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ABSTRACT

Disentangled learning representations have promising utility in many applica-
tions, but they currently suffer from serious reliability issues. We present Gaus-
sian Channel Autoencoder (GCAE), a method which achieves reliable disentan-
glement via flexible density estimation of the latent space. GCAE avoids the
curse of dimensionality of density estimation by disentangling subsets of its la-
tent space with the Dual Total Correlation (DTC) metric, thereby representing its
high-dimensional latent joint distribution as a collection of many low-dimensional
conditional distributions. In our experiments, GCAE achieves highly competitive
and reliable disentanglement scores compared with state-of-the-art baselines.

1 INTRODUCTION

The notion of disentangled learning representations was introduced by Bengio et al. (2013) - it is
meant to be a robust approach to feature learning when trying to learn more about a distribution
of data X or when downstream tasks for learned features are unknown. Since then, disentangled
learning representations have been proven to be extremely useful in the applications of natural lan-
guage processing Jain et al. (2018), content and style separation John et al. (2018), drug discovery
Polykovskiy et al. (2018); Du et al. (2020), fairness Sarhan et al. (2020), and more.

Density estimation of learned representations is an important ingredient to competitive disentangle-
ment methods. Bengio et al. (2013) state that representations z ∼ Z which are disentangled should
maintain as much information of the input as possible while having components which are mutu-
ally invariant to one another. Mutual invariance motivates seeking representations of Z which have
independent components extracted from the data, necessitating some notion of pZ(z).

Leading unsupervised disentanglement methods, namely β-VAE Higgins et al. (2016), FactorVAE
Kim & Mnih (2018), and β-TCVAE Chen et al. (2018) all learn pZ(z) via the same variational
Bayesian framework Kingma & Welling (2013), but they approach making pZ(z) independent with
different angles. β-VAE indirectly promotes independence in pZ(z) via enforcing lowDKL between
the representation and a factorized Gaussian prior, β-TCVAE encourages representations to have low
Total Correlation (TC) via an ELBO decomposition and importance weighted sampling technique,
and FactorVAE reduces TC with help from a monolithic neural network estimate. Other well-known
unsupervised methods are Annealed β-VAE Burgess et al. (2018), which imposes careful relaxation
of the information bottleneck through the VAE DKL term during training, and DIP-VAE I & II
Kumar et al. (2017), which directly regularize the covariance of the learned representation. For a
more in-depth description of related work, please see Appendix D.

While these VAE-based disentanglement methods have been the most successful in the field, Lo-
catello et al. (2019) point out serious reliability issues shared by all. In particular, increasing disen-
tanglement pressure during training doesn’t tend to lead to more independent representations, there
currently aren’t good unsupervised indicators of disentanglement, and no method consistently dom-
inates the others across all datasets. Locatello et al. (2019) stress the need to find the right inductive
biases in order for unsupervised disentanglement to truly deliver.

We seek to make disentanglement more reliable and high-performing by incorporating new inductive
biases into our proposed method, Gaussian Channel Autoencoder (GCAE). We shall explain them in
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more detail in the following sections, but to summarize: GCAE avoids the challenge of representing
high-dimensional pZ(z) via disentanglement with Dual Total Correlation (rather than TC) and the
DTC criterion is augmented with a scale-dependent latent variable arbitration mechanism. This
work makes the following contributions:

• Analysis of the TC and DTC metrics with regard to the curse of dimensionality which
motivates use of DTC and a new feature-stabilizing arbitration mechanism

• GCAE, a new form of noisy autoencoder (AE) inspired by the Gaussian Channel problem,
which permits application of flexible density estimation methods in the latent space

• Experiments1 which demonstrate competitive performance of GCAE against leading dis-
entanglement baselines on multiple datasets using existing metrics

2 BACKGROUND AND INITIAL FINDINGS

To estimate pZ(z), we introduce a discriminator-based method which applies the density-ratio trick
and the Radon-Nikodym theorem to estimate density of samples from an unknown distribution. We
shall demonstrate in this section the curse of dimensionality in density estimation and the necessity
for representing pZ(z) as a collection of conditional distributions.

The optimal discriminator neural network introduced by Goodfellow et al. (2014a) satisfies:

argmax
D(·)

Exr∼Xreal
[logD(xr)] + Exf∼Xfake

[log (1−D(xf ))] ≜ D∗(x) =
preal(x)

preal(x) + pfake(x)

whereD(x) is a discriminator network trained to differentiate between “real” samples xr and “fake”
samples xf . Given the optimal discriminator D∗(x), the density-ratio trick can be applied to yield
preal(x)
pfake(x)

= D∗(x)
1−D∗(x) . Furthermore, the discriminator can be supplied conditioning variables to

represent a ratio of conditional distributions Goodfellow et al. (2014b); Makhzani et al. (2015).

Consider the case where the “real” samples come from an unknown distribution z ∼ Z and the
“fake” samples come from a known distribution u ∼ U . Permitted that both pZ(z) and pU (u) are
finite and pU (u) is nonzero on the sample space of pZ(z), the optimal discriminator can be used to
retrieve the unknown density pZ(z) =

D∗(z)
1−D∗(z)pU (z). In our case where u is a uniformly distributed

variable, this “transfer” of density through the optimal discriminator can be seen as an application
of the Radon-Nikodym derivative of pZ(z) with reference to the Lebesgue measure. Throughout
the rest of this work, we employ discriminators with uniform noise and the density-ratio trick in this
way to recover unknown distributions.

This technique can be employed to recover the probability density of an m-dimensional isotropic
Gaussian distribution. While it works well in low dimensions (m ≤ 8), the method inevitably fails
as m increases. Figure 1a depicts several experiments of increasing m in which the KL-divergence
of the true and estimated distributions are plotted with training iteration. When number of data
samples is finite and the dimension m exceeds a certain threshold, the probability of there being any
uniform samples in the neighborhood of the Gaussian samples swiftly approaches zero, causing the
density-ratio trick to fail.

This is a well-known phenomenon called the curse of dimensionality of density estimation. In
essence, as the dimensionality of a joint distribution increases, concentrated joint data quickly be-
come isolated within an extremely large space. The limitm ≤ 8 is consistent with the limits of other
methods such as kernel density estimation (Parzen-Rosenblatt window).

Fortunately, the same limitation does not apply to conditional distributions of many jointly dis-
tributed variables. Figure 1b depicts a similar experiment of the first in which m − 1 variables are
independent Gaussian distributed, but the last variable zm follows the distribution zm ∼ N (µ =

(m − 1)−
1
2

∑m−1
i=1 zi, σ

2 = 1
m ) (i.e., the last variable is Gaussian distributed with its mean as

the sum of observations of the other variables). The marginal distribution of each component is
1Code available at https://github.com/ericyeats/gcae-disentanglement
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(a) Joint distributions (b) Conditional distributions

Figure 1: Empirical KL divergence between the true and estimated distributions as training itera-
tion and distribution dimensionality increase. Training parameters are kept the same between both
experiments. We employ Monte-Carlo estimators of KL divergence, leading to transient negative
values when KL is near zero.

Gaussian, just like the previous example. While it takes more iterations to bring the KL-divergence
between the true and estimated conditional distribution to zero, it is not limited by the curse of
dimensionality. Hence, we assert that conditional distributions can capture complex relationships
between subsets of many jointly distributed variables while avoiding the curse of dimensionality.

3 METHODOLOGY

ANALYSIS OF DUAL TOTAL CORRELATION

Recent works encourage disentanglement of the latent space by enhancing the Total Correlation
(TC) either indirectly Higgins et al. (2016); Kumar et al. (2017) or explicitly Kim & Mnih (2018);
Chen et al. (2018). TC is a metric of multivariate statistical independence that is non-negative and
zero if and only if all elements of z are independent.

TC(Z) = Ez log
pZ(z)∏
i pZi

(zi)
=

∑
i

h(Zi)− h(Z)

Locatello et al. (2019) evaluate many TC-based methods and conclude that minimizing their mea-
sures of TC during training often does not lead to VAE µ (used for representation) with low TC. We
note that computing TC(Z) requires knowledge of the joint distribution pZ(z), which can be very
challenging to model in high dimensions. We hypothesize that the need for a model of pZ(z) is what
leads to the observed reliability issues of these TC-based methods.

Consider another metric for multivariate statistical independence, Dual Total Correlation (DTC).
Like TC, DTC is non-negative and zero if and only if all elements of z are independent.

DTC(z) = Ez log

∏
i pZi

(zi|z\i)
pZ(z)

= h(Z)−
∑
i

h(Zi|Z\i)

We use z\i to denote all elements of z except the i-th element. At first glance, it appears that
DTC(z) also requires knowledge of the joint density p(z). However, observe an equivalent form of
DTC manipulated for the i-th variable:

DTC(Z) = h(Z)− h(Zi|Z\i)−
∑
j ̸=i

h(Zj |Z\j) = h(Z\i)−
∑
j ̸=i

h(Zj |Z\j). (1)
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Here, the i-th variable only contributes to DTC through each set of conditioning variables z\j .
Hence, when computing the derivative ∂ DTC(Z)/∂zi, no representation of pZ(z) is required -
only the conditional entropies h(Zj |Z\j) are necessary. Hence, we observe that the curse of dimen-
sionality can be avoided through gradient descent on the DTC metric, making it more attractive for
disentanglement than TC. However, while one only needs the conditional entropies to compute gra-
dient for DTC, the conditional entropies alone don’t measure how close z is to having independent
elements. To overcome this, we define the summed information loss LΣI :

LΣI(Z) ≜
∑
i

I(Zi;Z\i) =

[∑
i

h(Zi)− h(Zi|Z\i)

]
+h(Z)−h(Z) = TC(Z)+DTC(Z). (2)

If gradients of each I(Zi;Z\i) are taken only with respect to z\i, then the gradients are equal to
∂DTC(Z)

∂z , avoiding use of any derivatives of estimates of pZ(z). Furthermore, minimizing one met-
ric is equivalent to minimizing the other: DTC(Z) = 0 ⇔ TC(Z) = 0 ⇔ LΣI(Z) = 0. In our
experiments, we estimate h(Zi) with batch estimates Ez\ipZi(zi|z\i), requiring no further hyperpa-
rameters. Details on the information functional implementation are available in Appendix A.1.

EXCESS ENTROPY POWER LOSS

We found it very helpful to “stabilize” disentangled features by attaching a feature-scale depen-
dent term to each I(Zi;Z\i). The entropy power of a latent variable zi is non-negative and grows
analogously with the variance of zi. Hence, we define the Excess Entropy Power loss:

LEEP(Z) ≜
1

2πe

∑
i

[
I(Zi;Z\i) · e2h(Zi)

]
, (3)

which weighs each component of the LΣI loss with the marginal entropy power of each i-th latent
variable. Partial derivatives are taken with respect to the z\i subset only, so the marginal entropy
power only weighs each component. While ∇ϕLEEP ̸= ∇ϕLΣI in most situations (ϕ is the set of
encoder parameters), this inductive bias has been extremely helpful in consistently yielding high dis-
entanglement scores. An ablation study with LEEP can be found in Appendix C. The name “Excess
Entropy Power” is inspired by DTC’s alternative name, excess entropy.

GAUSSIAN CHANNEL AUTOENCODER

We propose Gaussian Channel Autoencoder (GCAE), composed of a coupled encoder ϕ : X → Zϕ

and decoder ψ : Z → X̂ , which extracts a representation of the data x ∈ Rn in the latent space
z ∈ Rm. We assume m ≪ n, as is typical with autoencoder models. The output of the encoder
has a bounded activation function, restricting zϕ ∈ (−3, 3)m in our experiments. The latent space
is subjected to Gaussian noise of the form z = zϕ + νσ , where each νσ ∼ N (0, σ2I) and σ is
a controllable hyperparameter. The Gaussian noise has the effect of “smoothing” the latent space,
ensuring that pZ(z) is continuous and finite, and it guarantees the existence of the Radon-Nikodym
derivative. Our reference noise for all experiments is u ∼ Unif(−4, 4). The loss function for
training GCAE is:

LGCAE = Ex,νσ

[
1

n
∥x̂− x∥22

]
+ λLEEP(Z), (4)

where λ is a hyperparameter to control the strength of regularization, and νσ is the Gaussian noise
injected in the latent space with the scale hyperparameter σ. The two terms have the following
intuitions: the mean squared error (MSE) of reconstructions ensures z captures information of the
input while LEEP encourages representations to be mutually independent.
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Figure 2: Depiction of the proposed method, GCAE. Gaussian noise with variance σ2 is added
to the latent space, smoothing the representations for gradient-based disentanglement with LEEP.
Discriminators use the density-ratio trick to represent the conditional distributions of each latent
element given observations of all other elements, capturing complex dependencies between subsets
of the variables whilst avoiding the curse of dimensionality.

4 EXPERIMENTS

We evaluate the performance of GCAE against the leading unsupervised disentanglement baselines
β-VAE Higgins et al. (2016), FactorVAE Kim & Mnih (2018), β-TCVAE Chen et al. (2018), and
DIP-VAE-II Kumar et al. (2017). We measure disentanglement using four popular supervised disen-
tanglement metrics: Mutual Information Gap (MIG) Chen et al. (2018), Factor Score Kim & Mnih
(2018), DCI Disentanglement Eastwood & Williams (2018), and Separated Attribute Predictability
(SAP) Kumar et al. (2017). The four metrics cover the three major types of disentanglement metrics
identified by Carbonneau et al. (2020) in order to provide a complete comparison of the quantitative
disentanglement capabilities of the latest methods.

We consider two datasets which cover different data modalities. The Beamsynthesis dataset Yeats
et al. (2022) is a collection of 360 timeseries data from a linear particle accelerator beamforming
simulation. The waveforms are 1000 values long and are made of two independent data generating
factors: duty cycle (continuous) and frequency (categorical). The dSprites dataset Matthey et al.
(2017) is a collection of 737280 synthetic images of simple white shapes on a black background.
Each 64 × 64 pixel image consists of a single shape generated from the following independent
factors: shape (categorical), scale (continuous), orientation (continuous), x-position (continuous),
and y-position (continuous).

All experiments are run using the PyTorch framework Paszke et al. (2019) using 4 NVIDIA Tesla
V100 GPUs, and all methods are trained with the same number of iterations. Hyperparameters such
as network architecture and optimizer are held constant across all models in each experiment (with
the exception of the dual latent parameters required by VAE models). Latent space dimension is
fixed at m = 10 for all experiments, unless otherwise noted. More details are in Appendix B.

In general, increasing λ and σ led to lower LΣI but higher MSE at the end of training. Figure 3a de-
picts this relationship for Beamsynthesis and dSprites. Increasing σ shifts final loss values towards
increased independence (according to LΣI ) but slightly worse reconstruction error. This is consis-
tent with the well-known Gaussian channel - as the relative noise level increases, the information
capacity of a power-constrained channel decreases. The tightly grouped samples in the lower right
of the plot correspond with λ = 0 and incorporating any λ > 0 leads to a decrease in LΣI and
increase in MSE. As λ is increased further the MSE increases slightly as the average LΣI decreases.

Figure 3b plots the relationship between final LΣI values with MIG evaluation scores for both Beam-
synthesis and dSprites. Our experiments depict a moderate negative relationship with correlation co-
efficient −0.823. These results suggest that LΣI is a promising unsupervised indicator of successful
disentanglement, which is helpful if one does not have access to the ground truth data factors.
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(a) Scatter plot of log(LΣI) vs. MSE for GCAE
on Beamsynthesis and dSprites. Higher σ and lower
log(LΣI) (through increased disentanglement pres-
sure) tend to increase MSE. However, the increase in
MSE subsides as the model becomes disentangled.

(b) Scatter plot of log(LΣI) vs. MIG for GCAE on
Beamsynthesis and dSprites (both marked with dots).
There is a moderate relationship between log(LΣI)
and MIG (r = −0.823), suggesting log(LΣI) is a
promising indicator of (MIG) disentanglement.

Figure 3: Scatter plots of log(LΣI) vs MSE and MIG, respectively, as σ is increased.

EFFECT OF λ AND σ ON DISENTANGLEMENT

(a) Beamsythesis (b) dSprites

Figure 4: Effect of λ and σ on different disentanglement metrics. λ is varied in the x-axis. Starting
from the top left of each subfigure and moving clockwise within each subfigure, we report MIG,
FactorScore, SAP, and DCI Disentanglement. Noise levels σ = {0.2, 0.3} are preferable for reliable
disentanglement performance. KEY: Dark lines - average scores. Shaded areas - one standard
deviation.

In this experiment, we plot the disentanglement scores (average and standard deviation) of GCAE as
the latent space noise level σ and disentanglement strength λ vary on Beamsynthesis and dSprites.
In each figure, each dark line plots the average disentanglement score while the shaded area fills one
standard deviation of reported scores around the average.

Figure 4a depicts the disentanglement scores of GCAE on the Beamsynthesis dataset. All σ levels
exhibit relatively low scores when λ is set to zero (with the exception of FactorScore). In this
situation, the model is well-fit to the data, but the representation is highly redundant and entangled,
causing the “gap” or “separatedness” (in SAP) for each factor to be low. However, whenever λ > 0
the disentanglement performance increases significantly, especially for MIG, DCI Disentanglement,
and SAP with λ ∈ [0.1, 0.2]. There is a clear preference for higher noise levels, as σ = 0.1
generally has higher variance and lower disentanglement scores. FactorScore starts out very high on
Beamsynthesis because there are just two factors of variation, making the task easy.
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Figure 4b depicts the disentanglement scores of GCAE on the dSprites dataset. Similar to the previ-
ous experiment with Beamsynthesis, no disentanglement pressure leads to relatively low scores on
all considered metrics (∼ 0.03 MIG, ∼ 0.47 FactorScore, ∼ 0.03 DCI, ∼ 0.08 SAP), but introduc-
ing λ > 0 signficantly boosts performance on a range of scores ∼ 0.35 MIG, ∼ 0.6 FactorScore,
∼ 0.37 SAP, and ∼ 0.45 DCI (for σ = {0.2, 0.3}). Here, there is a clear preference for larger σ;
σ = {0.2, 0.3} reliably lead to high scores with little variance.

COMPARISON OF GCAE WITH LEADING DISENTANGLEMENT METHODS

We incorporate experiments with leading VAE-based baselines and compare them with GCAE σ =
0.2. Each solid line represents the average disentanglement scores for each method and the shaded
areas represent one standard deviation around the mean.

Figure 5: Disentanglement metric comparison of GCAE with VAE baselines on Beamsynthesis.
GCAE λ is plotted on the lower axis, and VAE-based method regularization strength β is plotted on
the upper axis. KEY: Dark lines - average scores. Shaded areas - one standard deviation.

Figure 5 depicts the distributional performance of all considered methods and metrics on Beam-
synthesis. When no disentanglement pressure is applied, disentanglement scores for all methods
are relatively low. When disentanglement pressure is applied (λ, β > 0), the scores of all methods
increase. GCAE scores highest or second-highest on each metric, with low relative variance over a
large range of λ. β-TCVAE consistently scores second-highest on average, with moderate variance.
FactorVAE and β-VAE tend to perform relatively similarly, but the performance of β-VAE appears
highly sensitive to hyperparameter selection. DIP-VAE-II performs the worst on average.

Figure 6 shows a similar experiment for dSprites. Applying disentanglement pressure significantly
increases disentanglement scores, and GCAE performs very well with relatively little variance when
λ ∈ [0.1, 0.5]. β-VAE achieves high top scores with extremely little variance but only for a very
narrow range of β. β-TCVAE scores very high on average for a wide range of β but with large
variance in scores. FactorVAE consistently scores highest on FactorScore and it is competitive on
SAP. DIP-VAE-II tends to underperform compared to the other methods.
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Figure 6: Disentanglement metric comparison of GCAE with VAE baselines on dSprites. GCAE λ
is plotted on the lower axis, and VAE-based method regularization strength β is plotted on the upper
axis. KEY: Dark lines - mean scores. Shaded areas - one standard deviation.

DISENTANGLEMENT PERFORMANCE AS Z DIMENSIONALITY INCREASES

We report the disentanglement performance of GCAE and FactorVAE on the dSprites dataset as m
is increased. FactorVAE Kim & Mnih (2018) is the closest TC-based method: it uses a single mono-
lithic discriminator and the density-ratio trick to explicitly approximate TC(Z). Computing TC(Z)
requires knowledge of the joint density pZ(z), which is challenging to compute as m increases.

Figure 7 depicts an experiment comparing GCAE and FactorVAE when m = 20. The results for
m = 10 are included for comparison. The average disentanglement scores for GCAE m = 10
and m = 20 are very close, indicating that its performance is robust in m. This is not the case for
FactorVAE - it performs worse on all metrics when m increases. Interestingly, FactorVAE m = 20
seems to recover its performance on most metrics with higher β than is beneficial for FactorVAE
m = 10. Despite this, the difference suggests that FactorVAE is not robust to changes in m.

5 DISCUSSION

Overall, the results indicate that GCAE is a highly competitive disentanglement method. It achieves
the highest average disentanglement scores on the Beamsynthesis and dSprites datasets, and it has
relatively low variance in its scores when σ = {0.2, 0.3}, indicating it is reliable. The hyperpa-
rameters are highly transferable, as λ ∈ [0.1, 0.5] works well on multiple datasets and metrics,
and the performance does not change with m, contrary to the TC-based method FactorVAE. GCAE
also used the same data preprocessing (mean and standard deviation normalization) across the two
datasets. We also find that LΣI is a promising indicator of disentanglement performance.

While GCAE performs well, it has several limitations. In contrast to the VAE optimization process
which is very robust Kingma & Welling (2013), the optimization of m discriminators is sensitive
to choices of learning rate and optimizer. Training m discriminators requires a lot of computation,
and the quality of the learned representation depends heavily on the quality of the conditional den-
sities stored in the discriminators. Increasing the latent space noise σ seems to make learning more
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Figure 7: Comparison of GCAE with FactorVAE on dSprites as m increases. λ is plotted below,
and β is plotted above. KEY: Dark lines - mean scores. Shaded areas - one standard deviation.

robust and generally leads to improved disentanglement outcomes, but it limits the corresponding
information capacity of the latent space.

6 CONCLUSION

We have presented Gaussian Channel Autoencoder (GCAE), a new disentanglement method which
employs Gaussian noise and flexible density estimation in the latent space to achieve reliable, high-
performing disentanglement scores. GCAE avoids the curse of dimensionality of density estimation
by minimizing the Dual Total Correlation (DTC) metric with a weighted information functional
to capture disentangled data generating factors. The method is shown to consistently outcompete
existing SOTA baselines on many popular disentanglement metrics on Beamsynthesis and dSprites.
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A IMPLEMENTATION

A.1 INFORMATION FUNCTIONAL

We estimate the information between each subset of variables I(Zi;Zj) used in LΣI with a uniform
estimate of the information functional:

I(Zi;Z\i) ≈ (b− a)Ez\i∼ϕσ(X)

[
Eui∼Unif(a,b) pZi

(ui|z\i)
[
log pZi

(ui|z\i)− log pZi
(ui)

]]
,

where (a, b) are the bounds of the Uniform distribution (−4 and 4 in our experiments), and
pZi

(ui|z\i) is the conditional density of the i-th discriminator evaluated with noise from the Uni-
form distribution. 50 uniform samples are taken per batch to estimate the functional in all experi-
ments. Furthermore, we found it beneficial (in terms of disentanglement performance) to estimate
the functional using zϕ (i.e., the noiseless form of z)2. Gradient is only taken through the pZi(ui|z\i)
term with respect to the z\i variables. The marginal entropy h(Zi) upper bounds the conditional en-
tropy h(Zi|Z\i) with respect to the conditioning variables, so the information functional is a natural
path to maximizing h(Zi|Z\i) and thereby minimizing DTC.

B MAIN EXPERIMENT DETAILS

Each method uses the same architecture (besides the µ, log σ2 heads for the VAE) and receies the
same amount of data during training. In all experiments, the GCAE AE and discriminator learning
rates are 5e−5 and 2e−4, respectively. The VAE learning rate is 1e−4 and the FactorVAE discrim-
inator learning rate is 2e− 4. All methods use the Adam optimizer with (β1, β2) = (0.9, 0.999) for
the AE subset of parameters and (β1, β2) = (0.5, 0.9) for the discriminator(s) subset of parameters
(if applicable). The number of discriminator updates per AE update k is set to 5 when m = 10 and
10 when m = 20. All discriminators are warmed up with 500 batches before training begins to en-
sure they approximate a valid density. VAE architectures are equipped with a Gaussian decoder for
Beamsynthesis and a Bernoulli decoder for dSprites. SELU refers to the SeLU activation function
Klambauer et al. (2017).

2Our intuition is that each z\i comes from one of the “modes” of the corresponding Gaussian-blurred
distribution, ensuring that the loss is defined. This avoids the case where the learned conditional distribution is
not defined when given a novel z\i.
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Table 1: MLP Architecture

Dataset GCAE Architecture VAE Architecture

Beamsynthsis Linear(n, 1024), SELU Linear(n, 1024), SELU
BatchSize=64 Linear(1024, 1024), SELU Linear(1024, 1024), SELU
Mean/STD Norm Linear(1024, 512), SELU Linear(1024, 512), SELU
2000 Iterations Linear(512, m), SoftSign 2 × Linear(512, m)

Linear(m, 512), SELU Linear(m, 512), SELU
dSprites Linear(512, 1024), SELU Linear(512, 1024), SELU
BatchSize=256 Linear(1024, 1024), SELU Linear(1024, 1024), SELU
Mean/STD Norm (GCAE) Linear(1024, n) Linear(1024, n)
20000 Iterations

Table 2: Discriminator Architectures. The FactorVAE architecture follows the suggestion of Kim &
Mnih (2018). The GCAE discriminator is much smaller, but there are m of them compared to just 1
FactorVAE discriminator.

GCAE Discriminator Architecture FactorVAE Discriminator Architecture

Linear(m, 256), SELU Linear(m, 1024), SELU
Linear(256, 256), SELU Linear(1024, 1024), SELU
Linear(256, 1), Sigmoid Linear(1024, 1024), SELU

- Linear(1024, 1024), SELU
- Linear(1024, 1024), SELU
- Linear(1024, 1), Sigmoid

C ABLATION STUDY

Figure 8: Ablation study: Comparison of MIG scores with and without LEEP. LΣI corresponds to
direct gradient descent on LΣI .

Figure 8 depicts an ablation study for training with LEEP vs. directly with LΣI . We found that
training directly with LΣI promotes independence between the latent variables, but the learned
variables were not stable (i.e., their variance fluctuated significantly in training). The results indicate
that LEEP is a helpful inductive bias for aligning representations with interpretable data generating
factors in a way that is stable throughout training.
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D RELATED WORK

D.1 DISENTANGLEMENT METHODS

GCAE is an unsupervised method for disentangling learning representations - hence, the most
closely related works are the state-of-the-art unsupervised VAE baselines: β-VAE Higgins et al.
(2016), FactorVAE Kim & Mnih (2018), β-TCVAE Chen et al. (2018), and DIP-VAE-II Kumar
et al. (2017). All methods rely on promoting some form of independence in pZ(z), and we shall
cover them in more detail in the following sections.

β-VAE

The disentanglement approach of β-VAE Higgins et al. (2016) is to promote independent codes in
Z by constraining the information capacity of Z. This is done with a VAE model by maximizing
the expectation (on x) of the following loss:

Lβ-VAE = Eqϕ(z|x) [pθ(x|z)]− βDKL

(
qϕ(z|x)

∣∣∣∣pθ(z)) ,
where qϕ(z|x) is the approximate posterior (inferential distribution of the encoder), pθ(x|z) is the
decoder distribution, pθ(z) is the prior distribution (typically spherical Gaussian), and β is a hyper-
parameter controlling the strength of the ”Information Bottleneck” Tishby et al. (2000) induced on
Z. Higher β are associated with improved disentanglement performance.

FACTORVAE

The authors of FactorVAE Kim & Mnih (2018) assert that the information bottleneck of β-VAE
is too restrictive, and seek to improve the reconstruction error vs. disentanglement performance
tradeoff by isolating the Total Correlation (TC) component of theDKL

(
qϕ(z|x)

∣∣∣∣pθ(z)) term. They
employ a large discriminator neural network, the density-ratio trick, and a data shuffling strategy to
estimate the TC. FactorVAE maximizes the following loss:

LFactorVAE = Eqϕ(z|x) [pθ(x|z)]−DKL

(
qϕ(z|x)

∣∣∣∣pθ(z))− TCρ(Z),

where TCρ(Z) is the discriminator’s estimate of TC(Z). The discriminator is trained to differentiate
between “real” jointly distributed z and “fake” z in which all the elements have been shuffled across
a batch.

β-TCVAE

β-TCVAE Chen et al. (2018) seeks to isolate TC(Z) via a batch estimate. They avoid significantly
underestimating pZ(z), by constructing an importance-weighted estimate of h(Z):

Eq(z) [log q(z)] ≈
1

B

B∑
i=1

log 1

BC

B∑
j=1

q(ϕ(xi)|xj)


where q(z) is an estimate of pZ(z), B is the minibatch size, C is the size of the dataset, ϕ(xi) is
a stochastic sample from the i-th x, and q(ϕ(xi)|xj) is the density of the posterior at ϕ(xi) when
x = xj .

This estimate is used to compute an estimate of TC(Z), and the following loss is maximized:

Lβ-TCVAE = Eqϕ(z|x) [pθ(x|z)]− Iq(Z;X)− βTCρ(Z)−
m∑
j=1

DKL

(
q(zj)

∣∣∣∣p(zj)) ,
where I1(Z;X) is the “index-code” mutual information, TCρ(Z) is an estimate of TC(Z) com-
puted with their estimate of q(z), β is a hyperparameter controlling TC(Z) regularization, and∑m

j=1DKL

(
q(zj)

∣∣∣∣p(zj)) is a dimension-wise Kullback-Leibler divergence.
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DIP-VAE-II

The approach of DIP-VAE-II is that the aggregate posterior of a VAE model should be factorized in
order to promote disentanglement Kumar et al. (2017). This is done efficiently using batch estimates
of the covariance matrix. The loss to be maximized for DIP-VAE-II is:

LDIP-VAE-II =

Eqϕ(z|x) [pθ(x|z)]−DKL

(
qϕ(z|x)

∣∣∣∣pθ(z))− β

 m∑
i=1

[Cov(zii)− 1]
2
+

m∑
i=1

∑
j ̸=i

[Cov(zij)]
2

 .

Hence, the covariance matrix of the sampled representation z should be equal to the identity matrix.
β is a hyperparameter controlling regularization strength. We did not consider DIP-VAE-I since it
implicitly assumes knowledge of how many data generating factors there are.

D.2 DISENTANGLEMENT METRICS

We evaluate GCAE and the leading VAE baselines with four metrics: Mutual Information Gap
(MIG), FactorScore, Separated Attribute Predictability (SAP), and DCI Disentanglement.

MUTUAL INFORMATION GAP

MIG is introduced by Chen et al. (2018) as an axis-aligned, unbiased, and general detector for
disentanglement. In essence, MIG measures the average gap in information between the latent
feature which is most selective for a unique data generating factor and the latent feature which is
second runner up. MIG is a normalized metric on [0, 1], and higher scores indicate better capturing
and disentanglement of the data generating factors. MIG is defined as follows:

MIG(Z, V ) ≜
1

K

K∑
k=1

1

H(Vk)
(I(Za;Vk)− I(Zb;Vk)) ,

where K is the number of data generating factors, H(Vk) is the discrete entropy of the k-th data
generating factor, and za ∼ Za and zb ∼ Zb (where a ̸= b) are the latent elements which share the
most and next-most information with vk ∼ Vk, respectively.

For Beamsynthesis, we calculate MIG on the full dataset using a histogram estimate of the latent
space with 50 bins (evenly spaced maximum to minimum). For dSprites, we calculate MIG using
10000 samples, and we use 20 histogram bins following Locatello et al. (2019).

FACTOR SCORE

FactorScore is introduced by Kim & Mnih (2018). The intuition is that change in one dimension
of Z should result in change of at most one factor of variation. It starts off by generating many
batches of data in which one factor of variation is fixed for all samples in a batch. Then the variance
of each dimension on each batch is calculated and normalized by its standard deviation (without
interventions). The index of the latent dimension with smallest variance and the index of the fixed
factor of variation for the given batch is used as a training point for a majority-vote classifier. The
score is the accuracy of the classifier on a test set of data.

For Beamsynthesis, we train the majority-vote classifier on 1000 training points and evaluate on
200 separate points. For dSprites, we train the majority-vote classifier on 5000 training points and
evaluate on 1000 separate points.

SEPARATED ATTRIBUTE PREDICTABILITY

Separated Attribute Predictability (SAP) is introduced by Kumar et al. (2017). SAP involves creating
a m × k score matrix, where ij-th entry is the “predictability” of factor j from latent element i.
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For discrete factors, the score is the balanced classification accuracy of predicting the factor given
knowledge of the i-th latent, and for continuous factors, the score is the R-squared value of the i-th
latent in (linearly) predicting the factor. The resulting score is the difference in predictability of the
most-predictive and second-most predictive latents for a given factor, averaged over all factors.

For Beamsynthesis, we use a training size of 240 and a test size of 120. For dSprites, we use a
training size of 5000 and a test size of 1000.

DCI DISENTANGLEMENT

DCI Disentanglement is introduced by Eastwood & Williams (2018). It complements other metrics
introduced by the paper: completeness and informativeness. The intuition is that each latent variable
should capture at most one factor. k decision tree regressors are trained to predict each factor given
the latent codes z. The absolute importance weights of each decision tree regressor are extracted
and inserted as columns in a m × k importance matrix. The rows of the importance matrix are
normalized, and the (discrete) k-entropy of each row is computed. The difference of one and each
row k-entropy is weighted by the relative importance of each row to compute the final score.

For Beamsynthesis, we use 240 training points and 120 testing points. For dSprites, we use 5000
training points and 1000 testing points.

E TRAINING TIME COMPARISON

Table 3: Comparison of training times of the discriminator-based disentanglement algorithms on
Beamsynthesis. Latent space size is fixed to m = 10 and discriminator training iterations is fixed to
k = 5.

Method Average (s) Standard Deviation (s)

GCAE 955.0 13.6
FactorVAE 1024.4 5.8
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