temporal steps while optimizing258

memory utilization. Leveraging the categorical259

distinctions within our Multi-image Visual Bank,260

our approach naturally facilitates multi-granular261

category discrimination through semantic intersec-262

tion learning. While our visual prompts utilize ROI263

features, the framework remains compatible with264

investigated interactive visual instructions. Indeed, 265

current interactive approaches can be viewed as 266

special cases of our framework, equivalent to FIFO 267

updates with a prompt number of one. Ablation 268

studies demonstrate that our Multi-image Visual 269

Bank effectively addresses the limitations inherent 270

in single-timestep approaches. 271

Initialization and Updating of the Multi- 272

image Visual Bank: During initialization, all en- 273

tries in the multi-image visual bank are set to 274

zero. Formally, the multi-image visual bank is 275

represented as fb = (fI1 , fI2 , . . . , fIN ), where 276

fIi ∈ Rn×d, |IN | represents the number of cat- 277

egories, n is the number of visual prompts, and d 278

is the dimension of the visual features. This ini- 279

tial state ensures a clean slate, ready to incorporate 280

meaningful features as they are processed. When 281

new features fp are received, they are integrated 282

into the corresponding fIi based on their category 283

Ii. The integration process(as Algorithm ??) is 284

carefully designed to ensure efficient and effective 285

updating of the visual bank while maintaining the 286

semantic intersections of each category. 287

Direct Replacement of Zero Entries: If any 288

sub-feature in fIi is zero, it indicates that this slot 289

is currently unused. The new feature fp is directly 290

placed into this slot, ensuring all slots are utilized 291

as new data arrives. 292

Similarity-Based Updating: If all sub-features in 293

fIi are non-zero, a more efficient approach is re- 294

quired to integrate the new feature without losing 295

valuable information from previous time steps. To 296

achieve this, we calculate the cosine similarity be- 297
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tween fp and each sub-feature in fIi . The cosine298

similarity sm for the m-th sub-feature is computed299

as:300

sm = cos(fp, f[Ii,m]) m ∈ [1, n]. (1)301

This step identifies the sub-feature that is most302

similar to the new feature, indicating redundancy303

or relevance in the semantic space.304

Averaging and Updating: Once the sub-feature305

with the highest cosine similarity is identified (de-306

noted as k = argmax(sm)), we update this sub-307

feature by averaging it with the new feature fp.308

f̂[Ii,k] = average(fp, f[Ii,k]). (2)309

This averaging process helps in retaining both the310

new and existing semantic information, thereby311

preserving temporal context and reducing noise.312

To address the significant disparity between313

training and inference scenarios where category314

labels can number in the thousands during train-315

ing but are limited to dozens or even single digits316

during inference, we implement an adaptive re-317

placement strategy. Specifically, when the number318

of elements received by fIi exceeds a predeter-319

mined threshold, we directly substitute f[Ii,k] with320

fp. This dynamic replacement mechanism ensures321

continuous evolution of category features during322

training, encouraging the model to learn seman-323

tic alignment capabilities between visual prompts324

and target images, rather than merely developing325

fixed closed-set classification abilities against static326

visual prompts.327

3.2 The framework of VINO328

Our model architecture comprises several key com-329

ponents designed to facilitate effective open-set330

object detection. Given a target image It, the frame-331

work incorporates: (1) the Image Backbone, a vi-332

sual encoder that extracts rich feature representa-333

tions from the target image; (2) the Prompt Encoder,334

which processes and encodes visual prompts; and335

(3) the Multi-image Visual Bank, a sophisticated336

memory mechanism that maintains visual prompt337

information for each category and synthesizes their338

semantic intersections. The architecture is further339

enhanced by (4) the DETR Encoder, which facil-340

itates feature fusion between visual prompts and341

target images, and (5) the DETR Decoder, which342

identifies and localizes proposed regions while ex-343

tracting their semantic information. Through align-344

ing the semantic content of proposed regions with345

the synthesized semantic intersections from visual 346

prompts, our model effectively assigns categorical 347

labels to each detected region. 348

Specifically, the model takes the target im- 349

age It ∈ R3×h×w and the set of labels 350

R = {r1, r2, . . . , r|R|} as input. Here, ri = 351

(x1, y1, x2, y2, Ii) ∈ R5 represents the coordinates 352

of the top-left and bottom-right corners, along with 353

the corresponding category label. 354

Feature Extraction and Region Proposal: For 355

the target image It, the initial step involves fea- 356

ture extraction using the Image Backbone to 357

produce the feature representation ft: ft = 358

Image Backbone(It), where ft ∈ Rbs×D, with bs 359

representing the batch size and D denoting the di- 360

mensionality of the feature vectors. 361

To facilitate effective semantic fusion between 362

target images and visual prompts, we introduce a 363

multi-stage fusion mechanism. The process begins 364

by computing a consolidated visual prompt rep- 365

resentation fall through averaging fb across both 366

quantity and category dimensions. We then im- 367

plement a cross-attention mechanism where this 368

aggregated representation fall serves as the query, 369

while the target image features ft act as both key 370

and value matrices. This cross-modal interaction is 371

followed by a self-attention operation on ft, yield- 372

ing refined feature representations f̂t. Finally, we 373

select the top-k elements from f̂t based on feature 374

magnitude, which serve as learnable tokens for the 375

subsequent DETR Decoder stage in object detec- 376

tion. 377

The DETR-like decoder operates by decoding 378

the features f̂t into two outputs: the coordinates 379

of the proposed regions bbox ∈ Rbs×k×4 and the 380

corresponding feature representations of these pro- 381

posed regions fr ∈ Rbs×k×D.To further validate 382

the broad applicability of semantic intersections 383

in visual tasks, we extend the model by incor- 384

porating a segmentation head. This addition al- 385

lows the model to also output predicted masks 386

M ∈ Rbs×k×h×w. 387

Feature Fusion: For the set of labels R = 388

{r1, r2, . . . , r|R|}, we first use the Prompt Encoder 389

to extract the features from each region: fp = 390

Prompt Encoder(R, It). 391

Next, we perform feature fusion by updating the 392

multi-image visual bank f̂[Ii,k] with the features 393

extracted from the regions, aligning them with the 394

same category in the visual bank, as described in 395

the previous section. This fusion process integrates 396

the new region features into the existing visual 397
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bank, ensuring that the updated bank retains and398

reflects the latest semantic information.399

After the fusion, we average and align the di-400

mensions to obtain the final average feature repre-401

sentation faverage:402

faverage = MLP(Average(f̂[Ii,k])) (3)403

Label Assignment:Finally, we use the Align-404

ment Head to match the features of the proposed405

regions fr with the averaged features faverage to406

determine the semantic labels:407

Iresults = Softmax(fr@fT
average) (4)408

This step outputs Iresults ∈ Rbs×k×|IN |, assign-409

ing the most probable semantic labels to each pro-410

posed region.411

Training Objective: Our model employs a uni-412

fied loss function that accommodates both detec-413

tion and segmentation tasks, with segmentation loss414

defaulting to zero when no segmentation task is415

present. The total loss function comprises classifi-416

cation, localization, and segmentation components,417

formulated as:418

L = Lclass + Lbbox + Lgiou︸ ︷︷ ︸
encoder and decoder

+ Lmask + Ldice︸ ︷︷ ︸
last layer of decoder

(5)419

where Lclass employs Focal Loss to align the420

fused features of visual prompts with target image421

encodings. The localization component consists of422

Lbbox and Lgiou, utilizing L1 loss and Generalized423

IoU loss respectively for bounding box regression.424

For mask segmentation, Lmask and Ldice implement425

cross-entropy loss and dice loss respectively.426

4 Experiments427

4.1 Setup428

Dataset and Settings. To evaluate our model’s429

performance in open-set detection, we develop430

VINO-D, which is pre-trained on three large-431

scale datasets: COCO (Lin et al., 2015) (80 cat-432

egories, 110K images), LVIS (Gupta et al., 2019)433

(1,203 categories, sharing images with COCO),434

and Objects365v1 (Dong et al., 2024) (365 cate-435

gories, 600K images). The model is evaluated on436

ODinW35 (Li et al., 2022a), a collection of 35 di-437

verse datasets specifically designed to assess model438

performance in real-world scenarios. To investigate439

the broader applicability of semantic intersections,440

we extend our framework to segmentation tasks by 441

developing VINO-S with an additional segmenta- 442

tion head. VINO-S is pre-trained for both open-set 443

detection and segmentation on the COCO dataset 444

( 110K images with object detection and panoramic 445

segmentation annotations) and evaluated on the 446

LVIS v1 validation set for both detection and seg- 447

mentation tasks. 448

Training Details. Both VINO-D and VINO-S 449

architectures incorporate APE-D weights for tar- 450

get image processing, with ViT-L as the backbone 451

architecture. We employ a frozen CLIP-L model 452

as the prompt encoder. The frameworks are con- 453

figured with 5 prompts and 900 object queries. 454

Model training is conducted on 2 × A100 GPUs 455

with a batch size of 12, utilizing the AdamW op- 456

timizer with a learning rate of 5e-5. Both variants 457

complete one epoch of training on their respec- 458

tive datasets. To mitigate the significant domain 459

shift introduced by the prompt encoder processing 460

cropped images (Li et al., 2023), we implement 461

strict resolution controls for visual prompts: main- 462

taining a minimum resolution of 2000 pixels for 463

the initial prompt image and 1600 pixels for subse- 464

quent visual prompts. 465

4.2 Results on detection and segmentation 466

4.2.1 Object Detection 467

In Table 1, we present the detection results of our 468

VINO-D model, which achieves comparable per- 469

formance across the evaluated datasets(Du et al., 470

2024). Specifically, VINO-D attains an APb of 471

43.6 on the Objects365 dataset, 47.8 on LVIS v1 472

validation, and 24.5 on ODinW35. 473

When compared with current vision-language 474

models such as GLIP and UNINEXT(Yan et al., 475

2023), VINO-D demonstrates highly competitive 476

results. For instance, while GLIP achieves strong 477

APb on Objects365 by leveraging language queries, 478

VINO-D performs exceptionally well using vision- 479

based queries, highlighting its capacity to learn 480

robust semantic intersections from multiple images. 481

This ability to model semantic intersections allows 482

VINO-D to maintain high detection accuracy with- 483

out relying on textual input, further showcasing its 484

robustness in vision-dominated tasks. 485

In comparison with other vision-only methods, 486

VINO-D significantly surpasses DINOv(L) by 8.8 487

points and MQ-GLIP-L by 0.6 points in terms of 488

APb on the ODinW35 dataset. DINOv(L) empha- 489

sizes the challenges posed by domain shifts, partic- 490
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Method Backbone Semantic Data Type objects365 LVIS v1 val Odinw35 val
APb APb APb

average
GLIP Swin-L FourODs+... Text Open-set 36.2 26.9 23.4

UNINEXT ViT-H O365v2+COCO+... Text Open-set 23 14 -
OpenSeeD-L Swin-L O365v2+COCO+... Text Open-set - 23 15.2
MQ-GLIP-L Swin-L O365 Text and visual - 34.7 23.9 (3-shot)
LaMI-DETR ConVNext-L object365+VG Text and visual 21.9 41.3 -
DINOv (L) Swin-L SAM+COCO+... Visual Prompt - - 15.7

VINO-D(ours) ViT-L COCO+O365+LVIS Visual Prompt 43.6 47.8 24.5

Table 1: Open-set segmentation results for different methods.“–” indicates that the work does not have a reported
number.

Method Backbone Semantic Data Type COCO LVIS v1 val
APb APm APm

GLIPv2 Swin-H O365+COCO+... Text Open-set 64.1 47.4 -
UNINEXT ViT-H O365v2+COCO Text Open-set 60.6 51.8 12.2
APE (D) ViT-L O365v2+COCO+... Text Open-set 58.3 49.3 53

DINOv (L) Swin-L COCO+SA-1B Visual Prompt 54.2 50.4 -
DINO-X Pro ViT-L Grounding-100M visual Prompt 56.0 37.9 38.5

VIOSD-S(ours) ViT-L COCO+LVIS Visual Prompt 62.9 53.7 41.4

Table 2: Open-set segmentation results for different methods.“–” indicates that the work does not have a reported
number.

ularly those arising from differences in resolution491

between cropped and target images. However, our492

approach addresses this issue by effectively learn-493

ing multi-step semantic intersections across multi-494

ple images. On the other hand, while MQ-GLIP-495

L employs visual prompts to enhance text-based496

representations, its reliance on textual semantics497

introduces constraints, as evidenced by its lower498

performance in the 3-shot setting when compared499

to our zero-shot results.500

4.2.2 Object Segmentation501

In Table 2, we present the segmentation results502

of our VINO-S model, designed with an inte-503

grated segmentation head. VINO-S achieves an504

APm of 53.7 on the COCO dataset, outperform-505

ing UNINEXT by 1.9 points and DINOv(L) by506

3.3 points, thereby achieving comparable or supe-507

rior performance relative to current leading vision-508

language and vision-only methods. On the LVIS v1509

validation set, VINO-S achieves an APm of 41.4,510

significantly outperforming UNINEXT and deliv-511

ering results comparable to advanced models such512

as DINO-X Pro and APE.513

These results underscore the effectiveness of our514

model design, where the semantic intersections en-515

abled by the multi-image visual bank yield substan-516

tial improvements for segmentation tasks. Over-517

all, the VINO framework demonstrates its capa-518

bility to advance both object detection and seg-519

mentation by leveraging robust multi-image visual520

representations without relying heavily on exter-521

nal text-based prompts, bridging the gap between 522

vision-dominated tasks and real-world deployment 523

scenarios. 524

4.3 Ablations Experiments 525

Type

Prompt Num APb on COCO
1(FIFN) 53.72
1 62.61
5 62.73
10 62.75
20 62.86

Update Mechanisms APb on COCO
FIFN 55.64
Average(no update) 60.92
Average(with update) 62.73

Updata Threshold APb on COCO
50 62.81
100 62.73
200 62.50
None 60.92

Reduce Visual Tokens APb on COCO lvis
MLP 63.03 6.63
Sliding Convolution 62.81 8.44
Average 62.73 9.92

Table 3: Ablations Experiments

The ablation experimental results on the COCO 526

dataset after one round of fine-tuning are shown in 527

Table 3. Through our ablation studies, we investi- 528

gated several crucial aspects: 529

Single-Image vs. Multi-Image Visual Interac- 530
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tion: With vision prompts number set to 1 and531

FIFN update strategy, the model is limited to single-532

image visual interaction, resulting in the lowest AP.533

The introduction of averaging mechanism breaks534

through the single-image limitation, significantly535

enhancing detection performance. However, after536

adopting the averaging strategy, increasing the num-537

ber of vision prompts (from 1 to 20) only yields a538

marginal improvement of 0.27 in APb.539

Visual Semantic Enhancement: With vision540

prompts number fixed at 5, although FIFN strategy541

overcomes the single-image constraint, it under-542

performs in semantic fusion, showing a 5.28-point543

decrease compared to Average(no update) strategy.544

Without an update mechanism, the continuous ac-545

cumulation of vision prompts leads to excessive546

semantic similarity in the multi-image vision bank,547

compromising the model’s discriminative ability.548

The update mechanism effectively addresses this is-549

sue, transitioning the model from simple semantic550

approximation to more precise semantic alignment.551

Impact of Visual Semantic Redundancy: The552

experiments demonstrate a consistent performance553

degradation as the update cycle decreases from 50554

to no update mechanism. While moderately reduc-555

ing multi-image visual semantic redundancy can556

enhance model performance, excessive reduction557

(as in FIFN strategy) proves detrimental. Our find-558

ings suggest that maintaining moderate semantic559

variation rates while keeping low semantic similar-560

ity is crucial for improving detection performance.561

Visual Tokens Compression Mechanism: The562

compression of visual tokens has garnered sig-563

nificant attention across various domains. In our564

work, visual token compression is specifically im-565

plemented during the feature fusion process of566

multiple instances within the same category in567

the multi-image visual bank. We conducted ex-568

periments involving one epoch of training on the569

COCO dataset, followed by zero-shot evaluation570

on the LVIS v1 validation set. While sophisticated571

mechanisms such as MLP and Sliding Convolution572

enhance model alignment capabilities, they signif-573

icantly compromise the model’s zero-shot gener-574

alization ability. Notably, the simple yet efficient575

feature averaging strategy demonstrates superior576

performance in preserving semantic information,577

suggesting that architectural simplicity can often578

lead to more robust and generalizable solutions in579

visual feature fusion tasks.580

Figure 4: The Visualization of VINO-D.

4.4 Visualization 581

The qualitative results presented in Figure 4 demon- 582

strate our model’s effectiveness across diverse sce- 583

narios. The examples showcase: (1) accurate 584

single-prompt detection capabilities, (2) robust 585

multi-instance detection across various categories, 586

and (3) precise discrimination between semanti- 587

cally similar categories. 588

5 Conclusion 589

By dynamically integrating and updating multi- 590

image visual prompts, VINO not only addresses 591

the limitations associated with textual descriptions 592

and single-image interaction but also effectively 593

narrows the contextual gap between cropped and 594

full images. This ongoing refinement of feature 595

representations ensures that VINO adapts flexibly 596

to new information, achieving robust generaliza- 597

tion capabilities even with unseen objects. Experi- 598

mental results show that VINO exhibits strong per- 599

formance in open set object detection, achieving 600

results comparable to current vision-language and 601

vision-only methods. We hope that more studies 602

will explore the application of semantic intersec- 603

tions in visual tasks, further expanding the capabil- 604

ities and understanding of visual models in diverse 605

environments. 606
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