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Figure 1: Representative results showcase the capabilities of DynalP in: (a) Scalable zero-shot
personalized text-to-image generation—spanning single-subject to multi-subject—trained solely
on single-subject datasets. (b) Flexible control on the visual granularity of concept preservation,
enabled by modulating fusion coefficients for image features across hierarchical levels. (c) Native
compatibility with base model extensions, unlocking diverse application scenarios.

ABSTRACT

Personalized Text-to-Image (PT2I) generation aims to produce customized im-
ages based on reference images. A prominent interest pertains to the integration
of an image prompt adapter to facilitate zero-shot PT2I without test-time fine-
tuning. However, current methods grapple with three fundamental challenges: 1.
the elusive equilibrium between Concept Preservation (CP) and Prompt Follow-
ing (PF), 2. the difficulty in retaining fine-grained concept details in reference
images, and 3. the restricted scalability to extend to multi-subject personalization.
To tackle these challenges, we present Dynamic Image Prompt Adapter (DynalP),
a cutting-edge plugin to enhance the fine-grained concept fidelity, CP-PF balance,
and subject scalability of state-of-the-art T2I multimodal diffusion transformers
(MM-DiT) for PT2I generation. Our key finding is that MM-DiT inherently ex-
hibit decoupling learning behavior when injecting reference image features into
its dual branches via cross attentions. The noisy image branch selectively captures
the concept-specific information of the reference image, while the text branch
learns concept-agnostic information. Based on this, we design an innovative Dy-
namic Decoupling Strategy that removes the interference of concept-agnostic in-
formation during inference, significantly enhancing the CP-PF balance and further
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bolstering the scalability of multi-subject compositions. Moreover, we identify
the visual encoder as a key factor affecting fine-grained CP and reveal that the
hierarchical features of commonly used CLIP can capture visual information at
diverse granularity levels. Therefore, we introduce a novel Hierarchical Mixture-
of-Experts Feature Fusion Module to fully leverage the hierarchical features of
CLIP, remarkably elevating the fine-grained concept fidelity while also providing
flexible control of visual granularity. Extensive experiments across single- and
multi-subject PT2I tasks verify that our DynalP outperforms existing approaches,
marking a notable advancement in the field of PT2I generation.

1 INTRODUCTION

Recent advances in denoising diffusion models (Ho et al., [2020) have led to remarkable success in
Text-to-Image (T2I) generation, where State-of-the-Art (SOTA) models (Esser et al.l [2024; [Labs,
2024) can produce visually plausible, high-quality images based on textual prompts. Subsequent
researches have extended T2I to Personalized Text-to-Image (PT2I) generation (Gal et al., [2023;
Ruiz et al.l 2023} Shi et al., [2024), which aims to synthesize customized images based on both
reference images and text prompts, ensuring that objects (e.g., persons, animals) in the generated
images maintain specific concept characteristics.

Pioneering PT2I methods, represented by DreamBooth (Ruiz et al.,[2023)) and Textual Inversion (Gal
et al.||2023)), primarily relied on fine-tuning models or specific text embeddings, often suffering from
low efficiency. To reduce usage cost, recent attention has shifted towards finetuning-free paradigms,
as exemplified by IP-Adapter (Ye et al., [2023) and OminiControl (Tan et al.| [2025)), which achieve
zero-shot personalization via engineered decoupled cross-attention or multimodal joint attention
mechanisms. Furthermore, there are several works (Xiao et al., [2024a; Wang et al., 2025; Huang
et al.| 2025) have extended Single-Subject PT2I (SS-PT2I) to Multi-Subject PT2I (MS-PT2I).

In this work, we are interested in the adapter-based methods (Ye et al.| |2023; |Wang et al., 2025;
Huang et al.| 2025; Kong et al.| [2025)) owing to their intrinsic high flexibility and low computational
complexity. Methods within this paradigm generally extract features from reference images via a
visual encoder (Radford et al.| 2021) and subsequently inject them into the cross-attention layers of
a T2I diffusion model. Although substantial advancements have been made, this line of approaches
are still confronted with three pivotal limitations:

1. Entanglement of concept-specific information (e.g., ID, shape, and textures) and concept-
agnostic information (e.g., posture, perspective, and illumination) in the injected reference
image features, leading to an irreconcilable trade-off between Concept Preservation (CP,
image & image consistency) and Prompt Following (PF, image & prompt consistency) in
generated results (Peng et al., 2025} |He et al.| [2025)), as shown in Fig. E] (a).

2. Insufficient fine-grained feature extraction from reference images, resulting in failure to
faithfully recover the intricate object details in customized outputs, as shown in Fig. [2(b).

3. Significant challenge to directly extend the capability of SS-PT2I to MS-PT2I. Existing ap-
proaches often heavily rely on well-curated large-scale multi-subject datasets (Xiao et al.|
20244a; |Wang et al., |2025)), or encounter pronounced inconsistency when composing mul-
tiple subjects via mask-guided feature injection (Ye et al |2023; [Team, 2024)), severely
impeding their scalability, as shown in Fig. 2] (c).

Facing the aforementioned challenges, in this work, we propose the Dynamic Image Prompt Adapter
(DynalP), aiming at improving the concept fidelity, CP-PF balance, and subject scalability of
adapter-based methods for PT2I generation tasks. Our DynalP serves as a cutting-edge plugin for
SOTA T2I multimodal diffusion transformers (MM-DiT) (Esser et al.| 2024} [Labs, 2024) and is
compatible with diverse extensions (e.g., ControlNet (Zhang et al 2023), LoRA (Hu et al.), and
Region Attention (Chen et al., [2024a))) of the same base model, as demonstrated in Fig.|I{(c).

The key insight is that the latest MM-DiT architecture inherently exhibits decoupling learning be-
havior when injecting reference image features into its dual branches via cross attentions. Specifi-
cally, the noisy image branch selectively captures the concept-specific information of the reference
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Figure 2: Limitations of existing adapter-based PT2I methods (e.g., (Ye et al. 2023} [Team)
2024} [He et al, [2025))), including (a) irreconcilable trade-off between CP and PF, (b) loss of fine-
grained concept details, and (c) restricted scalability to directly extend SS-PT2I to MS-PT2I via
mask-guided feature injection. Our proposed DynalP addresses all these challenges.

image, such as the subject’s ID and unique appearance, whereas the text branch learns the concept-
agnostic information, such as posture, perspective, and illumination. Based on this finding, we
design an innovative Dynamic Decoupling Strategy (DDS) that removes the interference of concept-
agnostic information during the inference phase. This dynamic isolation offers two key advantages:
(1) improving the prompt following while maintaining the concept preservation, and thus achieving
a better sweet spot between them, and (2) mitigating the visual integration inconsistency arising
from the retention of concept-agnostic information when extending SS-PT2I to MS-PT2I, thereby
significantly boosting the subject scalability.

Moreover, we believe that the key factor affecting fine-grained CP of reference images lies in the vi-

sual encoder. Existing methods (Ye et al., 2023} Xiao et al., 2024a; [Wang et al.| 2025} [Huang et al.|
2023) typically employ the CLIP (Radford et al., [2021) image encoder to extract relatively high-
level information from deep features of the final or penultimate layers. Unfortunately, these deep

features incur substantial loss of detailed information, rendering them inadequate for recovering the
fine-grained visual details of reference images. To address this gap, we first systematically investi-
gate the reconstruction capabilities of CLIP’s multi-layer features and reveal that these hierarchical
features can capture visual information at diverse granularity levels. Building on this insight, we
further propose a novel Hierarchical Mixture-of-Experts Feature Fusion Module (HMoE-FFM) to
fully harness CLIP’s hierarchical features. HMoE-FFM deploys layer-specific expert networks to
process hierarchical features and dynamically calibrates their fusion coefficients via a routing mech-
anism that adapts to the characteristics of each reference image. This approach not only enhances
the fidelity of fine-grained concept details but also facilitates precise modulation of visual granu-
larity. For instance, users can manually adjust the fusion coefficients of experts’ outputs, thereby
enabling flexible control over the granularity of concept preservation according to specific needs, as
demonstrated in Fig.[I] (b) and Sec.[B:4]

Overall, the contributions of our proposed DynalP can be summarized as follows:

* We identify an intrinsic decoupling learning behavior of the MM-DiT architecture and,
building on this insight, devise a Dynamic Decoupling Strategy to effectively disentangle
concept-specific information from concept-agnostic information within reference images.
This strategy significantly enhancing the CP-PF balance and further bolstering the scalabil-
ity of multi-subject compositions.

* We reveal that the hierarchical features of standard CLIP inherently encode visual informa-
tion across multiple granularities. Based on this, we propose a novel Hierarchical Mixture-
of-Experts Feature Fusion Module that dynamically integrates these multi-level features to
preserve both fine-grained visual details and semantic consistency. This module not only
enhances concept fidelity but also enables flexible control over visual granularity.

* Extensive experiments demonstrate the superior performance and broad application poten-
tial of DynalP. Our method outperforms SOTA approaches in attaining fine-grained con-
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cept fidelity and striking an optimal balance between CP and PF. Moreover, it exhibits
exceptional scalability: being directly extendable to MS-PT2I scenarios without requiring
additional training on multi-subject datasets, as demonstrated in Fig. [I] (a).

2 RELATED WORK

Please refer to Sec. [Alfor related work.

3 PRELIMINARY

3.1 MULTIMODAL DIFFUSION TRANSFORMER (MM-DIT)

MM-DiT was first proposed in Stable Diffusion 3 (Esser et al., |2024) and later applied in
FLUX.1 (Labs, [2024). It enhances the vanilla DiT (Peebles & Xie} 2023 (Chen et al.l 2024c) by
using a unified Multi-Modal Attention (MMA) mechanism to jointly process noisy image tokens
X € R™*4 and text tokens T € R™*?, Here, d represents the latent dimension, while m and n
represent the sequence lengths of image and text tokens, respectively.

Specifically, the MMA mechanism projects text and image tokens into position-encoded query Q =
[Qr, Qx], key K = [K7,Kx], and value V = [V, V x] representations, enabling cross-modal
attention computation across all tokens:

KT
MMA([T, X)) = softmasc(Q VWV = [TMMA x MMAY (1)
Vd
where [-, -] denotes the sequence concatenation. TMM4 and XMM4 are the new text and noisy

image tokens after MMA, respectively. The MMA allows both representations to operate within
their respective spaces while still taking the other into account.

3.2 IMAGE PROMPT ADAPTER FOR MM-DIT

Image Prompt Adapter (IP-Adapter) (Ye et al.| [2023)) is a lightweight method to endow pretrained
T2I diffusion models with the ability to utilize image prompts. Its core lies in a decoupled cross-
attention mechanism that distinctly separates the cross-attention layers for processing text features
and image features. The majority of prior works have predominantly relied on U-Net-based diffusion
models. When transferring to MM-DiT-based models, a vanilla solution (Team), [2024])) is computing
the Cross-Attention (CA) between noisy image tokens X and reference image tokens C' € R"*4
(Eq. (@)), as illustrated in Fig. 3| (a-b). Here, h represents the sequence length of reference image
tokens, which is typically extracted by a feature extraction model comprising a pretrained image
encoder (e.g., CLIP (Radford et al.,[2021)) and a trainable projection network.

QxK/[
Vd
where Qx is the query representation of noisy image tokens X in Eq. (I), while Ko and V¢ are

newly learned key and value representations obtained by linearly projecting the reference image
tokens C'.

Then, the Decoupled Cross-Attention (DCA) mechanism integrates the output of image CA with the
output of text CA:

CA(X,C) = softmax(

Ve, 2

DCA(T, X,C) = XMMA L \. CA(X,C). 3)

Here, the output of text CA in MM-DiT is embedded in the new noisy image tokens X M4 after
MMA (Eq. (I)). A is a weight factor to control the influence of the reference image features.

4 DYNAMIC IMAGE PROMPT ADAPTER

As discussed in Sec. [T} current adapter-based methods face fundamental challenges in fine-grained
concept fidelity, CP-PF balance, and subject scalability. To tackle this challenges, we introduce



Under review as a conference paper at ICLR 2026

Source img Ref img

Prompt: w & p

A dog is jumping &) { b
| i )

TS5 text VAE CLIPimg T5 text Noise CLIPimg

encoder encoder encoder encoder encoder
l l+ Noise (__Proj Nets 4 ) ( ProjNets )
Text tokens  Noisy img tokens Text tokens  Noisy img tokens

Ref img
Prompt: 4

fi A dog) is jumping
f

K Ref img tokens K Ref img tokens
o [[ITTITTI LTTT] o [[ITTTITI LTTT]
5 Y QA [Keve ¢ 5 [akv Qx [ Keve
2 MMA Cross-attention 2 MMA Cross-attention
= L 1 = L 1
O O LITTT] [TITTIILT] LITTT]
————
Ty
Output Output
(a) Vanilla MM-DiT IP-Adapter (training) (b) Vanilla MM-DiT IP-Adapter (inference)
Source img Refimg Refimg
Prompt: ﬁ M’!’ Prompt: M’Q’

A dog is jumping & bt it
i 4 4

TS text VAE CLIPimg TS text Noise CLIPimg
encoder encoder encoder encoder encoder

| T+ Noise HMOE-FFM & l HMOoE-FEM

Text tokens Noisy img tokens v Text tokens Noisy img tokens v

A dog is jumping

E Re‘zf i‘mg‘ to‘ke‘ns E — er |‘mg‘ to‘ke‘ns
o [TTTTTTT] @ [T
= =
5 [akv Q [Keve e 5 [akv Q% | Keve
2 MMA Cross-attention 2 MMA Cross-attention
= L 1 = 1 1
[TTTTITTT] [IITTTITITT1] [TITTIILT] [TTTT]
T
Output & Trainable Modules Output
(c) Our DynalP (training) @ summation (d) Our DynalP (inference)

Figure 3: Training and inference pipeline of (a-b) vanilla IP-Adapter and (c-d) our DynalP.

DynalP, which comprises two key components. First, to improve CP-PF balance and subject scala-
bility, we propose Dynamic Decoupling Strategy. It leverages an intrinsic characteristic of MM-DiT
to dynamically disentangle concept-specific information from concept-agnostic information in ref-
erence images. Second, we present Hierarchical Mixture-of-Experts Feature Fusion Module, which
dynamically integrates multi-level CLIP features according to different reference inputs. It not only
significantly boosts fine-grained concept fidelity but also enables flexible control over visual granu-
larity. The subsequent sections elaborate on these core components in detail.

4.1 DYNAMIC DECOUPLING STRATEGY

As introduced in Sec.[3.2]and Fig.[3|(a-b), the vanilla IP-Adapter for MM-DiT holistically injects ref-
erence image features into the noisy image, inevitably introducing concept-agnostic information that
undermines personalization quality, as shown in Fig.[2| Considering that the text branch in MM-DiT
interacts with the noisy image branch through MMA (Eq. () to govern the overall semantics, ac-
tions, and visual presentation of the generated image—all of which are irrelevant to specific concept
information—our key strategy is to enable reference image features to perform cross-attention with
both the noisy image branch and the text branch simultaneously in the training phase, as illustrated
in Fig. [3|(c) and formalized below:

CA([T,X],C) = softmax(QKg)V 4)
) ) \/& C-
Subsequently, the output of CA is added to the output of MMA (Eq. (I))):
DCA (T, X,C) = [TMMA xMMA] L X CA([T, X],C). (5)

In this way, the noisy image branch focuses on capturing the concept-specific information of the
reference image, such as the subject’s ID and unique appearance, while the text branch specializes
in learning the concept-agnostic information like posture, perspective, and illumination (see detailed
analyses in Sec.[B.6). Thus, during inference, we can dynamically remove concept-agnostic infor-
mation by performing CA exclusively with the noisy image branch, as in Fig. [3] (d) and Egs. (2
[). This simple yet effective strategy significantly improves the CP-PF balance and bolsters the
scalability of multi-subject compositions, as will be demonstrated in later Sec.
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Figure 4: Left: Architecture of our proposed HMoE-FFM. Right: Personalization results generated
by injecting features from different layers of CLIP via cross-attentions, demonstrating that CLIP’s
hierarchical features can capture visual information at diverse granularity levels.

4.2 HIERARCHICAL MIXTURE-OF-EXPERTS FEATURE FUSION

The image encoder used in IP-Adapter plays a critical role to extract concept information from refer-
ence images. Current methods typically utilize CLIP (Radford et al., 2021}, extracting features from
its final or penultimate layers. While a few works (Team, 2024; Kong et al., 2025) have explored
more powerful alternatives such as SigLIP (Zhai et al.;,|2023) and DINOv2 (Oquab et al.,[2024)), they
still rely on deep-layer features. These deep-layer features suffer from substantial loss of detailed
information, making them inadequate for recovering fine-grained visual details of reference images.
To address this limitation, we first investigate CLIP’s feature extraction capabilities by systemati-
cally visualizing the reconstruction performance of its multi-layer features—achieved by injecting
each layer’s features individually via cross-attentions. As demonstrated in Fig. f}right, we made a
striking observation: CLIP’s hierarchical features excel at capturing visual information across vary-
ing granularity levels. Specifically, shallow-layer features (e.g., layer 10) capture low-level patterns
such as lines and text; mid-layer features (e.g., layer 17) capture fine-grained textures and structures
like facial details; and deep-layer features (e.g., layer 24) capture semantic information alongside
coarse-grained textures and structures (see results across more layers in Sec. [B.8). Unfortunately,
these multi-granularity hierarchical features have not been fully utilized in existing works.

To bridge this gap and fully harness the multi-granularity potential of CLIP’s hierarchical features,
we further propose a novel Hierarchical Mixture-of-Experts Feature Fusion Module (HMoE-FFM),
as depicted in Fig. E|-left. Specifically, let ® 1., Pariq, and @ 445, denote the image features from
CLIP’s shallow, middle, and deep layers, respectively. @5 ¢ R1*% represents the class tokens of
these features, and ! ¢ R9* % represents their full tokens, where g denotes the sequence length
and d; denotes the feature dimension.

HMOoE-FFM first deploys layer-specific expert networks Expert;—each comprising a linear layer
with GELU (Hendrycks & Gimpel, |2016) activation and layer normalization—to process the full
tokens of hierarchical features, formalized as follows:

e; = Expert,(®F"), 1 € [Low, Mid, High). (6)

Additionally, a routing module (a two-layer Multi-Layer Perceptron with Tanh as the middle acti-
vation function) dynamically calibrates the fusion coefficients for each expert’s output based on the
class tokens of hierarchical features:

w; = Route; (@S, 1 € [Low, Mid, High), Zwl =1. @)
1

Finally, the output feature is the weighted fusion of all experts’ outputs:
@ pysed = Z wp - €y, le [LOUJ, M’Ld, Hzgh] (8)
1

Notably, this approach not only leverages the complementary strengths of multi-level features to
preserve both fine-grained visual details and semantic consistency, but also enables precise modula-
tion of visual granularity. For instance, users can manually adjust the fusion coefficients (Eq.[/) of
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the experts’ outputs, thereby achieving flexible control over the granularity of concept preservation
tailored to specific needs—as illustrated in Fig. |1| (b) and more results in Sec. Comparisons
between our HMoE-FFM and other widely used feature fusion approaches will be presented in later
Sec.[5.4] It is worth emphasizing that while our method is instantiated on the CLIP model in this
work, similar observations and conclusions may be generalized to other image encoders—a direc-
tion we reserve for future exploration.

4.3 MULTI-SUBJECT PERSONALIZATION

Without requiring additional training on multi-subject datasets, our DynalP can be directly extended
to multi-subject personalization scenarios via a straightforward mask-guided region-level feature
injection. Concretely, given N reference images corresponding /N masks, we first compute the CA
between noisy image tokens X and each reference image tokens C; as specified in Eq. (2). These
CA outputs are then added to the corresponding regions of the text CA output features, guided by
their respective masks:

N
DCA"(T,X,C) = XMMA LN "N - M; - CA(X, C3), 9)
=1

where XMM4 implies the output of text CA as defined in Eq. (3), M; is a binary mask specifying

the regions in the generated image where the subject needs to be replaced by the subject from
the iy, reference image; it can either be manually annotated by users or automatically generated
using existing grounding and segmentation tools (Liu et al., [2024} |Kirillov et al., [2023). In our
experiments, we adopt the automatic approach or preset masks for multi-subject personalization. \;
is the weight factor to regulate the influence of the iy, reference image features. As will be shown
in later Sec. thanks to our proposed Dynamic Decoupling Strategy, our results can significantly
reduce inconsistencies when composing different reference subjects and greatly enhance the overall
harmony of multi-subject generation—even when these subjects possess distinct styles and visual
attributes. Furthermore, this method facilitates effective object replacement, which in turn supports
flexible editing of the generated results, as shown in the last case of Fig.[I](c).

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENT SETTINGS

Implementation Details. Please refer to Sec. for implementation details.

Datasets. Please refer to Sec. E] for details of training datasets. For evaluation, we assess SS-
PT2I performance on DreamBench++ (Peng et al.| [2025), which contains 1350 test samples across
various categories—including animals, humans, and objects—and covers both photorealistic and
non-photorealistic styles. For MS-PT2I evaluation, we follow previous studies (Wang et al.| 2025;
Huang et al. [2025) to establish a new benchmark named DynalP-Bench. Specifically, we source
subjects from existing works (Peng et al.l [2025; Wang et al., 2025; |Chen et al., [2025)) to construct
642 two-subject pairs and 246 three-subject triplets, forming a comprehensive set of 888 multi-
subject test samples. More details are provided in Sec.

Evaluation Metrics. Previous works (Ruiz et al., 2023} Wang et al.| [2025) typically compare
feature-based similarity metrics from models like CLIP (Radford et al.l 2021) and DINO (Oquab
et al.| [2024). However, as highlighted in (Peng et al. 2025} (Cai et al., [2025)), these metrics only
capture global semantic similarity and suffer from extreme noise and bias. Therefore, we adhere to
the evaluation protocol outlined in (Peng et al. |2025), which systematically assesses PT2I perfor-
mance through two key dimensions: Concept Preservation (CP) and Prompt Following (PF), using
a Vision-Language Model (VLM) (Hurst et al., 2024). This protocol demonstrates better alignment
with human preferences compared to traditional metrics. For reproducibility and mitigating model-
specific biases, we employ two SOTA open-source VLMs—InternVL3-78B (Zhu et al., [2025) and
Qwen3-VL-32B (Team| 2025)—and report the average of their scores. The goal of the PT2I task is
to maximize the Nash utility (Nash et al.,|1950), defined as the product of CP and PF scores. Note
that for MS-PT2I scenarios, we use the average CP score across all subjects for evaluation. The
detailed VLM evaluation prompts can be found in Sec.
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Figure 5: Qualitative comparisons on single- (top) and multi-subject (bottom) PT2I generation.

.

Compared Baselines. For SS-PT2I, we compare our model with leading open-source methods
such as finetuning-based DreamBooth (Ruiz et al), 2023), DreamBooth LoRA (Hu et al.), and
Textual Inversion (Gal et al., [2023); zero-shot UNet-based IP-Adapter-Plus and
DisEnvisioner (He et al., [2025); DiT-based FLUX.1 IP-Adapter 2024), Diptych Prompt-
ing (Shin et al, 2024), OminiControl 2025), Self-Distillation [2025)), and

FLUX.1 Kontext Dev (Labs et al} 2025); MLLM-based Qwen-Image-Edit (Wu et al., [2025al).
For MS-PT2I, we compare our model with MLLM-based BAGEL (Deng et al., 2025) and Omni-

Gen?2 (Wu et al}[2025D)), and other finetuning-free methods like MS-Diffusion (Wang et al.l[2025),
MIP-Adapter (Huang et al., 2025), UNO (Wu et al., 2025c), and XVerse (Chen et al.| [2025)). For

fair comparison, we adapt input prompts to the officially recommended format of each compared
method to avoid biases from mismatched prompt formats.

5.2 QUALITATIVE COMPARISON

We present qualitative comparison results for SS-PT2I in Fig. [5] (top). As illustrated, our DynalP
preserves fine-grained subject details with high fidelity—such as the facial features in Row 2 and the
legible text in Row 3—while simultaneously achieving strong prompt alignment, as evidenced by
the glowing wings in Row 1 and the 1950s-style dancing in Row 4. In contrast, existing approaches
either fail to maintain fine-grained subject consistency or struggle to adhere to input prompts.

Furthermore, we showcase qualitative comparisons for MS-PT2I in Fig. [5] (bottom). Notably, while
all competing methods are trained on carefully curated multi-subject datasets, our DynalP deliv-
ers superior performance in both subject consistency and visual harmony—despite being trained
exclusively on single-subject data. Specifically, our method generates plausible, harmonious, and
naturally coordinated compositions, even when reference subjects exhibit distinct styles and visual
attributes (e.g., Row 2). By contrast, existing approaches frequently produce copy-paste artifacts or
inconsistent subject renderings, resulting in reduced concept fidelity and visually disjointed compo-
sitions. More qualitative results are provided in Sec.[B.2]



Under review as a conference paper at ICLR 2026

Table 1: Quantitative comparisons with SOTA methods. CP: Concept Preservation, PF: Prompt
Following. The highest and second-highest scores are highlighted.

Method Single-subject Multi-subject
CP PF CP - PF CP PF CP - PF
DreamBooth 0.458 0.721 0.330 - - -
DreamBooth LoRA 0.594 0.840 0.499 - - -
Textual Inversion 0.384 0.633 0.220 - - -
IP-Adapter-Plus 0.738 0.668 0.493 - -
DisEnvisioner 0.559 0.664 0.371 - - -
FLUX.1 IP-Adapter 0.681 0.600 0.408 - - -
Diptych Prompting 0.616 0.839 0.517 - - -
OminiControl 0.596 0.895 0.534 - - -
Self-Distillation 0.513 0.870 0.447 - - -
FLUX.1 Kontext Dev 0.718 0.893 0.641 - - -
Qwen-Image-Edit 0.693 0.928 0.643 - - -
“"BAGEL™ T T T T T T T T 7] [ —0.603 ~ " 70926 ~ " 0558 ] 0566 ~ 0.885 ~ ~ 0300 -~
OmniGen2 0.622 0.922 0.574 0.552 0.952 0.526
MS-Diffusion 0.686 0.828 0.568 0.584 0.850 0.496
MIP-Adapter 0.692 0.649 0.449 0.388 0.713 0.276
UNO 0.721 0.799 0.576 0.509 0.857 0.436
XVerse 0.643 0.869 0.559 0.548 0.890 0.488
Our DynalP 0.696 0.934 0.650 0.617 0.997 0.615

5.3 QUANTITATIVE COMPARISON

Automatic Scores. Quantitative comparison results for both SS- and MS-PT2I are presented in
Tab.[I] where we report VLM evaluation metrics following the protocol in (Peng et al., 2025). For
SS-PT2I, our method achieves the highest PF and CP-PF scores. The PF score quantifies adherence
to text prompts, while the CP-PF score reflects balanced performance between subject consistency
and prompt alignment. As explicitly emphasized in (Peng et al., [2025)), this balanced CP-PF perfor-
mance is the ultimate objective of the PT2I task. Although our CP score is marginally lower than
that of certain competing methods (e.g., [P-Adapter-Plus (Ye et al., [2023)), we attribute this dis-
crepancy primarily to two factors: first, these baselines fail to effectively decouple concept-agnostic
information, leading generated images closely resemble the input without meaningful transforma-
tion, as illustrated in Fig.[5]and further validated by their substantially lower PF scores; second, the
CP score itself exhibits limited sensitivity to both such copy-paste artifacts and fine-grained subject
details. Therefore, to more effectively demonstrate the superiority of our DynalP in terms of CP, we
further conduct additional user studies in Sec. where our method outperforms all competitors.

For MS-PT2I, our method outperforms all baselines by achieving the highest scores across all met-
rics, demonstrating its superiority in both maintaining subject consistency and prompt adherence.
Notably, our CP score in MS scenarios surpasses those of all competitors—a stark contrast to the SS
scenarios. We hypothesize this is because existing approaches frequently suffer from critical flaws
such as subject omission, identity confusion, or unnatural subject fusion—issues that directly de-
grade the performance of CP, as shown in Fig.[5 In contrast, our method effectively mitigates these
problems and generates visually harmonious multi-subject compositions, thanks to our proposed
Dynamic Decoupling Strategy and mask-guided feature injection.

5.4 ABLATION STUDIES

Effects of Dynamic Decoupling Strategy (DDS). We conduct ablation experiments on our pro-
posed DDS. As shown in Fig. [6}Hleft, without DDS, the concept-agnostic information of the ref-
erence images, such as posture, perspective, and illumination, is retained in the generated results,
leading to degraded editability and disharmonious multi-subject compositions. These issues are ef-
fectively mitigated by DDS, confirming its ability to disentangle concept-specific information from
concept-agnostic information. Additionally, quantitative results in Tab. [2](1-2) further validate its ef-
fectiveness in enhancing the CP-PF balance and multi-subject scalability. More results and analyses
can be found in Sec.

Superiority of HMoE-FFM. We compare our HMoE-FFM with two widely adopted feature fusion
methods: element-wise addition (add) and channel-wise concatenation (concat). As illustrated in
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Figure 6: Qualitative ablation study results of Left: Dynamic Decoupling Strategy (DDS) and
Right: different feature fusion approaches.

Table 2: Quantitative ablation study results. CP: Concept Preservation, PF: Prompt Following.
The highest and second-highest scores are highlighted.

Setting Single-subject Multi-subject
CP PF CP - PF CP PF CP - PF
(1) Full Model 0.696 0.934 0.650 0.617 0.997 0.615
. @whDDS | e _ _ 0799 __ 0627 | 0499 = 0545 0272

(3) add fusion 0.693 0.910 0.631 0.612 0.994 0.608
(4) concat fusion 0.691 0.903 0.624 0.605 0.992 0.600
(5) only shallow-layer 0.627 0.924 0.579 0.464 0.991 0.460
(6) only mid-layer 0.670 0.928 0.622 0.603 0.993 0.599
(7) only deep-layer 0.480 0.950 0.456 0.474 0.995 0.471

Fig. [}right and Tab. [2] (3-4), fusing multi-layer CLIP features via add or concat yields suboptimal
performance on both CP and PF—particularly in terms of fine-grained fidelity and style transfer.
This highlights the superiority of our HMoE-FFM, which more effectively integrates hierarchical
features through layer-specific expert networks and a dynamic routing mechanism that adapts to
the characteristics of each reference image. Additionally, as shown in Fig. [I] (b) and Sec.[B.4] our
HMOoE-FFM provides greater flexibility to enable run-time control over the granularity of concept
preservation, a capability unattainable with add and concat approaches. On the other hand, to com-
plement Fig. @}right, we further present quantitative results for HMoE-FFM using different CLIP
layers individually in Tab. 2] (5-7). Evidently, while shallow-layer features excel at capturing low-
level patterns (e.g., lines and text), their limited capacity to grasp mid- and high-level attributes
results in lower CP scores. Similarly, deep-layer features yield lower CP scores due to their lack
of low-level and fine-grained information; however, they achieve the highest PF scores by virtue of
their stronger ability to capture semantic information. In contrast, mid-layer features primarily focus
on fine-grained details while incorporating a certain amount of semantic information, thus striking
a more favorable balance between CP and PF. By harnessing the strengths of these multi-layer fea-
tures, our HMoE-FFM integrates low-level, fine-grained, and semantic information, thereby achiev-
ing an optimal balance between CP and PF. More results and analyses can be found in Sec.

6 CONCLUSION

In this paper, we present DynalP, a plug-and-play adapter to empower diffusion transformers for
scalable zero-shot personalized text-to-image generation. Our DynalP introduces two key innova-
tions. The first is a Dynamic Decoupling Strategy (DDS) to disentangle concept-specific information
from concept-agnostic information within reference images. This strategy significantly enhances the
critical balance between concept preservation and prompt following, while simultaneously bolster-
ing the scalability of multi-subject compositions. The second is a Hierarchical Mixture-of-Experts
Feature Fusion Module (HMoE-FFM) to dynamically integrates the multi-level CLIP features to
preserve both fine-grained visual details and semantic consistency. It not only enhances the con-
cept fidelity of reference images but also provides flexible control over visual granularity. Extensive
experiments show the superiority of our DynalP in both single- and multi-subject personalization,
while requiring only single-subject training datasets.
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A RELATED WORK

A.1 TEXT-TO-IMAGE GENERATION

Text-to-Image (T2I) generative models have experienced explosive growth in recent years. While
some research endeavors employ Generative Adversarial Networks (GANs) (Reed et al.| 2016; Kang
et al., 2023)) or autoregressive (Ding et al., 2021} Ramesh et al., [2021; |Yu et al.| [2022) paradigms,
the majority of contemporary T2I frameworks opt for denoising diffusion models (Ho et al., 2020;
Esser et al.| |2024) owing to their notable advantages in generation quality. Early pioneering models,
including LDM (Rombach et al., 2022)), DALL-E 2 (Ramesh et al., [2022), Imagen (Saharia et al.,
2022), and SDXL (Podell et al.), commonly utilized U-Net (Ronneberger et al., 2015) for noise
prediction. Recent studies have replaced the traditional U-Net with scalable transformer (Vaswani
et al} [2017) architectures, giving rise to more advanced models such as Diffusion Transformers
(DiT) (Peebles & Xiel 2023} [Chen et al.l |2024c). Subsequent works, such as Stable Diffusion
3 (Esser et al., 2024) and FLUX.1 (Labs| 2024), have further extended DiT to multimodal DiT
(MM-DiT), achieving SOTA T2I generation performance. In this work, we build our methodology
on MM-DiT, but the main ideas and modules may also be applicable to other architectures.

A.2 PERSONALIZED TEXT-TO-IMAGE GENERATION

Personalized Text-to-Image (PT2I) generation has garnered significant attention in both academia
and industry. Early research predominantly relied on finetuning-based methods (Kumari et al.,[2023;
Liu et al., 2023; [Gu et al.| [2023} Jiang et al., |2024). For instance, DreamBooth (Ruiz et al.l [2023))
and Textual Inversion (Gal et al.,[2023)) bound visual concepts to text identifiers via finetuning, while
LoRA (Hu et al.) introduced lightweight parameters to enable efficient adjustments. However, these
methods are plagued by the heavy burden of per-subject finetuning. In response, IP-Adapter (Ye
et al.|[2023) and BLIP Diffusion (Li et al.}2023)) incorporated additional image encoders and layers
to process reference images and injecting image features into diffusion models. These adapter-based
techniques enable zero-shot PT2I generation, emerging as the dominant research paradigm and in-
spiring a wealth of follow-up works (Wei et al., [2023; |Chen et al. 2024d; Wang et al., [2024bja;
Guo et al.| [2024; Huang et al., 2024b; He & Yao| 2025} |[Kong et al.| |2025), including several multi-
subject approaches (Xiao et al., 2024a; Wei et al., [2024} [Wang et al., [2025; |Huang et al.| 2025; Ma
et al., [2024; [Zhang et al| [2024). Aligning with part of our motivations, (He et al.,[2025) proposed
DisEnvisioner, which disentangles and enriches concept-specific attributes by learning individual
image tokens. In contrast, our method directly leverages the decoupled learning behavior of the
dual branches in MM-DiT to separate concept-specific information from concept-agnostic content.
Furthermore, DisEnvisioner still suffers from the loss of fine-grained concept details—largely be-
cause it relies on deep-layer features from CLIP, as illustrated in Fig. 2 (b). Additionally, most of
the aforementioned efforts are built on U-Net-based diffusion models, with limited exploration of
adapter-based PT2I techniques for SOTA DiT-based models such as FLUX.1 (Labs| [2024).

For DiT architectures, methods such as OminiControl (Tan et al., 2025) adopt unified conditioning
strategies to handle text embeddings, latent tokens, and VAE-encoded reference subjects. Although
showing promise in PT2I generation (Shin et al., |2024; (Cai1 et al., [2025; Mao et al., [2025; |Huang
et al., 2024a; Wu et al.| [2025¢c; [Mou et al.l 2025} |Guo et al., 2025; (Chen et al.| |2025)), they often
necessitate constructing complex cross-pair and multi-subject datasets for base model finetuning.
In addition, the full attention mechanism’s computational complexity escalates exponentially with
more reference conditions, particularly in multi-subject scenarios, resulting in lower-resolution out-
puts and limited flexibility compared to adapter-based methods.

Another category of methods leverages Multimodal Large Language Model (MLLM) (Zhu et al.,
2024} Bai et al., 2025) to conduct multi-modal training through text-image interleaving to bridge
the gap between image and text prompts (Sun et al.| [2024; |Pan et al.; [Li et al.l [2024; |Patel et al.j
Xi1ao et al., [2024b; 'Wu et al., 2025b; Deng et al., [2025; |Wu et al.,[2025a). Yet, these methods typi-
cally require re-training MLLM encoders and generators, imposing substantial demands on training
resources.
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A.3 MULTI-LAYER FEATURE FUSION

In the context of MLLMs, several empirical studies (Chen et al.,2024b;|Yao et al.,|2024; [Cao et al.}
2024) have shown that multi-layer visual features can enhance model performance. To systemati-
cally explore the integration of multi-layer visual features in MLLMs, (Lin et al.|2025)) categorizes
existing fusion strategies into four distinct categories and reveals that direct fusion (addition or con-
catenation) at the input stage consistently yields superior performance across various configurations.
However, due to the fundamental task divergence between understanding-oriented and generation-
oriented tasks, the observations derived from MLLM research may not be generalizable to our PT2I
scenario (see comparison results in Sec. @) For the PT2I tasks, while a handful of works (Wei
et al.| [2023; [Zhang et al.| [2024) have also attempted to fuse multi-layer features for performance
improvement, their fusion strategies remain limited to simple addition or concatenation. In con-
trast, our HMoE-FFM leverages a MoE architecture to integrate hierarchical visual features, with
a dynamic routing mechanism that adaptively calibrates fusion coefficients based on the unique at-
tributes of each input reference image. This approach not only enhances fine-grained visual details
and semantic consistency but also facilitates precise modulation of visual granularity, as validated

in Secs.[5.41 [B4] and[B7]

B MORE EXPERIMENTAL RESULTS

B.1 MORE EXPERIMENT SETTINGS

Implementation Details. We build our model based on FLUX.1-Dev (Labs,2024), with OpenCLIP
ViT-L/14-336 adopted as the image encoder. The FLUX.1-Dev architecture includes 57 MM-DiT
blocks; we augment each block with a new image cross-attention layer. For the HMoE-FFM, we uti-
lize features from CLIP’s layer 10, 17, and 24 as the input features for the low-, mid-, and high-level
expert networks, respectively (see ablation results across more layers in Sec. [B-8). The total number
of trainable parameters in our DynalP is approximately 1.4B. During training, we only optimize
the augmented layers while keeping the parameters of the pretrained models fixed. The training
objective is the flow-matching loss, which is consistent with the original FLUX.1-Dev base model.
The training process is divided into two sequential stages: The initial stage (20,000 iterations) es-
tablishes fundamental capabilities through exclusive intra-pair training, developing robust subject-
specific adaptation. Building upon this foundation, the second stage (80,000 iterations) leverages the
cross-pair dataset to mitigate copy-paste artifacts (Wang et al.,|2025)). For optimization, we employ
the AdamW optimizer with a cosine learning rate scheduler initialized at 0.00002, combined with
a weight decay of 0.0001. All experiments were conducted on 8 Ascend 910B NPUs, with a total
batch size of 16 and a training resolution of 1024 x 1024. To enable classifier-free guidance, we use
a 5% probability to drop text and image individually, and a 5% probability to drop text and image si-
multaneously. For the training of HMoE-FFM, each expert’s feature is dropped independently with
a 5% probability. Finally, we set the image weight factor A to 1.0 for both training and inference
stages.

Training Datasets. We design two specialized datasets to support our two-stage training process.
For the first training stage, we construct an intra-pair dataset containing around 0.3M images filtered
from several open-source datasets, including FFHQ-wild (Karras et al., 2019) and SA-1B (Kirillov
et al.}2023)). To decouple background information from the target subject, we use off-the-shelf ob-
ject detection (Liu et all 2024) and segmentation (Kirillov et al., [2023) techniques to extract the
primary subject, and then replace the original background with a uniform white color. For human
subjects, we randomly extract either faces or entire bodies. The resulting segmented image is desig-
nated as the reference image, while the original image serves as the ground truth for training. For the
second training stage, drawing inspiration from (Wang et al., 2025; Tan et al., 2025), we construct a
cross-pair dataset with roughly 1M images from open-source datasets—including VITON-HD (Choi
et al.| 2021)), AnyInsertion (Song et al.,|2025), and OpenS2V-Nexus (Yuan et al.,|2025)—as well as
images generated by FLUX.1-Dev (Labs| [2024)). Similar to the intra-pair dataset, all reference im-
ages here undergo the same object detection and segmentation pipeline described above. Note that
every image in both training datasets contains only one primary subject, and our model has not been
trained on multi-subject datasets.
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Table 3: Prompt details of our multi-subject DynalP-Bench. Each combination type has preset
prompts. [P] denotes prompt variations about the scene or actions.

Type Prompt [P]

in a room
living+living a{0}anda {1} [P], n gie .snov&i
living+object {0} on the left, and g;l t}fejger:lagcﬁ
object+object {1} on the right on the grass

on a cobblestone street

embracing
human+human a{0}anda {1} [P], are 51ttt_mg on tgle sofa
human-+character {0} on the left, and :;z Sﬁ;{(ﬁ Igl(;l(;ngss
character+character {1} on the right are fi ghting

are walking on the street

in a room

- . in the snow

living+upwearing In the §
living+midwearing a {0} wearing a {1} [P] g;lt?fejggagiﬁ
living+wholewearing

on the grass
on a cobblestone street

in a room

in the snow

in the jungle

on the beach

on the grass

on a cobblestone street

a woman wearing a {0}

midwearing+downwearing and {1} [P]

in a room

in the snow

in the jungle

on the beach

on the grass

on a cobblestone street

a{0},a {1}, and a {2} [P],
{0} on the left,

{1} on the middle, and

{2} on the right

living+living+living
object+object+object

are sitting on the sofa

are eating noodles

are fighting

are walking on the street
are taking a photo together

a{0},a{l}, and a {2} [P],
{0} on the left,

{1} on the middle, and

{2} on the right

human-+human-+character

are playing football

in a room

in the snow
upwearing+midwearing+ a woman wearing a {0}, a in the jungle
downwearing {1}, and a {2} [P] on the beach

on the grass
on a cobblestone street

Details of DynalP-Bench. Following prior studies (Wang et al., [2025; [Huang et al., [2025)), we
construct our multi-subject DynalP-Bench by sourcing unseen subjects from existing works (Peng
et al., [2025; [Wang et al., 2025} |Chen et al., [2025)). Our DynalP-Bench comprises 8 data types and
14 combination types involving two or three subjects, encompassing animals, humans, objects, and
clothing, and covers both photorealistic and non-photorealistic styles. We provide the details in
Tab. 3] Each combination type has 6 prompt variations. We randomly generate a total of 888 combi-
nations, consisting of 642 two-subject combinations and 246 three-subject combinations. Compared
to other multi-subject benchmarks, our DynalP-Bench ensures that model performance is compre-
hensively reflected across a rich set of cases with diverse types and styles. Notably, we explicitly
incorporate multi-subject interaction scenarios (e.g., embracing, shaking hands, and fighting), which
not only increase the test set’s complexity but also enable targeted assessment of different models’
capabilities to generate natural and logical multi-subject interactions—a core requirement for prac-
tical personalized text-to-image generation.
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[ VLM Evaluation Prompts — Concept Preservation — Single-Subject ]

### Task Definition

You will be provided with an image generated based on reference image.

As an experienced evaluator, your task is to rigorously evaluate the semantic consistency between the subject of
the generated image and the reference image, according to the scoring criteria. You must be highly demanding and
avoid overestimating the similarity.

### Scoring Criteria

Itis often compared whether two subjects are consistent based on four basic visual features:

1. Shape: Evaluate whether the main body outline, structure, and proportions of the generated image match those
of the reference image. This includes the geometric shape of the main body, clarity of edges, relative sizes, and
spatial relationships between various parts composing the main body.

2. Color: Comparing the accuracy and consistency of the main colors generated in the image with those of the
reference image. This includes saturation, hue, brightness, and whether the distribution of colors is similar to that
of the subject in the reference image.

3. Texture: Focus on the local parts of the RGB image, whether the generated image effectively captures fine
details without appearing blurry, and whether it possesses the required realism, clarity, and aesthetic appeal.
Please note that unless specifically mentioned in the text prompt, excessive abstraction and formalization of
texture are not necessary.

4. Facial Features: If the evaluation is of a person or animal, facial features will greatly affect the judgment of image
consistency, and you also need to focus on judging whether the facial area looks very similar visually.

### Scoring Range

You need to give a specific integer score based on the comprehensive performance of the visual features above,
ranging from 0 to 4. When making your judgment, lean towards a more conservative score. If there is any doubt
about whether a certain level of similarity is met, choose a lower score:

- Very Poor (0): No resemblance. The generated image's subject has no relation to the reference.

- Poor (1): Minimal resemblance. The subject falls within the same broad category but differs significantly.

- Fair (2): Moderate resemblance. The subject shows likeness to the reference with notable variances.

- Good (3): Strong resemblance. The subject closely matches the reference with only minor discrepancies.

- Excellent (4): Near-identical. The subject of the generated image is virtually indistinguishable from the reference.

### Input format
Every time you will receive two images, the first image is a reference image, and the second image is the generated
image.

Please carefully review each image of the subject.

#if# Output Format
Score: [Your Score]

Did you understand the task above? Please summarize the tasks you need to do and think how you wil execute
the detailed plan for the task.

You must adhere to the specified output format, which means that only the scores need to be output, excluding
your analysis process.

[ VLM Evaluation Prompts — Concept Preservation — Multi-Subject ]

#i## Task Definition

You will be provided with an image generated based on reference image.

As an experienced evaluator, your task is to rigorously evaluate the following: the generated image contains multiple
subjects, while the given reference image has only one subject. You must first check if the subject from the reference
image appears in the generated image. If it does not appear, directly assign a score of 0. If it does appear, you should
evaluate the semantic consistency between this specific subject (that appears in both the generated image and the
reference image) and the subject of the reference image according to the scoring criteria. **Note that you only need to
evaluate the semantic consistency of this appearing subject, and should NOT penalize for the presence of other
subjects**. You must be highly demanding and avoid overestimating the similarity.

### Scoring Criteria
Itis often compared whether two subjects are consistent based on four basic visual features:

1. Shape: Evaluate whether the main body outline, structure, and proportions of the generated image match those of the
reference image. This includes the geometric shape of the main body, clarity of edges, relative sizes, and spatial
relationships between various parts composing the main body.

2. Color: Comparing the accuracy and consistency of the main colors generated in the image with those of the reference
image. This includes saturation, hue, brightness, and whether the distribution of colors is similar to that of the subject in
the reference image.

3. Texture: Focus on the local parts of the RGB image, whether the generated image effectively captures fine details
without appearing blurry, and whether it possesses the required realism, clarity, and aesthetic appeal. Please note that
unless specifically mentioned in the text prompt, excessive abstraction and formalization of texture are not necessary.

4. Facial Features: If the evaluation is of a person or animal, facial features wil greatly affect the judgment of image
consistency, and you also need to focus on judging whether the facial area looks very similar visually.

### Scoring Range

You need to give a specific integer score based on the comprehensive performance of the visual features above, ranging
from 0 to 4. When making your judgment, lean towards a more conservative score. If there is any doubt about whether a
certain level of similarity is met, choose a lower score:

- Very Poor (0): No resemblance. The generated image's subject has no relation to the reference.

- Poor (1): Minimal resemblance. The subject falls within the same broad category but differs significantly.
- Fair (2): Moderate resemblance. The subject shows likeness to the reference with notable variances.

- Good (3): Strong resemblance. The subject closely matches the reference with only minor discrepancies.
- Excellent (4): Near-identical. The subject of the generated image is virtually indistinguishable from the reference.

### Input format
Every time you will receive two images, the first image is a reference image, and the second image is the generated image.
Please carefully review each image of the subject.

### Output Format
Score: [Your Score]

Did you understand the task above? Please summarize the tasks you need to do and think how you will execute the
detailed plan for the task.

You must adhere to the specified output format, which means that only the scores need to be output, excluding your
analysis process.

Figure 7: VLM evaluation prompts for Concept Preservation (CP) on Left: single-subject and

Right: multi-subject PT2I generation tasks.

[ VLM Evaluation Prompts — Concept Preservation — Single-Style ]

#it# Task Definition

You will be provided with an image generated based on reference image.

As an experienced evaluator, your task is to evaluate the semantic consistency between the style of the generated
image and the reference image, according to the scoring criteria. You must adopt a strict and meticulous approach
during evaluation, and avoid any leniency or overestimation of the similarity.

### Scoring Criteria

Itis often compared whether the style of the two images are consistent based on three key artistic features.
Remember, even a single notable deviation in any of these features can lead to a significant drop in the score:

1. Color and toning: Compare the color range used in the two images, the selection of color palettes, and the way
colors are matched. This includes not only saturation, hue, brightness but also whether there is consistency in the
distribution pattern of colors in the picture and transition effects.

2. Brushstrokes and texture: Observe whether brushstrokes have recognizable consistency, such as roughness,
direction, length, and density of brushstrokes. The handling details of texture such as fine texture on object
surfaces and lighting effects - whether they exhibit similar processing techniques and visual effects in both images
3. Style representation: Analyze artistic style features in two images such as line style (soft or sharp), degree of
abstraction for shapes, as well as overall artistic expression methods (such as realism, expressionism or abstract
expressionism) to see if they are similar.

### Scoring Range

You need to give a specific integer score based on the comprehensive performance of the key artistic features
above, ranging from 0 to 4. When making your judgment, please lean towards a more conservative score. If you
have any doubts about whether a certain level of similarity is met, please choose a lower score:

- Very Poor (0): No resemblance. The generated image's style has no relation to the reference.

- Poor (1): Minimal resemblance. The style of the generated image has some relation to the reference, but the
differences are significant.

- Fair (2): Moderate resemblance. The style shows likeness to the reference with notable variances

- Good (3): Strong resemblance. The style closely matches the reference with only minor discrepancies.

- Excellent (4): Near-identical. The style of the generated image i virtually indistinguishable from the reference.

#1# Input format
Every time you will receive two images, the first image is a reference image, and the second image is the generated
image.

Please carefully review each image of the subject.

### Output Format.
Score: [Your Score]

Did you understand the task above? Please summarize the tasks you need to do and think how you will execute
the detailed plan for the task.

You must adhere to the speci
your analysis process.

d output format, which means that only the scores need to be output, excluding

Figure 8: VLM evaluation prompts for Left:

[ VLM Evaluation Prompts — Prompt Following — Single/Multi-Subject ]

#it# Task Definition

You will be provided with an image and text prompt.

As an experienced evaluator, your task is to evaluate the semantic consistency between image and text prompt,
according to the scoring criteria.

### Scoring Criteria
When assessing the semantic consistency between an image and its accompanying text, it is crucial to consider how well
the visual content of the image aligns with the textual description. This evaluation can be based on several key aspects:
1. Relevance: Determine if the elements and subjects presented in the image directly relate to the core topics and
concepts mentioned in the text. The image should reflect the main ideas or narratives described.

2. Accuracy: Examine the image for the presence and correctness of specific details mentioned in the text. This includes
the depiction of particular objects, settings, actions, or characteristics that the text describes.

3. Completeness: Evaluate whether the image captures all the critical elements of the text. The image should not omit
significant details that are necessary for the full understanding of the text's message.

4. Context: Consider the context in which the text places the subject and whether the image accurately represents this
setting. This includes the portrayal of the appropriate environment, interactions, and background elements that align
with the text.

### Scoring Range

Based on these criteria, a specific integer score from 0 to 4 can be assigned to determine the level of semantic
consistency:

- Very Poor (0): No correlation. The image does not reflect any of the key points or details of the text

- Poor (1): Weak correlation. The image addresses the text in a very general sense but misses most details and nuances.
- Fair (2): Moderate correlation. The image represents the text to an extent but lacks several important details or contains
some inaccuracies.

- Good (3): Strong correlation. The image accurately depicts most of the information from the text with only minor
omissions or inaccuracies.

- Excellent (4): Near-perfect correlation. The image captures the text's content with high precision and detal, leaving out
no significant information.

### Input format
Every time you will receive a text prompt and an image.

Please carefully review image and text prompt. Before giving a score, please provide a brief analysis of the above
evaluation criteria, which should be very concise and accurate.

Did you understand the task above? Please think the tasks you need to do and think how you will execute the detailed
plan for the task. Do Not output your thinking process.

#4## Output Format
Analysis: [Your analysis]
Score: [Your Score]

You must strictly adhere to the specified output format.

Concept Preservation (CP) on single-style PT2I

generation tasks and for Right: Prompt Following (PF) on both single- and multi-subject PT2I

generation tasks.

Details of Evaluation Metrics. We adhere to the evaluation protocol outlined in

which systematically assesses PT2I performance through two core metrics: Concept Preservation

(CP) and Prompt Following (PF), using a Vision-Language Model (VLM) (Hurst et al.

tailed VLM evaluation prompts are presented in Figs. [7]and 8} these prompts are largely consistent
with those in (Peng et al}[2025)), with only minor modifications tailored to MS-PT2I scenarios (Fig.

Right). Specifically, Concept Preservation (CP) quantifies the visual consistency between the sub-
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jects of generated images and those of reference images. For MS-PT2I scenarios, we independently
evaluate the CP score for each reference subject and compute the average CP score across all sub-
jects to ensure assessment comprehensiveness. Additionally, employs a distinct
prompt for evaluating style-related CP (Fig. [8}Left); we retain this prompt to assess style-guided
generation within the DreamBench++ [2025). On the other hand, Prompt Following
(PF) measures the semantic consistency between generated images and input text prompts. Notably,
the PF evaluation prompt remains identical for both SS- and MS-PT?2I tasks, as detailed in Fig.
[B}Right.

B.2 ADDITIONAL QUALITATIVE RESULTS
Here, we provide additional qualitative comparison results for both single- and multi-subject per-

sonalized text-to-image generation, as shown in Figs. and [TT] Furthermore, we also present
the results of DynalP in the context of complex interactions between multiple subjects in Sec. [B.3]
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Figure 9: Additional qualitative comparisons on single-subject PT2I generation.
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Figure 10: Additional qualitative comparisons on single-subject PT2I generation.
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Figure 11: Additional qualitative comparisons on multi-subject PT2I generation.
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Figure 12: Exemplar results of prompts with complex interactions of multiple subjects.

B.3 MULTI-SUBJECT INTERACTION

The ability to generate natural, logically consistent multi-subject interactions stands as an important
requirement for enabling practical, high-quality personalized text-to-image generation. Benefiting
from our architecture design and mask-guided feature injection, which preserves the prior of the base
model, DynalP successfully inherits and retains the base model’s intrinsic multi-subject interaction
capabilities. As illustrated in Fig. [I2] DynalP can flexibly handle and render interactions between
reference subjects, even in scenarios where these objects exhibit large spatial overlap. This not only
validates its robustness in complex generation tasks but also underscores its strong potential for
deployment in practical applications.

B.4 CONTROL ON VISUAL GRANULARITY

As we introduced in Sec.[d.2] a key advantage of our HMoE-FFM lies in its ability to enable precise
modulation of the visual granularity of reference subjects. By allowing users to manually adjust
the fusion coefficients (Eq. [7) of experts’ outputs, the framework facilitates flexible control over
the granularity of concept preservation, tailored to diverse specific needs. To further illustrate this
capability, we provide additional examples in Fig.[13]and[T4]
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Figure 14: Control on the visual granularity of concept preservation, enabled by modulating
fusion coefficients ([Wrow, Warid, WHign] in Eq. EI) of experts’ outputs in HMoE-FFM. Please zoom
in to observe the details.
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Table 4: A/B test user study results. We report the adjusted advantage ratios (%) of the
competing methods relative to our method. Lower values indicate that our method performs better

relative to the competing method. CP: Concept Preservation, PF: Prompt Following. OS: Overall
Satisfaction. The highest and second-highest scores are highlighted.

Method CP PF (0N

DreamBooth 0.288 0.286 0.171
DreamBooth LoRA 0.709 0.782 0.660
Textual Inversion 0.142 0.198 0.100
IP-Adapter-Plus 0.745 0.442 0.297
DisEnvisioner 0.517 0.437 0.227
FLUX.1 IP-Adapter 0.728 0.496 0.336
Diptych Prompting 0.742 0.726 0.568
OminiControl 0.721 0.861 0.598
Self-Distillation 0.644 0.737 0.521
FLUX.1 Kontext Dev 0.953 0.857 0.861
Qwen-Image-Edit 0.896 0.944 0.904

"7 "BAGEL T T T T T T T 0718 ~ 0.802 0.622

OmniGen2 0.822 0.832 0.830
MS-Diffusion 0.647 0.487 0.368
MIP-Adapter 0.585 0.450 0.324
UNO 0.844 0.748 0.816
XVerse 0.825 0.786 0.828

B.5 USER STUDY

We further conduct A/B test user studies to demonstrate the superiority of DynalP. For each compet-
ing method, we randomly select 30 image combinations per user, encompassing both single-subject
and (where applicable) multi-subject personalization tasks. For each combination, we present the re-
sults generated by our method and the competing method side by side in a randomized order. Given
unlimited time, participants are then instructed to evaluate and select between the two based on three
criteria: (1) which result better preserves the reference subject—particularly its fine-grained details
(Concept Preservation, CP); (2) which result more accurately aligns with the given prompt (Prompt
Following, PF); and (3) which result achieves superior overall satisfaction, including composition
quality, naturalness, harmony, and visual appeal (Overall Satisfaction, OS). For each A/B test group,
we collect a total of 1,800 votes from 20 users. Tab. ] reports the adjusted advantage ratios of the
competing methods relative to our method—calculated using the formula Z‘;i’j_xi, where ”win” de-
notes the number of evaluations where the competing method is preferred, “tie” denotes the number
of evaluations with no clear preference for either method, and ”lose” denotes the number of evalua-
tions where our method is preferred. Lower values indicate that our method performs better relative
to the competing method. As the results illustrate, our method achieves better performance than all
other competing methods in terms of CP, PF, and OS (all values are lower than 1).

B.6 MORE ANALYSES OF DYNAMIC DECOUPLING STRATEGY

To better illustrate the decoupling effects of our proposed Dynamic Decoupling Strategy (DDS), we
visualize the results generated by injecting reference image features into the MM-DiT under three
distinct settings via cross-attentions: (1) text branch only, (2) noisy image branch only, and (3) both
text and noisy image branches.

As demonstrated in Fig.[T5] compared with the baseline results in column (a), injecting reference im-
age features solely into the text branch of MM-DiT (column (b)) only imparts some concept-agnostic
information, such as posture and perspective in the first row, and illumination in the second row. In
contrast, injecting reference image features exclusively into the noisy image branch of MM-DiT
(column (c)) successfully embeds concept-specific information (e.g., the subject’s ID and unique
appearance) while effectively disentangling the aforementioned concept-agnostic attributes. The
results in column (d) further validate our claims: combining the text branch with the noisy image
branch yields outputs where concept-specific and concept-agnostic information are entangled, lead-
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A photograph of a dog lazily sunbathing by a sereve lake.

(a) Baseline

Figure 15: Detailed analyses of the effects of Dynamic Decoupling Strategy (DDS). We visualize
the results generated by injecting reference image features into the MM-DiT under three distinct
settings via cross attentions: (b) text branch only, (¢) noisy image branch only, and (d) both text and
noisy image branches. We also present the attention maps illustrating the interaction between each
branch’s features and the reference image features in the upper right corners of (b) and (c). Please
zoom in to observe the details.

ing to prominent copy-paste artifacts that compromise the quality and controllability of generated
results.

Additionally, we also visualize the attention maps that illustrate the interaction between each
branch’s features and the reference image features, which are presented in the upper right corners
of columns (b) and (c). As observed, the noisy image branch focuses on the core appearance and
semantic regions of the reference subject, whereas the text branch exhibits relatively scattered at-
tention, with higher activation values only in areas irrelevant to the subject’s appearance. This
observation is well aligned with the phenomena manifested in the generated results.

B.7 MORE ANALYSES OF HMOE-FFM

We first reveal how our HMoE-FFM adaptively adjusts the visual granularity of extracted
features based on the inherent characteristics of the input reference image. As illustrated in
Fig. Left, we present the fusion coefficients ([wrow, Warid, W High] in Eq. , which are dynam-
ically predicted by the routing module of HMoE-FFM, beneath each input reference image. The
coefficient distribution reveals three key patterns: (1) In column (a), for reference images rich in
low-level patterns—such as brushstrokes (Row 1), lines (Row 2), and text (Row 3)—the routing
module assigns higher fusion coefficients to the low-level expert, followed by the mid-level ex-
pert. (2) In column (b), for reference images characterized by fine-grained textures and structures
(e.g., facial details in Rows 1 and 2, and surface textures in Row 3), the routing module prioritizes
the mid-level expert with higher coefficients, supplemented by the low-level expert. (3) In column
(c), for reference images dominated by coarse-grained textures and structures—including anime
characters (Row 1) and shape-centric objects (Rows 2 and 3)—the routing module allocates higher
fusion coefficients to the high-level and mid-level experts. To summarize, the routing mechanism
of HMoE-FFM achieves granularity-adaptive expert selection by dynamically calibrating the fusion
weights of low/mid/high-level experts in response to the visual granularity properties of input im-
ages. Such granularity-aware routing not only ensures the full utilization of each expert’s specialized
capabilities but also significantly enhances the model’s adaptability to the diverse characteristics of
reference images, thereby establishing a robust foundation for high-quality generation in subsequent
tasks.

Building on the granularity-aware fused features extracted by HMoE-FFM, we then elucidate how
our model adapts to prompt adjustments across diverse style and content variations. As
demonstrated in Fig.[T6}Right, our model achieves superior prompt-following performance, which is
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Figure 16: More analytical results of HMoE-FFM. Left: We present the fusion coefficients
([WLow, Warid, w High] in Eq. , adaptively predicted by the routing module of HMoE-FFM, across

diverse input reference images. The - and second-highest coefficients are highlighted.

Right: we visualize how our model adapts to prompt adjustments across diverse style and content
variations.

primarily attributed to the intrinsic properties of Decoupled Cross-Attention (DCA)
and our proposed Dynamic Decoupling Strategy (DDS). Specifically, the DCA mechanism achieves
prompt-driven attribute selection using noisy (generated) image as a bridge and cross-attention
dependency modeling as the theoretical foundation. It functionally specializes a dual-stream archi-
tecture comprising a Text CA stream and an Image CA stream. The Text CA stream first defines
the target semantic objective—i.e., which semantic elements (content, style, high-level attributes, or
low-level textures) should be prioritized in the noisy image. This capability is inherited from the base
T2I model (e.g., FLUX.1-Dev), which is pre-trained to align generated content with text semantics.
The Image CA stream then performs attribute-level correspondence matching between the reference
and noisy image features. It leverages the inherent ability of cross-attention to model feature simi-
larity and dependencies (Vaswani et al., 2017} [Ye et al} 2023)): calculating attention scores between
reference image tokens (encoded as K/V) and prompt-conditioned noisy image tokens (encoded as
Q). Here, the noisy image serves as a bridge to connect the text prompt and reference image—only
those reference attributes that align with the semantic priorities defined by Text CA are retained
(with high attention scores), while conflicting attributes are suppressed (with low attention scores).
The dual CA streams form a closed-loop decision-making process: Text CA defines "what to gen-
erate” (prompt alignment), while Image CA specifies "how to borrow from the reference” (attribute
matching), thereby algorithmically determining whether to adopt reference attributes (when they
match prompt priorities) or replace them (when they conflict with prompt priorities).

To intuitively illustrate this mechanism, we refer to the example in Fig. [[6}Right-Row 2, where Van
Gogh’s Starry Night is used as the reference image:

* When the prompt is “A photograph of an old wooden bridge over a tranquil pond, rendered
in Impressionist swirls”: Text CA prioritizes low-level textural attributes ("Impression-
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ist swirls”) in the noisy image. In turn, Image CA assigns high attention scores to the
prominent swirling textures in the reference image, enabling the targeted transfer of these
low-level textural features.

* When the prompt is modified to “A photograph of an old wooden bridge over a tranquil
pond, rendered in melancholy tones”: Text CA now prioritizes the high-level semantic
attribute (“melancholy tones”) in the noisy image. Correspondingly, Image CA shifts to
allocate higher attention scores to the reference’s color palette and mood (high-level se-
mantic attributes), resulting in the transfer of these abstract, high-level elements rather than
the low-level swirling textures.

However, as analyzed in Sec. [B.6| and further evidenced by the results in the dashed boxes of
Fig. [[6}Right, the retention of concept-agnostic information of the reference image may lead to
subject copy-paste artifacts and compromise the alignment between generated results and text
prompts—particularly regarding modifications to style, appearance, or posture. By leveraging
our proposed DDS, such concept-agnostic information is effectively disentangled and eliminated,
thereby further reinforcing the model’s prompt-following competence and semantic disentangle-
ment precision. Note that our DDS does not directly decide which elements to retain or modify but
strengthens DCA’s semantic focus by eliminating concept-agnostic noise from the reference image.

Currently, the feature extraction and fusion stage operates independently of the image generation
stage, implying that adjustments to text prompts do not affect the expert fusion coefficients predicted
by HMoE-FFM. The guidance for determining which elements (e.g., content, style, high-level se-
mantic attributes, or low-level textural details) of the reference image to retain or modify in the
generated output is automatically achieved by DCA and further enhanced by our DDS. A promising
future research direction is to establish a connection between the feature extraction/fusion stage and
the image generation stage, enabling the prediction of expert fusion coefficients based on both input
reference images and text prompts. We plan to explore this direction in our future work.

B.8 MORE ABLATION STUDIES ON EXPERTS’ LAYERS

Here, we present additional ablation results exploring alternative layer selections for the experts
in HMoE-FFM, with a specific focus on the low-level and mid-level experts. As demonstrated in
Fig.[T7] we visualize the reconstruction performance of features from various shallow and middle
layers by injecting them individually via cross-attentions. As shown in the top row, features from
excessively shallow layers (e.g., layer 4) tend to introduce low-level artifacts, while near-middle
layers (e.g., layer 12) fail to fully recover low-level details such as the text on the cloth. In contrast,
layers 8 and 10 yield much more satisfactory results in terms of low-level detail preservation, with
layer 10 producing slightly more natural visual outputs. As illustrated in the bottom row, features
from near-shallow layers (e.g., layer 12) and near-deep layers (e.g., layer 21) are unable to restore
fine-grained details like facial features. Middle layers 15 and 17, however, deliver significantly more
satisfying results, with layer 17 generating marginally more natural outcomes. Therefore, we select
features from layer 10 and layer 17 as the inputs for the low-level and mid-level expert networks,
respectively.

C LIMITATIONS AND DISCUSSIONS

The primary limitation of our DynalP stems from its reliance on explicit mask-guided feature in-
jection for achieving multi-subject personalization. Although this design enhances the practical
flexibility of our method to a certain extent, mask extraction may give rise to issues owing to the in-
herent precision limitations of grounding and segmentation models (Liu et al.| 2024} [Kirillov et al.}
[2023). Furthermore, since our method leverages the generative prior of the base model, the perfor-
mance of concept preservation may deteriorate if the subjects generated by the base model deviate
significantly from the reference subjects, as illustrated in Fig. [I8] Notably, this problem can be
alleviated by employing prompts that align more closely with the subjects in the reference images.
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Figure 17: Personalization results generated by injecting features from more layers of CLIP via
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Figure 18: Limitation of DynalP. The performance of concept preservation may degrade if the
subjects generated by the base model deviate significantly from the reference subjects.

D ETHICS STATEMENT

As a finetuning-free personalized text-to-image generation method, DynalP empowers users to flex-
ibly create customized images for creative scenarios like digital design and storytelling, unlocking
value for both professionals and casual users. Yet it also poses risks: its ability to generate realistic
novel subject combinations may be misused to produce deceptive content, potentially fueling mis-
information and eroding trust in visual media. Future efforts should focus on balancing creativity
with risk mitigation—such as integrating content authentication tools and establishing ethical use
guidelines—to ensure its positive societal impact.

E COPYRIGHT STATEMENT FOR IMAGES

Most images in this paper are sourced from open-access academic datasets and published literature.
Their use strictly adheres to the terms of applicable open-source licenses or academic reproduction
norms, with full attribution provided in the text and references. A small number of images were
retrieved from public online sources. Despite reasonable efforts to verify their copyright status,
such status remains unconfirmed. These images are used exclusively for non-commercial academic
research purposes in this work.

F THE USE OF LARGE LANGUAGE MODELS

In this paper, we only used the Large Language Models (LLMs) to assist with text polishing. The
LLMs played no role in the conception, design, or execution of the research.
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