
“No Free Lunch” in Neural Architectures? A Joint Analysis
of Expressivity, Convergence, and Generalization

Wuyang Chen1,* Wei Huang2,* Zhangyang Wang1

1
University of Texas at Austin

2
RIKEN Center for Advanced Intelligence Project

Abstract The prosperity of deep learning and automated machine learning (AutoML) is largely rooted

in the development of novel neural networks – but what defines the “goodness” of networks

in an architecture space? Test accuracy, a golden standard in AutoML, is closely related to

three aspects: (1) expressivity (how complicated functions a network can approximate over

the training data); (2) convergence (how fast the network can reach low training error under

gradient descent); (3) generalization (whether a trained network can be generalized from

the training data to unseen samples with low test error). However, most previous theory

papers focus on fixed model structures, largely ignoring sophisticated networks used in

practice. To facilitate the interpretation and understanding of the architecture design by

AutoML, we target connecting a bigger picture: how does the architecture jointly impact its

expressivity, convergence, and generalization? We demonstrate the “no free lunch” behavior

in networks from an architecture space: given a fixed budget on the number of parameters,

there does not exist a single architecture that is optimal in all three aspects. In other words,

separately optimizing expressivity, convergence, and generalization will achieve different

networks in the architecture space. Our analysis explains a wide range of observations in

AutoML. Experiments on popular benchmarks confirm our analysis. Code is available at:

https://github.com/chenwydj/no_free_lunch_architectures.

1 Introduction

Deep neural networks (DNNs) are rapidly developed in recent years. To design novel networks,

Neural architecture search (NAS) is recently explored to remedy the human efforts and costs,

benefiting automated discovery of architectures in a given search space (Zoph and Le, 2016; Brock

et al., 2017; Pham et al., 2018; Liu et al., 2018a; Chen et al., 2018; Bender et al., 2018; Gong et al.,

2019; Fu et al., 2020; Chen et al., 2019). To facilitate the fundamental study of automated design,

many standard architecture spaces and benchmarks are also developed (Liu et al., 2018b; Ying

et al., 2019; Dong and Yang, 2020). Despite the principled automation, NAS still suffers from heavy

consumption of computation time and resources due to frequent training and evaluation of sampled

architectures, which becomes a severe bottleneck that hinders the search efficiency.

People recently address this problem by proposing training-free NAS. Indicators like covariance

of sample-wise Jacobian (Mellor et al., 2021), Neural Tangent Kernel (Chen et al., 2021), and “synflow”

(Abdelfattah et al., 2021) are found to highly correlate with network’s accuracy even at initialization

(i.e., no gradient descent). These approaches significantly reduce search costs. However, these

works mainly leverage theoretical properties of the general deep neural networks in experiments,

but barely characterize the inductive bias of these indicators on network architectures.

Meanwhile, many deep learning theory papers try to understand deep networks. A typical

pipeline of learning involves three components: 1) data (or task), 2) network training (with gradient

descent), and 3) inference (on unseen data). First, given the training data, the network needs to be

∗
Equal Contribution

AutoML 2023 © 2023 the authors, released under CC BY 4.0

mailto:wuyang.chen@utexas.edu
mailto:wei.huang.vr@riken.jp
mailto:atlaswang@utexas.edu
https://github.com/chenwydj/no_free_lunch_architectures
https://creativecommons.org/licenses/by/4.0/


highly expressive to approximate the target function with a low training error. Second, the network

should converge fast in an affordable training time. Third, the network should not simply memorize

the training samples, but needs to be generalizable to unseen data during inference. Being deficient

in any aspect would lead to the failure of utilizing deep networks (low accuracy, slow convergence,

overfitting, etc.). However, most theory papers focus on analyzing a fixed model structure, largely

ignoring sophisticated networks used in practice, especially for NAS applications and standard

architecture spaces and benchmarks we mentioned above. This leads to a concrete question:

Q1: What are the inductive biases of expressivity, convergence, and generalization on networks in
an architecture space? Do they prefer wide or deep network topologies?

This motivates us to jointly analyze how these three aspects change accordingly when we

design network topologies in an architecture space. In addition, most previous theory works only

study one or two aspects at the same time, which may not reveal the global picture of a network’s

property. Imagining we are searching and optimizing the network architecture for its expressivity,

convergence, and generalization together at the same time, a further question is also unclear:

Q2: When we design networks in an architecture space, can we achieve the best expressivity,
convergence, generalization at the same time? In other words, can we find an architecture that will
“win” all three aspects? Or do we have to sacrifice one or two of them to compensate the others?
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Figure 1: Is there a network in an architecture space

that can achieve the best expressivity, con-

vergence, generalization at the same time?

Inspired by recent complicated networks de-

signed in NAS, and to facilitate the interpreta-

tion and understanding of architectures design

by AutoML, we rigorously study the impact of a

network’s topology on its expressivity, conver-

gence, generalization in an architecture space.

Network architecture can be viewed as a directed

acyclic computational graph (DAG), where fea-

ture maps are represented as nodes and oper-

ations in different layers are directed edges linking features. We discover the “no free lunch”
behavior: given a fixed budget on the number of parameters, there does not exist such an architec-

ture that can maximize all three aspects. We first abstract an architecture’s graph structure into

its topological width and depth. By analyzing the input-output Jacobian, NNGP (Neural Network

Gaussian Process), and NTK (Neural Tangent Kernel) of ReLU networks with a large channel width,

we can characterize the dependence of manifold complexity, convergence rate, and generalization

gap on the network’s graph topology. After finding corresponding architectures that maximize

three aspects, we show that both convergence and generalization have a bias toward networks

with wide and shallow graph topologies, but the expressivity favors deep and narrow ones. Our

analysis can explain a wide range of observations in AutoML and NAS. Experiments on popular

vision benchmarks confirm our theoretical analysis. Our contributions are summarized below:

• We theoretically analyze the dependence of a deep network’s manifold complexity, convergence

rate, and generalization gap on its graph topology.

• We discover the “no free lunch” behavior: given a fixed budget on the number of parameters pre-

defined in an architecture space, no such a network can achieve optimal expressivity, convergence,

and generalization at the same time.

• Our analysis can explain a wide range of observations in AutoML and NAS practices. Experiments

on popular datasets confirm our theoretical analysis.

2 Related Works

2.1 Theory-guided Automated Design of Neural Architectures

Neural architecture search (NAS) is proposed to accelerate the principled and automated discovery

of high-performance networks (Pham et al., 2018; Liu et al., 2018b; Dong and Yang, 2019; Real et al.,
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2019; Tan et al., 2020). However, most works suffer from heavy search cost. Therefore, recent

research on NAS has shifted its focus towards reduced training or even training-free methods. The

aim is to connect theoretical analysis of deep learning to guide the development of innovative

network architectures. The key idea is to identify theoretical indicators that are highly correlated

with the network’s training or testing performance. Mellor et al. (2020) introduced a training-free

NAS approach that uses sample-wise activation patterns to rank architectures empirically. Park et al.

(2020) used the network’s NNGP features to estimate its predictions. Various training-free indicators

were evaluated in (Abdelfattah et al., 2021), and the “synflow” measure was adopted in (Tanaka

et al., 2020) as the primary ranking metric. Chen et al. (2021) incorporated two metrics inspired

by theory, and used supernet pruning as the search method. Li et al. (2023) further discovered the

norm of network’s gradient over the gradient variance as an accurate proxy indicator.

Despite the inspiring result, these works mainly leveraged theoretical properties of the general

deep neural networks in experiments, but barely characterize the inductive bias of these indicators

on network architectures. In our work, we try to connect network topologies (defined in a typical

graph-based architecture space) with decoupled properties of networks (discussed below).

2.2 Expressivity, Convergence, and Generalization of Network Architectures

Many works try to theoretically characterize the deep network’s properties, including expressiv-

ity (Poole et al., 2016; Hanin and Rolnick, 2019a,b; Hanin et al., 2021; Fawzi et al., 2018), conver-

gence (Allen-Zhu et al., 2019b; Du et al., 2019; Lu et al., 2020; Zou et al., 2020a; Zhou et al., 2020; Zou

et al., 2020b), and generalization gap (Neyshabur et al., 2015; Bartlett et al., 2017; Arora et al., 2018;

Wei et al., 2019; Xiao et al., 2019; Cao and Gu, 2019; Allen-Zhu et al., 2019a; Zhang et al., 2021).

• Expressivity. Classic works focus on proving the existence of networks with low approximation

error, demonstrating the benefit of network depths (Telgarsky, 2016; Eldan and Shamir, 2016;

Rolnick and Tegmark, 2017; Park et al., 2021). Layer-wise recursion of the network’s length

distortion and extrinsic curvature in Riemannian geometry is given (Poole et al., 2016). The

network’s depth, spectrum, linear regions, persistent homology are also studied (Bianchini and

Scarselli, 2014; Lu et al., 2017; Rieck et al., 2018; Rahaman et al., 2019; Hanin and Rolnick, 2019a).

• Convergence. The rate to converge to the global minima of MLP and ResNet is given (Du et al.,

2019), and skip-connection can improve (reduce) the requirement on the channel number to

be polynomial of the network depth, without requiring the network to be exponentially wide.

In (Bhardwaj et al., 2021), the network topology, or specifically, the number of skip-connections,

is found to improve the network’s training convergence and layerwise dynamical isometry, from

a network science perspective. In addition, the variance of the network’s output and gradient

are proved to scale as the depth-to-width ratio, i.e., the effective depth, instead of the absolute

network depth (Hanin, 2022). The convergence rates of stochastic neural networks with different

hyper-parameters have been studied in (Huang et al., 2023). The convergence rates of different

network architecture topologies are recently compared (Chen et al., 2022).

• Generalization. The gap between the training and testing accuracy is empirically found relevant

to network topology. Some common connectivity patterns are discovered by neural architecture

search and can contribute to fast convergence, high test accuracy, and smooth loss landscapes (Shu

et al., 2019). Structures of networks are represented into graphs, and then discovered that networks

of specific graph topology can achieve strong test accuracy (You et al., 2020).

In contrast, we comprehensively unify the analysis of expressivity, convergence, and generalization,

and demonstrate the “no free lunch” behavior of architectures on these three aspects.
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3 “No Free Lunch”∗ in Network Architectures

In this section, we introduce the high-level idea of the “no free lunch” behavior of networks from

an architecture space. We first define the graph topology of networks (Section 3.1), and then give

the high-level results on how architecture impacts its expressivity, convergence, generalization

(Section 3.2). We defer detailed formal statements in (Section 4) for paper organization purpose.

3.1 Graph Topology of Neural Architectures
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Figure 2: Graph formulation of architectures. 𝑿 : in-

put/feature/output (node). 𝑾 : layers (edge). Top:
shared macro skeleton across architectures. Mid-
dle: graph formulation of cell in architectures.

Bottom left: each edge is an operation from a

predefined set. Bottom right: example architec-

tures with their topological depths and widths.

Graph-based architectures spaces. The

computational graph of a neural network

can be viewed as a directed acyclic graph

(DAG). Nodes are inputs or features, and

edges are layers (operations). Features from

multiple edges coming into one node will

be summed up. The graph’s connectivity

pattern is allowed to be arbitrary: any two

nodes can be connected by an edge. Recent

cell-based architecture spaces (Liu et al.,

2018b; Ying et al., 2019; Dong and Yang,

2020) also leverage this graph formulation

of networks. In our work, we inherit and

simplify these architecture spaces, and con-

sider three types of edges (Figure 2): linear

transformation with ReLU activation, skip

connection, and zero.

Graph topology. In our architecture space,

an end-to-end path is defined as a finite se-

quence of edges that joins the input (𝑿 (0)
) and the output node (𝑿 (𝐻 )

). We denote the number of

end-to-end unique paths as 𝑃𝐻 , and the number of linear transformation operations on the 𝑝-th

path (𝑝 ∈ [1, 𝑃𝐻 ]) as 𝑑𝑝 ∈ [0, 𝐻 ]. Intuitively, 𝑃𝐻 stands for the “topological width” of a graph, and
𝑑𝑝 represents the “topological depth” of a graph.

3.2 Architecture Biases of Expressivity, Convergence, and Generalization

In automated machine learning (AutoML) and neural architecture search (NAS), what defines and

controls the “goodness” of architectures? In fact, test accuracy, a golden standard by AutoML prac-

titioners, can be disentangled and is closely related to three key properties: functional complexity a

network can approximate (“expressivity”), training speed under gradient descent (“convergence”),

and performance gap between training and unseen data (“generalization”). Here, we introduce our

high-level results on their biases on the network’s architecture and highlight impacts on broad

AutoML applications. For detailed formal statements, please see Section 4.

3.2.1 Expressivity. We characterize the expressivity of a neural network using concepts in Riemannian

geometry (Lee, 2006). Consider the mapping from each point in the input space to the network’s

output (the manifold), the curvature of the manifold indicates how quickly its tangent vector rotates

as one moves across the input space. Intuitively, if a network has highly curved output manifolds, it

may have a higher capacity to learn complex functions and decision boundaries (Poole et al., 2016).

Wewill show that given a space of architectures, with standardHe normal initializedweights (He

et al., 2015), the architecture of small 𝑃 and large 𝑑𝑝 will have large curvature (for details, see

Theorem 4.1 and Corollary 4.2).

∗
Originally proposed (Wolpert, 1996) to explain the equivalence of algorithms over learning problems.
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Figure 3: Given a fixed budget of the number of parameters, networks of deep and narrow topology

have higher expressivity (converged training loss) (left), while wide and shallow ones show

faster convergence (number of epochs to reach 50% training accuracy) (middle) and smaller

generalization gap (gap between converged test and training loss) (right). All 729 networks

(when 𝐻 = 3) are trained on Tiny-ImageNet. Small values (dark circles) the better. Kendall-

tau correlations (“𝑅”) are reported in legends. Radiuses indicate standard deviations over

networks of the same graph topology (𝑃 and
1

𝑃

∑𝑃
𝑝=1 𝑑𝑝 ).

3.2.2 Convergence Rate. A network with a fast convergence rate will reach a low training error in fewer

training iterations. Given a space of architectures training with gradient descent, the architecture

of large 𝑃 and small 𝑑𝑝 will have fast convergence rate (for details, see Theorem 4.4).

3.2.3 Generalization. Generalization is defined as the gap between errors on the training set and testing

set, i.e., how much a network can learn generalizable predictions on unseen data. A network of

poor generalization (large gap) will just memorize the training data and lead to overfitting.

Given a space of architectures training with gradient descent, the architecture of large 𝑃 and

small 𝑑𝑝 will have small generalization gap (for details, see Theorem 4.5 and 4.6).

3.2.4 Experiments†. To verify our above analysis on the network’s expressivity, convergence, and

generalization, we choose an architecture space of 𝐻 = 3 (which follows Dong and Yang (2020)),

train all 729 networks
‡
and keep the training dynamics of all networks on Tiny Imagenet (Tin,

2015). Results in Figure 3 confirm our analysis. On all three plots, the darker circles are better:

we want lower training loss, fewer epochs to reach a fair amount of accuracy, and we want

smaller generalization gaps. We can observe that, for the expressivity, all dark circles locate on the

bottom right, meaning that they are deep and narrow graphs. However, for both trainability and

generalization, darker circles are on the top left, indicating the wide shallow graphs. For results on

CIFAR-10 and CIFAR-100 please refer to our Appendix C.1 in the supplement.

3.2.5 “No Free Lunch”. The above results conclude: maximizing the convergence rate and minimizing

the generalization gap will lead to networks of wide and shallow graph topology in an architecture

space. In contrast, maximizing the network’s expressivity (manifold curvature) will reach narrow

and deep topologies. This reveals a “no free lunch” behavior in the network architecture: it cannot
achieve the best in all three aspects, but has to maintain a balance.

Implications. The “no free lunch” behavior can explain important AutoML and NAS applications:

• Architecture bias in differentiable NAS. Differentiable methods are found to have an intrinsic

bias to choose more skip-connections than parameterized layers during the neural architecture

search (Zela et al., 2019; Zhou et al., 2020; Ye et al., 2022; Chu et al., 2020b,a). This bias leads

to the collapse issue, an undesirable phenomenon associated with DARTS (Liu et al., 2018b), as

noted by (Liang et al., 2019): excessive skip-connections in chosen architectures lead to shallower

networks with fewer learnable parameters compared to deeper ones, ultimately resulting in

†
See Appendix A for experiment settings.

‡
For 𝐻 = 3, there are in total 6 possible edges in the cell 2, with each edge having 3 possible layer types (see Eq. 2:

“Linear + ReLU”, “Skip-connection”, and “Zero”), thus 3
6 = 729.
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reduced expressive power. This observation is corroborated by common connectivity patterns

identified in (Shu et al., 2019): “architectures generated by popular NAS algorithms tend to have

the widest and shallowest cells among all candidate cells in the same search space.” Based on

our analysis, this is mainly because architecture configurations are optimized concurrently with

shared weights in the bi-level optimization in DARTS. That means architectures and operations

are selected based on network parameters that are not yet fully trained, which reflect more on

their convergence property instead of expressivity or generalization! Therefore, the differentiable
search tends to favor networks that can minimize training loss as quickly as possible. The skip-

connection can increase a network’s topological width (more paths) and reduce its depths, thus

being more favorable to the convergence of the differentiable search.

• Good networks are of balanced depth/width. From an architecture space, given a fixed budget of

the number of parameters, networks of moderate depth and width (instead of being too wide or

too deep) show better performance (Figure 5 in (Chen et al., 2022)). This empirical observation

can be explained by our theoretical justification: because of a comprehensive effect of expressivity,
convergence, and generalization (which all contribute to the final performance), their intrinsic

trade-offs require the architecture to balance all three aspects. Since expressivity, convergence,

and generalization have different architecture biases, this further requires the network to balance

its depth and width. This intrinsic trade-off on depth/width can further facilitate AutoML

(Section 5.3 in (Chen et al., 2022)): simply pursuing a balanced network topology can speed up

the training-free neural architecture search.

• Neural Scaling Law (Kaplan et al., 2020). When people try to scale up large models, we cannot

just simply add more layers or more channel widths, but we have to do both, to balance the

network’s depth/width and thus three properties. This can be attributed to the aforementioned

reason, that expressivity, convergence, and generalization all contribute to the final performance

but have different biases on architectures. As claimed in (Kaplan et al., 2020), “models with fewer

than 2 layers or with extreme depth-to-width ratios deviate significantly from the trend.” This

observation is supported by Figure 6 in their study, which demonstrates that when the number

of parameters is held constant, networks with too few layers underperform, while overly deep

networks converge to a singular loss curve. In a similar vein, Figure S5 in (Bahri et al., 2021)

reveals that when the width factor is fixed at 10, networks with moderate depths (16, 28) exhibit

lower loss than those with extreme depths (10, 40).

Remark 3.1. We shall emphasize that we compare different networks in a complete architecture

space: given a fixed number of nodes (feature maps), the maximally possible number of edges

(layers, or neurons) is also fixed. That means, a network can either allocate its neurons to its

width or its depth, but it cannot be both the widest and deepest in the space. The “no free lunch”

behavior states that given the same number of parameters (for a fair comparison), expressivity and

trainability/generalization pursue different choices of topological depth and width.

4 Formal Results
In this section, we provide formal definitions and statements of our results on expressivity, con-

vergence, and generalization to explain our core result in Section 3. Full proofs are given in the

Appendix D, E, and F in supplement. Note that, although being at the network’s initialization,

our analysis can reflect the inductive bias of architectures to the expressivity, convergence, and

generalization. Moreover, we also provide experiments to verify our theoretical analysis (Figure 4,

and more in the supplement).

4.1 Problem Setup and Architectures Notations (for the Graph Topology in Section 3.1)

We consider the computational graph of a network illustrated in Figure 2. 𝑿 (0)
is the input node,

𝑿 (𝐻 )
is the output node, and 𝑿 (1) , · · · ,𝑿 (𝐻−1)

are intermediate nodes (feature maps). 𝑾 is the
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layer operation (edge). The forward process of the network in Figure 2 can be formulated as below.

𝑿 (𝑡 ) =
𝑡−1∑︁
𝑠=0

𝜌 (𝑾 (𝑠,𝑡 )𝑿 (𝑠 ) ) (𝑡 ∈ [1, 𝐻 ]) (1)

𝑿 ∈ R𝑚×1
, where𝑚 is the absolute width of a layer. In our analysis, each layer (edge) can choose

from three operations: 1) linear transformation followed by a ReLU activation, 2) a skip-connection

(the identity mapping), 3) a zero mapping (broken edge, no forward and backward allowed):

𝑾


= 0 zero

= 𝑰𝑚×𝑚
skip-connection

∼ N (0, 𝑰𝑚×𝑚) linear transformation

, 𝜌 (𝑥) =


0 zero

𝑥 skip-connection√︃
𝑐𝜎
𝑚
𝜎 (𝑥), linear transformation

(2)

N stands for the Gaussian distribution for weight initialization, 𝜎 represents the ReLU activation,

and we set 𝑐𝜎 = 2 (Hayou et al., 2019).

4.2 Expressivity Analysis of Architectures (for Section 3.2.1)

We study the functional complexity for deep networks. Our goal is to compare the expressivity of

different networks and establish links to their graph topologies. Following (Poole et al., 2016), we

consider a simple circle input 𝑿 (0) (𝜃 ) =
√
𝑁0 [u0 cos(𝜃 ) + u1 sin(𝜃 )], where 𝜃 ∈ [0, 2𝜋), u0 and u1

form an orthonormal basis for a 2-dimensional subspace of the input spaceR𝑁0
(e.g. 𝑁0 = 3×32×32

for images in CIFAR-10 dataset).

We first demonstrate how the network’s graph topology impacts its norm of input-output

Jacobian.

Theorem 4.1 (Jacobian in Architectures). For ReLU networks in our architecture space (Figure 2)
of nodes 0, 1, · · · , 𝐻 . The total number of end-to-end paths is 𝑃𝐻 , and the depth of each path is 𝑑𝑝
(𝑝 = 1, · · · , 𝑃𝐻 ). Weights are initialized by the standard He normal initialization (He et al., 2015). The
expectation (over the weight distribution) of the Jacobian’s norm of this network is:∫

2𝜋

0

E [∥J(𝜃 )∥] 𝑑𝜃 = 𝐶 ·
𝑃𝐻∑︁
𝑝=1

exp

[
−5

8

𝑑𝑝

𝑚
+𝑂

(
𝑑𝑝

𝑚2

)]
, (3)

where𝐶 =
Γ(𝑚+1

2
)

Γ(𝑚
2
) (𝑚

2
)1/2

,𝑚 is the hidden layer width (Eq. 2), and Γ(·) denotes the Gamma function.

An important reason why we choose manifold curvature and Jacobian to indicate the network’s

expressivity is to seek an average-case analysis (Theorem 4.1). Classic approximation theories

(which prove the existence of networks that can approximate certain functionswith low errors) focus

on the best-case analysis (i.e. the existence of a certain network that satisfies low approximation

error). The best-case analysis considers themaximum complexity of functions that may be expressed

by the network by varying its parameters. In contrast, the average-case analysis considers the

typical complexity of the network with a given distribution of parameters. It is now increasingly

recognized that average-case analysis better reflects a network’s inductive biases (Hanin and

Rolnick, 2019a; Hanin et al., 2021).

Finally, to characterize the expressivity of networks via manifold curvature, we show that a

high curvature requires a small norm of Jacobian in ReLU MLP networks.

Corollary 4.2 (Curvature and Jacobian). For a ReLU network, given a unit circle input (Poole et al.,
2016), we have its curvature as the reciprocal of the norm of the input-output Jacobian:

𝜅 (𝜃 ) = ∥J(𝜃 )∥−1 (4)
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Our goal is to maximize 𝜅 (𝜃 ) (i.e. to minimize ∥J(𝜃 )∥) via morphing the network’s graph

topology. Theorem 4.1 indicates that networks of more short paths (i.e. wide and shallow graphs)

will more likely have a larger norm of input-output Jacobian. This is because the left hand side of

Eq. 3 can be enlarged by increasing 𝑃𝐻 (wider) and reducing 𝑑𝑝 (depth). And based on Corollary 4.2,

we can see that deep and narrow networks will have higher curvature, which is aligned with their

low training error in Figure 3. Besides, our analysis can be further confirmed by:

• Our analysis can find the network of the highest expressivity: in our architecture space in Figure 2,

when𝐻 = 3, the largest depth is 3 with a small width of 1. This architecture indeed has the highest

manifold curvature in our experiment, and also shows the lowest training loss at converge.

• We also visualize 𝜅 (𝜃 ) vs. the graph topology. In Figure 4 left, we can indeed see that deeper and

narrower networks have higher 𝜅 (𝜃 ). This trend is aligned with Figure 3 left.

It is worth noting the core difference between the manifold curvature 𝜅 and Hessian: the curvature

characterizes the sensitivity of the network’s output to its input, whereas the Hessian characterizes

the sensitivity of the network’s output to its parameters. Since the expressivity indicates whether

a network can learn complicated mappings from its input space to output space, the manifold

curvature is a more precise characterization than Hessian.

4.3 Convergence Analysis of Architectures (for Section 3.2.2)
We formally link the network’s convergence rate with its graph topology. We first follow the bound

of convergence rate by a network’s least eigenvalue of it NNGP kernel (Chen et al., 2022).

Theorem 4.3 (Linear Convergence of Architectures (Chen et al., 2022)). Consider an architecture
of 𝐻 nodes and 𝑃𝐻 end-to-end paths. At 𝑘-th gradient descent step on 𝑁 training samples, with MSE

loss 𝐿(𝑘) = 1

2
∥𝒚 − 𝑿 (𝐻 ) (𝑘)∥2

2
, suppose the learning rate 𝜂 = 𝑂

(
𝜆min(𝑲 (𝐻 ) )
(𝑁𝑃𝐻 )2 2

𝑂 (𝐻 )
)
and the number of

neurons per layer𝑚 = Ω

(
max

{
(𝑁𝑃𝐻 )4

𝜆4
min
(𝑲 (𝐻 ) ) ,

𝑁𝐻𝑃𝐻
𝛿

,
(𝑁𝑃𝐻 )2 log( 𝐻𝑁

𝛿 )2𝑂 (𝐻 )

𝜆2
min
(𝑲 (𝐻 ) )

})
, we have

∥𝒚 − 𝑿 (𝐻 ) (𝑘)∥2
2
≤

(
1 − 𝜂𝜆min (𝑲 (𝐻 ) )

2

)𝑘
∥𝒚 − 𝑿 (𝐻 ) (0)∥2

2
. (5)

𝑲 (𝐻 )
𝑖 𝑗

= ⟨𝑿 (𝐻 )
𝑖

,𝑿 (𝐻 )
𝑗

⟩ is the network’s NNGP kernel at node 𝐻 (𝑖, 𝑗 ∈ [1, 𝑁 ]), whose expectation is
taken over the network’s random initializations. 𝑃𝐻 is number of end-to-end paths from 𝑿 (0) to 𝑿 (𝐻 ) .

This means larger 𝜆min(𝑲 (𝐻 ) ) indicates faster convergence. Next, we give the theorem that

bound the NNGP’s least eigenvalue by the network’s graph topology.

Theorem 4.4 (𝜆min(𝑲 (𝐻 ) ) of Architectures). For ReLU networks in our architecture space (Figure 2)
of nodes 0, 1, · · · , 𝐻 . The total number of end-to-end paths is 𝑃𝐻 , and the depth of each path is 𝑑𝑝
(𝑝 = 1, · · · , 𝑃𝐻 ). The least eigenvalue of NNGP kernel of this network is:

𝜆min (𝑲 (𝐻 ) ) ≤ min

𝑖≠𝑗

[
𝑃𝐻 −

𝑃𝐻∑︁
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

)
]

𝑖, 𝑗 ∈ [1, 𝑁 ] . (6)

In Eq. 33, 𝑓 is a function (defined in Appendix F.4) that characterizes how the NNGP kernel 𝑲
propagates through layers in a ReLU network. 𝑓 (𝑲𝑖 𝑗 ) > 𝑲𝑖 𝑗 and 𝑓 (𝑲𝑖 𝑗 ) ∈ [0, 1). We also define

𝑑𝑝-power composition of a function as 𝑓 𝑑𝑝 =

𝑑𝑝︷           ︸︸           ︷
𝑓 ◦ 𝑓 ◦ · · · ◦ 𝑓 (·). We target morphing the network’s

architecture to maximize 𝜆min(𝑲 (𝐻 ) ), and we have the following steps:

1. Whenever we add one more path, 𝑃𝐻 will increase by 1, and

∑𝑃𝐻
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

) will increase one
more term. For a single path, 𝑓 𝑑𝑝 (𝑲 (0)

𝑖 𝑗
) ∈ [0, 1). We can thus guarantee to improve 𝜆min(𝑲 (𝐻 ) )

by a positive margin by adding more paths. Therefore, we should first maximize 𝑃𝐻 .
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Figure 4: Given a fixed budget of the number of parameters in an architecture space, networks of

deep and narrow topologies have higher expressivity (manifold curvature) (left), while wide

and shallow ones have both large convergence rate (𝜆min of NNGP) (middle) and smaller

generalization gap (𝜆min of NTK) (right). Larger the values (white circles) the better in all

three plots. Kendall-tau correlations (“𝑅”) are reported in legends. Radiuses indicate standard

deviations over networks of the same graph topology (𝑃 and
1

𝑃

∑𝑃
𝑝=1 𝑑𝑝 ). Curvature and 𝜆min

of NNGP/NTK are averaged over three random runs.

2. After fixing 𝑃𝐻 to be the maximal number of paths in a graph, we should minimize∑𝑃
𝑝=1 𝑓

𝑑𝑝 (𝑲 (0)
𝑖 𝑗

), i.e., to put as fewer as number of linear transformations on the edges
§
.

Only having an upper bound may not be enough to confirm the dependence of 𝜆min(𝑲 (𝐻 ) ) on the

graph topology. To demonstrate that this upper bound is meaningful, we also visualize 𝜆min(𝑲 (𝐻 ) )
vs. graph topology in experiments. In Figure 4 middle, we can see that wider and shallower

networks have higher 𝜆min(𝑲 (𝐻 ) ). The theoretical and experimental analysis tells us that networks

that are wider (larger 𝑃𝐻 ) and shallower (smaller

∑𝑃𝐻
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

)) will more likely to converge

earlier, which is aligned with their faster convergence in Figure 3 middle.

Besides, our analysis can find the network of the best trainability: in our architecture space in

Figure 2, when 𝐻 = 3, the largest number of unique paths is 4, with the smallest averaged depths

as 0.25. This architecture indeed has the fastest convergence speed in our experiment.

4.4 Generalization Analysis of Architectures (for Section 3.2.3)

In this section, inspired by recent works (Arora et al., 2019b; Cao and Gu, 2019), we give the

generalization bound of architectures via neural tangent kernel (NTK) (Jacot et al., 2018) and

Rademacher complexity in the over-parameterization regime. We then analyze the architecture’s

impact on this generalization bound.

Theorem 4.5 (Generalization of Architectures). Suppose dataset 𝑆 = {(𝒙𝑖 , 𝑦𝑖)}𝑁𝑖=1 are i.i.d. samples
from a non-degenerate distribution D(𝒙, 𝑦), and𝑚 ≥ poly(𝑁,∑𝑃𝐻

𝑝=1
𝑑𝑝 , 𝜆

−1
min

(𝑮 (𝐻 ) ), 𝛿−1). Consider
any loss function ℓ : R × R → [0, 1] that is 1-Lipschitz, then with probability at least 1 − 𝛿 over the
random initialization, the network trained by gradient descent for 𝐾 ≥ Ω( 1

𝜂𝜆min (𝑮 (𝐻 ) ) log
𝑁
𝛿
) iterations

has population risk 𝐿D = E(𝒙,𝑦)∼D (𝒙,𝑦) [ℓ (𝑓 (𝒙 ;𝐾)), 𝑦)] that is bounded as follows:

𝐿D ≤ 𝑂
(( 𝑃𝐻∑︁

𝑝=1

𝑑𝑝

)
·

√︄
𝒚⊤ (𝑮 (𝐻 ) )−1 (𝑿 ,𝑿 )𝒚

𝑁

] )
+𝑂

(√︂
log(1/𝛿)

𝑁

)
(7)

where 𝑮 (𝐻 ) = ⟨ 𝜕𝑿 (𝐻 )

𝜕𝑾 , 𝜕𝑿
(𝐻 )

𝜕𝑾 ⟩ is the NTK of the network, and𝑾 is the collection of all weights. We
use 𝑂 (·) to hide the logarithmic factors in 𝑂 (·).

We leave the proof of the above theorem in the Appendix F.1. Since the leading term of the

generalization bound is (∑𝑃𝐻
𝑝=1

𝑑𝑝) ·
√︃

𝒚⊤ (𝑮 (𝐻 ) )−1 (𝑿 ,𝑿 )𝒚
𝑁

and all networks in our architecture space

share the same data and labels, we compare the generalization bound for different networks based

on the following inequality:

§
We need to make sure

∑𝑃
𝑝=1 𝑑𝑝 > 0, since a network of no parameterized layers will not learn anything.
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( 𝑃𝐻∑︁
𝑝=1

𝑑𝑝
)
·

√︄
𝒚⊤ (𝑮 (𝐻 ) )−1 (𝑿 ,𝑿 )𝒚

𝑁
≤

𝑃𝐻∑︁
𝑝=1

𝑑𝑝 · 1√︁
𝜆min (𝑮 (𝐻 ) )

(8)

We can recursively compute the NTK from the NNGP (Jacot et al., 2018; Arora et al., 2019c):

𝑮 (ℎ) = 𝑲 (ℎ) + ¤𝑲 (ℎ)𝑮 (ℎ−1) , 𝑮 (0) = 𝑲 (0)
(9)

where ¤𝑲 (ℎ) = ⟨ ¤𝜌 (𝑾 (ℎ−1,ℎ)𝑿 (ℎ−1) ), ¤𝜌 (𝑾 (ℎ−1,ℎ)𝑿 (ℎ−1) )⟩ and ℎ ∈ [1, 𝐻 ]. Finally, we give the theorem
that bounds the NTK’s least eigenvalue by the network’s graph topology.

Theorem 4.6 (𝜆min(𝑮 (𝐻 ) ) of Architectures). For ReLU networks in our architecture space (Figure 2)
of nodes 0, 1, · · · , 𝐻 . The total number of end-to-end paths is 𝑃𝐻 , and the depth of each path is 𝑑𝑝
(𝑝 = 1, · · · , 𝑃𝐻 ). The least eigenvalue of NTK kernel of this network is:

𝜆min (𝑮 (𝐻 ) ) ≤ min

𝑖≠𝑗

[
𝑃𝐻 −

𝑃𝐻∑︁
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

) +
𝑃𝐻∑︁
𝑝=1

𝑑𝑝 −
𝑃𝐻∑︁
𝑝=1

𝑑𝑝∑︁
𝑒=1

𝑓 𝑒 (𝑲 (0)
𝑖 𝑗

)
𝑒∏

𝑘=1

¤𝑓 𝑘 (𝑲 (0)
𝑖 𝑗

)
]

𝑖, 𝑗 ∈ [1, 𝑁 ] . (10)

In Eq. 55,
¤𝑓 is a function (defined in Appendix F.2) that characterizes how fast the NNGP kernel

𝑲 propagates through layers in a ReLU network, and
¤𝑓 (𝑲𝑖 𝑗 ) ∈ [0, 1) given 𝑲𝑖 𝑗 ∈ [0, 1) (Hayou

et al., 2019). Note that
¤𝑓 𝑘 (𝑲 (0)

𝑖 𝑗
) = 𝜕𝑓 𝑘 (𝑲 (0)

𝑖 𝑗
)/𝜕𝑓 𝑘−1(𝑲 (0)

𝑖 𝑗
). We then target on how to morph the

network’s architecture to minimize the leading term in the generalization bound in Eq. 8. Basically,

we need to minimize both

∑𝑃𝐻
𝑝=1

𝑑𝑝 and

√︃
𝒚⊤ (𝑮 (𝐻 ) )−1 (𝑿 ,𝑿 )𝒚

𝑁
(i.e., to maximize 𝜆min(𝑮 (𝐻 ) )):

1. To minimize

∑𝑃𝐻
𝑝=1

𝑑𝑝 in Eq. 8: we prefer shallower graph structures when 𝑃𝐻 is fixed.

2. To maximize the upper bound of 𝜆min(𝑮 (𝐻 ) ), we consider two groups in Eq. 55:

• 𝑃𝐻 −∑𝑃𝐻
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

): this group is the same as NNGP in Eq. 33, which favors wide and shallow

graph structures.

•

∑𝑃𝐻
𝑝=1

𝑑𝑝 −
∑𝑃𝐻

𝑝=1

∑𝑑𝑝

𝑒=1
𝑓 𝑒 (𝑲 (0)

𝑖 𝑗
)∏𝑒

𝑘=1
¤𝑓 𝑘 (𝑲 (0)

𝑖 𝑗
): these two are extra terms introduced by NTK.

As 𝑑𝑝 → ∞, we have 𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

) → 1 and
¤𝑓 𝑘 (𝑲 (0)

𝑖 𝑗
) → 1. Therefore, as 𝑑𝑝 grows, two terms in

this group compete with each other, and will be canceled in a large limit of 𝑑𝑝 .

Only having an upper bound may not be enough to confirm the dependence of 𝜆min(𝑮 (𝐻 ) )
on the graph topology. To demonstrate that this upper bound is meaningful, we also visualize

𝜆min(𝑮 (𝐻 ) ) vs. graph topology in experiments. In Figure 4 right, we can see that wider and shallower

networks have higher 𝜆min(𝑮 (𝐻 ) ). The theoretical and experimental analysis tells us that wider

and shallower networks (larger 𝑃 , smaller

∑𝑃
𝑝=1 𝑑𝑝 ) will more likely to have lower generalization

gap, which is aligned with their low “test − training error” in Figure 3 right.

5 Conclusion and Discussions

To facilitate the explanation of the architecture bias in AutoML and NAS applications, in this work,

we jointly analyze a network’s expressivity, trainability, and generalization, and how they are

influenced by the architecture’s graph topology. Given a fixed budget of the number of parameters,

we show that the expressivity favors networks of deep and narrow graph topologies, whereas both

the trainability and generalization prefer wide and shallow ones. We for the first time discover that

these inductive biases lead to a “no free lunch” behavior in deep network architectures: we cannot

achieve the best over all three aspects in one network.

We identify three limitations in our current methods and results. First, different networks may

not necessarily share the same optimal learning rate, and the comparison under the same training

protocol may be unfair. Second, finding a “golden standard” for characterizing the expressivity of a

neural network is still challenging. Finally, our analysis still focuses on the network’s initialization

stage, and characterizing the training dynamics is still meaningful but challenging.
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7 Broader Impact Statement

Our work has a significant impact on the research community of automated machine learning

and neural architecture search. Overall, our work sheds light on the limitations and challenges

of optimizing neural networks in an architecture space. We challenge the prevailing assumption

that there exists a single optimal network architecture and instead highlight the importance of

balancing these three aspects when optimizing neural networks.

Our research is crucial for improving the performance of automated machine learning and

neural architecture search algorithms, as we provide a theoretical foundation for designing better

architectures. Additionally, our work has the potential to stimulate further research and innovation

in AutoML and NAS, as researchers seek to optimize their algorithms by balancing expressivity,

convergence, and generalization. Moreover, the impact of our work extends beyond AutoML and

NAS to the broader field of deep learning, as it advances our understanding of the underlying

principles of neural networks and could lead to more robust and reliable systems.

The work itself does not have any direct negative societal impacts. However, it is important to

recognize that the broader research area of automated machine learning and neural architecture

search could potentially have unintended negative consequences if not used responsibly.

Potential negative impacts: 1) our work could not directly resolve the risk that the AutoML

algorithms may learn and replicate existing biases in the data, leading to biased decision-making in

applications such as hiring, lending, and criminal justice; 2) our work could not directly resolve

the risk that the automation of tasks that were previously performed by humans, leading to job

displacement and potentially widening economic inequality.
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A Experiment Settings
Tiny Imagenet contains 200 classes for training, each class has 500 images, and the test set contains

10,000 images. All images are 64×64 colored ones. Networks are trained for 3000 epochs with

SGD, a batch size of 128, and a constant learning rate of 0.005. No augmentations, regularizations,

weight decay, or momentum are applied. Layer width𝑚 = 256 for all networks, which is a typical

choice studied in previous work (Lee et al., 2020). Note that on average, architectures in our

architecture space are of 3.33M parameters (with a standard deviation of 0.076M), versus 0.1M

images on Tiny-ImageNet. This means our networks are in an over-parameterized regime. We use

the converged training loss as expressivity (lower the more expressive). Inspired by (Hanin and

Rolnick, 2018), we measure the convergence as how many epochs a network requires to reach 50%

accuracy (fewer epochs the faster convergence). The gap between test and training loss represents

the generalization (smaller gaps generalize better).
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Table 1: Ensembling + low-rank regularization can improve expressivity-convergence-generalization

trade-off of architectures. “(·, ·)” indicates two architectures to ensemble. By ensembling

two weak architectures (“II” and “III”) with low-rank regularization (random unstructured

pruning), we can achieve better trade-off (“V”) than the best architecture (“I”) in our space.

Experiments done on Tiny-ImageNet (license is publicly available) and V100 GPUs.

Architecture

Ensemble

Pruning

Ratios %

Rankings (out of 729 NNs, smaller the better)

Sum of

Rankings𝑃 1

𝑃

∑𝑃
𝑝=1 𝑑𝑝 Params. Expressivity Convergence Generalization

I. best of 729 NNs 4 1.5 3.53M 0 71 76 5 152

II. wide shallow 4 1 3.46M 0 217 39 1 257

III. deep narrow 1 3 3.4M 0 1 538 541 1080

IV. ensemble (II, III) (4, 1) (1, 3) 3.66M ✓ 0 5 46 180 231

V. ensemble (II, III) (4, 1) (1, 3) 3.51M ✓ II: 20, III: 50 39 32 38 109

B Better Trade-off by Ensembling and Low-rank Regularization

One would feel discouraged about the “no free lunch” behavior of network architectures. Indeed,

a single architecture cannot improve them all at the same time. However, this motivates us to

further study: given the winner of each aspect, can we integrate them into a stronger one with a better
trade-off in all aspects?

Our first intuition is to ensemble multiple architectures that can cover all three aspects. We

choose a wide shallow architecture (𝑃 = 4, 1
𝑃

∑𝑃
𝑝=1 𝑑𝑝 = 1) for its convergence and the generalization

(similar bias in architectures), and include another deep narrow one (𝑃 = 1, 1
𝑃

∑𝑃
𝑝=1 𝑑𝑝 = 3) for its

expressivity. Inspired by the super-network concept in (Liu et al., 2018b), we make two architectures

share their nodes (features) but with separated edges (keep their own weights). This will improve

both convergence and expressivity, but will jeopardize its generalization (row “IV” in Table 1).

Regularizations, such as weight decay and augmentation, are introduced in Deep Learning to

avoid overfitting. Since our focus is on network architecture, we instead seek implicit regularizations

on the architecture itself, instead of from an optimization perspective. Implicit bias to low-rankness

is observed in both deep linear networks (Arora et al., 2019a) and practical ones (Gur-Ari et al., 2018;

Hu et al., 2021). Therefore, we explore low-rank regularizations on our network architectures.
Recent works demonstrate that pruning can act as an implicit regularization and remove the

model’s redundant intrinsic dimensions (Chen et al., 2020; Xu et al., 2019; Yu et al., 2017). Here

we consider unstructured random pruning, to reduce a network’s redundancy and regularize its

expressivity. We multiply a binary mask to each weight 𝑴 ·𝑾 , where 𝑴 is sparse at a certain

pruning ratio. With an appropriate pruning ratio, in row “V” of Table 1 we show that, an ensemble

of multiple (weak) architectures with low-rank regularizations can achieve a better trade-off among

the three aspects, even higher than the best (single) architecture (row “I”). Specifically, we calculate

three rankings of the expressivity, convergence, and generalization over 729 architectures in our

architecture space (𝐻 = 3), and compare the sum of the three rankings. Our ensembling plus

low-rank regularization methods achieve a better sum of rankings, with an even fewer number of

parameters. For more ablation studies, please refer to our Appendix C.2 in the supplement.

C More experiments

C.1 Empirical expressivity, convergence, generalization vs. graph topology on CIFAR-10/100

We include more experimental results here. First, we show correlations between expressivity,

convergence, generalization and graph topologies on CIFAR-10 and CIFAR-100. Figure 5 again

demonstrates that the expressivity favors deep wide networks, whereas the convergence and

generalization prefer wide shallow networks.
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Figure 5: Deep narrow networks have higher expressivity (left), while wide shallow networks converge

faster (middle) and generalize better (right). All 729 networks (𝐻 = 3) are trained on CIFAR-

10 and CIFAR-100. Smaller values (dark circles) the better in all three plots. Kendall-tau

correlations (“𝑅”) are reported in legends. Radius of circles indicates standard deviations over

networks of the same graph topology (𝑃 and
1

𝑃

∑𝑃
𝑝=1 𝑑𝑝 ). Left: expressivity by training loss

at convergence. Middle: convergence by number of epochs required to reach 50% training

accuracy. Right: generalization gap between test and training loss at convergence.

We also verify the correlations between empirical metrics of expressiv-

ity/convergence/generalization versus theoretical ones. As shown in Figure 6, all three

theoretical indicators are aligned with empirical metrics.
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Figure 6: Left: for expressivity, high curvature indicates low training loss at convergence. Middle:
for convergence, large 𝜆min of NNGP indicates fewer number of epochs required to reach

50% training accuracy. Right: for generalization, large 𝜆min of NTK indicates smaller gap

between test and training loss at convergence. All 729 networks (𝐻 = 3) are trained on

Tiny-ImageNet. Kendall-tau correlations (𝑅) are reported in legends.

C.2 Ablation study of ensembling and pruning

We conduct a systematic study of different pruning ratios on two ensembled graphs in Figure 7.

architecture 1 (row II in Table 1) is wide shallow and contributes to the convergence and general-

ization (with poor expressivity). architecture 2 (row III in Table 1) is deep narrow and contributes

to the expressivity (with poor convergence and generalization).

In Figure 7, lower (dark) sum of three rankings indicate better trade-off. We can see that more

aggressive pruning ratios on architecture 2 (negative correlation with the sum of rankings) will

mitigate its overfitting issue, improving its generalization and leading to better trade-off. In contrast,

we should not impose heavy pruning ratios on architecture 1, which will further jeopardize its

expressivity. Meanwhile, higher pruning ratios (top right) will lead to smaller model sizes (circle

radiuses).
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Figure 7: Different pruning ratios on two ensembled architectures. X-axis: wide shallow graph (row II in Tab. 1).

Y-axis: deep narrow graph (row III in Tab. 1). Circle radiuses indicate model sizes (number of parameters)

after pruning. Kendall-tau correlations between pruning ratios and the sum of rankings are reported in

legend.

C.3 Training with Optimal Learning Rates Tailored for Architectures

Standard architecture benchmarks (Ying et al., 2019; Dong and Yang, 2020) train networks with a

shared training recipe. As architecture topologies are very diverse in these benchmarks, blindly

using the same training setting for all networks may not be optimal. In this section, we further

study the empirical expressivity, trainability, and generalization by training networks with their

optimal learning rates tuned by grid search. As shown in Figure 8, even with architecture-wise

optimal learning rates, our conclusion still holds: in a complete architecture space, given a fixed

budget of network parameters, deep narrow networks have higher expressivity, while wide shallow

networks converge faster and generalize better.
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Figure 8: Deep narrow networks have higher expressivity (left), while wide shallow networks converge

faster (middle) and generalize better (right). Networks (𝐻 = 3) are trained on Tiny-ImageNet,

with optimal learning rates tuned for each network. Smaller values (dark circles) the better

in all three plots. Kendall-tau correlations (“𝑅”) are reported in legends. Radius of circles

indicates standard deviations over networks of the same graph topology (𝑃 and
1

𝑃

∑𝑃
𝑝=1 𝑑𝑝 ).

Left: expressivity by training loss at convergence. Middle: convergence by number of epochs

required to reach 50% training accuracy. Right: generalization gap between test and training

loss at convergence.

D Expressivity

In this section, we study the functional complexity for deep networks. Our goal is to compare the

expressivity of different networks and establish links to their graph topologies. Below, we consider

a simple circle input 𝑿 (0) (𝜃 ) =
√
𝑁0 [u0 cos(𝜃 ) + u1 sin(𝜃 )], where 𝜃 ∈ [0, 2𝜋), u0 and u1 form an

orthonormal basis for a 2 dimensional subspace of the input space R𝑁0
(e.g. 𝑁0 = 3 × 32 × 32 for

images in CIFAR-10 dataset).

D.1 Proof of Theorem 4.1

Before we prove Theorem 4.1, we first give a general fact about the number of paths in a graph.

Suppose a graph of nodes 0, 1, · · · , 𝐻 − 1, it has 𝑃𝐻−1 end-to-end paths. Then, if we add one more
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node (𝐻 ) to this graph, it will have 𝑃𝐻 =
∑𝐻−1

ℎ=0
1(𝑾 (ℎ,𝐻 ) ≠ 0) ·𝑃ℎ paths, where 1(𝑾 (ℎ,𝐻 ) ≠ 0) = 1

if 𝑾 (ℎ,𝐻 ) ≠ 0 otherwise is 0. We set 𝑃0 = 1. Intuitively, we can create a new edge from each

previous node to the new node 𝐻 . Therefore, for node ℎ ∈ [0, 𝐻 − 1], we first have a number of 𝑃ℎ
path choices to go from node 0 to ℎ, then have one choice to go from ℎ to 𝐻 . Therefore, 𝑃𝐻 simply

equals to the sum of all previous paths, with any zero operators (disabled edges) removed.

Theorem 4.1 (Jacobian in Architectures). For ReLU networks in our architecture space (Figure 2)
of nodes 0, 1, · · · , 𝐻 . The total number of end-to-end paths is 𝑃𝐻 , and the depth of each path is 𝑑𝑝
(𝑝 = 1, · · · , 𝑃𝐻 ). Weights are initialized by the standard He normal initialization (He et al., 2015). The
expectation (over the weight distribution) of the Jacobian’s norm of this network is:

∫
2𝜋

0

E [∥J(𝜃 )∥] 𝑑𝜃 = 𝐶 ·
𝑃𝐻∑︁
𝑝=1

exp

[
−5
8

𝑑𝑝

𝑚
+𝑂

(
𝑑𝑝

𝑚2

)]
, (11)

where 𝐶 =
Γ(𝑚+1

2
)

Γ(𝑚
2
) (𝑚

2
)1/2

,𝑚 is the hidden layer width (Eq. 2), and Γ(·) denotes the Gamma function.

Proof of Theorem 4.1. For a ReLU MLP of 𝐿 layers, based on the chain rule, we can write its Jacobian

as

J𝑿 (0) = 𝑫 (𝐿)𝑾 (𝐿)𝑫 (𝐿−1)𝑾 (𝐿−1) · · ·𝑫 (1)𝑾 (1)

where𝑾 (ℓ )
is the matrix of weights from layer ℓ − 1 to layer ℓ and 𝑫 (ℓ )

is an𝑚×𝑚 diagonal matrix:

𝑫 (ℓ ) = Diag

(
1{

𝑧
(ℓ )
𝑖

≥0
}, 𝑖 = 1, . . . ,𝑚

)
whose diagonal entries are 0 or 1 depending on whether the pre-activation 𝑧

(ℓ )
𝑖

of neuron 𝑖 in layer

ℓ is positive at our fixed input.

Next, we use induction to show that the Jacobian of a network as J𝑿 (0) =
∑𝑃𝐻

𝑝=1

∏𝑑
(0,𝐻 )
𝑝

ℓ=0
𝑫 (ℓ )𝑾 (ℓ )

,

where 𝑑
(0,𝐻 )
𝑝 indicates the depth of 𝑝-th path that starts from node 0 and ends at node 𝐻 .

1. Suppose for a network of 𝐻 − 1 nodes, it has 𝑃𝐻−1 paths and its Jacobian is

J𝑿 (0) =
∑𝑃𝐻−1

𝑝=1

∏𝑑
(0,𝐻−1)
𝑝

ℓ=0
𝑫 (ℓ )𝑾 (ℓ )

.

2. Now we add one more node 𝐻 . We can add one edge from each of previous nodes 0, · · · , 𝐻 − 1

to this new node 𝐻 .

3. For example, for the node 𝐻 − 1, the newly added edge contributes to the Jacobian with

1(𝑾 (𝐻−1,𝐻 ) ≠ 0) · (𝑫 (𝐻−1,𝐻 )𝑾 (𝐻−1,𝐻 ) )𝑑 (𝐻−1,𝐻 )
, where the depth from node 𝐻 − 1 to 𝐻 is

𝑑 (𝐻−1,𝐻 ) = 1 if this edge is a “linear + ReLU” layer, or 𝑑 (𝐻−1,𝐻 ) = 0 if this edge is a skip-

connection.

4. Thus, after adding the new edge, the Jacobian from the node 𝐻 − 1 is

J𝑿 (0) = 1(𝑾 (𝐻−1,𝐻 ) ≠ 0) · ∑𝑃𝐻−1
𝑝=1

( ∏𝑑
(0,𝐻−1)
𝑝

ℓ=1
𝑫ℓ𝑾 ℓ

)
(𝑫 (𝐻−1,𝐻 )𝑾 (𝐻−1,𝐻 ) )𝑑 (𝐻−1,𝐻 )

.

We can merge 𝑑
(0,𝐻−1)
𝑝 and 𝑑 (𝐻−1,𝐻 )

to complete a new path that starts at node 0 and ends at

node 𝐻 , whose depth is 𝑑
(0,𝐻 )
𝑝 .
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Now, consider all nodes 1, · · · , 𝐻 − 1, we can write the new Jacobian as:

J𝑿 (0) = (12)

1(𝑾 (𝐻−1,𝐻 ) ≠ 0)
𝑃𝐻−1∑︁
𝑝=1

( 𝑑 (0,𝐻−1)
𝑝∏
ℓ=1

𝑫ℓ𝑾 ℓ
)
(𝑫 (𝐻−1,𝐻 )𝑾 (𝐻−1,𝐻 ) )𝑑 (𝐻−1,𝐻 )

(node 𝐻 − 1) (13)

+ 1(𝑾 (𝐻−2,𝐻 ) ≠ 0)
𝑃𝐻−2∑︁
𝑝=1

( 𝑑 (0,𝐻−2)
𝑝∏
ℓ=1

𝑫ℓ𝑾 ℓ
)
(𝑫 (𝐻−2,𝐻 )𝑾 (𝐻−2,𝐻 ) )𝑑 (𝐻−2,𝐻 )

(node 𝐻 − 2) (14)

+ · · · (15)

+ 1(𝑾 (1,𝐻 ) ≠ 0)
𝑃1∑︁
𝑝=1

( 𝑑 (0,1)
𝑝∏
ℓ=1

𝑫ℓ𝑾 ℓ
)
(𝑫 (1,𝐻 )𝑾 (1,𝐻 ) )𝑑 (1,𝐻 )

(node 1) (16)

+ 1(𝑾 (0,𝐻 ) ≠ 0) (𝑫 (0,𝐻 )𝑾 (0,𝐻 ) )𝑑 (0,𝐻 )
(node 0) (17)

= 1(𝑾 (𝐻−1,𝐻 ) ≠ 0)
𝑃𝐻−1∑︁
𝑝=1

( 𝑑 (0,𝐻−1)
𝑝 +𝑑 (𝐻−1,𝐻 )

𝑝∏
ℓ=1

𝑫 (ℓ )𝑾 (ℓ )
)

(node 𝐻 − 1) (18)

+ 1(𝑾 (𝐻−2,𝐻 ) ≠ 0)
𝑃𝐻−2∑︁
𝑝=1

( 𝑑 (0,𝐻−2)
𝑝 +𝑑 (𝐻−2,𝐻 )

𝑝∏
ℓ=1

𝑫 (ℓ )𝑾 (ℓ )
)

(node 𝐻 − 2) (19)

+ · · · (20)

+ 1(𝑾 (1,𝐻 ) ≠ 0)
𝑃1∑︁
𝑝=1

( 𝑑 (0,1)
𝑝 +𝑑 (1,𝐻 )

𝑝∏
ℓ=1

𝑫 (ℓ )𝑾 (ℓ )
)

(node 1) (21)

+ 1(𝑾 (0,𝐻 ) ≠ 0) (𝑫 (0,𝐻 )𝑾 (0,𝐻 ) )𝑑 (0,𝐻 )
(node 0) (22)

=

∑𝐻−1
ℎ=0

1(𝑾 (ℎ,𝐻 ) ≠ 0)𝑃ℎ∑︁
𝑝=1

( 𝑑 (0,𝐻 )
𝑝∏
ℓ=1

𝑫 (ℓ )𝑾 (ℓ )
)

(23)

=

𝑃𝐻∑︁
𝑝=1

𝑑
(0,𝐻 )
𝑝∏
ℓ=1

𝑫 (ℓ )𝑾 (ℓ )
(24)

Next, based on the Proposition C.2 in (Hanin et al., 2021), we know that∫
2𝜋

0

E∥𝑫 (ℓ )𝑾 (ℓ )𝑿 (ℓ−1) ∥𝑑𝜃 = 1 − 5

8𝑚
+𝑂 (𝑚−2),

where the expectation is taken over the weight distribution. Therefore, we can conclude:

∫
2𝜋

0

E [∥J(𝜃 )∥] 𝑑𝜃 =

∫
2𝜋

0

𝑃𝐻∑︁
𝑝=1

𝑑
(0,𝐻 )
𝑝∏
ℓ=1

E∥𝑫 (ℓ )𝑾 (ℓ )𝑿 (ℓ−1) ∥𝑑𝜃

= 𝐶 ·
𝑃𝐻∑︁
𝑝=1

exp

[
−5
8

𝑑𝑝

𝑚
+𝑂

(
𝑑𝑝

𝑚2

)]
,

(25)

where 𝐶 =
Γ(𝑚+1

2
)

Γ(𝑚
2
) (𝑚

2
)1/2

,𝑚 is the hidden layer width (Eq. 2), and Γ(·) denotes the Gamma function.

□
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D.2 Proof of Corollary 4.2

We first give the general definition of manifold curvature.

Lemma D.1 (Curvature of Curves (Lee, 2006)). Consider a curve in Riemannian manifold𝑀 , that is a
map 𝑿 (𝐻 ) (𝜃 ) : 𝐼 → 𝑀 , where 𝐼 ⊂ R is some interval. Define J(𝜃 ) = 𝜕𝜃𝑿 (𝐻 ) (𝜃 ), i.e. the input-output
Jacobian of the map 𝑿 (𝐻 ) . We have the curvature of the curve as

𝜅 (𝜃 ) = ∥J(𝜃 )∥−3
√︃
∥J(𝜃 )∥2∥𝜕𝜃 J(𝜃 )∥2 − (J(𝜃 ) · 𝜕𝜃 J(𝜃 ))2 . (26)

Lemma D.1 is also used in (Poole et al., 2016) to characterize the expressivity of networks.

Corollary 4.2 (Curvature and Jacobian). For a ReLU network, we have its curvature as the reciprocal
of the norm of the input-output Jacobian:

𝜅 (𝜃 ) = ∥J(𝜃 )∥−1 (27)

Proof of Corollary 4.2. Note that we have J𝑿 (0) =
∏𝐿

ℓ=1 𝐷
(ℓ )𝑊 (ℓ )

and 𝜕𝜃 J𝑿 (0) = 0. Therefore:

J𝜃 = J𝑿 (0) ·
𝜕𝑿 (0)

𝜕𝜃
=
√︁
𝑁0 [−u0 sin(𝜃 ) + u1 cos(𝜃 )] · J𝑿 (0)

𝜕𝜃 J𝜃 =
𝜕J𝑿 (0)

𝜕𝜃
· 𝜕𝑿

(0)

𝜕𝜃
+ J𝑿 (0) ·

𝜕2𝑿 (0)

𝜕𝜃 2

= 0 · 𝜕𝑿
(0)

𝜕𝜃
+
√︁
𝑁0 [−u0 cos(𝜃 ) − u1 sin(𝜃 )] · J𝑿 (0)

= −
√︁
𝑁0 [u0 cos(𝜃 ) + u1 sin(𝜃 )] · J𝑿 (0)

(28)

Given u0 and u1 are orthonormal bases, and based on the definition in D.1, we have:

𝜅 (𝜃 ) = ∥J(𝜃 )∥−3
√︁
∥J(𝜃 )∥2∥𝜕𝜃 J(𝜃 )∥2 − (J(𝜃 ) · 𝜕𝜃 J(𝜃 ))2

= ∥J(𝜃 )∥−3
√︃
𝑁0∥J𝑿 (0) ∥2 · 𝑁0∥J𝑿 (0) ∥2 − (𝑁0(sin(𝜃 ) cos(𝜃 ) − cos(𝜃 ) sin(𝜃 ))∥J𝑿 (0) ∥2)2

= ∥J(𝜃 )∥−1
(29)

□

E Convergence
We first follow the definition of 𝑓 in (Chen et al., 2022) that characterizes how NNGP kernel

propagates through ReLU layers:

Lemma E.1 (Propagation of 𝑲 (Chen et al., 2022)). Let ReLU activation 𝜎 (𝑥) = max{0, 𝑥} and 𝑐𝜎 = 2.
Define the propagation as 𝑲 (𝑙 ) = 𝑓 (𝑲 (𝑙−1) ) and 𝒃 (𝑙 ) = 𝑔(𝒃 (𝑙−1) ). When the edge operation is a linear
transformation, we have:

𝑲 (𝑙 )
𝑖𝑖

= 𝑓 (𝑲 (𝑙−1)
𝑖𝑖

) = 𝑲 (𝑙−1)
𝑖𝑖

𝑲 (𝑙 )
𝑖 𝑗

= 𝑓 (𝑲 (𝑙−1)
𝑖 𝑗

) = ℎ(𝑪 (𝑙−1)
𝑖 𝑗

)
√︃
𝑲 (𝑙 )
𝑖𝑖

𝑲 (𝑙 )
𝑗 𝑗

=
2𝑪 (𝑙−1)

𝑖 𝑗
arcsin 𝑪 (𝑙−1)

𝑖 𝑗
+ 2

√︃
1 − (𝑪 (𝑙−1)

𝑖 𝑗
)2 + 𝜋𝑪 (𝑙−1)

𝑖 𝑗

2𝜋
·√︃

𝑲 (𝑙 )
𝑖𝑖

𝑲 (𝑙 )
𝑗 𝑗

𝑪 (𝑙 )
𝑖 𝑗

= 𝑲 (𝑙 )
𝑖 𝑗

/
√︃
𝑲 (𝑙 )
𝑖𝑖

𝑲 (𝑙 )
𝑗 𝑗

𝒃 (𝑙 )
𝑖

= 𝑔(𝒃 (𝑙−1)
𝑖

) =
√
𝑐𝜎

2

.

(30)
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We re-state some facts:

• ℎ(·) is a monotonically increasing function in [0, 1), and lim
𝑪 (𝑙−1)
𝑖 𝑗

→1− ℎ(𝑪
(𝑙−1)
𝑖 𝑗

) = 1 (Hayou et al.,

2019).

• 𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

) reflects how NNGP propagates through a path, and 𝑓 (𝑲 (𝑙−1)
𝑖 𝑗

) > 𝑲 (𝑙−1)
𝑖 𝑗

.

E.1 Proof of Theorem 4.4

We first give a condition where the propagation of the sum of multiple NNGP kernels equals to the

sum of individual propagations of NNGP kernels.

Corollary E.1. Given a graph of nodes 0, 1, · · · , 𝐻 , assume ∀𝑝1, 𝑝2 ∈ [1, 𝑃𝐻 ], 𝑝1 ≠ 𝑝2, we have
𝑑𝑝1 = 𝑑𝑝2 , then we have:

𝑓 (
𝑃𝐻∑︁
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0) )) =
𝑃𝐻∑︁
𝑝=1

𝑓 (𝑓 𝑑𝑝 (𝑲 (0) )) . (31)

Proof of Corollary E.1. Denote 𝑑 = 𝑑𝑝 for 𝑝 ∈ [1, 𝑃𝐻 ]. Based on Lemma F.4, we have:

𝑓 (
𝑃𝐻∑︁
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

)) = 𝑓 (𝑃𝐻 · 𝑓 𝑑 (𝑲 (0)
𝑖 𝑗

))

= ℎ(
𝑃𝐻 · 𝑓 𝑑 (𝑲 (0)

𝑖 𝑗
)√︃

𝑃𝐻 · 𝑓 𝑑 (𝑲 (0)
𝑖𝑖

) · 𝑃𝐻 · 𝑓 𝑑 (𝑲 (0)
𝑗 𝑗

)
)
√︃
𝑓 (𝑃𝐻 · 𝑓 𝑑 (𝑲 (0)

𝑖𝑖
)) · 𝑓 (𝑃𝐻 · 𝑓 𝑑 (𝑲 (0)

𝑗 𝑗
))

= ℎ(
𝑓 𝑑 (𝑲 (0)

𝑖 𝑗
)√︃

𝑓 𝑑 (𝑲 (0)
𝑖𝑖

) · 𝑓 𝑑 (𝑲 (0)
𝑗 𝑗

)
)
√︁
𝑃𝐻 · 𝑃𝐻

= 𝑃𝐻 · 𝑓 (𝑓 𝑑 (𝑲 (0)
𝑖 𝑗

)) =
𝑃𝐻∑︁
𝑝=1

𝑓 (𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

))

(32)

□

Remark E.2. Below, we assume that all paths that end at any intermediate node have the same depth

(i.e., have the same number of ReLU layer), where the Corollary E.1 will hold at any intermediate

node ℎ ∈ [0, 𝐻 ].

Theorem 4.4 (𝜆min(𝑲 (𝐻 ) ) of Architectures). For ReLU networks in our architecture space (Figure 2)
of nodes 0, 1, · · · , 𝐻 . The total number of end-to-end paths is 𝑃𝐻 , and the depth of each path is 𝑑𝑝
(𝑝 = 1, · · · , 𝑃𝐻 ). The least eigenvalue of NNGP kernel of this network is:

𝜆min(𝑲 (𝐻 ) ) ≤ min

𝑖≠𝑗

[
𝑃𝐻 −

𝑃𝐻∑︁
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

)
]

𝑖, 𝑗 ∈ [1, 𝑁 ] . (33)

Proof of Theorem 4.4. We adopt the similar idea in our proof in Section D.1.

We first use induction to prove that given a graph of nodes 0, 1, · · · , 𝐻 , its NNGP kernel at 𝑿 (𝐻 )

is:

𝑲 (𝐻 ) =
𝑃𝐻∑︁
𝑝=1

𝑓 𝑑
(0,𝐻 )
𝑝 (𝑲 (0) ) .

1. Suppose for a network of 𝐻 − 1 nodes, its NNGP kernel at 𝑿 (𝐻−1)
has

𝑲 (𝐻−1) =
∑𝑃𝐻−1

𝑝=1
𝑓 𝑑

(0,𝐻−1)
𝑝 (𝑲 (0) ).
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2. Now we add one more node 𝐻 . We can add one edge from each of previous nodes 0, · · · , 𝐻 − 1

to this new node 𝐻 .

3. For example, for the node 𝐻 − 1, the newly added edge contributes to the NNGP kernel with

1(𝑾 (𝐻−1,𝐻 ) ≠ 0) · 𝑓 𝑑 (𝐻−1,𝐻 ) (𝑲 (𝐻−1) ), where the depth from node 𝐻 − 1 to 𝐻 is 𝑑 (𝐻−1,𝐻 ) = 1 if

this edge is a “linear + ReLU” layer, or 𝑑 (𝐻−1,𝐻 ) = 0 if this edge is a skip-connection (we define

𝑓 0(𝑲 ) = 1).

4. Thus, after adding the new edge, the NNGP kernel from the node 𝐻 − 1 to node 𝐻 is

𝑲 (𝐻 ) = 1(𝑾 (𝐻−1,𝐻 ) ≠ 0) · 𝑓 𝑑 (𝐻−1,𝐻 ) ( ∑𝑃𝐻−1
𝑝=1

𝑓 𝑑
(0,𝐻−1)
𝑝 (𝑲 (0) )

)
.

5. Based on Corollary E.1, we have:

𝑲 (𝐻 ) = 1(𝑾 (𝐻−1,𝐻 ) ≠ 0) ·
𝑃𝐻−1∑︁
𝑝=1

𝑓 𝑑
(𝐻−1,𝐻 ) (𝑓 𝑑

(0,𝐻−1)
𝑝 (𝑲 (0) )) .

6. We can merge 𝑑
(0,𝐻−1)
𝑝 and 𝑑 (𝐻−1,𝐻 )

to complete a new path that starts at node 0 and ends at node

𝐻 , whose depth is 𝑑
(0,𝐻 )
𝑝 . Therefore, we have 𝑲 (𝐻 ) = 1(𝑾 (𝐻−1,𝐻 ) ≠ 0) · ∑𝑃𝐻−1

𝑝=1
𝑓 𝑑

(0,𝐻 )
𝑝 (𝑲 (0) ).

Now, consider all nodes 1, · · · , 𝐻 − 1, we can write the new NNGP kernel as:

𝑲 (𝐻 ) = 1(𝑾 (𝐻−1,𝐻 ) ≠ 0)
𝑃𝐻−1∑︁
𝑝=1

𝑓 𝑑
(0,𝐻 )
𝑝 (𝑲 (0) )(node 𝐻 − 1) (34)

+ 1(𝑾 (𝐻−2,𝐻 ) ≠ 0)
𝑃𝐻−2∑︁
𝑝=1

𝑓 𝑑
(0,𝐻 )
𝑝 (𝑲 (0) ) (node 𝐻 − 2) (35)

+ · · · (36)

+ 1(𝑾 (1,𝐻 ) ≠ 0)
𝑃1∑︁
𝑝=1

𝑓 𝑑
(0,𝐻 )
𝑝 (𝑲 (0) ) (node 1) (37)

+ 1(𝑾 (0,𝐻 ) ≠ 0) 𝑓 𝑑 (0,𝐻 ) (𝑲 (0) ) (node 0) (38)

=

∑𝐻−1
ℎ=0

1(𝑾 (ℎ,𝐻 ) ≠ 0)𝑃ℎ∑︁
𝑝=1

(
𝑓 𝑑

(0,𝐻 )
𝑝 (𝑲 (0) )

)
(39)

=

𝑃𝐻∑︁
𝑝=1

𝑓 𝑑
(0,𝐻 )
𝑝 (𝑲 (0) ) (40)

Note that for diagonal elements (inner product of features from the same sample), since 𝑲 (0)
𝑖𝑖

= 1

and 𝑓 𝑑 (𝑲 (0)
𝑖𝑖

) = 1 for any 𝑑 > 0, we have 𝑲 (𝐻 )
𝑖𝑖

= 𝑃𝐻 (𝑖 ∈ [1, 𝑁 ]). Therefore, we have:

𝜆min(𝑲 (𝐻 )
2×2 ) = min

𝑖≠𝑗
𝑃𝐻 − 𝑲 (𝐻 )

𝑖 𝑗

= min

𝑖≠𝑗

[
𝑃𝐻 −

𝑃𝐻∑︁
𝑝=1

𝑓 𝑑
(0,𝐻 )
𝑝 (𝑲 (0)

𝑖 𝑗
)
]

𝑖, 𝑗 ∈ [1, 𝑁 ],
(41)

where 𝑲 (𝐻 )
2×2 denotes any 2 × 2 submatrix of 𝑲 (𝐻 )

. From Lemma 3.3 in (Chen et al., 2022), we also

have 𝜆min(𝑲 ) ≤ min𝑖≠𝑗 𝜆min(𝑲2×2). This complete the proof. □
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F Generalization

F.1 Proof of Theorem 4.5

Proof. Here we provide a high-level proof for the generalization bound of architecture. Before

giving the proof of Theorem 4.5, we first introduce several lemmas inspired by Cao and Gu (2019).

Lemma F.1. There exists an absolute constant 𝜅 such that, with probability at least 1 − 𝑂 (𝑛𝐿2) ·
exp[−Ω(𝑚𝜔2/3𝐿)] over the randomness of 𝑾 (1) , where 𝐿 =

∑𝑃𝐻
𝑝=1

𝑑𝑝 , for all 𝑖 ∈ [𝑛] and 𝑾 ,𝑾 ′ ∈
B(𝑾 (1) , 𝜔) with 𝜔 ≤ 𝜅𝐿−6 [log(𝑚)]−3/2, it holds uniformly that

|𝑓𝑾 ′ (𝒙𝑖) − 𝑓𝑾 (𝒙𝑖) − ⟨∇𝑓𝑾 (𝒙𝑖),𝑾 ′ −𝑾⟩| ≤ 𝑂
(
𝜔1/3𝐿2

√︁
𝑚 log(𝑚)

)
·
𝐿−1∑︁
𝑙=1

∥𝑾 (𝑙 ′ ) −𝑾 (𝑙 ) ∥2.

Note that 𝐿 =
∑𝑃𝐻

𝑝=1
𝑑𝑝 considers all the operations of trainable parameters. Since the cross-

entropy loss ℓ (·) is convex, given Lemma F.1, we can show in the following lemma that near

initialization, 𝐿𝑖 (𝑾 ) is also almost a convex function of𝑾 for any 𝑖 ∈ [𝑛].
Lemma F.2. There exists an absolute constant 𝜅 such that, with probability at least 1 − 𝑂 (𝑛𝐿2) ·
exp[−Ω(𝑚𝜔2/3𝐿)] over the randomness of 𝑾 (1) , for any 𝜖 > 0, 𝑖 ∈ [𝑛] and 𝑾 ,𝑾 ′ ∈ B(𝑾 (1) , 𝜔)
with 𝜔 ≤ 𝜅𝐿−6𝑚−3/8 [log(𝑚)]−3/2𝜖3/4, it holds uniformly that

𝐿𝑖 (𝑾 ′) ≥ 𝐿𝑖 (𝑾 ) + ⟨∇𝑾𝐿𝑖 (𝑾 ),𝑾 ′ −𝑾⟩ − 𝜖.

We then derive a bound of the cumulative loss. The result is given in the following lemma.

Lemma F.3. For any 𝜖, 𝛿, 𝑅 > 0, there exists

𝑚∗(𝜖, 𝛿, 𝑅, 𝐿) = �̃�
(
poly(𝑅, 𝐿)

)
· 𝜖−14 · log(1/𝛿)

such that if𝑚 ≥ 𝑚∗(𝜖, 𝛿, 𝑅, 𝐿), then with probability at least 1 − 𝛿 over the randomness of𝑾 (1) , for
any 𝑾∗ ∈ B(𝑾 (1) , 𝑅𝑚−1/2), 𝑾 (1) , . . . ,𝑾 (𝑇 ) with 𝜂 = 𝜈𝜖/(𝐿𝑚), 𝑛 = 𝐿2𝑅2/(2𝜈𝜖2) for some small
enough absolute constant 𝜈 has the following cumulative loss bound:∑𝑛

𝑖=1𝐿𝑖 (𝑾 (𝑖 ) ) ≤ ∑𝑛
𝑖=1𝐿𝑖 (𝑾∗) + 3𝑛𝜖.

With the above lemmas at hand, we can apply Corollary 3.10. in (Cao and Gu,

2019), which states that: For any 𝛿 ∈ (0, 𝑒−1], there exists �̃�(𝛿, 𝐿, 𝑛, 𝜆min(𝑮 (𝐻 ) )) =

𝑂 (poly(𝐿, 1/𝜆min(𝑮 (𝐻 ) )))𝑛7 log(1/𝛿) that only depends on 𝛿, 𝐿, 𝑛 and 𝜆min(𝑮 (𝐻 ) ), such that if

𝑚 ≥ �̃�(𝛿, 𝐿, 𝑛, 𝜆min(𝑮 (𝐻 ) )). Then with probability at least 1− 𝛿 over the randomness of𝑾 , the out-

put of SGD with step size 𝜂 = 𝜅 ·
√︁
𝒚⊤(𝑮 (𝐻 ) )−1𝒚/(𝑚

√
𝑛) for some small enough absolute constant

𝜅 satisfies,

𝐿D (𝑓 ) ≤ 𝑂
(
𝐿 ·

√︂
𝒚⊤(𝑮 (𝐻 ) )−1(𝑿 ,𝑿 )𝒚

𝑛

)
+𝑂

(√︂
log(1/𝛿)

𝑛

)
(42)

where 𝐿 =
∑𝑃𝐻

𝑝=1
𝑑𝑝 is the total depth in a graph, 𝑮 (𝐻 )

denotes the NTK of the architecture. We use

𝑂 (·) to hide the logarithmic factors in 𝑂 (·).
We can apply the above bound to the graph structure, in which the depth is defined as the

number of linear transform operations, i.e., 𝐿 =
∑𝑃𝐻

𝑝=1
𝑑𝑝 , and 𝑅 =

√︁
𝒚⊤(𝑮 (𝐻 ) )−1(𝑿 ,𝑿 )𝒚. Therefore,

we can achieve the following final result:

𝐿D (𝑓 ) ≤ 𝑂
( [
(
𝑃𝐻∑︁
𝑝=1

𝑑𝑝) ·
√︂
𝒚⊤(𝑮 (𝐻 ) )−1(𝑿 ,𝑿 )𝒚

𝑛

] )
+𝑂

(√︂
log(1/𝛿)

𝑛

)
. (43)

□
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F.2 Propagation of NTK of Architectures

In the last section, we present a generalization bound of an architecture through NTK, here we

illustrate how to obtain the NTK recursively and provide the essential definitions.

The definition of NTK of an architecture is given as follows:

𝑮 (𝐻 ) =

〈
𝜕𝑿 (𝐻 )

𝜕𝑾
,
𝜕𝑿 (𝐻 )

𝜕𝑾

〉
(44)

where𝑾 is the collection of all weights. Then we can recursively compute the NTK from the NNGP

(Jacot et al., 2018; Arora et al., 2019c):

𝑮 (ℎ) = 𝑲 (ℎ) + ¤𝑲 (ℎ)𝑮 (ℎ−1) (ℎ ∈ [1, 𝐻 ]), 𝑮 (0) = 𝑲 (0)
(45)

where ¤𝑲 (ℎ) = ⟨ ¤𝜌 (𝑾 (ℎ−1,ℎ)𝑿 (ℎ−1) ), ¤𝜌 (𝑾 (ℎ−1,ℎ)𝑿 (ℎ−1) )⟩.
By Eq. 45, we can recursively compute the NTK 𝑮 (𝐻 )

from 𝑲 (0)
through 𝑲 and ¤𝑲 .

Finally, we provide the definition of
¤𝑓 given in the main text by the follow lemma.

Lemma F.4 (Propagation of ¤𝑲 ). Let ReLU activation 𝜎 (𝑥) = max{0, 𝑥} and 𝑐𝜎 = 2. Define the
propagation as ¤𝑲 (𝑙 ) = ¤𝑓 (𝑲 (𝑙−1) ). When the edge operation is a linear transformation, we have:

¤𝑲 (𝑙 )
𝑖𝑖

≡ ¤𝑓 (𝑲 (𝑙−1)
𝑖𝑖

) = 1

¤𝑲 (𝑙 )
𝑖 𝑗

= ¤𝑓 (𝑲 (𝑙−1)
𝑖 𝑗

) =
arcsin 𝑪 (𝑙−1)

𝑖 𝑗

𝜋
+ 1

2

𝑪 (𝑙 )
𝑖 𝑗

= 𝑲 (𝑙 )
𝑖 𝑗

/
√︃
𝑲 (𝑙 )
𝑖𝑖

𝑲 (𝑙 )
𝑗 𝑗

(46)

Proof. According to NNGP propagation formulation (Lee et al., 2017), we have

𝑲 (𝑙 )
𝑖𝑖

=

∫
𝑐𝜎D𝑧𝜎 (

√︃
𝑲 (𝑙 )
𝑖𝑖
𝑧)

𝑲 (𝑙 )
𝑖 𝑗

=

∫
𝑐𝜎D𝑧1D𝑧2𝜎 (𝑢)𝜎 (𝑣)

(47)

where 𝑢 =

√︃
𝑲 (𝑙−1)
𝑖𝑖

𝑧1 and 𝑣 =

√︃
𝑲 (𝑙−1)
𝑗 𝑗

(
𝑪 (𝑙−1)
𝑖 𝑗

𝑧1 +
√︃
1 − (𝑪 (𝑙−1)

𝑖 𝑗
)2𝑧2

)
, with 𝑪 (𝑙 )

𝑖 𝑗
= 𝑲 (𝑙 )

𝑖 𝑗
/
√︃
𝑲 (𝑙 )
𝑖𝑖

𝑲 (𝑙 )
𝑗 𝑗

,

where 𝑧1 and 𝑧2 are independent differential variables. Besides,
∫
D𝑧 =

1√
2𝜋

∫
𝑑𝑧𝑒−

1

2
𝑧2
is the measure

for a normal distribution.

Then we take the condition that 𝜎 (𝑥) = max{0, 𝑥} and 𝑐𝜎 = 2 into equations above and obtain

¤𝑲 (𝑙 )
𝑖𝑖

=

∫
𝑐𝜎D𝑧 ¤𝜎2(

√︃
𝑲 (𝑙−1)
𝑖𝑖

𝑧) =
∫ ∞

0

2D𝑧 = 1 (48)

Besides, for diagonal elements, we have

𝑪 (𝑙 )
𝑖 𝑗

≡ ℎ(𝑪 (𝑙−1)
𝑖 𝑗

) =
2𝑪 (𝑙−1)

𝑖 𝑗
arcsin 𝑪 (𝑙−1)

𝑖 𝑗
+ 2

√︃
1 − (𝑪 (𝑙−1)

𝑖 𝑗
)2 + 𝜋𝑪 (𝑙−1)

𝑖 𝑗

2𝜋
(49)

It is known that 𝑓 is differentiable and satisfies,

¤𝑓 (𝑲 (𝑙−1)
𝑖 𝑗

) = ¤ℎ(𝑪 (𝑙−1)
𝑖 𝑗

) = 1

𝜋
arcsin(𝑪 (𝑙−1)

𝑖 𝑗
) + 1

2

(50)

□

The lemma above provides the definition for
¤𝑓 , and indicates that

¤𝑓 (𝑲𝑖 𝑗 ) ∈ [0, 1) given 𝑲𝑖 𝑗 ∈
[0, 1).
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F.3 Proof of Theorem 4.6

Theorem 4.6 (𝜆min(𝑮 (𝐻 ) ) of Architectures). For ReLU networks in our architecture space (Figure 2)
of nodes 0, 1, · · · , 𝐻 . The total number of end-to-end paths is 𝑃𝐻 , and the depth of each path is 𝑑𝑝
(𝑝 = 1, · · · , 𝑃𝐻 ). The least eigenvalue of NTK kernel of this network is:

𝜆min (𝑮 (𝐻 ) ) ≤ min

𝑖≠𝑗

[
𝑃𝐻 −

𝑃𝐻∑︁
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

) +
𝑃𝐻∑︁
𝑝=1

𝑑𝑝 −
𝑃𝐻∑︁
𝑝=1

𝑑𝑝∑︁
𝑒=1

𝑓 𝑒 (𝑲 (0)
𝑖 𝑗

)
𝑒∏

𝑘=1

¤𝑓 𝑘 (𝑲 (0)
𝑖 𝑗

)
]

𝑖, 𝑗 ∈ [1, 𝑁 ] . (51)

Proof. In the proof, we follow Corollary E.1. According to the propagation function presented in

Section F.2, we know that NTK at 𝑿 (𝐻 )
is based on NNGP:

𝑮 (𝐻 ) = 𝑲 (𝐻 ) + ¤𝑲 (𝐻 )𝑮 (𝐻−1) =
𝑃𝐻∑︁
𝑝=1

𝑓 𝑑
(0,𝐻 )
𝑝 (𝑲 (0) ) + ¤𝑲 (𝐻 )𝑮 (𝐻−1)

(52)

The first equation is expanded from the recursive expression for NTK and the second equation

is obtained by plugging the result for 𝑲 (𝐻 )
in the proof of Theorem 4.4. Note that the first∑𝑃𝐻

𝑝=1
𝑓 𝑑

(0,𝐻 )
𝑝 (𝑲 (0) ) is fixed when the parameters of the architecture {𝑑𝑝 , 𝑃𝐻 } are given. However,

the second term varies with the specific configuration of the architecture. In particular, the explicit

form of 𝜆min( ¤𝑲 (𝐻 )𝑮 (𝐻−1) ) will vary in different combinations of skip connections and “linear +

ReLU” layers.

The next step is to calculate the exact contribution of the second term in the recursive formula Eq.

52. Our goal is to find an upper bound for the smallest eigenvalue of all graph structures that satisfy

the given parameters {𝑑𝑝 , 𝑃𝐻 }. Intuitively, to preserve more contributions from ¤𝑲 (ℎ)𝑮 (ℎ−1) (ℎ ∈
[1, 𝐻 ]), we need to put “linear + ReLU” operation in deeper layers, while leaving skip connections in

shallower layers. To this end, we follow a proof strategy from deep to early layers in an architecture:

1. According to Lemma F.4, we have ¤𝑲 (𝐻 )
𝑖𝑖

= 1 > ¤𝑲 (𝐻 )
𝑖 𝑗

> 0, which implies that

𝜆min(( ¤𝑲 (𝐻 )𝑮 (𝐻−1) )2×2) > 0 when the edge in an architecture is a “linear + ReLU” layer, oth-

erwise ¤𝑲 (𝐻 ) = 0. Thus, to maximize the 𝜆min(( ¤𝑲 (𝐻 )𝑮 (𝐻−1) )2×2), the edge from node 𝐻 − 1 to

node 𝐻 should be a “linear + ReLU” layer.

2. Now consider 𝑮𝐻−1 = 𝑲𝐻−1 + ¤𝑲𝐻−1𝑮𝐻−2 =
∑𝑃𝐻−1

𝑝=1
𝑓 𝑑

(0,𝐻−1)
𝑝 (𝑲 (0) ) + ¤𝑲𝐻−1𝑮𝐻−2

. Again, to

maximize the 𝜆min(( ¤𝑲 (𝐻−1)𝑮 (𝐻−2) )2×2), the edge from node 𝐻 − 1 to node 𝐻 should be “linear

+ ReLU” layer.

3. Repeat the above step 𝑑𝑝 − 1 times until 𝑮𝐻−𝑑𝑝+1
, which satisfies 𝑮𝐻−𝑑𝑝+1 = 𝑲𝐻−𝑑𝑝+1 +

¤𝑲𝐻−𝑑𝑝+1𝑮𝐻−𝑑𝑝 =
∑𝑃𝐻−𝑑𝑝+1

𝑝=1
𝑓 𝑑

(0,𝐻−1)
𝑝 (𝑲 (0) ) + ¤𝑲𝐻−𝑑𝑝+1𝑮𝐻−𝑑𝑝

. Again, to maximize the

𝜆min(( ¤𝑲 (𝐻−𝑑𝑝+1)𝑮 (𝐻−𝑑𝑝 ) )2×2), the edge from node 𝐻 −𝑑𝑝 to node 𝐻 −𝑑𝑝 + 1 should be “linear +

ReLU” layer.

As a result, we obtain the structure of the architecture that can maximize the smallest eigenvalue

of NTK. Finally, we have

𝜆min(( ¤𝑲 (𝐻 )𝑮 (𝐻−1) )2×2) ≤
𝑃𝐻∑︁
𝑝=1

𝑑𝑝 −
𝑃𝐻∑︁
𝑝=1

𝑑𝑝∑︁
𝑒=1

𝑓 𝑒 (𝑲 (0)
𝑖 𝑗

)
𝑒∏

𝑘=1

¤𝑓 𝑘 (𝑲 (0)
𝑖 𝑗

) (53)

The first term of right hand side is from diagonal element of ¤𝑲 (𝐻 )𝑮 (𝐻−1)
and second term of right

hand side comes from non-diagonal element of ¤𝑲 (𝐻 )𝑮 (𝐻−1)
, where there is 𝑑𝑝 terms for summation
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and the product is due to the recursive formula. Plug this result back to Eq. 52, we have

𝜆min(𝑮 (𝐻 )
2×2 ) ≤ 𝑃𝐻 −

𝑃𝐻∑︁
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

) +
𝑃𝐻∑︁
𝑝=1

𝑑𝑝 −
𝑃𝐻∑︁
𝑝=1

𝑑𝑝∑︁
𝑒=1

𝑓 𝑒 (𝑲 (0)
𝑖 𝑗

)
𝑒∏

𝑘=1

¤𝑓 𝑘 (𝑲 (0)
𝑖 𝑗

) (54)

From Lemma 3.3 in (Chen et al., 2022), we finally have,

𝜆min (𝑮 (𝐻 ) ) ≤ min

𝑖≠𝑗

[
𝑃𝐻 −

𝑃𝐻∑︁
𝑝=1

𝑓 𝑑𝑝 (𝑲 (0)
𝑖 𝑗

) +
𝑃𝐻∑︁
𝑝=1

𝑑𝑝 −
𝑃𝐻∑︁
𝑝=1

𝑑𝑝∑︁
𝑒=1

𝑓 𝑒 (𝑲 (0)
𝑖 𝑗

)
𝑒∏

𝑘=1

¤𝑓 𝑘 (𝑲 (0)
𝑖 𝑗

)
]

𝑖, 𝑗 ∈ [1, 𝑁 ] . (55)

□
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