

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 DYNAPI: DYNAMIC IMAGE PROMPT ADAPTER FOR SCALABLE ZERO-SHOT PERSONALIZED TEXT-TO- IMAGE GENERATION

Anonymous authors

Paper under double-blind review

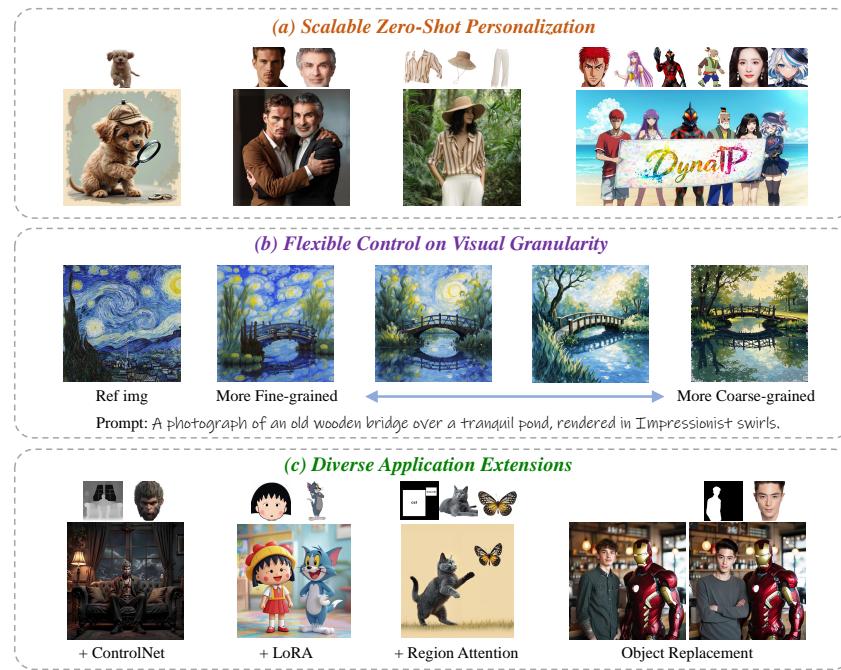


Figure 1: Representative results showcase the capabilities of DynaIP in: (a) **Scalable zero-shot personalized text-to-image generation**—spanning single-subject to multi-subject—trained solely on single-subject datasets. (b) **Flexible control on the visual granularity of concept preservation**, enabled by modulating fusion coefficients for image features across hierarchical levels. (c) **Native compatibility with base model extensions**, unlocking diverse application scenarios.

ABSTRACT

Personalized Text-to-Image (PT2I) generation aims to produce customized images based on reference images. A prominent interest pertains to the integration of an image prompt adapter to facilitate zero-shot PT2I without test-time fine-tuning. However, current methods grapple with three fundamental challenges: **1.** the elusive equilibrium between Concept Preservation (CP) and Prompt Following (PF), **2.** the difficulty in retaining fine-grained concept details in reference images, and **3.** the restricted scalability to extend to multi-subject personalization. To tackle these challenges, we present *Dynamic Image Prompt Adapter (DynaIP)*, a cutting-edge plugin to enhance the *fine-grained concept fidelity, CP-PF balance*, and *subject scalability* of state-of-the-art T2I multimodal diffusion transformers (MM-DiT) for PT2I generation. *Our key finding is that MM-DiT inherently exhibit decoupling learning behavior when injecting reference image features into its dual branches via cross attentions.* The noisy image branch selectively captures the concept-specific information of the reference image, while the text branch learns concept-agnostic information. Based on this, we design an innovative *Dynamic Decoupling Strategy* that removes the interference of concept-agnostic information during inference, significantly enhancing the CP-PF balance and further

054 bolstering the scalability of multi-subject compositions. Moreover, we identify
 055 the visual encoder as a key factor affecting fine-grained CP and reveal that *the*
 056 *hierarchical features of commonly used CLIP can capture visual information at*
 057 *diverse granularity levels*. Therefore, we introduce a novel *Hierarchical Mixture-*
 058 *of-Experts Feature Fusion Module* to fully leverage the hierarchical features of
 059 CLIP, remarkably elevating the fine-grained concept fidelity while also providing
 060 flexible control of visual granularity. Extensive experiments across single- and
 061 multi-subject PT2I tasks verify that our DynaIP outperforms existing approaches,
 062 marking a notable advancement in the field of PT2I generation.
 063

064 1 INTRODUCTION

067 Recent advances in denoising diffusion models (Ho et al., 2020) have led to remarkable success in
 068 Text-to-Image (T2I) generation, where State-of-the-Art (SOTA) models (Esser et al., 2024; Labs,
 069 2024) can produce visually plausible, high-quality images based on textual prompts. Subsequent
 070 researches have extended T2I to Personalized Text-to-Image (PT2I) generation (Gal et al., 2023;
 071 Ruiz et al., 2023; Shi et al., 2024), which aims to synthesize customized images based on both
 072 reference images and text prompts, ensuring that objects (e.g., persons, animals) in the generated
 073 images maintain specific concept characteristics.
 074

074 Pioneering PT2I methods, represented by DreamBooth (Ruiz et al., 2023) and Textual Inversion (Gal
 075 et al., 2023), primarily relied on fine-tuning models or specific text embeddings, often suffering from
 076 low efficiency. To reduce usage cost, recent attention has shifted towards finetuning-free paradigms,
 077 as exemplified by IP-Adapter (Ye et al., 2023) and OminiControl (Tan et al., 2025), which achieve
 078 zero-shot personalization via engineered decoupled cross-attention or multimodal joint attention
 079 mechanisms. Furthermore, there are several works (Xiao et al., 2024a; Wang et al., 2025; Huang
 080 et al., 2025) have extended Single-Subject PT2I (SS-PT2I) to Multi-Subject PT2I (MS-PT2I).
 081

081 In this work, we are interested in the adapter-based methods (Ye et al., 2023; Wang et al., 2025;
 082 Huang et al., 2025; Kong et al., 2025) owing to their intrinsic high flexibility and low computational
 083 complexity. Methods within this paradigm generally extract features from reference images via a
 084 visual encoder (Radford et al., 2021) and subsequently inject them into the cross-attention layers of
 085 a T2I diffusion model. Although substantial advancements have been made, this line of approaches
 086 are still confronted with three pivotal limitations:
 087

- 088 1. Entanglement of concept-specific information (e.g., ID, shape, and textures) and concept-
 089 agnostic information (e.g., posture, perspective, and illumination) in the injected reference
 090 image features, leading to an irreconcilable trade-off between Concept Preservation (CP,
 091 image & image consistency) and Prompt Following (PF, image & prompt consistency) in
 092 generated results (Peng et al., 2025; He et al., 2025), as shown in Fig. 2 (a).
 093
- 094 2. Insufficient fine-grained feature extraction from reference images, resulting in failure to
 095 faithfully recover the intricate object details in customized outputs, as shown in Fig. 2 (b).
 096
- 097 3. Significant challenge to directly extend the capability of SS-PT2I to MS-PT2I. Existing ap-
 098 proaches often heavily rely on well-curated large-scale multi-subject datasets (Xiao et al.,
 099 2024a; Wang et al., 2025), or encounter pronounced inconsistency when composing mul-
 100 tiple subjects via mask-guided feature injection (Ye et al., 2023; Team, 2024), severely
 101 impeding their scalability, as shown in Fig. 2 (c).
 102

100 Facing the aforementioned challenges, in this work, we propose the *Dynamic Image Prompt Adapter*
 101 (*DynaIP*), aiming at improving the *concept fidelity*, *CP-PF balance*, and *subject scalability* of
 102 adapter-based methods for PT2I generation tasks. Our DynaIP serves as a cutting-edge plugin for
 103 SOTA T2I multimodal diffusion transformers (MM-DiT) (Esser et al., 2024; Labs, 2024) and is
 104 compatible with diverse extensions (e.g., ControlNet (Zhang et al., 2023), LoRA (Hu et al.), and
 105 Region Attention (Chen et al., 2024a) of the same base model, as demonstrated in Fig. 1 (c).
 106

106 The key insight is that *the latest MM-DiT architecture inherently exhibits decoupling learning be-*
 107 *havior when injecting reference image features into its dual branches via cross attentions*. Specifi-
 108 *cally, the noisy image branch selectively captures the concept-specific information of the reference*
 109

Figure 2: **Limitations of existing adapter-based PT2I methods** (e.g., (Ye et al., 2023; Team, 2024; He et al., 2025)), including (a) irreconcilable trade-off between CP and PF, (b) loss of fine-grained concept details, and (c) restricted scalability to directly extend SS-PT2I to MS-PT2I via mask-guided feature injection. Our proposed DynaIP addresses all these challenges.

image, such as the subject’s ID and unique appearance, whereas the text branch learns the concept-agnostic information, such as posture, perspective, and illumination. Based on this finding, we design an innovative *Dynamic Decoupling Strategy (DDS)* that removes the interference of concept-agnostic information during the inference phase. This dynamic isolation offers two key advantages: (1) *improving the prompt following while maintaining the concept preservation, and thus achieving a better sweet spot between them*, and (2) *mitigating the visual integration inconsistency arising from the retention of concept-agnostic information when extending SS-PT2I to MS-PT2I, thereby significantly boosting the subject scalability*.

Moreover, we believe that the key factor affecting fine-grained CP of reference images lies in the visual encoder. Existing methods (Ye et al., 2023; Xiao et al., 2024a; Wang et al., 2025; Huang et al., 2025) typically employ the CLIP (Radford et al., 2021) image encoder to extract relatively high-level information from deep features of the final or penultimate layers. Unfortunately, these deep features incur substantial loss of detailed information, rendering them inadequate for recovering the fine-grained visual details of reference images. To address this gap, we first systematically investigate the reconstruction capabilities of CLIP’s multi-layer features and reveal that *these hierarchical features can capture visual information at diverse granularity levels*. Building on this insight, we further propose a novel *Hierarchical Mixture-of-Experts Feature Fusion Module (HMoE-FFM)* to fully harness CLIP’s hierarchical features. HMoE-FFM deploys layer-specific expert networks to process hierarchical features and dynamically calibrates their fusion coefficients via a routing mechanism that adapts to the characteristics of each reference image. This approach not only enhances the fidelity of fine-grained concept details but also facilitates precise modulation of visual granularity. For instance, users can manually adjust the fusion coefficients of experts’ outputs, thereby *enabling flexible control over the granularity of concept preservation* according to specific needs, as demonstrated in Fig. 1 (b) and Sec. B.4.

Overall, the contributions of our proposed DynaIP can be summarized as follows:

- We identify an intrinsic decoupling learning behavior of the MM-DiT architecture and, building on this insight, devise a *Dynamic Decoupling Strategy* to effectively disentangle concept-specific information from concept-agnostic information within reference images. This strategy significantly enhancing the CP-PF balance and further bolstering the scalability of multi-subject compositions.
- We reveal that the hierarchical features of standard CLIP inherently encode visual information across multiple granularities. Based on this, we propose a novel *Hierarchical Mixture-of-Experts Feature Fusion Module* that dynamically integrates these multi-level features to preserve both fine-grained visual details and semantic consistency. This module not only enhances concept fidelity but also enables flexible control over visual granularity.
- Extensive experiments demonstrate the superior performance and broad application potential of DynaIP. Our method outperforms SOTA approaches in attaining *fine-grained* con-

162 *cept fidelity and striking an optimal balance between CP and PF. Moreover, it exhibits*
 163 *exceptional scalability: being directly extendable to MS-PT2I scenarios without requiring*
 164 *additional training on multi-subject datasets, as demonstrated in Fig. 1 (a).*

166 2 RELATED WORK

168 Please refer to Sec. A for related work.

171 3 PRELIMINARY

173 3.1 MULTIMODAL DIFFUSION TRANSFORMER (MM-DiT)

175 MM-DiT was first proposed in Stable Diffusion 3 (Esser et al., 2024) and later applied in
 176 FLUX.1 (Labs, 2024). It enhances the vanilla DiT (Peebles & Xie, 2023; Chen et al., 2024c) by
 177 using a unified Multi-Modal Attention (MMA) mechanism to jointly process noisy image tokens
 178 $X \in \mathbb{R}^{m \times d}$ and text tokens $T \in \mathbb{R}^{n \times d}$. Here, d represents the latent dimension, while m and n
 179 represent the sequence lengths of image and text tokens, respectively.

180 Specifically, the MMA mechanism projects text and image tokens into position-encoded query $\mathbf{Q} =$
 181 $[\mathbf{Q}_T, \mathbf{Q}_X]$, key $\mathbf{K} = [\mathbf{K}_T, \mathbf{K}_X]$, and value $\mathbf{V} = [\mathbf{V}_T, \mathbf{V}_X]$ representations, enabling cross-modal
 182 attention computation across all tokens:

$$183 \quad MMA([T, X]) = \text{softmax}\left(\frac{\mathbf{Q}\mathbf{K}^\top}{\sqrt{d}}\right)\mathbf{V} = [T^{MMA}, X^{MMA}], \quad (1)$$

186 where $[\cdot, \cdot]$ denotes the sequence concatenation. T^{MMA} and X^{MMA} are the new text and noisy
 187 image tokens after MMA, respectively. The MMA allows both representations to operate within
 188 their respective spaces while still taking the other into account.

190 3.2 IMAGE PROMPT ADAPTER FOR MM-DiT

191 Image Prompt Adapter (IP-Adapter) (Ye et al., 2023) is a lightweight method to endow pretrained
 192 T2I diffusion models with the ability to utilize image prompts. Its core lies in a decoupled cross-
 193 attention mechanism that distinctly separates the cross-attention layers for processing text features
 194 and image features. The majority of prior works have predominantly relied on U-Net-based diffusion
 195 models. When transferring to MM-DiT-based models, a vanilla solution (Team, 2024) is computing
 196 the Cross-Attention (CA) between noisy image tokens X and reference image tokens $C \in \mathbb{R}^{h \times d}$
 197 (Eq. (2)), as illustrated in Fig. 3 (a-b). Here, h represents the sequence length of reference image
 198 tokens, which is typically extracted by a feature extraction model comprising a pretrained image
 199 encoder (e.g., CLIP (Radford et al., 2021)) and a trainable projection network.

$$200 \quad CA(X, C) = \text{softmax}\left(\frac{\mathbf{Q}_X \mathbf{K}_C^\top}{\sqrt{d}}\right)\mathbf{V}_C, \quad (2)$$

203 where \mathbf{Q}_X is the query representation of noisy image tokens X in Eq. (1), while \mathbf{K}_C and \mathbf{V}_C are
 204 newly learned key and value representations obtained by linearly projecting the reference image
 205 tokens C .

206 Then, the Decoupled Cross-Attention (DCA) mechanism integrates the output of image CA with the
 207 output of text CA:

$$208 \quad DCA(T, X, C) = X^{MMA} + \lambda \cdot CA(X, C). \quad (3)$$

209 Here, the output of text CA in MM-DiT is embedded in the new noisy image tokens X^{MMA} after
 210 MMA (Eq. (1)). λ is a weight factor to control the influence of the reference image features.

212 4 DYNAMIC IMAGE PROMPT ADAPTER

215 As discussed in Sec. 1, current adapter-based methods face fundamental challenges in fine-grained
 concept fidelity, CP-PF balance, and subject scalability. To tackle this challenges, we introduce

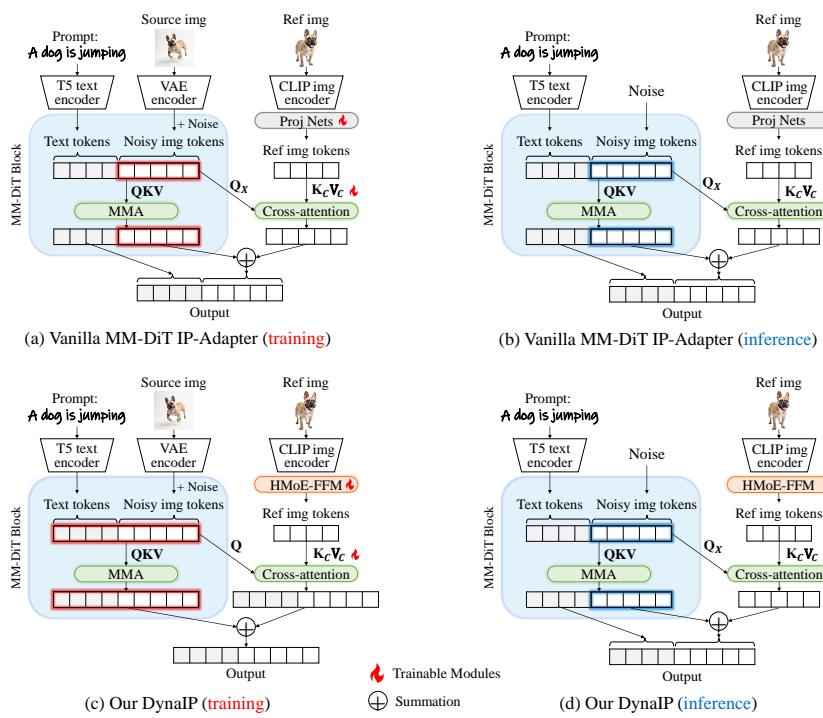


Figure 3: Training and inference pipeline of (a-b) vanilla IP-Adapter and (c-d) our DynaIP.

DynaIP, which comprises two key components. First, to improve CP-PF balance and subject scalability, we propose *Dynamic Decoupling Strategy*. It leverages an intrinsic characteristic of MM-DiT to dynamically disentangle concept-specific information from concept-agnostic information in reference images. Second, we present *Hierarchical Mixture-of-Experts Feature Fusion Module*, which dynamically integrates multi-level CLIP features according to different reference inputs. It not only significantly boosts fine-grained concept fidelity but also enables flexible control over visual granularity. The subsequent sections elaborate on these core components in detail.

4.1 DYNAMIC DECOUPLING STRATEGY

As introduced in Sec. 3.2 and Fig. 3 (a-b), the vanilla IP-Adapter for MM-DiT holistically injects reference image features into the noisy image, inevitably introducing concept-agnostic information that undermines personalization quality, as shown in Fig. 2. Considering that the *text branch in MM-DiT interacts with the noisy image branch through MMA (Eq. (1)) to govern the overall semantics, actions, and visual presentation of the generated image—all of which are irrelevant to specific concept information*—our key strategy is to enable reference image features to perform cross-attention with both the noisy image branch and the text branch simultaneously in the training phase, as illustrated in Fig. 3 (c) and formalized below:

$$CA([T, X], C) = \text{softmax}\left(\frac{QK_C^\top}{\sqrt{d}}\right)V_C. \quad (4)$$

Subsequently, the output of CA is added to the output of MMA (Eq. (1)):

$$DCA'(T, X, C) = [T^{MMA}, X^{MMA}] + \lambda \cdot CA([T, X], C). \quad (5)$$

In this way, the noisy image branch focuses on capturing the concept-specific information of the reference image, such as the subject’s ID and unique appearance, while the text branch specializes in learning the concept-agnostic information like posture, perspective, and illumination (see detailed analyses in Sec. B.6). Thus, during inference, we can dynamically remove concept-agnostic information by performing CA exclusively with the noisy image branch, as in Fig. 3 (d) and Eqs. (2, 3). This simple yet effective strategy significantly improves the CP-PF balance and bolsters the scalability of multi-subject compositions, as will be demonstrated in later Sec. 5.4.

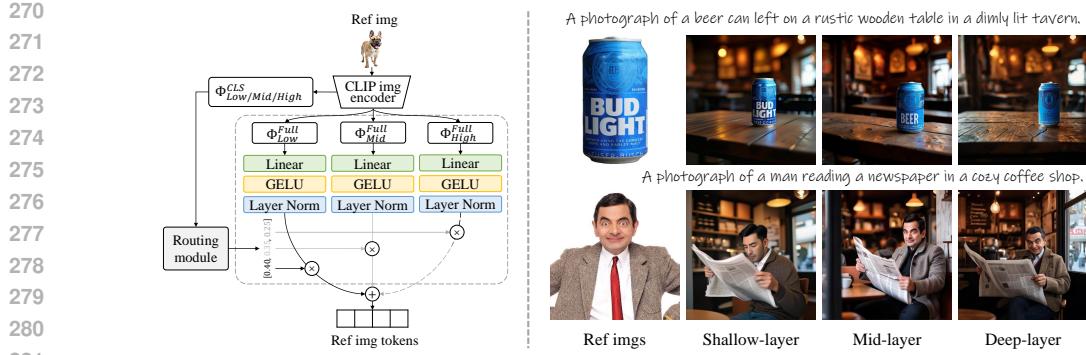


Figure 4: **Left:** Architecture of our proposed HMoE-FFM. **Right:** Personalization results generated by injecting features from different layers of CLIP via cross-attentions, demonstrating that CLIP’s hierarchical features can capture visual information at diverse granularity levels.

4.2 HIERARCHICAL MIXTURE-OF-EXPERTS FEATURE FUSION

The image encoder used in IP-Adapter plays a critical role to extract concept information from reference images. Current methods typically utilize CLIP (Radford et al., 2021), extracting features from its final or penultimate layers. While a few works (Team, 2024; Kong et al., 2025) have explored more powerful alternatives such as SigLIP (Zhai et al., 2023) and DINOv2 (Oquab et al., 2024), they still rely on deep-layer features. These deep-layer features suffer from substantial loss of detailed information, making them inadequate for recovering fine-grained visual details of reference images. To address this limitation, we first investigate CLIP’s feature extraction capabilities by systematically visualizing the reconstruction performance of its multi-layer features—achieved by injecting each layer’s features individually via cross-attentions. As demonstrated in Fig. 4-right, we made a striking observation: *CLIP’s hierarchical features excel at capturing visual information across varying granularity levels*. Specifically, shallow-layer features (e.g., layer 10) capture low-level patterns such as lines and text; mid-layer features (e.g., layer 17) capture fine-grained textures and structures like facial details; and deep-layer features (e.g., layer 24) capture semantic information alongside coarse-grained textures and structures (see results across more layers in Sec. B.8). Unfortunately, these multi-granularity hierarchical features have not been fully utilized in existing works.

To bridge this gap and fully harness the multi-granularity potential of CLIP’s hierarchical features, we further propose a novel *Hierarchical Mixture-of-Experts Feature Fusion Module (HMoE-FFM)*, as depicted in Fig. 4-left. Specifically, let Φ_{Low} , Φ_{Mid} , and Φ_{High} denote the image features from CLIP’s shallow, middle, and deep layers, respectively. $\Phi^{CLS} \in \mathbb{R}^{1 \times d_1}$ represents the class tokens of these features, and $\Phi^{Full} \in \mathbb{R}^{g \times d_1}$ represents their full tokens, where g denotes the sequence length and d_1 denotes the feature dimension.

HMoE-FFM first deploys layer-specific expert networks $Expert_l$ —each comprising a linear layer with GELU (Hendrycks & Gimpel, 2016) activation and layer normalization—to process the full tokens of hierarchical features, formalized as follows:

$$e_l = Expert_l(\Phi_l^{Full}), \quad l \in [Low, Mid, High]. \quad (6)$$

Additionally, a routing module (a two-layer Multi-Layer Perceptron with Tanh as the middle activation function) dynamically calibrates the fusion coefficients for each expert’s output based on the class tokens of hierarchical features:

$$w_l = Route_l(\Phi_l^{CLS}), \quad l \in [Low, Mid, High], \quad \sum_l w_l = 1. \quad (7)$$

Finally, the output feature is the weighted fusion of all experts’ outputs:

$$\Phi_{Fused} = \sum_l w_l \cdot e_l, \quad l \in [Low, Mid, High]. \quad (8)$$

Notably, this approach not only leverages the complementary strengths of multi-level features to preserve both fine-grained visual details and semantic consistency, but also enables precise modulation of visual granularity. For instance, users can manually adjust the fusion coefficients (Eq. 7) of

324 the experts’ outputs, thereby achieving flexible control over the granularity of concept preservation
 325 tailored to specific needs—as illustrated in Fig. 1 (b) and more results in Sec. B.4. Comparisons
 326 between our HMoE-FFM and other widely used feature fusion approaches will be presented in later
 327 Sec. 5.4. It is worth emphasizing that while our method is instantiated on the CLIP model in this
 328 work, *similar observations and conclusions may be generalized to other image encoders—a direc-*
 329 *tion we reserve for future exploration.*

331 4.3 MULTI-SUBJECT PERSONALIZATION

333 *Without requiring additional training on multi-subject datasets*, our DynaIP can be directly extended
 334 to multi-subject personalization scenarios via a straightforward mask-guided region-level feature
 335 injection. Concretely, given N reference images corresponding N masks, we first compute the CA
 336 between noisy image tokens X and each reference image tokens C_i as specified in Eq. (2). These
 337 CA outputs are then added to the corresponding regions of the text CA output features, guided by
 338 their respective masks:

$$339 \quad DCA''(T, X, C) = X^{MMA} + \sum_{i=1}^N \lambda_i \cdot M_i \cdot CA(X, C_i), \quad (9)$$

342 where X^{MMA} implies the output of text CA as defined in Eq. (3), M_i is a binary mask specifying
 343 the regions in the generated image where the subject needs to be replaced by the subject from
 344 the i th reference image; it can either be manually annotated by users or automatically generated
 345 using existing grounding and segmentation tools (Liu et al., 2024; Kirillov et al., 2023). In our
 346 experiments, we adopt the automatic approach or preset masks for multi-subject personalization. λ_i
 347 is the weight factor to regulate the influence of the i th reference image features. As will be shown
 348 in later Sec. 5.4, thanks to our proposed Dynamic Decoupling Strategy, our results can significantly
 349 reduce inconsistencies when composing different reference subjects and greatly enhance the overall
 350 harmony of multi-subject generation—even when these subjects possess distinct styles and visual
 351 attributes. Furthermore, this method facilitates effective object replacement, which in turn supports
 352 flexible editing of the generated results, as shown in the last case of Fig. 1 (c).

353 5 EXPERIMENTAL RESULTS

354 5.1 EXPERIMENT SETTINGS

355 **Implementation Details.** Please refer to Sec. B.1 for implementation details.

356 **Datasets.** Please refer to Sec. B.1 for details of training datasets. For evaluation, we assess SS-
 357 PT2I performance on DreamBench++ (Peng et al., 2025), which contains 1350 test samples across
 358 various categories—including animals, humans, and objects—and covers both photorealistic and
 359 non-photorealistic styles. For MS-PT2I evaluation, we follow previous studies (Wang et al., 2025;
 360 Huang et al., 2025) to establish a new benchmark named DynaIP-Bench. Specifically, we source
 361 subjects from existing works (Peng et al., 2025; Wang et al., 2025; Chen et al., 2025) to construct
 362 642 two-subject pairs and 246 three-subject triplets, forming a comprehensive set of 888 multi-
 363 subject test samples. More details are provided in Sec. B.1.

364 **Evaluation Metrics.** Previous works (Ruiz et al., 2023; Wang et al., 2025) typically compare
 365 feature-based similarity metrics from models like CLIP (Radford et al., 2021) and DINO (Oquab
 366 et al., 2024). However, as highlighted in (Peng et al., 2025; Cai et al., 2025), these metrics only
 367 capture global semantic similarity and suffer from extreme noise and bias. Therefore, we adhere to
 368 the evaluation protocol outlined in (Peng et al., 2025), which systematically assesses PT2I perfor-
 369 mance through two key dimensions: Concept Preservation (CP) and Prompt Following (PF), using
 370 a Vision-Language Model (VLM) (Hurst et al., 2024). This protocol demonstrates better alignment
 371 with human preferences compared to traditional metrics. **For reproducibility and mitigating model-**
 372 **specific biases, we employ two SOTA open-source VLMs—InternVL3-78B (Zhu et al., 2025) and**
 373 **Qwen3-VL-32B (Team, 2025)—and report the average of their scores.** The goal of the PT2I task is
 374 to maximize the Nash utility (Nash et al., 1950), defined as the product of CP and PF scores. Note
 375 that for MS-PT2I scenarios, we use the average CP score across all subjects for evaluation. **The**
 376 **detailed VLM evaluation prompts can be found in Sec. B.1.**

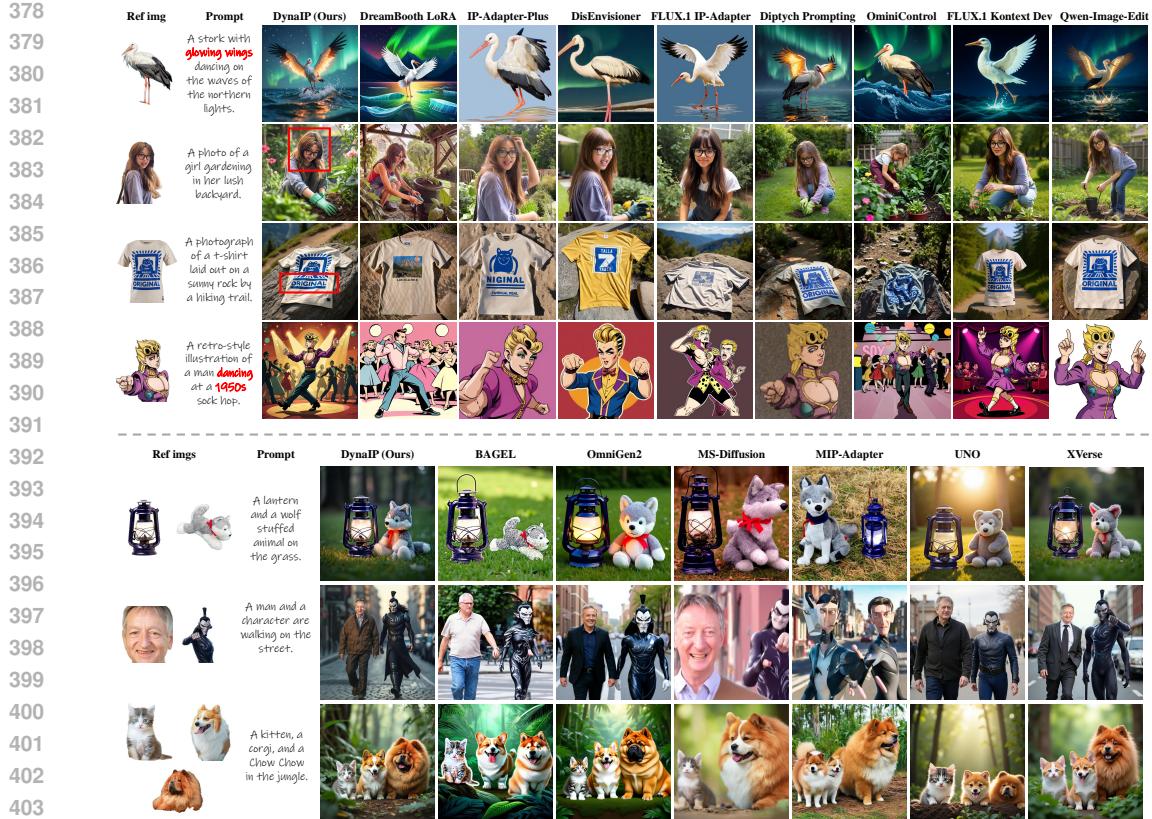


Figure 5: Qualitative comparisons on single- (top) and multi-subject (bottom) PT2I generation.

Compared Baselines. For SS-PT2I, we compare our model with leading open-source methods such as finetuning-based DreamBooth (Ruiz et al., 2023), DreamBooth LoRA (Hu et al.), and Textual Inversion (Gal et al., 2023); zero-shot UNet-based IP-Adapter-Plus (Ye et al., 2023) and DisEnvisioner (He et al., 2025); DiT-based FLUX.1 IP-Adapter (Team, 2024), Diptych Prompting (Shin et al., 2024), OminiControl (Tan et al., 2025), Self-Distillation (Cai et al., 2025), and FLUX.1 Kontext Dev (Labs et al., 2025); MLLM-based Qwen-Image-Edit (Wu et al., 2025a). For MS-PT2I, we compare our model with MLLM-based BAGEL (Deng et al., 2025) and Omni-Gen2 (Wu et al., 2025b), and other finetuning-free methods like MS-Diffusion (Wang et al., 2025), MIP-Adapter (Huang et al., 2025), UNO (Wu et al., 2025c), and XVerse (Chen et al., 2025). **For fair comparison, we adapt input prompts to the officially recommended format of each compared method to avoid biases from mismatched prompt formats.**

5.2 QUALITATIVE COMPARISON

We present qualitative comparison results for SS-PT2I in Fig. 5 (top). As illustrated, our DynaIP preserves fine-grained subject details with high fidelity—such as the facial features in Row 2 and the legible text in Row 3—while simultaneously achieving strong prompt alignment, as evidenced by the glowing wings in Row 1 and the 1950s-style dancing in Row 4. In contrast, existing approaches either fail to maintain fine-grained subject consistency or struggle to adhere to input prompts.

Furthermore, we showcase qualitative comparisons for MS-PT2I in Fig. 5 (bottom). Notably, while all competing methods are trained on carefully curated multi-subject datasets, our DynaIP delivers superior performance in both subject consistency and visual harmony—*despite being trained exclusively on single-subject data*. Specifically, our method generates plausible, harmonious, and naturally coordinated compositions, even when reference subjects exhibit distinct styles and visual attributes (e.g., Row 2). By contrast, existing approaches frequently produce copy-paste artifacts or inconsistent subject renderings, resulting in reduced concept fidelity and visually disjointed compositions. More qualitative results are provided in Sec. B.2.

432
 433 Table 1: **Quantitative comparisons with SOTA methods.** CP: Concept Preservation, PF: Prompt
 434 Following. The **highest** and **second-highest** scores are highlighted.

436 Method	437 Single-subject			438 Multi-subject		
	439 CP	440 PF	441 CP · PF	442 CP	443 PF	444 CP · PF
DreamBooth	0.458	0.721	0.330	-	-	-
DreamBooth LoRA	0.594	0.840	0.499	-	-	-
Textual Inversion	0.384	0.633	0.220	-	-	-
IP-Adapter-Plus	0.738	0.668	0.493	-	-	-
DisEnvisioner	0.559	0.664	0.371	-	-	-
FLUX.1 IP-Adapter	0.681	0.600	0.408	-	-	-
Diptych Prompting	0.616	0.839	0.517	-	-	-
OminiControl	0.596	0.895	0.534	-	-	-
Self-Distillation	0.513	0.870	0.447	-	-	-
FLUX.1 Kontext Dev	0.718	0.893	0.641	-	-	-
Qwen-Image-Edit	0.693	0.928	0.643	-	-	-
BAGEL	0.603	0.926	0.558	0.566	0.885	0.500
OmniGen2	0.622	0.922	0.574	0.552	0.952	0.526
MS-Diffusion	0.686	0.828	0.568	0.584	0.850	0.496
MIP-Adapter	0.692	0.649	0.449	0.388	0.713	0.276
UNO	0.721	0.799	0.576	0.509	0.857	0.436
XVerse	0.643	0.869	0.559	0.548	0.890	0.488
Our DynaIP	0.696	0.934	0.650	0.617	0.997	0.615

451 5.3 QUANTITATIVE COMPARISON

452
 453 **Automatic Scores.** Quantitative comparison results for both SS- and MS-PT2I are presented in
 454 Tab. 1, where we report VLM evaluation metrics following the protocol in (Peng et al., 2025). For
 455 SS-PT2I, our method achieves the highest PF and CP·PF scores. The PF score quantifies adherence
 456 to text prompts, while the CP·PF score reflects balanced performance between subject consistency
 457 and prompt alignment. As explicitly emphasized in (Peng et al., 2025), this balanced CP·PF perfor-
 458 mance is the ultimate objective of the PT2I task. Although our CP score is marginally lower than
 459 that of certain competing methods (e.g., IP-Adapter-Plus (Ye et al., 2023)), we attribute this dis-
 460 crepancy primarily to two factors: first, these baselines fail to effectively decouple concept-agnostic
 461 information, leading generated images closely resemble the input without meaningful transfor-
 462 mation, as illustrated in Fig. 5 and further validated by their substantially lower PF scores; second, the
 463 CP score itself exhibits limited sensitivity to both such copy-paste artifacts and fine-grained subject
 464 details. Therefore, to more effectively demonstrate the superiority of our DynaIP in terms of CP, we
 465 further conduct additional user studies in Sec. B.5, where our method outperforms all competitors.

466 For MS-PT2I, our method outperforms all baselines by achieving the highest scores across all met-
 467 rics, demonstrating its superiority in both maintaining subject consistency and prompt adherence.
 468 Notably, our CP score in MS scenarios surpasses those of all competitors—a stark contrast to the SS
 469 scenarios. We hypothesize this is because existing approaches frequently suffer from critical flaws
 470 such as subject omission, identity confusion, or unnatural subject fusion—issues that directly de-
 471 grade the performance of CP, as shown in Fig. 5. In contrast, our method effectively mitigates these
 472 problems and generates visually harmonious multi-subject compositions, thanks to our proposed
 473 Dynamic Decoupling Strategy and mask-guided feature injection.

474 5.4 ABLATION STUDIES

475 **Effects of Dynamic Decoupling Strategy (DDS).** We conduct ablation experiments on our pro-
 476 posed DDS. As shown in Fig. 6-left, without DDS, the concept-agnostic information of the ref-
 477 erence images, such as posture, perspective, and illumination, is retained in the generated results,
 478 leading to degraded editability and disharmonious multi-subject compositions. These issues are ef-
 479 fectively mitigated by DDS, confirming its ability to disentangle concept-specific information from
 480 concept-agnostic information. Additionally, quantitative results in Tab. 2 (1-2) further validate its ef-
 481 fectiveness in enhancing the CP·PF balance and multi-subject scalability. [More results and analyses](#)
 482 [can be found in Sec. B.6.](#)

483 **Superiority of HMoE-FFM.** We compare our HMoE-FFM with two widely adopted feature fusion
 484 methods: element-wise addition (add) and channel-wise concatenation (concat). As illustrated in

Figure 6: **Qualitative ablation study results** of **Left**: Dynamic Decoupling Strategy (DDS) and **Right**: different feature fusion approaches.

Table 2: **Quantitative ablation study results**. CP: Concept Preservation, PF: Prompt Following. The **highest** and **second-highest** scores are highlighted.

Setting	Single-subject			Multi-subject		
	CP	PF	CP · PF	CP	PF	CP · PF
(1) Full Model	0.696	0.934	0.650	0.617	0.997	0.615
(2) w/o DDS	0.785	0.799	0.627	0.499	0.545	0.272
(3) add fusion	0.693	0.910	0.631	0.612	0.994	0.608
(4) concat fusion	0.691	0.903	0.624	0.605	0.992	0.600
(5) only shallow-layer	0.627	0.924	0.579	0.464	0.991	0.460
(6) only mid-layer	0.670	0.928	0.622	0.603	0.993	0.599
(7) only deep-layer	0.480	0.950	0.456	0.474	0.995	0.471

Fig. 6-right and Tab. 2 (3-4), fusing multi-layer CLIP features via add or concat yields suboptimal performance on both CP and PF—particularly in terms of fine-grained fidelity and style transfer. This highlights the superiority of our HMoE-FFM, which more effectively integrates hierarchical features through layer-specific expert networks and a dynamic routing mechanism that adapts to the characteristics of each reference image. Additionally, as shown in Fig. 1 (b) and Sec. B.4, our HMoE-FFM provides greater flexibility to enable run-time control over the granularity of concept preservation, a capability unattainable with add and concat approaches. On the other hand, to complement Fig. 4-right, we further present quantitative results for HMoE-FFM using different CLIP layers individually in Tab. 2 (5-7). Evidently, while shallow-layer features excel at capturing low-level patterns (e.g., lines and text), their limited capacity to grasp mid- and high-level attributes results in lower CP scores. Similarly, deep-layer features yield lower CP scores due to their lack of low-level and fine-grained information; however, they achieve the highest PF scores by virtue of their stronger ability to capture semantic information. In contrast, mid-layer features primarily focus on fine-grained details while incorporating a certain amount of semantic information, thus striking a more favorable balance between CP and PF. By harnessing the strengths of these multi-layer features, our HMoE-FFM integrates low-level, fine-grained, and semantic information, thereby achieving an optimal balance between CP and PF. [More results and analyses can be found in Sec. B.7](#).

6 CONCLUSION

In this paper, we present DynaIP, a plug-and-play adapter to empower diffusion transformers for scalable zero-shot personalized text-to-image generation. Our DynaIP introduces two key innovations. The first is a *Dynamic Decoupling Strategy (DDS)* to disentangle concept-specific information from concept-agnostic information within reference images. This strategy significantly enhances the critical balance between concept preservation and prompt following, while simultaneously bolstering the scalability of multi-subject compositions. The second is a *Hierarchical Mixture-of-Experts Feature Fusion Module (HMoE-FFM)* to dynamically integrates the multi-level CLIP features to preserve both fine-grained visual details and semantic consistency. It not only enhances the concept fidelity of reference images but also provides flexible control over visual granularity. Extensive experiments show the superiority of our DynaIP in both single- and multi-subject personalization, while *requiring only single-subject training datasets*.

540 REFERENCES
541

542 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
543 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
544 2025.

545 Shengqu Cai, Eric Ryan Chan, Yunzhi Zhang, Leonidas Guibas, Jiajun Wu, and Gordon Wetzstein.
546 Diffusion self-distillation for zero-shot customized image generation. In *Proceedings of the Com-*
547 *puter Vision and Pattern Recognition Conference*, pp. 18434–18443, 2025.

548 Yue Cao, Yangzhou Liu, Zhe Chen, Guangchen Shi, Wenhui Wang, Danhuai Zhao, and Tong Lu.
549 Mmfuser: Multimodal multi-layer feature fuser for fine-grained vision-language understanding.
550 *arXiv preprint arXiv:2410.11829*, 2024.

551 Anthony Chen, Jianjin Xu, Wenzhao Zheng, Gaole Dai, Yida Wang, Renrui Zhang, Haofan Wang,
552 and Shanghang Zhang. Training-free regional prompting for diffusion transformers. *arXiv*
553 *preprint arXiv:2411.02395*, 2024a.

554 Bowen Chen, Mengyi Zhao, Haomiao Sun, Li Chen, Xu Wang, Kang Du, and Xinglong Wu. Xverse:
555 Consistent multi-subject control of identity and semantic attributes via dit modulation. *arXiv*
556 *preprint arXiv:2506.21416*, 2025.

557 Gongwei Chen, Leyang Shen, Rui Shao, Xiang Deng, and Liqiang Nie. Lion: Empowering multi-
558 modal large language model with dual-level visual knowledge. In *Proceedings of the IEEE/CVF*
559 *Conference on Computer Vision and Pattern Recognition*, pp. 26540–26550, 2024b.

560 Junsong Chen, YU Jincheng, GE Chongjian, Lewei Yao, Enze Xie, Zhongdao Wang, James Kwok,
561 Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart-alpha: Fast training of diffusion transformer
562 for photorealistic text-to-image synthesis. In *The Twelfth International Conference on Learning*
563 *Representations*, 2024c.

564 Xi Chen, Lianghua Huang, Yu Liu, Yujun Shen, Deli Zhao, and Hengshuang Zhao. Anydoor: Zero-
565 shot object-level image customization. In *Proceedings of the IEEE/CVF conference on computer*
566 *vision and pattern recognition*, pp. 6593–6602, 2024d.

567 Seunghwan Choi, Sunghyun Park, Minsoo Lee, and Jaegul Choo. Viton-hd: High-resolution virtual
568 try-on via misalignment-aware normalization. In *Proceedings of the IEEE/CVF conference on*
569 *computer vision and pattern recognition*, pp. 14131–14140, 2021.

570 Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
571 Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. *arXiv*
572 *preprint arXiv:2505.14683*, 2025.

573 Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou,
574 Zhou Shao, Hongxia Yang, et al. Cogview: Mastering text-to-image generation via transformers.
575 *Advances in neural information processing systems*, 34:19822–19835, 2021.

576 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
577 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
578 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
579 2024.

580 Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit Haim Bermano, Gal Chechik, and
581 Daniel Cohen-or. An image is worth one word: Personalizing text-to-image generation using
582 textual inversion. In *The Eleventh International Conference on Learning Representations*, 2023.

583 Yuchao Gu, Xintao Wang, Jay Zhangjie Wu, Yujun Shi, Yunpeng Chen, Zihan Fan, Wuyou Xiao,
584 Rui Zhao, Shuning Chang, Weijia Wu, et al. Mix-of-show: Decentralized low-rank adaptation
585 for multi-concept customization of diffusion models. *Advances in Neural Information Processing*
586 *Systems*, 36:15890–15902, 2023.

587 Zinan Guo, Yanze Wu, Chen Zhuowei, Peng Zhang, Qian He, et al. Pulid: Pure and lightning id
588 customization via contrastive alignment. *Advances in neural information processing systems*, 37:
589 36777–36804, 2024.

594 Zinan Guo, Pengze Zhang, Yanze Wu, Chong Mou, Songtao Zhao, and Qian He. Musar: Explor-
 595 ing multi-subject customization from single-subject dataset via attention routing. *arXiv preprint*
 596 *arXiv:2505.02823*, 2025.

597

598 Jing He, LI Haodong, Guibao Shen, CAI Yingjie, Weichao Qiu, Ying-Cong Chen, et al. Disen-
 599 visioner: Disentangled and enriched visual prompt for customized image generation. In *The*
 600 *Thirteenth International Conference on Learning Representations*, 2025.

601 Qiyuan He and Angela Yao. Conceptrol: Concept control of zero-shot personalized image genera-
 602 tion. *arXiv preprint arXiv:2503.06568*, 2025.

603

604 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint*
 605 *arXiv:1606.08415*, 2016.

606 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 607 *neural information processing systems*, 33:6840–6851, 2020.

608

609 Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
 610 et al. Lora: Low-rank adaptation of large language models. In *International Conference on*
 611 *Learning Representations*.

612 Lianghua Huang, Wei Wang, Zhi-Fan Wu, Yupeng Shi, Huanzhang Dou, Chen Liang, Yutong
 613 Feng, Yu Liu, and Jingren Zhou. In-context lora for diffusion transformers. *arXiv preprint*
 614 *arXiv:2410.23775*, 2024a.

615

616 Mengqi Huang, Zhendong Mao, Mingcong Liu, Qian He, and Yongdong Zhang. Realcustom: nar-
 617 rowing real text word for real-time open-domain text-to-image customization. In *Proceedings of*
 618 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7476–7485, 2024b.

619 Qihan Huang, Siming Fu, Jinlong Liu, Hao Jiang, Yipeng Yu, and Jie Song. Resolving multi-
 620 condition confusion for finetuning-free personalized image generation. In *Proceedings of the*
 621 *AAAI Conference on Artificial Intelligence*, volume 39, pp. 3707–3714, 2025.

622

623 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 624 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint*
 625 *arXiv:2410.21276*, 2024.

626 Jiaxiu Jiang, Yabo Zhang, Kailai Feng, Xiaohe Wu, Wenbo Li, Renjing Pei, Fan Li, and Wangmeng
 627 Zuo. Mc2: Multi-concept guidance for customized multi-concept generation. *arXiv preprint*
 628 *arXiv:2404.05268*, 2024.

629

630 Minguk Kang, Jun-Yan Zhu, Richard Zhang, Jaesik Park, Eli Shechtman, Sylvain Paris, and Taesung
 631 Park. Scaling up gans for text-to-image synthesis. In *Proceedings of the IEEE/CVF conference*
 632 *on computer vision and pattern recognition*, pp. 10124–10134, 2023.

633 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
 634 adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern*
 635 *recognition*, pp. 4401–4410, 2019.

636

637 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 638 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceed-
 639 ings of the IEEE/CVF international conference on computer vision*, pp. 4015–4026, 2023.

640 Lingjie Kong, Kai Wu, Xiaobin Hu, Wenhui Han, Jinlong Peng, Chengming Xu, Donghao Luo,
 641 Mengtian Li, Jiangning Zhang, Chengjie Wang, and Yanwei Fu. Custany: Customizing anything
 642 from a single example. In *Proceedings of the IEEE/CVF conference on computer vision and*
 643 *pattern recognition*, 2025.

644 Nupur Kumari, Bingliang Zhang, Richard Zhang, Eli Shechtman, and Jun-Yan Zhu. Multi-concept
 645 customization of text-to-image diffusion. In *Proceedings of the IEEE/CVF conference on com-
 646 puter vision and pattern recognition*, pp. 1931–1941, 2023.

647

648 Black Forest Labs, Stephen Batifol, Andreas Blattmann, Frederic Boesel, Saksham Consul, Cyril
 649 Diagne, Tim Dockhorn, Jack English, Zion English, Patrick Esser, et al. Flux. 1 kontext:
 650 Flow matching for in-context image generation and editing in latent space. *arXiv preprint*
 651 *arXiv:2506.15742*, 2025.

652 Dongxu Li, Junnan Li, and Steven Hoi. Blip-diffusion: Pre-trained subject representation for con-
 653 trollable text-to-image generation and editing. *Advances in Neural Information Processing Sys-*
 654 *tems*, 36:30146–30166, 2023.

655 Wei Li, Xue Xu, Jiachen Liu, and Xinyan Xiao. Unimo-g: Unified image generation through mul-
 656 timodal conditional diffusion. In *Proceedings of the 62nd Annual Meeting of the Association for*
 657 *Computational Linguistics (Volume 1: Long Papers)*, pp. 6173–6188, 2024.

658 Junyan Lin, Haoran Chen, Yue Fan, Yingqi Fan, Xin Jin, Hui Su, Jinlan Fu, and Xiaoyu Shen.
 659 Multi-layer visual feature fusion in multimodal llms: Methods, analysis, and best practices. In
 660 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 4156–4166, 2025.

661 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 662 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
 663 for open-set object detection. In *European Conference on Computer Vision*, pp. 38–55. Springer,
 664 2024.

665 Zhiheng Liu, Ruili Feng, Kai Zhu, Yifei Zhang, Kecheng Zheng, Yu Liu, Deli Zhao, Jingren Zhou,
 666 and Yang Cao. Cones: concept neurons in diffusion models for customized generation. In *Pro-*
 667 *ceedings of the 40th International Conference on Machine Learning*, pp. 21548–21566, 2023.

668 Jian Ma, Junhao Liang, Chen Chen, and Haonan Lu. Subject-diffusion: Open domain personalized
 669 text-to-image generation without test-time fine-tuning. In *ACM SIGGRAPH 2024 Conference*
 670 *Papers*, pp. 1–12, 2024.

671 Chaojie Mao, Jingfeng Zhang, Yulin Pan, Zeyinzi Jiang, Zhen Han, Yu Liu, and Jingren Zhou.
 672 Ace++: Instruction-based image creation and editing via context-aware content filling. *arXiv*
 673 *preprint arXiv:2501.02487*, 2025.

674 Chong Mou, Yanze Wu, Wenxu Wu, Zinan Guo, Pengze Zhang, Yufeng Cheng, Yiming Luo, Fei
 675 Ding, Shiwen Zhang, Xinghui Li, et al. Dreamo: A unified framework for image customization.
 676 *arXiv preprint arXiv:2504.16915*, 2025.

677 John F Nash et al. The bargaining problem. *Econometrica*, 18(2):155–162, 1950.

678 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 679 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 680 robust visual features without supervision. *Transactions on Machine Learning Research Journal*,
 681 pp. 1–31, 2024.

682 Xichen Pan, Li Dong, Shaohan Huang, Zhiliang Peng, Wenhui Chen, and Furu Wei. Kosmos-g: Gen-
 683 erating images in context with multimodal large language models. In *The Twelfth International*
 684 *Conference on Learning Representations*.

685 Maitreya Patel, Sangmin Jung, Chitta Baral, and Yezhou Yang. λ -eclipse: Multi-concept person-
 686 alized text-to-image diffusion models by leveraging clip latent space. *Transactions on Machine*
 687 *Learning Research*.

688 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 689 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

690 Yuang Peng, Yuxin Cui, Haomiao Tang, Zekun Qi, Runpei Dong, Jing Bai, Chunrui Han, Zheng Ge,
 691 Xiangyu Zhang, and Shu-Tao Xia. Dreambench++: A human-aligned benchmark for personal-
 692 ized image generation. In *The Thirteenth International Conference on Learning Representations*,
 693 2025.

694 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 695 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 696 synthesis. In *The Twelfth International Conference on Learning Representations*.

702 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 703 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 704 models from natural language supervision. In *International conference on machine learning*, pp.
 705 8748–8763. PmlR, 2021.

706 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
 707 and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine
 708 learning*, pp. 8821–8831. Pmlr, 2021.

709 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 710 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 1(2):3, 2022.

711 Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
 712 Generative adversarial text to image synthesis. In *International conference on machine learning*,
 713 pp. 1060–1069. PMLR, 2016.

714 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 715 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 716 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

717 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 718 ical image segmentation. In *Medical image computing and computer-assisted intervention-
 719 MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
 720 ings, part III 18*, pp. 234–241. Springer, 2015.

721 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 722 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In *Pro-
 723 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 22500–
 724 22510, 2023.

725 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 726 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 727 text-to-image diffusion models with deep language understanding. *Advances in neural informa-
 728 tion processing systems*, 35:36479–36494, 2022.

729 Jing Shi, Wei Xiong, Zhe Lin, and Hyun Joon Jung. Instantbooth: Personalized text-to-image
 730 generation without test-time finetuning. In *Proceedings of the IEEE/CVF conference on computer
 731 vision and pattern recognition*, pp. 8543–8552, 2024.

732 Chaehun Shin, Jooyoung Choi, Heeseung Kim, and Sungroh Yoon. Large-scale text-to-image model
 733 with inpainting is a zero-shot subject-driven image generator. *arXiv preprint arXiv:2411.15466*,
 734 2024.

735 Wensong Song, Hong Jiang, Zongxing Yang, Ruijie Quan, and Yi Yang. Insert anything: Image
 736 insertion via in-context editing in dit. *arXiv preprint arXiv:2504.15009*, 2025.

737 Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Yueze Wang, Yongming Rao,
 738 Jingjing Liu, Tiejun Huang, and Xinlong Wang. Generative multimodal models are in-context
 739 learners. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
 740 nition*, pp. 14398–14409, 2024.

741 Zhenxiong Tan, Songhua Liu, Xingyi Yang, Qiaochu Xue, and Xinchao Wang. Ominicontrol: Mini-
 742 mal and universal control for diffusion transformer. In *Proceedings of the IEEE/CVF Interna-
 743 tional Conference on Computer Vision (ICCV)*, pp. 14940–14950, October 2025.

744 InstantX Team. Instantx flux.1-dev ip-adapter page, 2024.

745 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

746 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 747 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural informa-
 748 tion processing systems*, 30, 2017.

756 Haofan Wang, Matteo Spinelli, Qixun Wang, Xu Bai, Zekui Qin, and Anthony Chen. Instantstyle: Free lunch towards style-preserving in text-to-image generation. *arXiv preprint arXiv:2404.02733*, 2024a.

757

760 Qixun Wang, Xu Bai, Haofan Wang, Zekui Qin, Anthony Chen, Huaxia Li, Xu Tang, and Yao Hu. Instantid: Zero-shot identity-preserving generation in seconds. *arXiv preprint arXiv:2401.07519*, 2024b.

761

763 Xierui Wang, Siming Fu, Qihan Huang, Wanggui He, and Hao Jiang. Ms-diffusion: Multi-subject zero-shot image personalization with layout guidance. In *The Thirteenth International Conference on Learning Representations*, 2025.

764

767 Yuxiang Wei, Yabo Zhang, Zhilong Ji, Jinfeng Bai, Lei Zhang, and Wangmeng Zuo. Elite: Encoding visual concepts into textual embeddings for customized text-to-image generation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 15943–15953, 2023.

768

770 Zhichao Wei, Qingkun Su, Long Qin, and Weizhi Wang. Mm-diff: High-fidelity image personalization via multi-modal condition integration. *arXiv preprint arXiv:2403.15059*, 2024.

771

773 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*, 2025a.

774

776 Chenyuan Wu, Pengfei Zheng, Ruiran Yan, Shitao Xiao, Xin Luo, Yueze Wang, Wanli Li, Xiyan Jiang, Yexin Liu, Junjie Zhou, et al. Omnigen2: Exploration to advanced multimodal generation. *arXiv preprint arXiv:2506.18871*, 2025b.

777

780 Shaojin Wu, Mengqi Huang, Wenxu Wu, Yufeng Cheng, Fei Ding, and Qian He. Less-to-more generalization: Unlocking more controllability by in-context generation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 18682–18692, October 2025c.

781

784 Guangxuan Xiao, Tianwei Yin, William T Freeman, Frédo Durand, and Song Han. Fastcomposer: Tuning-free multi-subject image generation with localized attention. *International Journal of Computer Vision*, pp. 1–20, 2024a.

785

788 Shitao Xiao, Yueze Wang, Junjie Zhou, Huaying Yuan, Xingrun Xing, Ruiran Yan, Chaofan Li, Shuting Wang, Tiejun Huang, and Zheng Liu. Omnigen: Unified image generation. *arXiv preprint arXiv:2409.11340*, 2024b.

789

791 Huanjin Yao, Wenhao Wu, Taojiannan Yang, YuXin Song, Mengxi Zhang, Haocheng Feng, Yifan Sun, Zhiheng Li, Wanli Ouyang, and Jingdong Wang. Dense connector for mllms. *Advances in Neural Information Processing Systems*, 37:33108–33140, 2024.

792

795 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

796

797 Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan, Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-rich text-to-image generation. *arXiv preprint arXiv:2206.10789*, 2(3):5, 2022.

800

801 Shenghai Yuan, Xianyi He, Yufan Deng, Yang Ye, Jinfa Huang, Bin Lin, Jiebo Luo, and Li Yuan. Opens2v-nexus: A detailed benchmark and million-scale dataset for subject-to-video generation. *arXiv preprint arXiv:2505.20292*, 2025.

802

804 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 11975–11986, 2023.

805

808 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 3836–3847, 2023.

809

810 Yuxuan Zhang, Yiren Song, Jiaming Liu, Rui Wang, Jinpeng Yu, Hao Tang, Huaxia Li, Xu Tang,
811 Yao Hu, Han Pan, et al. Ssr-encoder: Encoding selective subject representation for subject-
812 driven generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
813 *Recognition*, pp. 8069–8078, 2024.

814 Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing
815 vision-language understanding with advanced large language models. In *The Twelfth Interna-*
816 *tional Conference on Learning Representations*, 2024.

817 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
818 Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
819 open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 A RELATED WORK
865866
867 A.1 TEXT-TO-IMAGE GENERATION
868

869 Text-to-Image (T2I) generative models have experienced explosive growth in recent years. While
870 some research endeavors employ Generative Adversarial Networks (GANs) (Reed et al., 2016; Kang
871 et al., 2023) or autoregressive (Ding et al., 2021; Ramesh et al., 2021; Yu et al., 2022) paradigms,
872 the majority of contemporary T2I frameworks opt for denoising diffusion models (Ho et al., 2020;
873 Esser et al., 2024) owing to their notable advantages in generation quality. Early pioneering models,
874 including LDM (Rombach et al., 2022), DALL-E 2 (Ramesh et al., 2022), Imagen (Saharia et al.,
875 2022), and SDXL (Podell et al.), commonly utilized U-Net (Ronneberger et al., 2015) for noise
876 prediction. Recent studies have replaced the traditional U-Net with scalable transformer (Vaswani
877 et al., 2017) architectures, giving rise to more advanced models such as Diffusion Transformers
878 (DiT) (Peebles & Xie, 2023; Chen et al., 2024c). Subsequent works, such as Stable Diffusion
879 3 (Esser et al., 2024) and FLUX.1 (Labs, 2024), have further extended DiT to multimodal DiT
880 (MM-DiT), achieving SOTA T2I generation performance. In this work, we build our methodology
881 on MM-DiT, but *the main ideas and modules may also be applicable to other architectures*.
882

883 A.2 PERSONALIZED TEXT-TO-IMAGE GENERATION
884

885 Personalized Text-to-Image (PT2I) generation has garnered significant attention in both academia
886 and industry. Early research predominantly relied on finetuning-based methods (Kumari et al., 2023;
887 Liu et al., 2023; Gu et al., 2023; Jiang et al., 2024). For instance, DreamBooth (Ruiz et al., 2023)
888 and Textual Inversion (Gal et al., 2023) bound visual concepts to text identifiers via finetuning, while
889 LoRA (Hu et al.) introduced lightweight parameters to enable efficient adjustments. However, these
890 methods are plagued by the heavy burden of per-subject finetuning. In response, IP-Adapter (Ye
891 et al., 2023) and BLIP Diffusion (Li et al., 2023) incorporated additional image encoders and layers
892 to process reference images and injecting image features into diffusion models. These adapter-based
893 techniques enable zero-shot PT2I generation, emerging as the dominant research paradigm and in-
894 spiring a wealth of follow-up works (Wei et al., 2023; Chen et al., 2024d; Wang et al., 2024b;a;
895 Guo et al., 2024; Huang et al., 2024b; He & Yao, 2025; Kong et al., 2025), including several multi-
896 subject approaches (Xiao et al., 2024a; Wei et al., 2024; Wang et al., 2025; Huang et al., 2025; Ma
897 et al., 2024; Zhang et al., 2024). Aligning with part of our motivations, (He et al., 2025) proposed
898 DisEnvisioner, which disentangles and enriches concept-specific attributes by learning individual
899 image tokens. In contrast, our method directly leverages the decoupled learning behavior of the
900 dual branches in MM-DiT to separate concept-specific information from concept-agnostic content.
901 Furthermore, DisEnvisioner still suffers from the loss of fine-grained concept details—largely be-
902 cause it relies on deep-layer features from CLIP, as illustrated in Fig. 2 (b). Additionally, most of
903 the aforementioned efforts are built on U-Net-based diffusion models, with limited exploration of
904 adapter-based PT2I techniques for SOTA DiT-based models such as FLUX.1 (Labs, 2024).
905

906 For DiT architectures, methods such as OminiControl (Tan et al., 2025) adopt unified conditioning
907 strategies to handle text embeddings, latent tokens, and VAE-encoded reference subjects. Although
908 showing promise in PT2I generation (Shin et al., 2024; Cai et al., 2025; Mao et al., 2025; Huang
909 et al., 2024a; Wu et al., 2025c; Mou et al., 2025; Guo et al., 2025; Chen et al., 2025), they often
910 necessitate constructing complex cross-pair and multi-subject datasets for base model finetuning.
911 In addition, the full attention mechanism’s computational complexity escalates exponentially with
912 more reference conditions, particularly in multi-subject scenarios, resulting in lower-resolution out-
913 puts and limited flexibility compared to adapter-based methods.
914

915 Another category of methods leverages Multimodal Large Language Model (MLLM) (Zhu et al.,
916 2024; Bai et al., 2025) to conduct multi-modal training through text-image interleaving to bridge
917 the gap between image and text prompts (Sun et al., 2024; Pan et al.; Li et al., 2024; Patel et al.;
918 Xiao et al., 2024b; Wu et al., 2025b; Deng et al., 2025; Wu et al., 2025a). Yet, these methods typi-
919 cally require re-training MLLM encoders and generators, imposing substantial demands on training
920 resources.
921

918 A.3 MULTI-LAYER FEATURE FUSION
919

920 In the context of MLLMs, several empirical studies (Chen et al., 2024b; Yao et al., 2024; Cao et al.,
921 2024) have shown that multi-layer visual features can enhance model performance. To systemati-
922 cally explore the integration of multi-layer visual features in MLLMs, (Lin et al., 2025) categorizes
923 existing fusion strategies into four distinct categories and reveals that direct fusion (addition or con-
924 catenation) at the input stage consistently yields superior performance across various configura-
925 tions. However, due to the fundamental task divergence between understanding-oriented and genera-
926 tion-oriented tasks, the observations derived from MLLM research may not be generalizable to our PT2I
927 scenario (see comparison results in Sec. 5.4). For the PT2I tasks, while a handful of works (Wei
928 et al., 2023; Zhang et al., 2024) have also attempted to fuse multi-layer features for performance
929 improvement, their fusion strategies remain limited to simple addition or concatenation. In con-
930 trast, our HMoE-FFM leverages a MoE architecture to integrate hierarchical visual features, with
931 a dynamic routing mechanism that adaptively calibrates fusion coefficients based on the unique at-
932 tributes of each input reference image. This approach not only enhances fine-grained visual details
933 and semantic consistency but also facilitates precise modulation of visual granularity, as validated
934 in Secs. 5.4, B.4, and B.7.

935
936 B MORE EXPERIMENTAL RESULTS
937938 B.1 MORE EXPERIMENT SETTINGS
939

940 **Implementation Details.** We build our model based on FLUX.1-Dev (Labs, 2024), with OpenCLIP
941 ViT-L/14-336 adopted as the image encoder. The FLUX.1-Dev architecture includes 57 MM-DiT
942 blocks; we augment each block with a new image cross-attention layer. For the HMoE-FFM, we uti-
943 lize features from CLIP’s layer 10, 17, and 24 as the input features for the low-, mid-, and high-level
944 expert networks, respectively (see [ablation results across more layers in Sec. B.8](#)). The total number
945 of trainable parameters in our DynaIP is approximately 1.4B. During training, we only optimize
946 the augmented layers while keeping the parameters of the pretrained models fixed. **The training**
947 **objective is the flow-matching loss, which is consistent with the original FLUX.1-Dev base model.**
948 The training process is divided into two sequential stages: The initial stage (20,000 iterations) es-
949 tablishes fundamental capabilities through exclusive intra-pair training, developing robust subject-
950 specific adaptation. Building upon this foundation, the second stage (80,000 iterations) leverages the
951 cross-pair dataset to mitigate copy-paste artifacts (Wang et al., 2025). For optimization, we employ
952 the AdamW optimizer with a cosine learning rate scheduler initialized at 0.00002, combined with
953 a weight decay of 0.0001. All experiments were conducted on 8 Ascend 910B NPUs, with a total
954 batch size of 16 and a training resolution of 1024×1024 . To enable classifier-free guidance, we use
955 a 5% probability to drop text and image individually, and a 5% probability to drop text and image si-
956 multaneously. For the training of HMoE-FFM, each expert’s feature is dropped independently with
957 a 5% probability. Finally, we set the image weight factor λ to 1.0 for both training and inference
958 stages.

959 **Training Datasets.** We design two specialized datasets to support our two-stage training process.
960 For the first training stage, we construct an intra-pair dataset containing around 0.3M images filtered
961 from several open-source datasets, including FFHQ-wild (Karras et al., 2019) and SA-1B (Kirillov
962 et al., 2023). To decouple background information from the target subject, we use off-the-shelf ob-
963 ject detection (Liu et al., 2024) and segmentation (Kirillov et al., 2023) techniques to extract the
964 primary subject, and then replace the original background with a uniform white color. For human
965 subjects, we randomly extract either faces or entire bodies. The resulting segmented image is desig-
966 nated as the reference image, while the original image serves as the ground truth for training. For the
967 second training stage, drawing inspiration from (Wang et al., 2025; Tan et al., 2025), we construct a
968 cross-pair dataset with roughly 1M images from open-source datasets—including VITON-HD (Choi
969 et al., 2021), AnyInsertion (Song et al., 2025), and OpenS2V-Nexus (Yuan et al., 2025)—as well as
970 images generated by FLUX.1-Dev (Labs, 2024). Similar to the intra-pair dataset, all reference im-
971 ages here undergo the same object detection and segmentation pipeline described above. *Note that*
972 *every image in both training datasets contains only one primary subject, and our model has not been*
973 *trained on multi-subject datasets.*

972
 973 **Table 3: Prompt details of our multi-subject DynaIP-Bench.** Each combination type has preset
 974 prompts. [P] denotes prompt variations about the scene or actions.

Type	Prompt	[P]
977 living+living	978 a $\{0\}$ and a $\{1\}$ [P],	979 in a room 980 in the snow 981 in the jungle 982 on the beach 983 on the grass 984 on a cobblestone street
985 living+object	986 $\{0\}$ on the left, and	
987 object+object	988 $\{1\}$ on the right	989
990	991	992
993 human+human	994 a $\{0\}$ and a $\{1\}$ [P],	995 embracing
996 human+character	997 $\{0\}$ on the left, and	998 are sitting on the sofa
999 character+character	999 $\{1\}$ on the right	1000 are eating noodles 1001 are shaking hands 1002 are fighting 1003 are walking on the street
1004	1005	1006
1007 living+upwearing	1008 a $\{0\}$ wearing a $\{1\}$ [P]	1009 in a room 1010 in the snow 1011 in the jungle 1012 on the beach 1013 on the grass 1014 on a cobblestone street
1015 living+midwearing	1016	1017
1018 living+wholewearing	1019	1020
1021 midwearing+downwearing	1022 a woman wearing a $\{0\}$	1023 and $\{1\}$ [P]
1024	1025	1026 in a room 1027 in the snow 1028 in the jungle 1029 on the beach 1030 on the grass 1031 on a cobblestone street
1032	1033	1034
1035 living+living+living	1036 a $\{0\}$, a $\{1\}$, and a $\{2\}$ [P],	1037 in a room 1038 in the snow 1039 in the jungle 1040 on the beach 1041 on the grass 1042 on a cobblestone street
1043 object+object+object	1044 $\{0\}$ on the left,	1045
1046	1047 $\{1\}$ on the middle, and	1048
1049	1050 $\{2\}$ on the right	1051
1052	1053	1054
1055 human+human+character	1056 a $\{0\}$, a $\{1\}$, and a $\{2\}$ [P],	1057 are sitting on the sofa 1058 are eating noodles 1059 are fighting 1060 are walking on the street 1061 are taking a photo together 1062 are playing football
1063	1064	1065
1066 upwearing+midwearing+	1067 a woman wearing a $\{0\}$, a	1068
1069 downwearing	1070 $\{1\}$, and a $\{2\}$ [P]	1071 in a room 1072 in the snow 1073 in the jungle 1074 on the beach 1075 on the grass 1076 on a cobblestone street
1077	1078	1079
1080	1081	1082
1083	1084	1085
1086	1087	1088
1089	1090	1091
1092	1093	1094
1095	1096	1097
1098	1099	1100
1101	1102	1103
1104	1105	1106
1107	1108	1109
1110	1111	1112
1113	1114	1115
1116	1117	1118
1119	1120	1121
1122	1123	1124
1125	1126	1127
1128	1129	1130
1131	1132	1133
1134	1135	1136
1137	1138	1139
1140	1141	1142
1143	1144	1145
1146	1147	1148
1149	1150	1151
1152	1153	1154
1155	1156	1157
1158	1159	1160
1161	1162	1163
1164	1165	1166
1167	1168	1169
1170	1171	1172
1173	1174	1175
1176	1177	1178
1179	1180	1181
1182	1183	1184
1185	1186	1187
1188	1189	1190
1191	1192	1193
1194	1195	1196
1197	1198	1199
1200	1201	1202
1203	1204	1205
1206	1207	1208
1209	1210	1211
1212	1213	1214
1215	1216	1217
1218	1219	1220
1221	1222	1223
1224	1225	1226
1227	1228	1229
1230	1231	1232
1233	1234	1235
1236	1237	1238
1239	1240	1241
1242	1243	1244
1245	1246	1247
1248	1249	1250
1251	1252	1253
1254	1255	1256
1257	1258	1259
1260	1261	1262
1263	1264	1265
1266	1267	1268
1269	1270	1271
1272	1273	1274
1275	1276	1277
1278	1279	1280
1281	1282	1283
1284	1285	1286
1287	1288	1289
1290	1291	1292
1293	1294	1295
1296	1297	1298
1299	1300	1301
1302	1303	1304
1305	1306	1307
1308	1309	1310
1311	1312	1313
1314	1315	1316
1317	1318	1319
1320	1321	1322
1323	1324	1325
1326	1327	1328
1329	1330	1331
1332	1333	1334
1335	1336	1337
1338	1339	1340
1341	1342	1343
1344	1345	1346
1347	1348	1349
1350	1351	1352
1353	1354	1355
1356	1357	1358
1359	1360	1361
1362	1363	1364
1365	1366	1367
1368	1369	1370
1371	1372	1373
1374	1375	1376
1377	1378	1379
1380	1381	1382
1383	1384	1385
1386	1387	1388
1389	1390	1391
1392	1393	1394
1395	1396	1397
1398	1399	1400
1401	1402	1403
1404	1405	1406
1407	1408	1409
1410	1411	1412
1413	1414	1415
1416	1417	1418
1419	1420	1421
1422	1423	1424
1425	1426	1427
1428	1429	1430
1431	1432	1433
1434	1435	1436
1437	1438	1439
1440	1441	1442
1443	1444	1445
1446	1447	1448
1449	1450	1451
1452	1453	1454
1455	1456	1457
1458	1459	1460
1461	1462	1463
1464	1465	1466
1467	1468	1469
1470	1471	1472
1473	1474	1475
1476	1477	1478
1479	1480	1481
1482	1483	1484
1485	1486	1487
1488	1489	1490
1491	1492	1493
1494	1495	1496
1497	1498	1499
1499	1500	1501
1502	1503	1504
1505	1506	1507
1508	1509	1510
1511	1512	1513
1514	1515	1516
1517	1518	1519
1520	1521	1522
1523	1524	1525
1526	1527	1528
1529	1530	1531
1532	1533	1534
1535	1536	1537
1538	1539	1540
1541	1542	1543
1544	1545	1546
1547	1548	1549
1550	1551	1552
1553	1554	1555
1556	1557	1558
1559	1560	1561
1562	1563	1564
1565	1566	1567
1568	1569	1570
1571	1572	1573
1574	1575	1576
1577	1578	1579
1580	1581	1582
1583	1584	1585
1586	1587	1588
1589	1590	1591
1592	1593	1594
1595	1596	1597
1598	1599	1600
1601	1602	1603
1604	1605	1606
1607	1608	1609
1610	1611	1612
1613	1614	1615
1616	1617	1618
1619	1620	1621
1622	1623	1624
1625	1626	1627
1628	1629	1630
1631	1632	1633
1634	1635	1636
1637	1638	1639
1640	1641	1642
1643	1644	1645
1646	1647	1648
1649	1650	1651
1652	1653	1654
1655	1656	1657
1658	1659	1660
1661	1662	1663
1664	1665	1666
1667	1668	1669
1670	1671	1672
1673	1674	1675
1676	1677	1678
1679	1680	1681
1682	1683	1684
1685	1686	1687
1688	1689	1690
1691	1692	1693
1694	1695	1696
1697	1698	1699
1699	1700	1701
1702	1703	1704
1705	1706	1707
1708	1709	1710
1711	1712	1713
1714	1715	1716
1717	1718	1719
1720	1721	1722
1723	1724	1725
1726	1727	1728
1729	1730	1731
1732	1733	1734
1735	1736	1737
1738	1739	1740
1741	1742	1743
1744	1745	1746
1747	1748	1749
1750	1751	1752
1753	1754	1755
1756	1757	1758
1759	1760	1761
1762	1763	1764
1765	1766	1767
1768	1769	1770
1771	1772	1773
1774	1775	1776
1777	1778	1779
1780	1781	1782
1783	1784	1785
1786	1787	1788
1789	1790	1791
1792	1793	1794
1795	1796	1797
1798	1799	1800
1801	1802	1803
1804	1805	1806
1807	1808	1809
1810	1811	1812
1813	1814	1815
1816	1817	1818
1819	1820	1821
1822	1823	1824
1825	1826	1827
1828	1829	1830
1831	1832	1833
1834	1835	1836
1837	1838	1839
1840	1841	1842
1843	1844	1845
1846	1847	1848
1849	1850	1851
1852	1853	1854
1855	1856	1857
1858	1859	1860
1861	1862	1863
1864	1865	1866
1867	1868	1869
1870	1871	1872
1873	1874	1875
1876	1877	1878
1879	1880	1881
1882	1883	1884
1885	1886	1887
1888	1889	1890
1891	1892	1893
1894	1895	1896
1897	1898	1899
1899	1900	1901
1902	1903	1904
1905	1906	1907
1908	1909	1910
1911	1912	1913
1914	1915	1916
1917	1918	1919
1920	1921	1922
1923	1924	1925
1926	1927	1928
1929	1930	1931
1932	1933	1934
1935	1936	1937
1938	1939	1940
1941	1942	1943
1944	1945	1946
1947	1948	1949
1950	1951	1952
1953	1954	1955
1956	1957	1958
1959	1960	1961
1962	1963	1964
1965	1966	1967
1968	1969	1970
1971	1972	1973
1974	1975	1976
1977	1978	1979
1980	1981	1982
1983	1984	1985
1986	1987	1988
1989	1990	1991
1992	1993	1994
1995	1996	1997
1998	1999	1999
1999	1999	1999

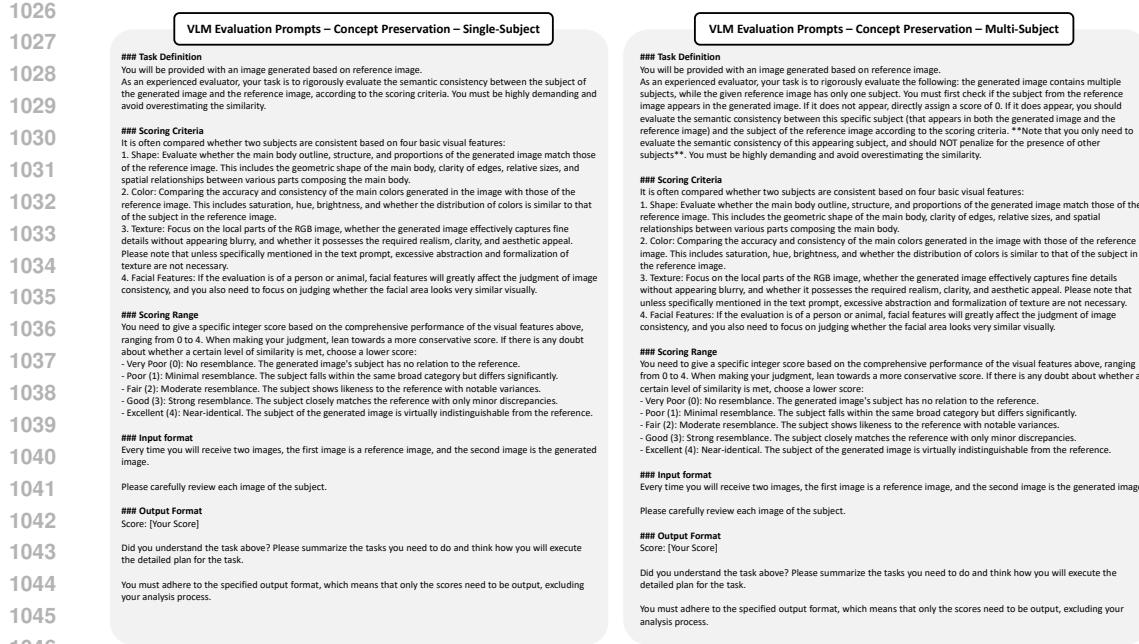


Figure 7: **VLM evaluation prompts for Concept Preservation (CP) on Left: single-subject and Right: multi-subject PT2I generation tasks.**

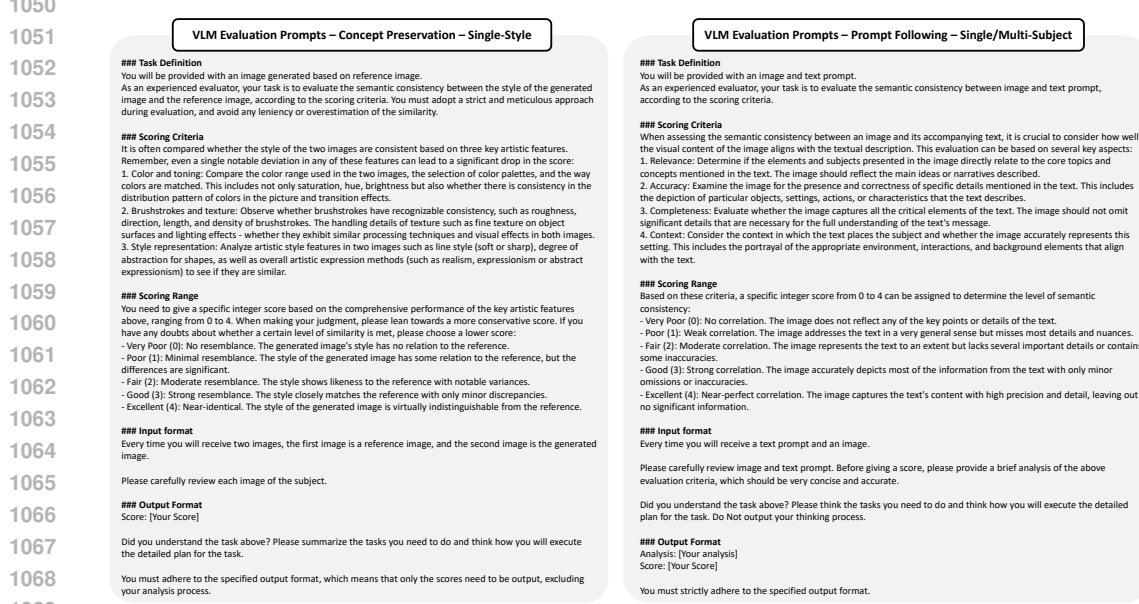


Figure 8: **VLM evaluation prompts for Left: Concept Preservation (CP) on single-style PT2I generation tasks and for Right: Prompt Following (PF) on both single- and multi-subject PT2I generation tasks.**

Details of Evaluation Metrics. We adhere to the evaluation protocol outlined in (Peng et al., 2025), which systematically assesses PT2I performance through two core metrics: Concept Preservation (CP) and Prompt Following (PF), using a Vision-Language Model (VLM) (Hurst et al., 2024). Detailed VLM evaluation prompts are presented in Figs. 7 and 8; these prompts are largely consistent with those in (Peng et al., 2025), with only minor modifications tailored to MS-PT2I scenarios (Fig. 7-Right). Specifically, Concept Preservation (CP) quantifies the visual consistency between the sub-

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
jects of generated images and those of reference images. For MS-PT2I scenarios, we independently evaluate the CP score for each reference subject and compute the average CP score across all subjects to ensure assessment comprehensiveness. Additionally, (Peng et al., 2025) employs a distinct prompt for evaluating style-related CP (Fig. 8-Left); we retain this prompt to assess style-guided generation within the DreamBench++ (Peng et al., 2025). On the other hand, Prompt Following (PF) measures the semantic consistency between generated images and input text prompts. Notably, the PF evaluation prompt remains identical for both SS- and MS-PT2I tasks, as detailed in Fig. 8-Right.

B.2 ADDITIONAL QUALITATIVE RESULTS

Here, we provide additional qualitative comparison results for both single- and multi-subject personalized text-to-image generation, as shown in Figs. 9, 10 and 11. Furthermore, we also present the results of DynaIP in the context of complex interactions between multiple subjects in Sec. B.3.

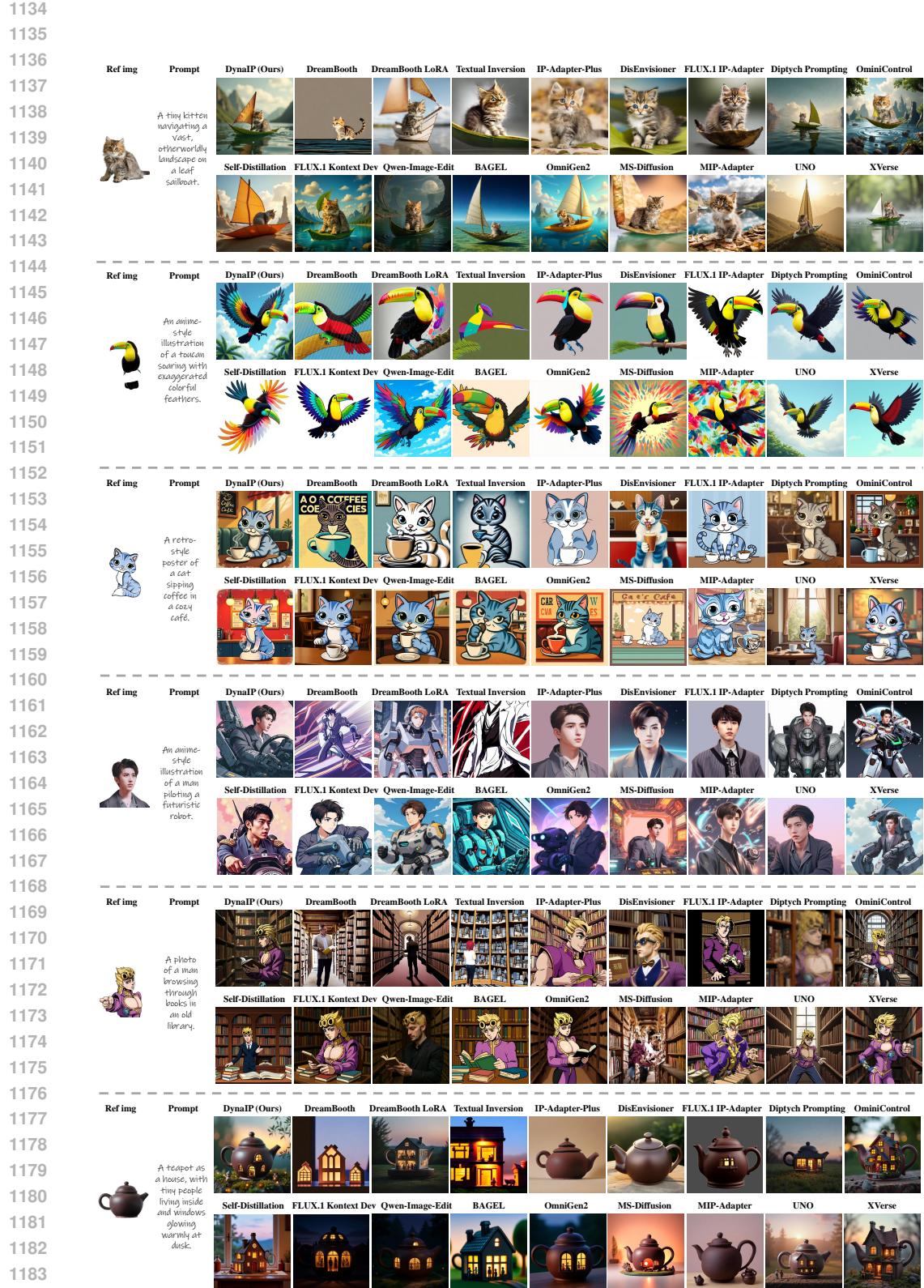


Figure 9: Additional qualitative comparisons on single-subject PT2I generation.

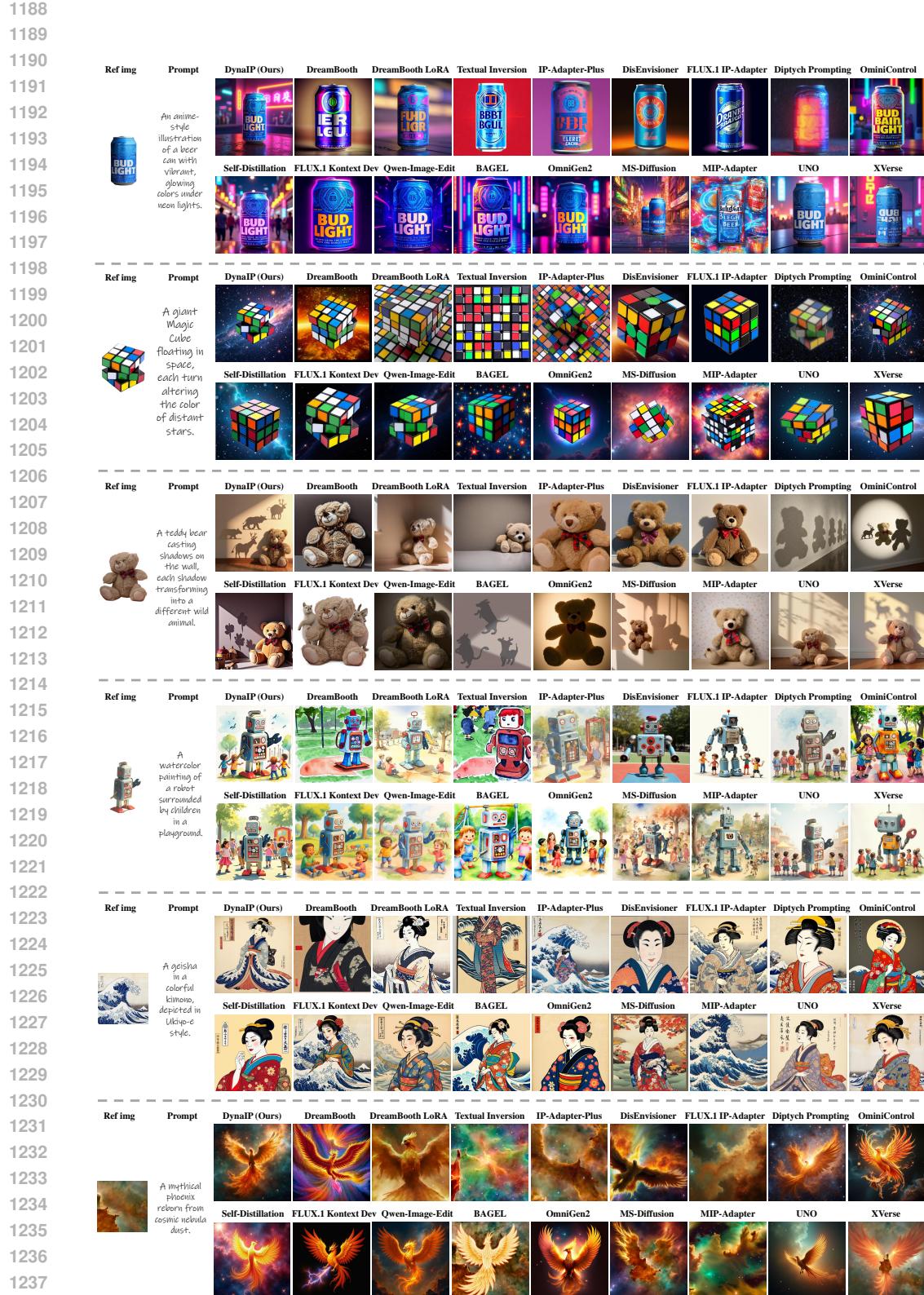


Figure 10: Additional qualitative comparisons on single-subject PT2I generation.

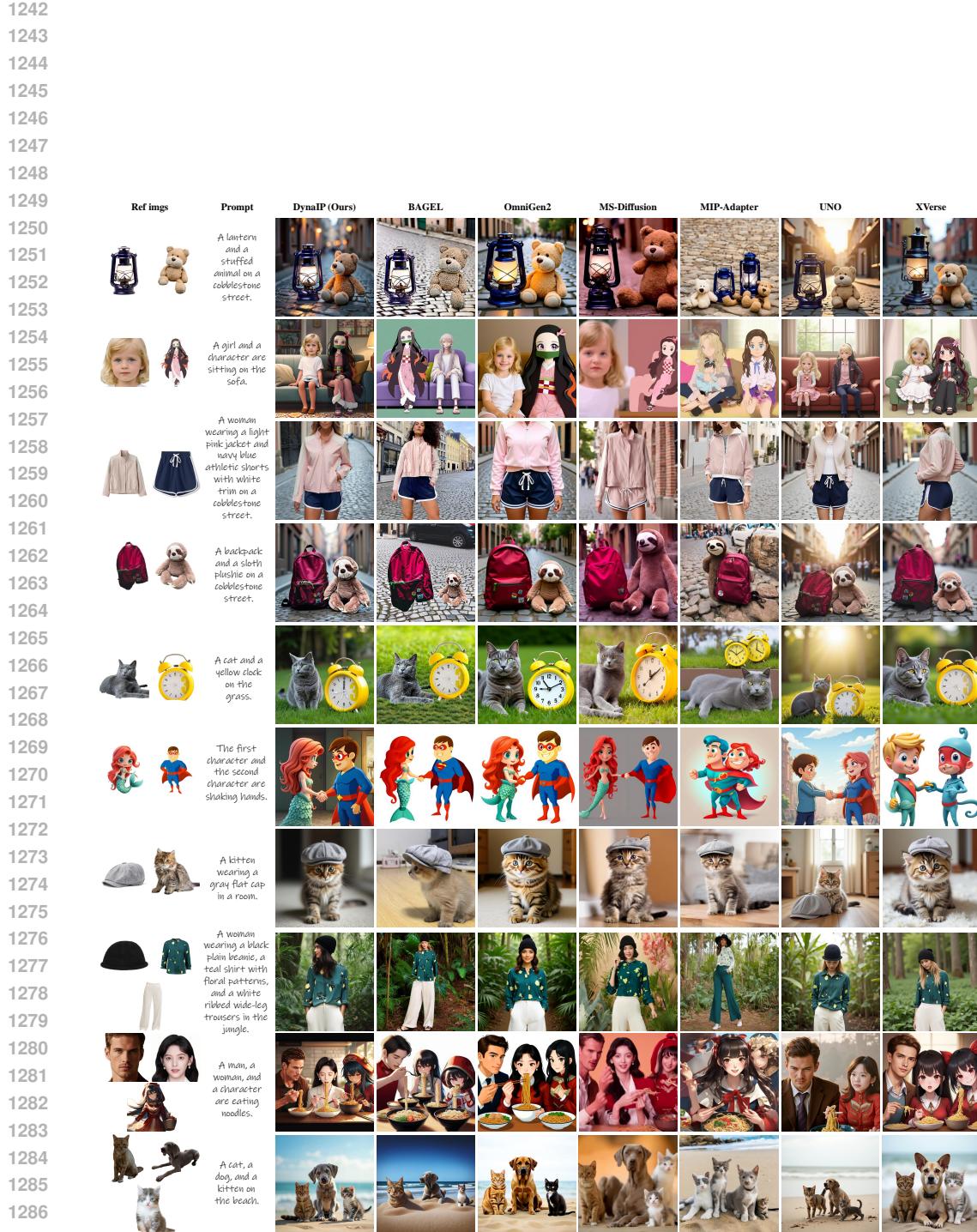


Figure 11: Additional qualitative comparisons on multi-subject PT2I generation.

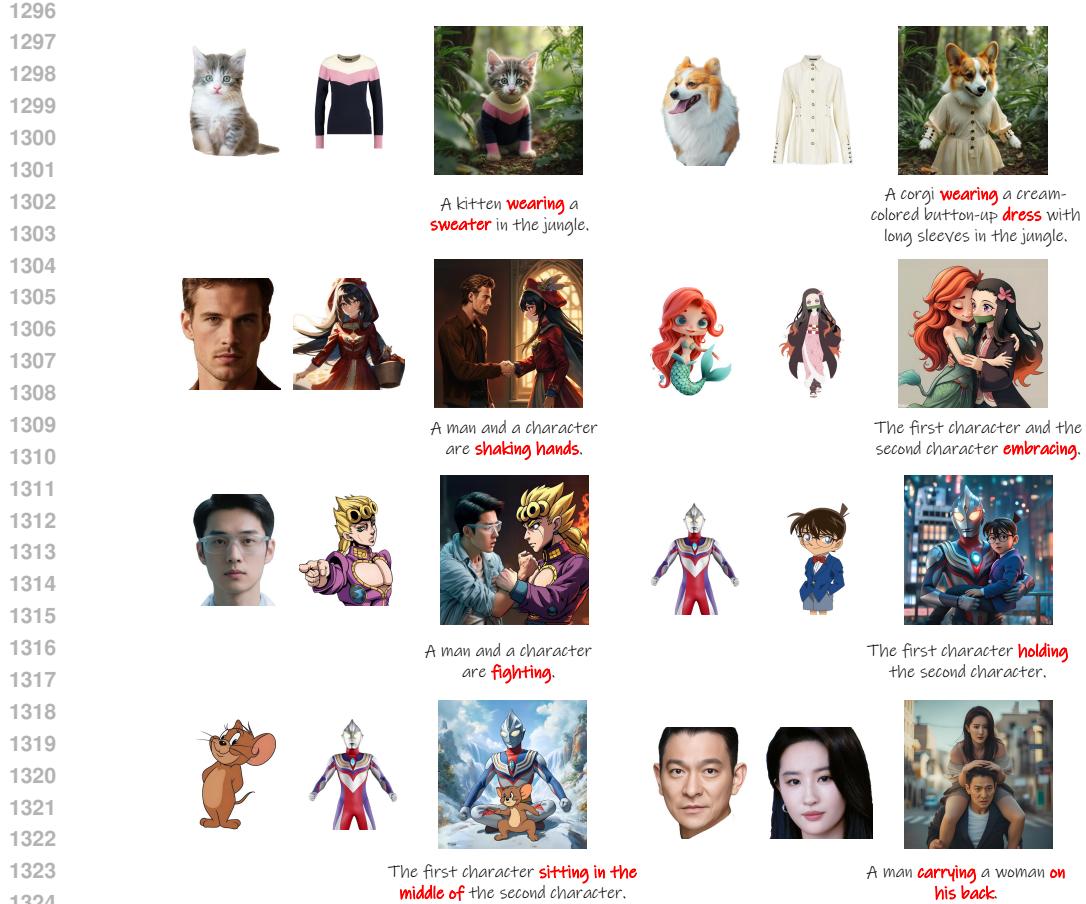


Figure 12: Exemplar results of prompts with complex interactions of multiple subjects.

B.3 MULTI-SUBJECT INTERACTION

The ability to generate natural, logically consistent multi-subject interactions stands as an important requirement for enabling practical, high-quality personalized text-to-image generation. Benefiting from our architecture design and mask-guided feature injection, which preserves the prior of the base model, DynaIP successfully inherits and retains the base model’s intrinsic multi-subject interaction capabilities. As illustrated in Fig. 12, DynaIP can flexibly handle and render interactions between reference subjects, even in scenarios where these objects exhibit large spatial overlap. This not only validates its robustness in complex generation tasks but also underscores its strong potential for deployment in practical applications.

B.4 CONTROL ON VISUAL GRANULARITY

As we introduced in Sec. 4.2, a key advantage of our HMoE-FFM lies in its ability to enable precise modulation of the visual granularity of reference subjects. By allowing users to manually adjust the fusion coefficients (Eq. 7) of experts’ outputs, the framework facilitates flexible control over the granularity of concept preservation, tailored to diverse specific needs. To further illustrate this capability, we provide additional examples in Fig. 13 and 14.

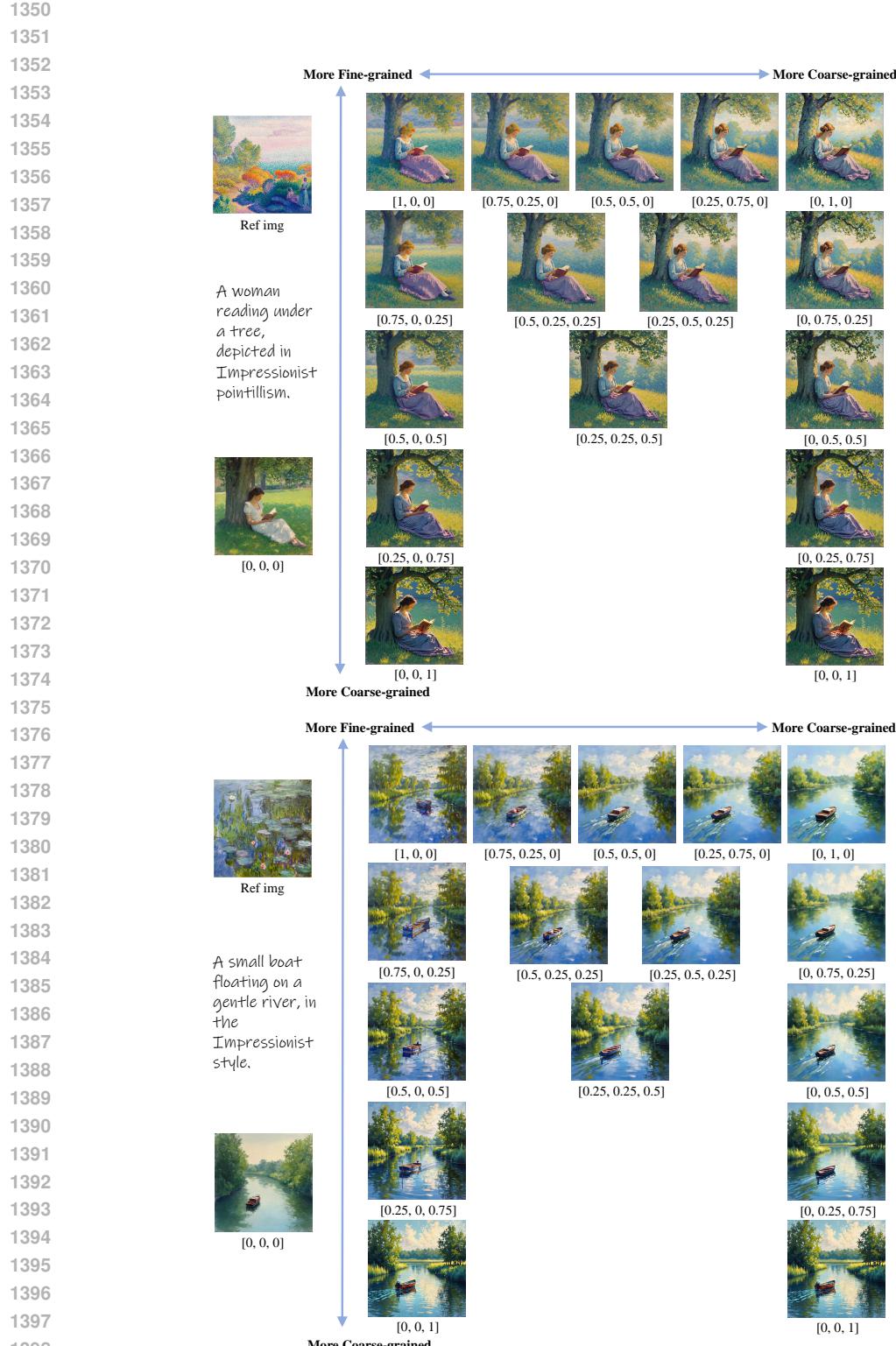


Figure 13: **Control on the visual granularity of concept preservation**, enabled by modulating fusion coefficients ($[w_{Low}, w_{Mid}, w_{High}]$ in Eq. 7) of experts' outputs in HMoE-FFM. Please zoom in to observe the details.

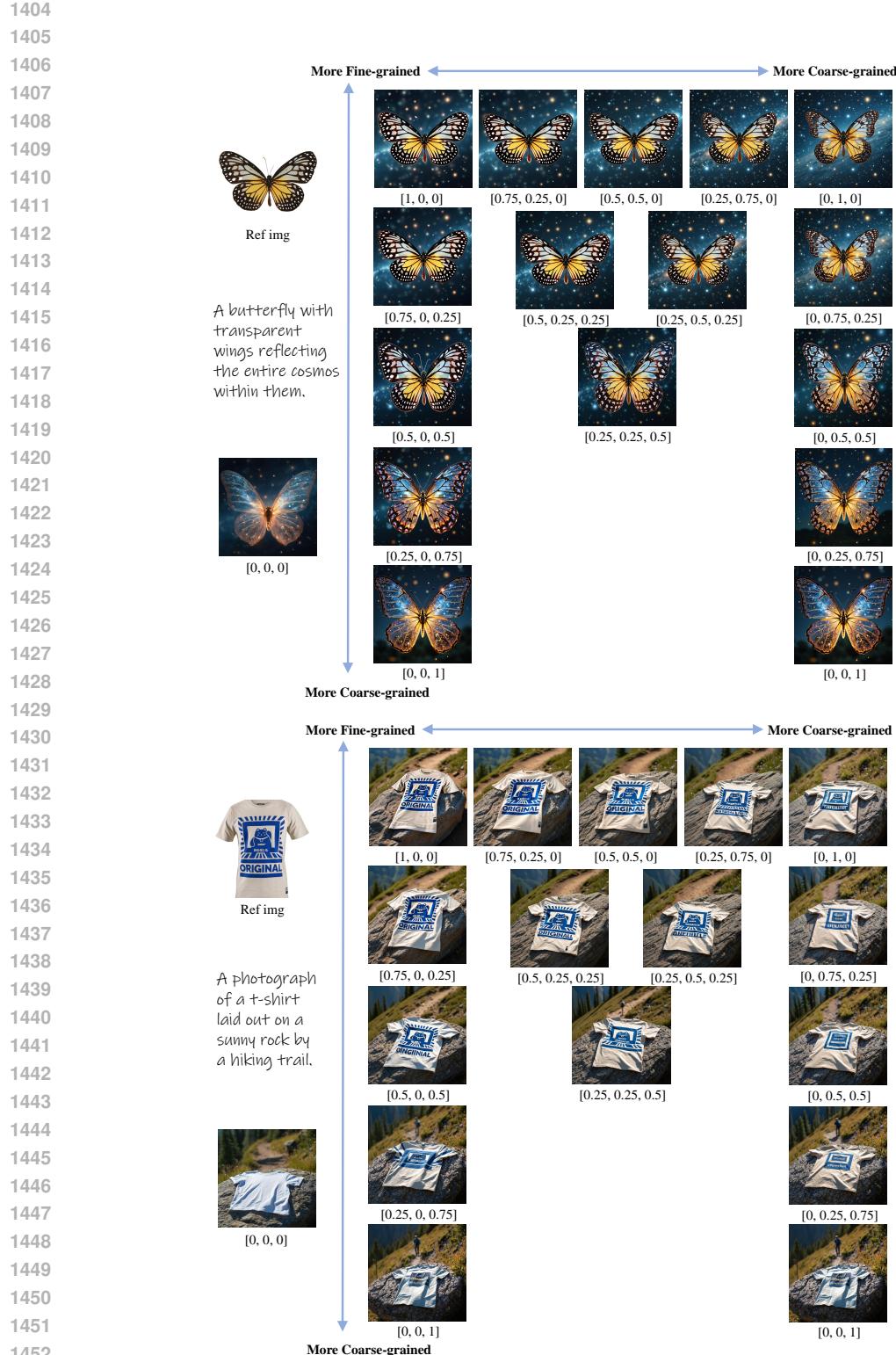


Figure 14: **Control on the visual granularity of concept preservation**, enabled by modulating fusion coefficients ($[w_{Low}, w_{Mid}, w_{High}]$ in Eq. 7) of experts’ outputs in HMoe-FFM. Please zoom in to observe the details.

1458

1459 **Table 4: A/B test user study results.** We report the adjusted advantage ratios ($\frac{\text{win}+\text{tie}}{\text{lose}+\text{tie}}$) of the
 1460 competing methods relative to our method. Lower values indicate that our method performs better
 1461 relative to the competing method. CP: Concept Preservation, PF: Prompt Following. OS: Overall
 1462 Satisfaction. The **highest** and **second-highest** scores are highlighted.

1463

Method	CP	PF	OS
DreamBooth	0.288	0.286	0.171
DreamBooth LoRA	0.709	0.782	0.660
Textual Inversion	0.142	0.198	0.100
IP-Adapter-Plus	0.745	0.442	0.297
DisEnvisioner	0.517	0.437	0.227
FLUX.1 IP-Adapter	0.728	0.496	0.336
Diptych Prompting	0.742	0.726	0.568
OminiControl	0.721	0.861	0.598
Self-Distillation	0.644	0.737	0.521
FLUX.1 Kontext Dev	0.953	0.857	0.861
Qwen-Image-Edit	0.896	0.944	0.904
BAGEL	0.718	0.802	0.622
OmniGen2	0.822	0.832	0.830
MS-Diffusion	0.647	0.487	0.368
MIP-Adapter	0.585	0.450	0.324
UNO	0.844	0.748	0.816
XVerse	0.825	0.786	0.828

1478

1479

1480

B.5 USER STUDY

1481

1482 We further conduct A/B test user studies to demonstrate the superiority of DynaIP. For each competing
 1483 method, we randomly select 30 image combinations per user, encompassing both single-subject
 1484 and (where applicable) multi-subject personalization tasks. For each combination, we present the re-
 1485 sults generated by our method and the competing method side by side in a randomized order. Given
 1486 unlimited time, participants are then instructed to evaluate and select between the two based on three
 1487 criteria: (1) which result better preserves the reference subject—particularly its fine-grained details
 1488 (Concept Preservation, CP); (2) which result more accurately aligns with the given prompt (Prompt
 1489 Following, PF); and (3) which result achieves superior overall satisfaction, including composition
 1490 quality, naturalness, harmony, and visual appeal (Overall Satisfaction, OS). For each A/B test group,
 1491 we collect a total of 1,800 votes from 20 users. [Tab. 4](#) reports the adjusted advantage ratios of the
 1492 competing methods relative to our method—calculated using the formula $\frac{\text{win}+\text{tie}}{\text{lose}+\text{tie}}$, where “win” de-
 1493 notes the number of evaluations where the competing method is preferred, “tie” denotes the number of eval-
 1494 uations with no clear preference for either method, and “lose” denotes the number of eval-
 1495 uations where our method is preferred. Lower values indicate that our method performs better relative
 1496 to the competing method. As the results illustrate, our method achieves better performance than all
 1497 other competing methods in terms of CP, PF, and OS (all values are lower than 1).

1498

1499

B.6 MORE ANALYSES OF DYNAMIC DECOUPLING STRATEGY

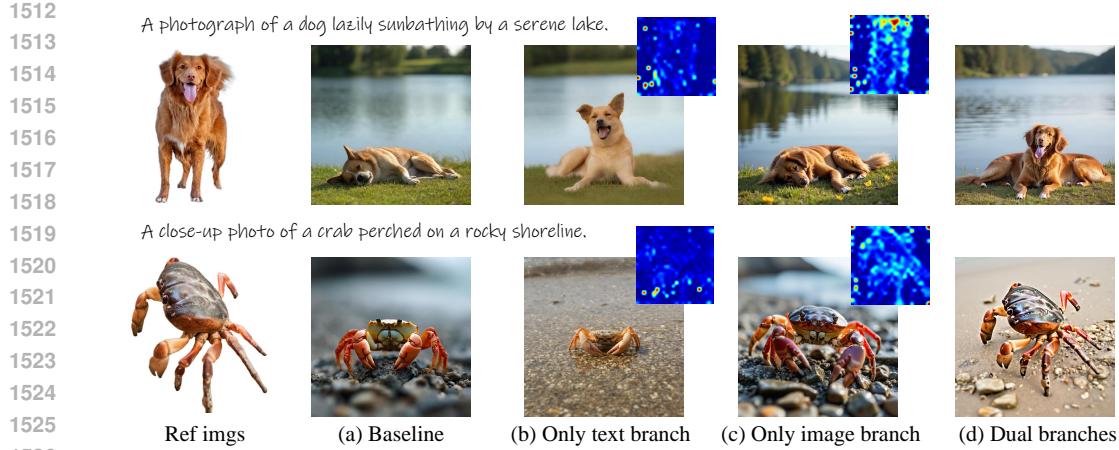
1500

1501 To better illustrate the decoupling effects of our proposed Dynamic Decoupling Strategy (DDS), we
 1502 visualize the results generated by injecting reference image features into the MM-DiT under three
 1503 distinct settings via cross-attentions: (1) text branch only, (2) noisy image branch only, and (3) both
 1504 text and noisy image branches.

1505

1506

1507


1508

1509

1510

1511

1505 As demonstrated in [Fig. 15](#), compared with the baseline results in column (a), injecting reference im-
 1506 age features solely into the text branch of MM-DiT (column (b)) only imparts some concept-agnostic
 1507 information, such as posture and perspective in the first row, and illumination in the second row. In
 1508 contrast, injecting reference image features exclusively into the noisy image branch of MM-DiT
 1509 (column (c)) successfully embeds concept-specific information (e.g., the subject’s ID and unique
 1510 appearance) while effectively disentangling the aforementioned concept-agnostic attributes. The
 1511 results in column (d) further validate our claims: combining the text branch with the noisy image
 1512 branch yields outputs where concept-specific and concept-agnostic information are entangled, lead-

1527 **Figure 15: Detailed analyses of the effects of Dynamic Decoupling Strategy (DDS).** We visualize
 1528 the results generated by injecting reference image features into the MM-DiT under three distinct
 1529 settings via cross attentions: (b) text branch only, (c) noisy image branch only, and (d) both text and
 1530 noisy image branches. We also present the attention maps illustrating the interaction between each
 1531 branch’s features and the reference image features in the upper right corners of (b) and (c). Please
 1532 zoom in to observe the details.

1533
 1534 ing to prominent copy-paste artifacts that compromise the quality and controllability of generated
 1535 results.

1536 Additionally, we also visualize the attention maps that illustrate the interaction between each
 1537 branch’s features and the reference image features, which are presented in the upper right corners
 1538 of columns (b) and (c). As observed, the noisy image branch focuses on the core appearance and
 1539 semantic regions of the reference subject, whereas the text branch exhibits relatively scattered at-
 1540 tention, with higher activation values only in areas irrelevant to the subject’s appearance. This
 1541 observation is well aligned with the phenomena manifested in the generated results.

1544 B.7 MORE ANALYSES OF HM**E**-FFM

1545 We first reveal **how our HM**E**-FFM adaptively adjusts the visual granularity of extracted
 1546 features based on the inherent characteristics of the input reference image**. As illustrated in
 1547 Fig. 16-Left, we present the fusion coefficients ($[w_{Low}, w_{Mid}, w_{High}]$ in Eq. 7), which are dynam-
 1548 ically predicted by the routing module of HM**E**-FFM, beneath each input reference image. The
 1549 coefficient distribution reveals three key patterns: (1) In column (a), for reference images rich in
 1550 low-level patterns—such as brushstrokes (Row 1), lines (Row 2), and text (Row 3)—the routing
 1551 module assigns higher fusion coefficients to the low-level expert, followed by the mid-level ex-
 1552 pert. (2) In column (b), for reference images characterized by fine-grained textures and structures
 1553 (e.g., facial details in Rows 1 and 2, and surface textures in Row 3), the routing module prioritizes
 1554 the mid-level expert with higher coefficients, supplemented by the low-level expert. (3) In column
 1555 (c), for reference images dominated by coarse-grained textures and structures—including anime
 1556 characters (Row 1) and shape-centric objects (Rows 2 and 3)—the routing module allocates higher
 1557 fusion coefficients to the high-level and mid-level experts. To summarize, the routing mechanism
 1558 of HM**E**-FFM achieves granularity-adaptive expert selection by dynamically calibrating the fusion
 1559 weights of low/mid/high-level experts in response to the visual granularity properties of input im-
 1560 ages. Such granularity-aware routing not only ensures the full utilization of each expert’s specialized
 1561 capabilities but also significantly enhances the model’s adaptability to the diverse characteristics of
 1562 reference images, thereby establishing a robust foundation for high-quality generation in subsequent
 1563 tasks.

1564 Building on the granularity-aware fused features extracted by HM**E**-FFM, we then elucidate **how**
 1565 **our model adapts to prompt adjustments across diverse style and content variations**. As
 1566 demonstrated in Fig. 16-Right, our model achieves superior prompt-following performance, which is

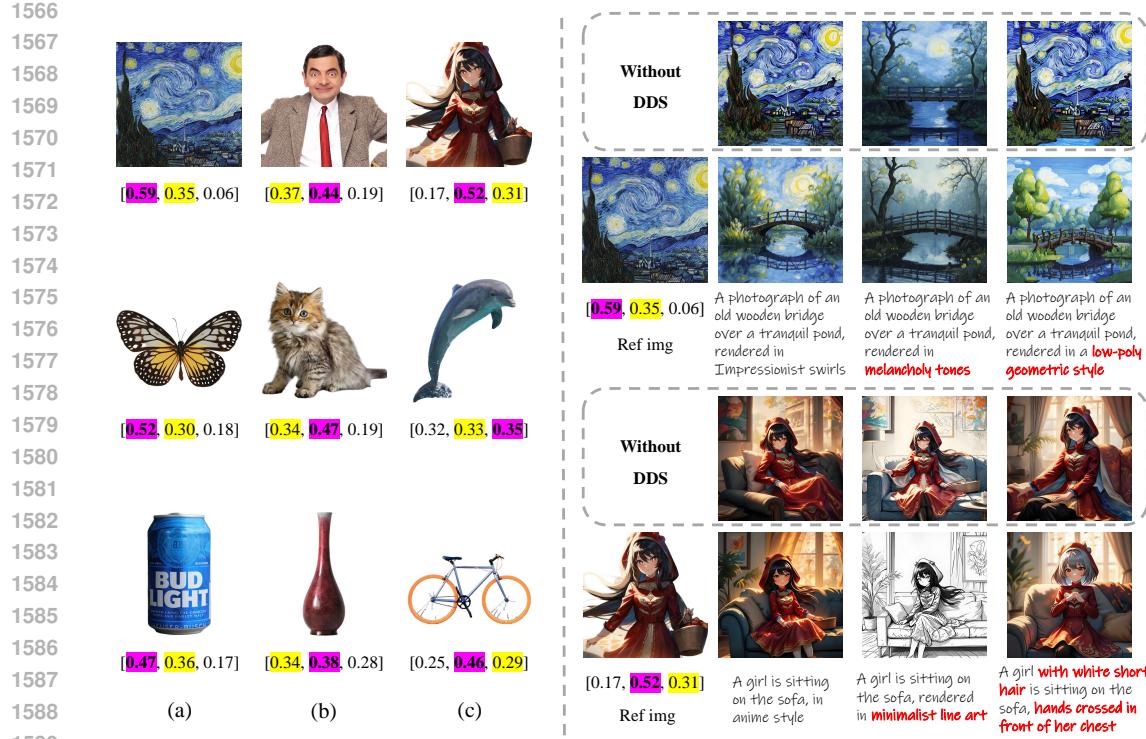


Figure 16: **More analytical results of HMoE-FFM.** **Left:** We present the fusion coefficients ($[w_{Low}, w_{Mid}, w_{High}]$ in Eq. 7), adaptively predicted by the routing module of HMoE-FFM, across diverse input reference images. The **highest** and **second-highest** coefficients are highlighted. **Right:** we visualize how our model adapts to prompt adjustments across diverse style and content variations.

primarily attributed to the intrinsic properties of Decoupled Cross-Attention (DCA) (Ye et al., 2023) and our proposed Dynamic Decoupling Strategy (DDS). Specifically, the DCA mechanism achieves *prompt-driven attribute selection using noisy (generated) image as a bridge and cross-attention dependency modeling as the theoretical foundation*. It functionally specializes a dual-stream architecture comprising a Text CA stream and an Image CA stream. The Text CA stream first defines the target semantic objective—*i.e.*, which semantic elements (content, style, high-level attributes, or low-level textures) should be prioritized in the noisy image. This capability is inherited from the base T2I model (*e.g.*, FLUX.1-Dev), which is pre-trained to align generated content with text semantics. The Image CA stream then performs attribute-level correspondence matching between the reference and noisy image features. It leverages the inherent ability of cross-attention to model feature similarity and dependencies (Vaswani et al., 2017; Ye et al., 2023): calculating attention scores between reference image tokens (encoded as K/V) and prompt-conditioned noisy image tokens (encoded as Q). Here, the noisy image serves as a bridge to connect the text prompt and reference image—only those reference attributes that align with the semantic priorities defined by Text CA are retained (with high attention scores), while conflicting attributes are suppressed (with low attention scores). The dual CA streams form a closed-loop decision-making process: Text CA defines “what to generate” (prompt alignment), while Image CA specifies “how to borrow from the reference” (attribute matching), thereby algorithmically determining whether to adopt reference attributes (when they match prompt priorities) or replace them (when they conflict with prompt priorities).

To intuitively illustrate this mechanism, we refer to the example in Fig. 16-Right-Row 2, where Van Gogh’s Starry Night is used as the reference image:

- When the prompt is “A photograph of an old wooden bridge over a tranquil pond, rendered in **Impressionist swirls**”: Text CA prioritizes low-level textural attributes (“Impression-

1620
 1621 ist swirls”) in the noisy image. In turn, Image CA assigns high attention scores to the
 1622 prominent swirling textures in the reference image, enabling the targeted transfer of these
 1623 low-level textural features.

1624
 1625 • When the prompt is modified to “A photograph of an old wooden bridge over a tranquil
 1626 pond, rendered in **melancholy tones**”: Text CA now prioritizes the high-level semantic
 1627 attribute (“melancholy tones”) in the noisy image. Correspondingly, Image CA shifts to
 1628 allocate higher attention scores to the reference’s color palette and mood (high-level se-
 1629 mantic attributes), resulting in the transfer of these abstract, high-level elements rather than
 1630 the low-level swirling textures.

1631 However, as analyzed in Sec. B.6 and further evidenced by the results in the dashed boxes of
 1632 Fig. 16-Right, the retention of concept-agnostic information of the reference image may lead to
 1633 subject copy-paste artifacts and compromise the alignment between generated results and text
 1634 prompts—particularly regarding modifications to style, appearance, or posture. By leveraging
 1635 our proposed DDS, such concept-agnostic information is effectively disentangled and eliminated,
 1636 thereby further reinforcing the model’s prompt-following competence and semantic disentangle-
 1637 ment precision. Note that our DDS does not directly decide which elements to retain or modify but
 1638 strengthens DCA’s semantic focus by eliminating concept-agnostic noise from the reference image.

1639 Currently, the feature extraction and fusion stage operates independently of the image generation
 1640 stage, implying that adjustments to text prompts do not affect the expert fusion coefficients predicted
 1641 by HMoE-FFM. The guidance for determining which elements (*e.g.*, content, style, high-level se-
 1642 mantic attributes, or low-level textural details) of the reference image to retain or modify in the
 1643 generated output is automatically achieved by DCA and further enhanced by our DDS. A promising
 1644 future research direction is to establish a connection between the feature extraction/fusion stage and
 1645 the image generation stage, enabling the prediction of expert fusion coefficients based on both input
 1646 reference images and text prompts. We plan to explore this direction in our future work.

1647 1648 B.8 MORE ABLATION STUDIES ON EXPERTS’ LAYERS

1649
 1650 Here, we present additional ablation results exploring alternative layer selections for the experts
 1651 in HMoE-FFM, with a specific focus on the low-level and mid-level experts. As demonstrated in
 1652 Fig. 17, we visualize the reconstruction performance of features from various shallow and middle
 1653 layers by injecting them individually via cross-attentions. As shown in the top row, features from
 1654 excessively shallow layers (*e.g.*, layer 4) tend to introduce low-level artifacts, while near-middle
 1655 layers (*e.g.*, layer 12) fail to fully recover low-level details such as the text on the cloth. In contrast,
 1656 layers 8 and 10 yield much more satisfactory results in terms of low-level detail preservation, with
 1657 layer 10 producing slightly more natural visual outputs. As illustrated in the bottom row, features
 1658 from near-shallow layers (*e.g.*, layer 12) and near-deep layers (*e.g.*, layer 21) are unable to restore
 1659 fine-grained details like facial features. Middle layers 15 and 17, however, deliver significantly more
 1660 satisfying results, with layer 17 generating marginally more natural outcomes. Therefore, we select
 1661 features from layer 10 and layer 17 as the inputs for the low-level and mid-level expert networks,
 1662 respectively.

1663 1664 C LIMITATIONS AND DISCUSSIONS

1665
 1666 The primary limitation of our DynaIP stems from its reliance on explicit mask-guided feature in-
 1667 jection for achieving multi-subject personalization. Although this design enhances the practical
 1668 flexibility of our method to a certain extent, mask extraction may give rise to issues owing to the in-
 1669 herent precision limitations of grounding and segmentation models (Liu et al., 2024; Kirillov et al.,
 1670 2023). Furthermore, since our method leverages the generative prior of the base model, the per-
 1671 formance of concept preservation may deteriorate if the subjects generated by the base model deviate
 1672 significantly from the reference subjects, as illustrated in Fig. 18. Notably, this problem can be
 1673 alleviated by employing prompts that align more closely with the subjects in the reference images.

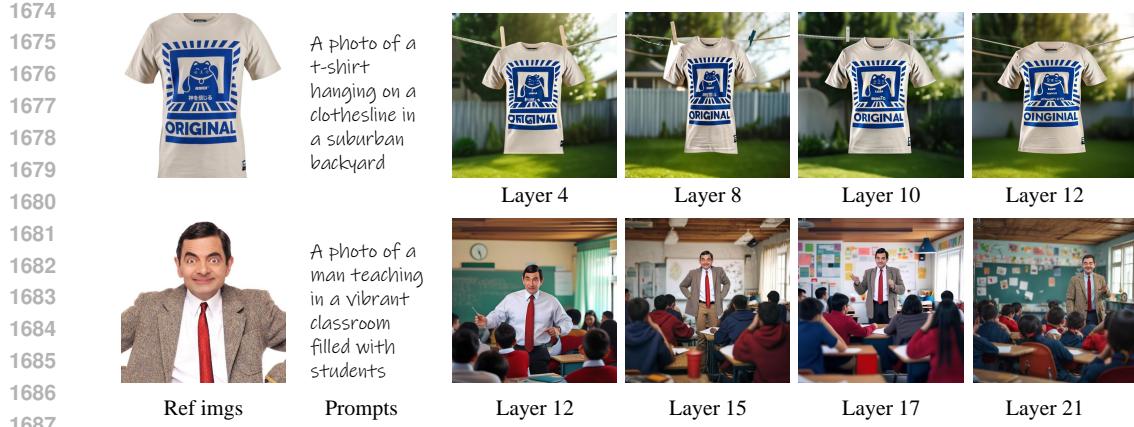


Figure 17: Personalization results generated by injecting features from **more layers of CLIP** via cross-attentions.

Figure 18: **Limitation of DynaIP.** The performance of concept preservation may degrade if the subjects generated by the base model deviate significantly from the reference subjects.

D ETHICS STATEMENT

As a finetuning-free personalized text-to-image generation method, DynaIP empowers users to flexibly create customized images for creative scenarios like digital design and storytelling, unlocking value for both professionals and casual users. Yet it also poses risks: its ability to generate realistic novel subject combinations may be misused to produce deceptive content, potentially fueling misinformation and eroding trust in visual media. Future efforts should focus on balancing creativity with risk mitigation—such as integrating content authentication tools and establishing ethical use guidelines—to ensure its positive societal impact.

E COPYRIGHT STATEMENT FOR IMAGES

Most images in this paper are sourced from open-access academic datasets and published literature. Their use strictly adheres to the terms of applicable open-source licenses or academic reproduction norms, with full attribution provided in the text and references. A small number of images were retrieved from public online sources. Despite reasonable efforts to verify their copyright status, such status remains unconfirmed. These images are used exclusively for non-commercial academic research purposes in this work.

F THE USE OF LARGE LANGUAGE MODELS

In this paper, we only used the Large Language Models (LLMs) to assist with text polishing. The LLMs played no role in the conception, design, or execution of the research.