
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BAB-ND: LONG-HORIZON MOTION PLANNING WITH
BRANCH-AND-BOUND AND NEURAL DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural-network-based dynamics models learned from observational data have
shown strong predictive capabilities for scene dynamics in robotic manipulation
tasks. However, their inherent non-linearity presents significant challenges for effec-
tive planning. Current planning methods, often dependent on extensive sampling or
local gradient descent, struggle with long-horizon motion planning tasks involving
complex contact events. In this paper, we present a GPU-accelerated branch-and-
bound (BaB) framework for motion planning in manipulation tasks that require
trajectory optimization over neural dynamics models. Our approach employs a
specialized branching heuristic to divide the search space into subdomains and
applies a modified bound propagation method, inspired by the state-of-the-art neu-
ral network verifier α,β-CROWN, to efficiently estimate objective bounds within
these subdomains. The branching process guides planning effectively, while the
bounding process strategically reduces the search space. Our framework achieves
superior planning performance, generating high-quality state-action trajectories and
surpassing existing methods in challenging, contact-rich manipulation tasks such
as non-prehensile planar pushing with obstacles, object sorting, and rope routing
in both simulated and real-world settings. Furthermore, our framework supports
various neural network architectures, ranging from simple multilayer perceptrons
to advanced graph neural dynamics models, and scales efficiently with different
model sizes.

1 INTRODUCTION

Learning-based predictive models using neural networks reduce the need for full-state estimation and
have proven effective across a variety of robotics-related planning tasks in both simulations (Li et al.,
2018; Hafner et al., 2019c; Schrittwieser et al., 2020; Seo et al., 2023) and real-world settings (Lenz
et al., 2015; Finn & Levine, 2017; Tian et al., 2019; Lee et al., 2020; Manuelli et al., 2020; Nagabandi
et al., 2020; Lin et al., 2021; Huang et al., 2022; Driess et al., 2023; Wu et al., 2023; Shi et al., 2023).
While neural dynamics models can effectively predict scene evolution under varying initial conditions
and input actions, their inherent non-linearity presents challenges for traditional model-based planning
algorithms, particularly in long-horizon scenarios.

To address these challenges, the community has developed a range of approaches. Sampling-based
methods such as the Cross-Entropy Method (CEM) (Rubinstein & Kroese, 2013) and Model Predictive
Path Integral (MPPI) (Williams et al., 2017) have gained popularity in manipulation tasks (Lowrey
et al., 2018; Manuelli et al., 2020; Nagabandi et al., 2020; Wang et al., 2023) due to their flexibility,
compatibility with neural dynamics models, and strong GPU support. However, their performance in
more complex, higher-dimensional planning problems is limited and still requires further theoretical
analysis (Yi et al., 2024). Alternatively, more principled optimization approaches, such as Mixed-
Integer Programming (MIP), have been applied to planning problems using sparsified neural dynamics
models with ReLU activations (Liu et al., 2023). Despite achieving global optimality and better
closed-loop control performance, MIP is inefficient and struggles to scale to large neural networks,
limiting its ability to handle larger-scale planning problems.

In this work, we introduce a branch-and-bound (BaB) based framework that achieves stronger
performance on complex planning problems than sampling-based methods, while also scaling to
large neural dynamics models that are intractable for MIP-based approaches. Our framework is
inspired by the success of BaB in neural network verification (Bunel et al., 2018; 2020b; Palma et al.,
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(a) Planning with BaB-ND (b) Benchmark tasks
Figure 1: Framework overview. (a) Our framework takes scene observations and applies a branch-and-
bound (BaB) method to generate robot trajectories using the neural dynamics model (ND). The BaB-ND
planner constructs a search tree by branching the problem into sub-domains and then systematically searches
only in promising sub-domains by evaluating nodes with a bounding procedure. (b) BaB-ND demonstrates
superior long-horizon planning performance compared to existing sampling-based methods and achieves better
closed-loop control in real-world scenarios. We evaluate our framework on various complex planning tasks,
including non-prehensile planar pushing with obstacles, object merging, rope routing, and object pile sorting.

2021), which tackles challenging optimization objectives involving neural networks. State-of-the-art
neural network verifiers such as α,β-CROWN (Xu et al., 2021; Wang et al., 2021; Zhang et al.,
2022a), utilize BaB alongside bound propagation methods (Zhang et al., 2018; Salman et al., 2019),
demonstrating impressive strength and scalability in verification tasks, far surpassing MIP-based
approaches (Tjeng et al., 2019; Anderson et al., 2020). However, unlike neural network verification,
which only requires finding a lower bound of the objective, model-based planning demands high-
quality feasible solutions (i.e., planned state-action trajectories). Thus, significant adaptation and
specialization are necessary for BaB-based approaches to effectively solve planning problems.

Our framework, BaB-ND (Figure 1.a), divides the action space into smaller subdomains through a
novel branching heuristic (branching), estimates objective bounds using a modified bound propagation
procedure to prune subdomains that cannot yield better solutions (bounding), and focuses searches on
the most promising subdomains (searching). We evaluate our approach on contact-rich manipulation
tasks that require long-horizon planning with non-smooth objectives, non-convex feasible regions
(with obstacles), long action sequences, and diverse neural dynamics model architectures (Figure 1.b).
Our results demonstrate that BaB-ND consistently outperforms existing sampling-based methods
by systematically and strategically exploring the action space, while also being significantly more
efficient and scalable than MIP-based approaches by leveraging the inherent structure of neural
networks and GPU support.

We make three key contributions: (1) We propose a general, widely applicable BaB-based framework
for effective long-horizon motion planning over neural dynamics models. (2) Our framework intro-
duces novel branching, bounding, and searching procedures, inspired by neural network verification
algorithms but specifically adapted for planning over neural dynamics models. (3) We demonstrate
the effectiveness, applicability, and scalability of our framework across a range of complex planning
problems, including contact-rich manipulation tasks, the handling of deformable objects, and object
piles, using diverse model architectures such as multilayer perceptrons and graph neural networks.

2 RELATED WORKS

Neural dynamics model learning in manipulation. Dynamics models learned from observations
in simulation or the real world using deep neural networks (DNNs) have been widely and successfully
applied to robotic manipulation tasks (Shi et al., 2023; Wang et al., 2023). Neural dynamics models
can be learned directly from pixel space (Finn et al., 2016; Ebert et al., 2017; 2018; Yen-Chen et al.,
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2020; Suh & Tedrake, 2020) or low-dimensional latent space (Watter et al., 2015; Agrawal et al.,
2016; Hafner et al., 2019b;a; Schrittwieser et al., 2020; Wu et al., 2023). Other approaches use more
structured scene representations, such as keypoints (Kulkarni et al., 2019; Manuelli et al., 2020; Li
et al., 2020), particles (Li et al., 2018; Shi et al., 2022; Zhang et al., 2024), and meshes (Huang et al.,
2022). Our work employs keypoint or object-centric representations, and the proposed BaB-ND
framework is compatible with various architectures, ranging from multilayer perceptrons (MLPs) to
graph neural networks (GNNs) (Battaglia et al., 2016; Li et al., 2019).

Model-based planning with neural dynamics models. The highly non-linear and non-convex
nature of neural dynamics models hinders the effective optimization of model-based planning
problems. Previous works (Yen-Chen et al., 2020; Ebert et al., 2017; Nagabandi et al., 2020;
Finn & Levine, 2017; Manuelli et al., 2020; Sacks et al., 2023; Han et al., 2024) utilize sampling-
based algorithms like CEM (Rubinstein & Kroese, 2013) and MPPI (Williams et al., 2017) for online
planning. Despite their flexibility and ability to leverage GPU support, these methods struggle with
large input dimensions due to the exponential growth in required samples. Previous work (Yin
et al., 2022) improved MPPI by introducing dynamics model linearization and covariance control
techniques, but their effectiveness on neural dynamics models remains unclear. Other approaches (Li
et al., 2018; 2019) have used gradient descent to optimize action sequences but encounter challenges
with local optima and non-smooth objective landscapes. Recently, methods inspired by neural
network verification have been developed to achieve safe control and robust planning over systems
involving neural networks (Wei & Liu, 2022; Liu et al., 2023; Hu et al., 2024a; Wu et al., 2024; Hu
et al., 2024b), but their scalability to more complex real-world manipulation tasks is still uncertain.
Moreover, researchers are also exploring the promising direction of performing planning over graphs
of convex sets (GCSs) for contact-rich manipulation tasks Marcucci (2024); Graesdal et al. (2024).
However, these approaches do not incorporate neural networks.

Neural network verification. Neural network verification ensures the reliability and safety of
neural networks (NNs) by formally proving their output properties. This process can be formulated
as finding the lower bound of a minimization problem involving NNs, with early verifiers utilizing
MIP (Tjeng et al., 2019) or linear programming (LP) (Bunel et al., 2018; Lu & Kumar., 2020). These
approaches suffer from scalability issues (Salman et al., 2019; Zhang et al., 2022b; Liu et al., 2021)
because they have limited parallelization capabilities and fail to fully exploit GPU resources. On
the other hand, bound propagation methods such as CROWN (Zhang et al., 2018) can efficiently
propagate bounds on NNs (Eric Wong, 2018; Singh et al., 2019; Wang et al., 2018; Gowal et al., 2019)
in a layer-by-layer manner and can be accelerated on GPUs. Combining bound propagation with
BaB leads to successful approaches in NN verification (Bunel et al., 2020a; De Palma et al., 2021;
Kouvaros & Lomuscio, 2021; Ferrari et al., 2022), and notably, the α,β-CROWN framework (Xu
et al., 2021; Wang et al., 2021; Zhang et al., 2022a) achieved strong verification performance on
large NNs (Bak et al., 2021; Müller et al., 2022). In our model-based planning setting, we utilize the
lower bounds from verification, with modification and specializations, to guide our systematic search
procedure to find high-quality feasible solutions.

3 BRANCH-AND-BOUND FOR PLANNING WITH NEURAL DYNAMICS MODELS

Formulation. We formulate the planning problem as an optimization problem in Eq. 1, where c
is the cost function, t0 is the current time step, and H is the planning horizon. x̂t is the (predicted)
state at time step t, and the current state x̂t0 = xt0 is known. ut ∈ {u | u ≤ u ≤ u} ⊂ Rk is the
robot’s action at each step. fdyn is the known neural dynamics model (Please refer to Section D.3 for
details about learning the neural dynamic model.), which takes state and action at time t and predicts
the next state x̂t+1. The goal of the planning problem is to find a set of optimal actions ut that
minimize the sum of step costs):

min
{ut∈U}

t0+H∑
t=t0

c(x̂t, ut) s.t. x̂t+1 = fdyn(x̂t, ut) =⇒ min
u∈C

f(u) (1)

This problem is challenging because it can have a long planning horizon and involve the non-linear
neural dynamics model fdyn at every step. Existing sampling-based and gradient-based methods may
easily converge to sub-optima without systematic searching, while MIP-based methods are unable
scale up with the size of fdyn and the planning horizon.
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To simplify notations, we can substitute all constraints on x̂t+1 into the objective recursively, and
further simplify the problem as a constrained optimization problem minu∈C f(u) (Eq. 1). Here f
is our final objective, a scalar function that absorbs the neural network fdyn and the cost function
summed in all H steps. u = {ut0:t0+H} ∈ C is the action sequence and C ⊂ Rd is the entire input
space with dimension with d = kH . We also flatten u as a vector containing actions for all time
steps, and use uj to denote a specific dimension. Our goal is to then find the optimal objective value
f∗ and its corresponding optimal action sequence u∗.
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Figure 2: Seeking f∗ with Branch-and-Bound.
1 Sample on input space C. •: sampled points. ★:

the optimal value f∗. : the current best upper
bound of f∗ from sampling. 2 Branch C into C1
and C2. : the linear lower bounds of f∗ in sub-
domains. 3 Discard C1 since its lower bound is
larger than f

∗
. : the remaining subdomain to be

searched. 4 Search on only C2 and upper bound of
f∗ is improved. : the previous upper bound. 5

Continue to branch C2 and bound on C3 and C4. 6

Search on C3. The upper bound approaches f∗.

Branch-and-bound on a 1D toy example. Our
work proposes to solve the planning problem Eq. 1
using branch-and-bound. Before diving into tech-
nical details, we first provide a toy case of a non-
convex objective function f(u) in 1D space (k =
H = 1, C = [−1, 1]) and illustrate how to use
branch-and-bound to find f∗.

In Figure 2.1, we visualize the landscape of f(u)
with its optimal value f∗. Initially, we don’t know
f∗ but we can sample the function at a few differ-
ent locations (organ points). Although sampling
(searching) often fails to discover the optimal f∗

over C = [−1, 1], it gives an upper bound of f∗

since any orange point has an objective greater than
or equal to f∗. We denote f

∗
as the current best

upper bound (orange dotted line).

In Figure 2.2, we split C into two subdomains C1 and
C2 (branching) and then estimate the lower bound
of the objective with a linear function in both C1 and
C2 (bounding). The key insight is if the lower bound
in one subdomain is larger than f

∗
, then sampling

from that subdomain will not yield any better ob-
jective than f

∗
and we may discard that subdomain

to reduce the search space. In the example, C1 is
discarded in Figure 2.3.

Then, in Figure 2.4, we only perform sampling in
C2 with the same number of samples. Searching in
the reduced space is promising to obtain a better
objective and therefore f

∗
can be improved.

We could repeat these procedures (branching, bounding, and searching) to reduce the sampling space
and improve f

∗
as in Figure 2.5 and Figure 2.6. Finally, f

∗
will converge to f∗. This branch-and-

bound method systematically partitions the input space and iteratively improves the objective. In
practice, heuristics for branching, along with methods for bound estimation and solution search, are
critical to the performance of branch and bound.

Methodology overview. We now discuss how to use the branch-and-bound (BaB) method to find
high-quality actions for the neural dynamics planning problem presented as minu∈C f(u) (Eq. 1).
We define a sub-problem minu∈Ci f(u) as minimizing f(u) in a subdomain Ci, where Ci ⊆ C. Our
algorithm, BaB-ND, involves three components: branching (Figure 3.b, Section 3.1), bounding
(Figure 3.c, Section 3.2), and searching (Figure 3.d, Section 3.3).
• Branching generates a partition {Ci} of some action space C such that

⋃
i Ci = C, and it allows us

to explore the solution space systematically.
• Bounding estimates the lower bound of f(u) on each subdomain Ci (denoted as f∗

Ci
). The lower

bound can be used to prune useless domains and also guide the search for promising domains.

• Searching seeks good feasible solutions and outputs the best objective f
∗
Ci

within each subdomain
Ci. f

∗
Ci

is an upper bound of f∗, as any feasible solution provides an upper bound for the optimal
minimization objective f∗.
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Figure 3: Illustration of the branch and bound process. (a) Configuration: we visualize a simplified case of
pushing an object to approach the target with 1D action u. We select two keypoints on the object and target
and denote the distances as d1 and d2. Then we define our objective function f(u) and seek u∗ to minimize
f(u). (b) Branching: we iteratively construct the search tree by splitting, queuing, and even pruning nodes
(sub-domains). In every iteration, only the most promising nodes are prioritized to split, cooperating with
bounding and searching. (c) Bounding: In every sub-domain Ci, we obtain the linear lower bound of f∗ (f∗)
via bound propagation. (d) Searching: we search better solutions with smaller objective (f

∗
) on selected

sub-domains. indicates the most promising sub-domain in every iteration. The search space becomes a smaller
and smaller part of the original input domain C with better solutions found and more sub-domains pruned. A
detailed illustration of our BaB-ND in a simplified robotic manipulation task can be found in Section A.1.

We can always prune subdomain Cj if its f∗
Cj

> f
∗
, where the best upper bound among all subdomains

{Ci} is defined as f
∗
:= mini f

∗
Ci

, since, in Cj , there is no solution better than current best objective
f
∗
. The above procedure can be repeated many times, and each time during branching, some

previously produced subdomains Ci can be picked for further branching, bounding, and searching
while the remaining subdomains are stored in a set P. Our main algorithm is shown in Algorithm 1.

Distinctions from neural network verification. Although this generic BaB framework has been
used in neural network verifiers (Bunel et al., 2018; Wang et al., 2021), to prove a sound lower
bound of f(u) within C, f∗

C ≤ f∗; our BaB-ND seeks a concrete solution ũ (a near-optimal action
sequence) to an objective-minimization problem minu∈C f(u).These fundamental distinctions in
goals lead to different design choices.

We propose new branching heuristics that effectively guides the search for better solutions, extensively
adapt the existing bounding algorithm CROWN (Zhang et al., 2018) to tackle it ineffectiveness and
inefficiency issues under our complex planning settings and integrate a new searching component to
find high-quality action sequences.
3.1 BRANCHING HEURISTICS FOR BAB-ND PLANNING

The efficiency of BaB heavily depends on the quality of branches. Hence, how to select promis-
ing subdomains and how to split subdomains are two essential questions in BaB, referring to
batch_pick_out(P, n) and batch_split ({Ci}) in Algorithm 1. Here we introduce our special-
ized branching heuristics to select and split subdomains for seeking high-quality solutions.

Heuristic for selecting subdomains to split. The function batch_pick_out(P, n) picks n most
promising subdomains for branching, based on their associated f∗

Ci
or f

∗
Ci

. The pickout process must
balance exploitation (focusing on areas around good solutions) and exploration (investigating regions
that have not been thoroughly explored). First, we sort subdomains Ci by f

∗
Ci

in ascending order and
select the first n1 subdomains to form {C1

pick}. subdomains with smaller f
∗
Ci

are prioritized, as good
solutions have been found there. Then, we form another promising set {C2

pick} by sampling n− n1

subdomains from the remaining N subdomains, by softmax with the probability pi defined in Eq. 2,
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Algorithm 1 Branch and bound for planning. Comments are in brown.
1: Function: bab_planning
2: Inputs: f , C, n (batch size), terminate (Termination condition)
3: {(f∗

, ũ)} ← batch_search (f, {C}) ▷ Initially search on the whole C
4: {f∗} ← batch_bound (f, {C}) ▷ Initially bound on the whole C
5: P← {(C, f∗, f

∗
, ũ)} ▷ P is the set of all candidate subdomains

6: while length(P) > 0 and not terminate do
7: {(Ci, f∗

Ci
, f

∗
Ci
, ũCi)} ← batch_pick_out (P, n) ▷ Pick out subdomains to split from P

8: {C lo
i , Cup

i } ← batch_split ({Ci}) ▷ Splits each Ci into two subdomains C lo
i and Cup

i

9: {f∗
Clo
i

, f∗
Cup
i

} ← batch_bound
(
f, {C lo

i , Cup
i }

)
▷ Estimate lower bounds on new subdomains

10: {(f∗
Clo
i
, ũClo

i
), (f

∗
Cup
i
, ũCup

i
)} ← batch_search

(
f, {C lo

i , Cup
i }

)
▷ Search new solutions

11: if min
(
{f∗

Clo
i
, f

∗
Cup
i
}
)
< f

∗ then

12: f
∗ ← min

(
{f∗

Clo
i
, f

∗
Cup
i
}
)

, ũ← argmin
(
{f∗

Clo
i
, f

∗
Cup
i
}
)

▷ Update the best solution if needed

13: P← P
⋃
Pruner

(
f
∗
, {(C lo

i , f
∗
Clo
i

, f
∗
Clo
i
), (Cup

i , f∗
Cup
i

, f
∗
Cup
i
)}
)

▷ Prune bad domains using f
∗

14: Outputs: f∗
, ũ

where T is the temperature and f∗
Ci,scaled

is the f∗
Ci

after min-max normalization for numerical stability.
A smaller f∗

Ci
may indicate some potentially better solutions in Ci, which should be prioritized.

pi =
exp(−f∗

Ci,scaled
/T )∑N

j=1 exp(−f∗
Cj ,scaled

/T )
(2)

Note that this heuristic was not discussed in neural network verification literature since, in the
verification setting, all subdomains must be verified, and thus, the order of which subdomains to pick
out first becomes less important.

Heuristic for splitting subdomains. batch_split ({Ci}) partitions every {Ci} to help search
good solutions. For a box-constrained subdomain Ci := {uj | uj ≤ uj ≤ uj ; j = 0, . . . , d− 1}, it
is natural to split it into two subdomains C lo

i and Cup
i along a dimension j∗ by bisection. Specifically,

C lo
i = {uj | uj∗ ≤ uj∗ ≤ uj∗+uj∗

2 }, Cup
i = {uj | uj∗+uj∗

2 ≤ uj∗ ≤ uj∗}. In both C lo
i and Cup

i ,
uj ≤ uj ≤ uj ,∀j ̸= j∗ holds.

One native way to select j∗ is to choose the dimension with the largest input range uj − uj . This
efficient strategy can help explore good solutions since dimensions with a larger range often indicate
greater variability or uncertainty in f . However, it does not consider the specific landscape of f ,
which may imply more effective splitting dimensions.

We additionally consider the distribution of top w% samples with the best objectives from searching
to partition Ci into promising subdomains worth further searching. Specifically, for every dimension
j, we record the number of top samples satisfying uj ≤ uj ≤ uj+uj

2 and
uj+uj

2 ≤ uj ≤ uj as
nlo
j and nup

j . Then, |nlo
j − nup

j | indicates the distribution bias of top samples along a dimension j. A
dimension with large |nlo

j − nup
j | is critical to objective values in Ci and should be prioritized to split

due to the imbalanced samples on two sides. In this case, it is often possible that one of the two
subdomains Clo

i and C lo
i contains better solutions, and the other one has a larger lower bound of the

objective to be pruned.

Based on the discussion above, we rank input dimensions descendingly by (uj − uj) · |nlo
j − nup

j |,
select the top one as j∗, and then split Ci into two subdomains evenly on dimension j∗. This heuristic
is also quite distinctive from the heuristic discussed in neural network verification literature (Bunel
et al., 2018; 2020b), since we aim to find better feasible solutions, not better lower bounds.

3.2 BOUNDING METHOD FOR BAB-ND PLANNING

Our bounding procedure aims to provide a tight lower bound for the objective function f(u) in any
subdomain, enabling the pruning of unpromising subdomains and the identification of promising

6
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ones. While this component is crucial to the effectiveness of BaB, grasping this high-level idea is
sufficient to understand our main algorithm.

Toward the goal of guiding the search with tight bound estimation, a crucial insight here is that
in the planning problem, we don’t require a strictly sound lower bound since our goal is to guide
the searching of a high-quality feasible solution using the lower bound. This is distinct from neural
network verification, where the goal is to prove a sound lower bound of f(u). Based on this
observation, we propose two approaches, propagation early-stop and searching-integrated bounding,
to obtain an efficient estimation of the lower bound f∗

Ci
, leveraging popular bound propagation-based

algorithms like CROWN (Zhang et al., 2018).

Approach 1: Propagation early-stop. CROWN is a bound propagation algorithm that propagates
a linear lower bound (inequality) through the neural network and has been successfully used in
BaB-based neural network verifiers for the bounding step (Xu et al., 2021; Wang et al., 2021). The
linear bound will be propagated backward from the output (in our case, f(u)) to the input of the
network (in our case, u), and be concretized to a concrete lower bound value using the constraints on
inputs (in our case, Ci). However, these linear bounds become increasingly loose when the network is
deep and may produce vacuous lower bounds. In our neural dynamics model planning setting, due
to the long time horizon H involved in Eq. 1, a neural dynamics model will be unrolled H times to
form f(u), leading to very loose bounds that are unhelpful for pruning useless domains during BaB.

To address this challenge, we stop the bound propagation process early to avoid the excessively loose
bound when propagated through multiple layers to the input u. The linear bound will be concretized
using intermediate layer bounds (discussed in Approach 2 below) rather than the constraints on
the inputs. A more formal description of this technique (with technical details on how CROWN is
modified) is presented in Appendix B.2 with an illustrative example.

Approach 2: Search-integrated bounding. In CROWN, the propagation process requires recur-
sively computing intermediate layer bounds (often referred to as pre-activation bounds) through
bound propagation. These pre-activation bounds represent the lower and upper bounds for any inter-
mediate layer that is followed by a nonlinear layer. The time complexity of this process is quadratic
with respect to the number of layers. Directly applying the original CROWN-like bound propagation
is both ineffective and inefficient for long-horizon planning, as the number of pre-activation bounds
increases with the planning horizon. This results in overly loose lower bounds due to the accumulated
relaxation errors and high execution times.

To quickly obtain the pre-activation bounds, we can utilize the by-product of extensive sampling
during searching to form the empirical bounds instead of recursively using CROWN to calculate
these bounds. Specifically, we denote the intermediate layer output for layer v as gv(u), and assume
we have M samples um (m = 1, . . . ,M ) from the searching process. We calculate the pre-activation
lower and upper bounds as minm gv(u

m) and maxm gv(u
m) dimension-wisely. Although these

empirical bounds may underestimate the actual bounds, they are sufficient for CROWN to get a good
estimation of f∗ to guide searching.

3.3 SEARCHING APPROACH FOR BAB-ND PLANNING

Given an objective function f and a batch of subdomains {Ci}, batch_search(f, {Ci}) seeks
solutions in these subdomains and outputs the best objectives and associated inputs {(f∗

Ci
, ũCi)}. A

large variety of sampling-based methods can be utilized. We currently adapt CEM as the underlying
method. Other existing methods, such as MPPI or projected Gradient Descent (PGD), can be
alternatives. In typical neural network verification literature, searching is often ignored during
BaB (Wang et al., 2021; Bunel et al., 2020b) since they do not seek high-quality feasible solutions.

To cooperate with the bounding component, we need to additionally record the output of any needed
intermediate layer v, and obtain their bounds as described in Section 3.2. Since we require the
lower bound of the optimal objective f∗

Ci
for every Ci, the outputs of layer v are needed for every Ci,

calculated using the samples within the subdomain Ci.
Considering that the subdomains {Ci} will become smaller and smaller, it is expected that sampling-
based methods could provide good solutions. Moreover, since we always record f

∗
Ci

and its associated
ũCi , they can initialize future searches on at least one of the split subdomains {Clo

i , Cup
i } from {Ci}.

7
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4 EXPERIMENTAL RESULTS

In this section, we assess the performance of our BaB-ND across a variety of complex robotic
manipulation tasks. Our primary objective is to address three key questions through experiments: 1)
How effectively does our BaB-ND perform long-horizon planning? 2) Is our BaB-ND applicable
to different manipulation scenarios with multi-object interactions and deformable objects? 3) What
is the scalability of our BaB-ND comparing to existing methods? For reproducibility, our code is
available at https://anonymous.4open.science/r/BaB-ND-68C3.
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Figure 4: Optimization result on a syn-
thetic f(u) over increasing dimensions
d. BaB-ND outperforms all baselines on
the optimized objective. We run all meth-
ods multiple times and visualize the me-
dian values with 25th and 75th percentiles
in the shaded area.

Synthetic example. Before deploying our BaB-ND on
robotic manipulation tasks, we create a synthetic function
to test its capability to find optimal solutions in a highly
non-convex problem. We define f(u) = Σd−1

i=0 5u
2
i +

cos 50ui, u ∈ [−1, 1]
d where d is the input dimension.

The optimal solution f∗ ≈ −1.9803d and f(u) has 16 local
optima with two global optima on every dimension. Hence,
optimizing f(u) can be challenging when d increases.

We compare our BaB-ND with three baselines: (1) GD:
projected Gradient Descent on random samples with hyper-
parameter searching on step size; (2) MPPI: Model Pre-
dictive Path Integral with hyper-parameter searching on
noise level and reward temperature; (3) CEM: Decentralized
Cross-Entropy Method (Zhang et al., 2022c) using an en-
semble of CEM instances running independently performing
local improvements of their sampling distributions.

In Figure 4, we visualize the best objective values found by
different methods over different input dimensions up to d =
100. BaB-ND consistently outperforms all baselines which
converge to non-ideal sub-optimal values. For d = 100,
BaB-ND can achieve optimality on 98 to 100 dimensions. This synthetic experiment demonstrate the
potential of BaB-ND on neural dynamics planning tasks, which will be demonstrated below.

Experiment settings. We evaluate our BaB-ND on four complex robotic manipulation tasks
involving non-smooth objectives, non-convex feasible regions and requiring long action sequences.
Different architectures of neural dynamics like MLP and GNN are leveraged for different scenarios.
Please refer to Section D for more details about tasks, dynamics models and cost functions.
• Pushing with Obstacles. In Figure 5.a, this task involves using a pusher to manipulate a “T”-shaped
object to reach a target pose while avoiding collisions with obstacles. An MLP neural dynamics
model is trained with interactions between the pusher and object without obstacles. Obstacles are
modeled in the cost function, making non-smooth landscape and non-convex feasible regions.
• Object Merging. In Figure 5.c, two “L”-shaped objects are merged into a rectangle at a specific
target pose, which requires a long action sequence with multiple contact mode switches.
• Rope Routing. As shown in Figure 5.b, the goal is to route a deformable rope into a tight-fitting
slot (modeled in the cost function) in the 3D action space. Instead of greedily approaching to the
target in initial steps, the robot needs to find the trajectory to finally reach the target.
• Object Sorting. In Figure 5.d, a pusher interacts with a cluster of objects to sort one outlier object
out of the central zone to target while keeping others closely gathered. We use GNN to predict
multi-object interactions. Every long-range action may significantly change the state. Additional
constraints on actions are considered in the cost to avoid crashes between the robot and objects.
We evaluate baselines and BaB-ND on the open-loop planning performance (the best objective
of Eq. 1 found) in simulation and select the best two baselines to evaluate their real-world closed-loop
control performance (the final cost or success rate of executions).

In real-world experiments, we first perform long-horizon planning to get reference trajectories of
states and leverage MPC (Camacho & Bordons Alba, 2013) to efficiently track the trajectories in two
tasks: pushing with obstacles and object merging. In the rope routing task, we directly execute the
planned long-horizon action sequence due to its small sim-to-real gap. In the object sorting task,
since the observations can change greatly after each push, we use MPC to re-plan after every action.
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Lift and routing

Time

(a) Pushing w/ Obstacles (b) Rope Routing
Time

(c) Object Merging

(d) Object Sorting

Time

Target

Initial

Initial

Initial

Target

Target

Time

Figure 5: Qualitative results on real-world manipulation tasks. We evaluate our BaB-ND across four
complex robotic manipulation tasks, involving non-convex feasible regions, requiring long-horizon planning,
with interaction between multiple objects and the deformable rope. For every task, we visualize the initial and
target configurations and one successful trajectory. Please refer to our supplemental video for demonstrations.

Effectiveness. We first evaluate the effectiveness of BaB-ND on pushing with obstacles and object
merging tasks which are contact-rich and require strong long-horizon planning performance. The
quantitative results of open-loop and closed loop performance for these tasks are presented in Figure 6.

In both tasks, our BaB-ND effectively optimizes the objective of Eq. 1 and gives better open-
loop performance than all baselines. The better-planned trajectories can yield better closed-loop
performance in the real world with efficient tracking. Specifically, in the pushing with obstacles task,
GD offers much worse trajectories than others, often resulting in the T-shaped object stuck at one
obstacle. MPPI and CEM can offer trajectories passing through the obstacles but with bad alignment
with the target. In contrast, BaB-ND can not only pass through obstacles successfully, but also often
perfectly align with the final target.

(a
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Pushing w/ Obstacles Object Merging Rope Routing Object Sorting
* Success rate (↑). Other metrics for closed-loop performance are final costs (↓).

*

Figure 6: Quantitative analysis of planning performance and execution performance in real world.
BaB-ND consistently outperforms baselines on open-loop performance leading better closed-loop performance.
(a) The open-loop performance on all tasks. We report the best objective of Eq. 1 in different test cases found by
all methods. (b) The closed-loop performance of all tasks in real world. GD is not tested due to poor open-loop
performance. We report the success rate for Rope Routing, since a greedy trajectory that horizontally routes the
rope may achieve a low final cost but fails to route it into the slot, while reporting final step costs for other tasks.
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Applicability. We assess the applicability of BaB-ND on rope routing and object sorting tasks
involving the manipulation of deformable objects and interactions between multiple objects modeled
by GNNs. The quantitative results in Figure 6 demonstrate our applicability on these tasks.

In the rope routing task, MPPI, CEM and ours achieve similar open-loop performance while GD may
struggle at sub-optimal trajectories, routing the rope horizontally and getting stuck outside the slot.
In the object sorting task, CEM can outperform MPPI in simulation and real-world since MPPI is
more suitable for planning continuous action sequences while actions are discrete in the task. Ours
outperforms CEM with similar median and smaller variance.
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M
od

el
 S

iz
e

Runtime (Seconds)
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Figure 7: Quantitative analysis of runtime and scalability. (a) The runtime of MIP and ours on solving simple
planning problems with different model sizes and planning horizons. BaB-ND can handle much larger problems
than MIP. (“Fail” indicates MIP fails to find any feasible solution within 300 seconds.) (b) Runtime breakdown
of our components on large and complex planning problems with H = 20. Runtimes on components except
searching increase a little with increasing of model size, indicating the excellent scalability of our approach.

Scalability. We evaluate the scalability of our BaB-ND on object pushing task with different model
sizes and different planning horizons on multiple test cases comparing with MIP (Liu et al., 2023).
We train the neural dynamics models with different sizes and the same architecture and use the
number of parameters in the single neural dynamics model fdyn to indicate the model size.

In Figure 7 (a), we visualize the average runtime of MIP and ours on test cases with different model
sizes and planning horizons. To be friendly to MIP, we remove all items about the obstacles and
define the objective as the step cost after planning horizon H , c(st0+T , xt0+T , sgoal) instead of the
accumulated cost. However, MIP still only handles small problems. Among all 36 settings, it gives
optimal solutions on 6 settings, gives sub-optimal solutions on 3 settings, and fails to find any solution
on all remaining settings within 300 seconds. On the contrary, our BaB-ND scales up well to large
problems with planning horizon H = 20 and a model containing over 500K parameters.

In Figure 7 (b), we evaluate the runtime of each primary component of our BaB-ND across various
model sizes, ranging from approximately 9K to over 500K, in the context of an original objective for
the pushing w/ obstacles tasks (containing items to model obstacles and accumulated cost among all
steps) over a planning horizon of H = 20 . The breakdown bar chart illustrates that the runtimes for
the branching and bounding components grow relatively slowly across model sizes, which increase
by over 50-fold. Our improved bounding procedure, as discussed in Section 3.2, scales well with
growing model size. In addition, the searching runtime scales in proportion to neural network size
since the majority of searching time is spent on sampling the model with a large batch size on GPUs.

5 CONCLUSION

In this paper, we propose a branch-and-bound-based framework for long-horizon motion planning
in robotic manipulation tasks. We leverage specialized branching heuristics for systematical search
and adapt the bound propagation algorithm from neural network verification to estimate tight bounds
of objectives efficiently. Our framework demonstrates superior planning performance in complex,
contact-rich manipulation tasks and is scalable and adaptable to various model architectures. The
limitations and future directions are discussed in Section A.4.
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Figure A8: Illustration of the branch and bound process. (a) Configuration: we visualize a simplified
case of pushing an object to approach the target with 1D action u. We select two keypoints on the object
and target and denote the distances as d1 and d2. Then we define our objective function f(u) and seek u∗ to
minimize f(u). (b) Branching: we iteratively construct the search tree by splitting, queuing, and even pruning
nodes (sub-domains). In every iteration, only the most promising nodes are prioritized to split, cooperating
with bounding and searching. (c) Bounding: In every sub-domain Ci, we obtain the linear lower bound of f∗

(f∗) via bound propagation. (d) Searching: we search better solutions with smaller objective (f
∗
) on selected

sub-domains. indicates the most promising sub-domain in every iteration. The search space becomes a smaller
and smaller part of the original input domain C with better solutions found and more sub-domains pruned.

A EXTENDED FORMULATION AND METHOD OVERVIEW

A.1 ILLUSTRATION OF BAB-ND ON A SIMPLIFIED TASK

We replicate Figure 3 here as Figure A8 to introduce theoretical concepts in Section 3, and to illustrate
BaB-ND on a simplified robotic manipulation task.

Configuration. In Figure A8.a, we first define the configuration of the task, where the robot moves
left or right to push an object toward the target.

The 1D action u ∈ C in this case represents the movement of the robot pusher, with C = [−l, l] as
its domain, where l is the maximum movement distance (e.g., 1, cm in practice). A value of u < 0
means the robot moves left, while u > 0 means the robot moves right.

The objective f(u) measures the distance between the object and the target under a specific action u.
In this case, f(u) = d21 + d22, where d1 is the distance between a keypoint (P1) on the object and the
corresponding keypoint (P1,T ) on the target, and d2 is the distance between another keypoint pair
(P2 and P2,T ). For example, if the robot moves left (u < 0), d2 decreases while d1 increases.

The values of d1 and d2 depend on a neural network dynamics model fdyn. This model takes as input
the current positions of P1 and P2 related to the pusher, along with an action u, to predict the next
positions of P1 and P2. Based on these predictions, d1 and d2 are updated accordingly and f(u) may
exhibit non-convex behavior.

Formulation of BaB. Our goal in planning is to find the optimal action u∗ that minimizes f(u).
To achieve this, we propose a branch-and-bound-based method. In Figure A8.b, c, and d, we illustrate
three components of our method. We first introduce some concepts below.

A subdomain Ci ∈ C is a subset of the entire input domain C. For example, in Figure A8.b, we
initially split C = [−l, l] into two subdomains: C1 = [−l, 0] and C2 = [0, l], to separately analyze left
and right movements.
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Each subdomain Ci has associated lower and upper bounds of the best objective in it: f∗
Ci

and f
∗
Ci

.
These represent the bounds of the best objective in Ci (f∗

Ci
:= minu∈Ci f(u)). For example, if the

optimal objective (the sum of the squared distances between keypoint pairs, d21+d22) given by the best
action in Ci is 2, we might estimate f∗

Ci
= 1 and f

∗
Ci

= 3. (1 ≤ minu∈Ci d
2
1+d22 = 2 ≤ 3.) Intuitively,

f∗
Ci

overestimates the effect of the optimal action on improving f(u), while f
∗
Ci

underestimates it.

We split the original domain C into multiple subdomains Ci with branching, compute f∗
Ci

using

bounding (Figure A8.c), and f
∗
Ci

using searching (Figure A8.d). These bounds allow us to determine
whether a subdomain Ci is promising for containing the optimal action u∗ or whether it can be pruned
as unpromising. For instance, in Figure A8, assume f∗

C1
= 4 and f

∗
C2

= 3, it means that no objective
better than 4 can be achieved in C1, while no objective worse than 3 can occur in C2. In this case, we
can directly prune C1 without further exploration in it.

Branching. In Figure A8.b, we visualize the branching process, which constructs a search tree
iteratively. We first split C = [−l, l] into two subdomains: C1 = [−l, 0] and C2 = [0, l], allowing us
to consider left and right movements separately. We can iteratively split any subdomain into smaller
subdomains. For example, C2 can be further split into C3 and C4.

Naively, we could search every subdomain and select the best action among all subdomains as our
final best action. However, this approach is computationally expensive, especially when C is divided
into many small subdomains. Therefore, we need to prune unpromising subdomains to reduce the
search space and computational overhead.

Bounding. Pruning relies on the bounding component (Figure A8.c), which provides f∗, the lower
bound of f(u) within a given input domain. In our simplified case, f∗ represents the lower bound of
the sum of the squared distances between keypoint pairs.

This bounding process is performed for every subdomain. Within a specific subdomain, such as
C1, we estimate a linear function g(u) that is always smaller than or equal to f(u) in C1 (i.e.,
g(u) ≤ f(u),∀u ∈ C1). We then use the minimum value of g(u) in C1 as the lower bound of f(u) in
C1 (i.e., f∗

C1
:= minu∈C1 g(u)). This estimation is based on CROWN and our adaptations.

Intuitively, subdomains with large lower bounds can be treated as unpromising, while those with small
lower bounds are considered promising. Using these lower bounds, we can prioritize the promising
subdomains and prune unpromising subdomains whose lower bounds exceed f

∗
, the best objective

found so far.

Searching. The best objective found, f
∗
:= mini f

∗
Ci

, is the best objective among all subdomains,
where f

∗
Ci

represents the upper bound of the best objective in Ci, obtained through the searching
process using sampling-based methods, as shown in Figure A8.d.

Specifically, f
∗
Ci

:= minuk∈Ci f(uk) is the best objective among all input samples uk in Ci. This is
valid because ∀uk ∈ Ci, f

∗ ≤ f(uk) holds. Thus, any f(uk) can serve as an upper bound for f
∗
Ci

,
but we select the best one to achieve a tighter bound on f

∗
Ci

.

With more subdomains being pruned in the branch-and-bound process, sampling-based methods can
be applied to progressively smaller input spaces, enabling the discovery of better objectives. This
process may ultimately converge to the actual optimal value f∗ and identify the optimal action u∗.

A.2 ALGORITHM OF BAB-ND

The BaB-ND algorithm Algorithm 2 takes an objective function f with neural networks, a domain C
as input space and a termination condition if necessary. The sub-procedure batch_search seeks
better solutions on domains {Ci}. It returns the best objectives {f∗

Ci
} and corresponding solution

{ũCi
} for n selected subdomains simultaneously. The sub-procedure batch_bound computes the

lower bounds of f∗ on domains {Ci} in the way described in Section 3.2. It operates in a batch and
returns the lower bounds {f∗

Ci
}.
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Algorithm 2 Branch and bound for planning. Comments are in brown.
1: Inputs: f , C, n (batch size), terminate (Termination condition)
2: {(f∗

, ũ)} ← batch_search (f, {C}) ▷ Initially search on the whole C
3: {f∗} ← batch_bound (f, {C}) ▷ Initially bound on the whole C
4: P← {(C, f∗, f

∗
, ũ)} ▷ P is the set of all candidate subdomains

5: while length(P) > 0 and not terminate do
6: {(Ci, f∗

Ci
, f

∗
Ci
, ũCi)} ← batch_pick_out (P, n) ▷ Pick subdomains to split and remove them from P

7: {C lo
i , Cup

i } ← batch_split ({Ci}) ▷ Each Ci splits into two subdomains C lo
i and Cup

i

8: {(f∗
Clo
i
, ũClo

i
), (f

∗
Cup
i
, ũCup

i
)} ← batch_search

(
f, {C lo

i , Cup
i }

)
▷ Search new solutions

9: {f∗
Clo
i

, f∗
Cup
i

} ← batch_bound
(
f, {C lo

i , Cup
i }

)
▷ Compute lower bounds on new subdomains

10: if min
(
{f∗

Clo
i
, f

∗
Cup
i
}
)
< f

∗ then

11: f
∗ ← min

(
{f∗

Clo
i
, f

∗
Cup
i
}
)

, ũ← argmin
(
{f∗

Clo
i
, f

∗
Cup
i
}
)

▷ Update the best solution if needed

12: P← P
⋃
Pruner

(
f
∗
, {(C lo

i , f
∗
Clo
i

, f
∗
Clo
i
), (Cup

i , f∗
Cup
i

, f
∗
Cup
i
)}
)

▷ Prune bad domains using f
∗

13: Outputs: f∗
, ũ

In the algorithm, we maintain f
∗

and ũ as the best objective and solution we can find. We also
maintain a global set P storing all the candidate subdomains which f∗

Ci
≥ f

∗
. Initially, we only

have the whole input domain C, so we perform batch_search and batch_bound on C and initialize
current f

∗
, ũ and P (Line 2-4).

Then we utilize the power of GPUs to split, search and bound subdomains in parallel and always
maintain P (Line 6-11). Specifically, batch_pick_out selects n (batch size) promising subdomains
from P. If the length of P is less than n, then we reduce n to the length of P. batch_split splits
each selected Ci to two subdomains C lo

i and Cup
i according to a branch heuristic in parallel. Pruner

filters out bad subdomains (proved with f∗
Ci

> f
∗
) and we insert the remaining ones to P.

The loop breaks if there is no subdomain left in P or some other pre-defined termination conditions
such as timeout and find good enough objective f

∗ ≤ fth, are satisfied (Line 5). We finally return the
best objective f

∗
and corresponding solution ũ.

A.3 DISTINCTIONS BETWEEN BAB-ND AND NEURAL NETWORK VERIFICATION ALGORITHMS

Goals. BaB-ND aims to optimize an objective function involving neural dynamics models to solve
challenging planning problems, seeking a concrete solution ũ (a near-optimal action sequence) to
an objective-minimization problem minu∈C f(u). In contrast, neural network verification focuses
on proving a sound lower bound of f(u) in the space C, concrete solution ũ is not needed.. These
fundamental distinctions in goals lead to different algorithm design choices.

Branching Heuristics. In BaB-ND, branching heuristics are designed to effectively guide the
search for better concrete solutions, considering both the lower and upper bounds of the best objective.
In neural network verification, branching heuristics focus solely on improving the lower bounds.

Bounding Approaches. While existing bounding approaches, such as CROWN from neural net-
work verification, can provide provable lower bounds for objectives, they are neither effective nor
efficient for planning problems. To address this, we adapt the CROWN algorithm with propagation
early-stop and search-integrated bounding to efficiently obtain tight bound estimations.

Searching Components. BaB-ND includes an additional searching component in the branch-and-
bound procedure to find the optimal solution to planning problems. Neural network verifiers typically
do not have this component, as they focus solely on obtaining lower bounds of objective over an
input space rather than identifying objective values for specific inputs. We further adapt the searching
component to benefit from the BaB procedure while also guiding BaB for improved searching.
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A.4 LIMITATIONS AND FUTURE DIRECTIONS

In this section we discuss a few limitations of our work and potential directions for future work.

Planning performance depends on the prediction errors of neural dynamics models. The neural
dynamics model may not perfectly match the real world. As a result, our optimization framework,
BaB-ND, may achieve a low objective as predicted by the learned dynamics model but still miss
the target (e.g., the model predicts that a certain action reaches the target, but in reality, the pushing
action overshoots). While improving model accuracy is not the primary focus of this paper, future
research could explore more robust formulations that account for potential errors in neural dynamics
models to improve overall performance and reliability.

Optimality of our solution may be influenced by the underlying searching algorithms. The planning
performance of BaB-ND is inherently influenced by the underlying sampling-based searching al-
gorithms (e.g., sampling-based methods may over-exploit or over-explore the objective landscape,
resulting in suboptimal solutions in certain domains). Although our branch-and-bound procedure
can mitigate this issue by systematically exploring the input space and efficiently guiding the search,
incorporating advanced sampling-based searching algorithms with proper parameter scheduling into
BaB-ND could improve its ability to tackle more challenging planning problems.

Improved branching heuristics and strategies are needed for more efficiently guiding the search for
more challenging settings. There is still room for improving the branching heuristics and bounding
strategies to generalize across diverse tasks (e.g., our current strategy may not always find the optimal
axis to branch). Future efforts could focus on developing more generalizable strategies for broader
applications, potentially leveraging reinforcement learning approaches.
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B MORE DETAILS ABOUT BOUNDING

B.1 PROOFS OF CROWN BOUNDING

In this section, we first share the background of neural network verification including its formulation
and a efficient linear bound propagation method CROWN (Zhang et al., 2018) to calculate bounds
over neural networks. We take the Multilayer perceptron (MLP) with ReLU activation as the example
and CROWN is a general framework which is suitable to different activations and model architectures.

Definition. We define the input of a neural network as x ∈ Rd0 , and define the weights and
biases of an L-layer neural network as W(i) ∈ Rdi×di−1 and b(i) ∈ Rdi (i ∈ {1, · · · , L}) re-
spectively. The neural network function f : Rd0 → R is defined as f(x) = z(L)(x), where
z(i)(x) = W(i)ẑ(i−1)(x) + b(i), ẑ(i)(x) = σ(z(i)(x)) and ẑ(0)(x) = x. σ is the activation function
and we use ReLU throughout this paper. When the context is clear, we omit ·(x) and use z

(i)
j and

ẑ
(i)
j to represent the pre-activation and post-activation values of the j-th neuron in the i-th layer.

Neural network verification seeks the solution of the optimization problem in Eq. 3:

min f(x) := z(L) s.t. z(i) = W(i)ẑ(i−1) + b(i), ẑ(i) = σ(z(i)), x ∈ C, i ∈ {1, · · · , L− 1} (3)
The set C defines the allowed input region and our aim is to find the minimum of f(x) for x ∈ C, and
throughout this paper we consider C as an ℓp ball around a data example x0: C = {x | ∥x−x0∥p ≤ ϵ}.

First, let we consider the neural network with only linear layers. in this case, it is easily to get a
linear relationship between x and f(x) that f(x) = Wx+ b no matter what is the value of L and
derive the closed form of f∗ = min f(x) for x ∈ C. With this idea in our mind, for neural networks
with non-linear activation layers, if we could bound them with some linear functions, then it is still
possible to bound f(x) with linear functions.

Then, we show that the non-linear activation ReLU layer ẑ = ReLU(z) can be bounded by two linear
functions in three cases according to the range of pre-activation bounds l ≤ z ≤ u: active (l ≥ 0),
inactive (u ≤ 0) and unstable (l < 0 < u) in Lemma B.1.
Lemma B.1 (Relaxation of a ReLU layer in CROWN). Given pre-activation vector z ∈ Rd, l ≤ z ≤
u (element-wise), ẑ = ReLU(z), we have

Dz + b ≤ ẑ ≤ Dz + b,

where D,D ∈ Rd×d are diagonal matrices defined as:

Dj,j =


1, if lj ≥ 0

0, if uj ≤ 0

αj , if uj > 0 > lj

Dj,j =


1, if lj ≥ 0

0, if uj ≤ 0
uj

uj−lj
, if uj > 0 > lj

(4)

α ∈ Rd is a free vector s.t., 0 ≤ α ≤ 1. b,b ∈ Rd are defined as

bj =

{
0, if lj > 0 or uj ≤ 0

0, if uj > 0 > lj .
bj =

{
0, if lj > 0 or uj ≤ 0

− uj lj
uj−lj

, if uj > 0 > lj .
(5)

Proof. For the j-th ReLU neuron, if lj ≥ 0, then ReLU(zj) = zj ; if uj < 0, then ReLU(zj) = 0.
For the case of lj < 0 < uj , the ReLU function can be linearly upper and lower bounded within this
range:

αjzj ≤ ReLU(zj) ≤
uj

uj − lj
(zj − lj) ∀ lj ≤ zj ≤ uj

where 0 ≤ αj ≤ 1 is a free variable - any value between 0 and 1 produces a valid lower bound.

Next we apply the linear relaxation of ReLU to the L-layer neural network f(x) to further derive
the linear lower bound of f(x). The idea is to propagate a weight matrix W̃ and bias vector b̃ from
the L-th layer to 1-th layer. Specifically, when propagate through ReLU layer, we should greedily
select upper bound of ẑj when W̃i,j is negative and select lower bound of ẑj when W̃i,j is positive
to calculate the lower bound of f(x). When propagate through linear layer, we do not need to do
such selection since there is no relaxation on linear layer.
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Theorem B.2 (CROWN bound propagation on neural network). Given the L-layer neural network
f(x) as defined in Eq. 3, we could find a linear function with respect to input x.

f(x) := z(L) ≥ W̃
(1)

x+ b̃
(1)

(6)

where W̃ and b̃ are recursively defined as following:

W̃
(l)

= A(l)W(l), b̃
(l)

= A(l)b(l) + d(l),∀l = 1 . . . L (7)

A(L) = I ∈ RdL×dL , b̃
(L)

= 0 (8)

A(l) = W̃
(l+1)

≥0 D(l) + W̃
(l+1)

<0 D
(l) ∈ Rdl+1×dl ,∀l = 1 . . . L− 1 (9)

d(l) = W̃
(l+1)

≥0 b(l) + W̃
(l+1)

<0 b
(l)

+ b̃
(l)
,∀l = 1 . . . L− 1 (10)

where ∀l = 1 . . . L− 1,D(l),D
(l) ∈ Rdl×dl and b(l),b

(l) ∈ Rdl are defined as in Lemma B.1. And
subscript “≥ 0” stands for taking positive elements from the matrix while setting other elements to
zero, and vice versa for subscript “< 0”.

Proof. First we have

f(x) := z(L) = A(L)z(L) + d(L)

= A(L)W(L)ẑ(L−1) +A(L)b(L) + d(L)

= W̃
(L)

ẑ(L−1) + b̃
(L)

(11)

Refer to Lemma B.1, we have

D(L−1)z(L−1) + b(L−1) ≤ ẑ(L−1) ≤ D
(L−1)

z(L−1) + b
(L−1)

(12)

Then we can form the lower bound of z(L) element by element: we greedily select the upper

bound ẑ
(L−1)
j ≤ D

(L−1)

j,j z
(L−1)
j + b

(L−1)

j when W̃
(L)

i,j is negative, and select the lower bound

ẑ
(L−1)
j ≥ D

(L−1)
j,j z

(L−1)
j + b

(L−1)
j otherwise. It can be formatted as

W̃
(L)

ẑ(L−1) + b̃
(L) ≥ A(L−1)z(L−1) + d(L−1) (13)

where A(L−1) ∈ RdL×dL−1 is defined as

A
(L−1)
i,j =

W̃
(L)

i,j D
(L−1)

j,j , if W̃
(L)

i,j < 0

W̃
(L)

i,j D
(L−1)
j,j , if W̃

(L)

i,j ≥ 0
(14)

for simplicity, we rewrite it in matrix form as

A(L−1) = W̃
(L)

≥0D
(L−1) + W̃

(L)

<0D
(L−1)

(15)

And d(L−1) ∈ RdL is similarly defined as

d(L−1) = W̃
(L)

≥0 b
(L−1) + W̃

(L)

<0 b
(L−1)

+ b̃
(L)

(16)

Then we continue to replace z(L−1) in Eq. 13 as W(L−1)ẑ(L−2) + b(L−1)

W̃
(L)

ẑ(L−1) + b̃
(L) ≥ (A(L−1)W(L−1))ẑ(L−2) +A(L−1)b(L−1) + d(L−1)

= W̃
(L−1)

ẑ(L−2) + b̃
(L−1)

(17)

By continuing to propagate the linear inequality to the first layer, we get

f(x) ≥ W̃
(1)

ẑ(0) + b̃
(1)

= W̃
(1)

x+ b̃
(1)

(18)
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After getting the linear lower bound of f(x), and given x ∈ C, we could solve the linear lower bound
in closed form as in Theorem B.3. It is given by the Hölder’s inequality.
Theorem B.3 (Bound Concretization under ℓp ball Perturbations). Given the L-layer neural network
f(x) as defined in Eq. 3, and input x ∈ C = Bp(x0, ϵ) = {x | ∥x − x0∥p ≤ ϵ}, we could find

concrete lower bound of f(x) by solving the optimization problem minx∈C W̃
(1)

x + b̃
(1)

and its
solution gives

min
x∈C

f(x) ≥ min
x∈C

W̃
(1)

x+ b̃
(1) ≥ −ϵ∥W̃(1)∥q + W̃

(1)
x0 + b̃

(1)
(19)

where 1
p + 1

q = 1 and ∥ · ∥q denotes taking ℓq-norm for each row in the matrix and the result makes
up a vector.

Proof.

min
x∈C

W̃
(1)

x+ b̃
(1)

(20)

= min
λ∈Bp(0,1)

W̃
(1)

(x0 + ϵλ) + b̃
(1)

(21)

=ϵ( min
λ∈Bp(0,1)

W̃
(1)

λ) + W̃
(1)

x0 + b̃
(1)

(22)

=− ϵ( max
λ∈Bp(0,1)

−W̃
(1)

λ) + W̃
(1)

x0 + b̃
(1)

(23)

≥− ϵ( max
λ∈Bp(0,1)

|W̃(1)
λ|) + W̃

(1)
x0 + b̃

(1)
(24)

≥− ϵ( max
λ∈Bp(0,1)

∥W̃(1)∥q∥λ∥p) + W̃
(1)

x0 + b̃
(1)

(Hölder’s inequality) (25)

=− ϵ∥W̃(1)∥q + W̃
(1)

x0 + b̃
(1)

(26)

B.2 DETAILS ABOUT BOUND PROPAGATION EARLY-STOP

Algorithm 3 Bound Propagation w/ Early-stop.

1: Function: compute_bound
2: Inputs: computational graph G, output node o,

early-stop set S
3: CROWN_init(G, o)
4: Q← Queue(), Q.push(o)
5: while length(Q) > 0 do
6: v ← Q.pop()
7: for w ∈ In(v) do
8: dw −= 1
9: if dw = 0 and w /∈ I then

10: Q.push(w)

11: if v ∈ S then
12: continue
13: CROWN_prop(v)
14: f∗ ← CROWN_concretize(I,S)
15: Outputs: f∗

We parse the objective function f into a compu-
tational graph G = (V,E), where V and E are
the sets of nodes and edges, respectively. This
process can be accomplished using popular deep
learning frameworks, such as PyTorch, which sup-
port not only neural networks but also more general
functions. In the graph G, any mathematical op-
eration is represented as a node v ∈ V, and the
edges e = (w, v) ∈ E define the flow of compu-
tation. The input u, constant values, and model
parameters constitute the input nodes of G, form-
ing the input set I = {v | In(v) = ∅}, where
In(v) = {w | (w, v) ∈ E} denotes the set of input
nodes for a node v. Any arithmetic operation, such
as ReLU, which requires input operands, is also rep-
resented as a node in G but with a non-empty input
set. The node o is the sole output node of G and
provides the scalar objective value f in our case.

Our method (Algorithm 3) takes as input the graph G of f , the output node o to bound, and a set
of early-stop nodes S ⊂ V. It outputs the lower bound of the value of o, i.e., f∗. It first performs
CROWN_init to initialize dv for all nodes v, representing the number of output nodes of v that have
not yet been visited.

The algorithm maintains a queue Q of nodes to visit and performs a Breadth First Search (BFS) on G,
starting from o. When visiting a node v, it traverses all input nodes w of v, decrementing dw. If all
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output nodes of w have been visited and w is not an input node of G, w is added to Q for propagation
(Lines 7–10). The key modification occurs in Lines 11–12, where bound propagation from v to all its
input nodes is stopped if v ∈ S.

Finally, the algorithm concretizes the output bound f∗ at nodes v ∈ I ∪ S based on their lower and
upper bounds lv and uv. We assume lv and uv are known for v ∈ I since the input range of Nu, as
well as all constant values and model parameters, is known. And for any v ∈ S, its lv and uv are
given by minm gv(u

m) and maxm gv(u
m) from Search-integrated bounding in Section 3.2

G
ra

ph
Q

ue
ue
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Figure A9: Bound propagation with early-
stop on an L-layer MLP f(u). Bound prop-
agation starts from the node of output f and
then backwards layer by layer to the L− 1-
th linear layer. The backward flow is high-
lighted as and stop at . In the queue, the
node popped at every step is semitransparent.

An illustrative example for bounding. Assume f(u)
is an L-layer MLP. We illustrate how to estimate its lower
bound f∗ with early stopping at the last ReLU layer in Fig-
ure A9. For simplicity, we denote the output f(u), the
L-th linear layer, the ReLU layer, the L−1-th linear layer,
and the input u as nodes Nf , NL, NR, NL−1, and Nu, re-
spectively. Additionally, we denote f(u) = z(L)(u) as
the output value of node NL, ẑ(L−1)(u) as the input of NL
and output of NR, and z(L−1)(u) as the input of NR and
output of NL−1.

In Step 1, we initialize CROWN and the queue Q for
traversal, starting with the output node Nf . In Step 2, we
update the out-degree of node NL which is the input of
Nf , and propagate from Nf to NL. Since dL = 0 indicates
that all its outputs (in this case, only Nf ) have been visited,
node NL is added to Q. In Step 3, we continue propagation
to the input of NL, which is the node NR. Then NR is added
to Q. In Step 4, we visit NR, which is defined as an early-
stop node. The backward flow stops propagating to its
input node NL−1, and NL−1 is not added to Q because it
is not an input node. Since Q is now empty, the bound
propagation is complete.

Finally, we require the lower and upper bounds of ẑ(L−1)(u) (the input value of NR and the output
value of NL−1) to compute f∗. Using our Search-integrated bounding approach, these bounds are
obtained empirically from samples during the searching process.

A deeper look at the illustrative example. We now connect the CROWN theorem in Section B.1 to
our illustrative example to better understand the behaviors of CROWN_prop and CROWN_concretize.
Here, the input x in Section B.1 corresponds to u.

In Step 2, since v = L is a linear layer, calling CROWN_prop corresponds to the propagation in Eq. 11.
Note that no relaxation is introduced when propagating through the linear layer.

In Step 3, v = R is a non-linear ReLU layer, and calling CROWN_prop corresponds to the propagation
in Eq. 13. This step requires a linear estimation of the non-linear layer as described in Eq. 12, which
is obtained from the lower and upper bounds of the input to NR (i.e., ẑ(L−1)(u)) using Lemma B.1.
At this stage, linear relaxation is introduced for the non-linear layer, potentially loosening the final
lower bound of f(u).

The lower and upper bounds of ẑ(L−1)(u) are referred to as intermediate layer bounds or pre-
activation bounds in Section 3.2. However, these bounds are initially unknown in practice. In the
original CROWN algorithm, computing these bounds requires recursively calling compute_bound
with o = L− 1. In our approach, these bounds are instead estimated empirically from samples during
the searching process, as they serve as the input bounds for the early-stop node NR.

Now assume we have obtained the intermediate layer bounds and propagated the linear relation
through the non-linear node NR. With the early-stop mechanism, we stop further propagation to
NL−1 and subsequently to the input Nu. At this point, CROWN_concretize is called to compute f∗

using the intermediate layer bounds and the relaxed linear relation between NR and Nf obtained from
propagation. Specifically, this can be achieved by replacing x with ẑ(L−1)(u) in Theorem B.3.
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In contrast, the original CROWN algorithm continues propagating through NL−1 and eventually to
the input Nu, then calls CROWN_concretize using the linear relation between Nu and Nf and the
lower and upper bounds of Nu, as described in Theorem B.3.

Improvement of our approaches. Here, we discuss why our bounding approaches (Propagation
early-stop and Search-integrated bounding) achieve much tighter bound estimations and greater
efficiency compared to the original CROWN.

Efficiency: The original CROWN performs bound propagation through every layer and recursively
computes each intermediate layer bound by propagating it back to the input. This process results in a
quadratic time complexity with respect to the number of layers. In contrast, our method conducts
bound propagation only from Nf to a few early-stop nodes and derives the input bounds of these
nodes from prior sampling-based searching without recursively calling CROWN. As a result, the
time complexity of our approach can be linear with respect to the number of layers and even constant
under certain configurations of early-stop nodes.

Effectiveness: As introduced earlier, the looseness in bound estimation stems from the linear relaxation
of non-linear layers. In the original CROWN, the number of linear relaxations is quadratic with
respect to the number of non-linear layers. In our approach, the bounding procedure involves far
fewer linear relaxations. Furthermore, the empirical bounds obtained from searching, which may
slightly underestimate the actual bounds, contribute to further tightening the bound estimation.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENT RESULTS

C.1 SCALABILITY ANALYSIS

Comparison with sampling-based methods. we conducted an experiment to compare the scala-
bility of our BaB-ND with sampling-based methods on complex planning problems. We used the
same model sizes and planning horizons as in Figure 7 (a), optimizing the complex objective function
applied in the Pushing with Obstacles task. Parameters for all methods were adjusted to ensure
similar runtimes for the largest problems.

The results in Figure A10 show that the runtime of our BaB-ND is less sensitive to the increasing
complexity of planning problems compared to sampling-based methods. While BaB-ND incurs
additional overhead from initializing α,β-CROWN and performing branching and bounding, making
it less efficient than sampling-based methods for small problems.
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Figure A10: Comparison of runtime with sampling-based methods. Although our BaB-ND is less efficient
on small planning problems than baselines, it achieves the similar efficiency on larger planning problems.

We also report the average objectives for all methods on the largest four planning problems to evaluate
their effectiveness in Table A1. Overall, the performance gaps between our BaB-ND and the baselines
increase with the size of the problem, highlighting the ineffectiveness of sampling-based methods for
large, complex planning problems.

Table A1: Comparison of planning performance across different configurations

Method Planning Problem Size

(134.2K,15) (134.2K,20) (530.2K,15) (530.2K,20)

GD 57.2768 64.4789 54.7078 60.2575
MPPI 47.4451 53.7356 45.1371 45.6338
CEM 47.0403 47.6487 43.8235 38.8712
Ours 46.0296 46.1938 41.6218 34.6972

Additionally, we evaluate the planning performance of sampling-based methods and our approach
on the same simple synthetic planning problems as those in Figure 7. We report only the six cases
that MIP can solve optimally within 300 seconds. The results in Table A2 show that, under these
much simpler settings compared to those of our main experiments, all methods perform similarly.
Sampling-based methods (MPPI, CEM, and ours) achieve a gap under the order of 1×10−4 compared
to MIP with an optimality guarantee.

Table A2: Comparison of planning performance on simple synthetic planning problems

Method Planning Problem Size

(0.232K,1) (0.712K,1) (2.440K,1) (0.232K,3) (0.712K,3) (0.232K,5)

MIP 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069
GD 30.3622 32.9750 33.5496 22.3242 28.1404 17.0681
MPPI 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069
CEM 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069
Ours 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069
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Figure A11: Comparison of runtime on CPU and GPU.
GPU acceleration improves the scalability of BaB-ND much.

Comparison with CPU version. We
evaluate the performance improvement
from CPU to GPU in Figure A11. We use
the same test cases as in Figure 7 and re-
port “NaN” if the process does not termi-
nate within 300 seconds.

The results clearly demonstrate that our
implementation benefits significantly from
GPU acceleration, achieving over 10x
speedup compared to the CPU version,
even for small planning problems.

C.2 COMPARISON WITH CONVENTIONAL MOTION PLANNING APPROACHES

We conduct an additional experiment on task Pushing with Obstacle to compare the planning
performance of our sampling-based baselines, our BaB-ND and two conventional motion planning
approaches: 1. Rapidly-exploring Random Tree (RRT); 2. Probabilistic Roadmap (PRM). In Table A3.
Since RRT and PRM do not optimize the objective as we did in sampling-based methods and our
BaB-ND, we only report the step cost at planning horizon H as the final step cost instead of the
planning objective.

Table A3: Comparison of planning performance with RRT and PRM

GD MPPI CEM RRT PRM Ours

Final step cost (↓) 4.1238 1.5082 1.0427 10.6472 1.6784 0.2339

The results demonstrate that our method significantly outperforms all other approaches. Imple-
mentation details for RRT and PRM have been included in Appendix D. The main reasons for the
performance gap are as follows: 1. The search space in our task is complex and continuous, making
it challenging for discrete sampling methods like RRT and PRM to achieve effective coverage. 2.
These methods are prone to getting stuck on obstacles, often failing to reach the target state.

C.3 ABLATION STUDY AND HYPER-PARAMETER ANALYSIS

Ablation study. We conduct an additional ablation study on the Pushing with Obstacles and Object
Sorting tasks to evaluate how different design choices impact planning performance in Table A4.

Table A4: Ablation study on branching and bounding components

(a) Heuristics for Selecting subdomains to Split

f∗
Ci

and f
∗
Ci

f
∗
Ci

only f∗
Ci

only

Pushing w/ Obstacles 31.9839 32.2777 32.6112
Object Sorting 31.0482 32.1249 33.2462

(b) Heuristics for Splitting subdomains

(uj − uj) · ∥n
lo
j − nup

j ∥ (uj − uj) ∥nlo
j − nup

j ∥

Pushing w/ Obstacles 31.9839 32.3869 32.6989
Object Sorting 31.0482 34.5114 32.8438

(c) Bounding Component

Ours Zero f∗
Ci

Zero f∗
Ci

+ f∗
Ci

only

Pushing w/ Obstacles 31.9839 32.3419 34.6227
Object Sorting 31.0482 33.6110 34.4535

(a) Heuristics for selecting subdomains to split: 1. Select based on both lower and upper bounds f∗
Ci

and f
∗
Ci

. 2. Select based only on (f
∗
Ci

only. 3. Select based only on f∗
Ci

only. Among these heuristics,
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selecting promising subdomains based on both f∗
Ci

and f
∗
Ci

achieves better planning performance by
balancing exploitation and exploration effectively compared to the other strategies.

(b) Heuristics for splitting subdomains: 1. Split based on the largest (uj − uj) · |nlo
j − nup

j |. 2. Split
based on the largest (uj − uj). 3. Split based on the largest |nlo

j − nup
j |. Our heuristic demonstrates

superior planning performance by effectively identifying important input dimensions to split.

(c) Bounding components: 1. Use our bounding approach with propagation early-stop and search-
integrated bounding. 2. Use constant zero as trivial lower bounds to disable the bounding component.
3. Disable both the bounding component and the heuristic for selecting subdomains to split. Our
bounding component improves planning performance by obtaining tight bound estimations, helping
prune unpromising subdomains to reduce the search space, and prioritizing promising subdomains
for searching.

Hyper-parameter analysis. We adjust three hyper-parameters in BaB-ND for the tasks Pushing
with Obstacles and Object Sorting to evaluate its hyper-parameter sensitivity:

• η = n1

n ∈ [0, 1], the ratio of the number of subdomains picked with the best upper bounds (n1) to
the number of all picked subdomains (n) in the heuristic used for selecting subdomains to split. A
larger η promotes exploitation, while a smaller η encourages exploration.
• T ∈ R, the temperature of softmax sampling in the heuristic for subdomain selection. A larger
T results in more uniform and random sampling, whereas a smaller T leads to more deterministic
selection of subdomains with the smaller lower bounds.
• w ∈ (0, 100], the percentage of top samples used in the heuristic for splitting subdomains. A larger
w results in more conservative decisions by considering more samples, while a smaller w leads to
more aggressive splitting.

We report the mean objectives under different hyper-parameter configurations in Table A5. The base
hyper-parameter configuration is η = 0.75, T = 0.05, and w = 1. For benchmarking, we vary at
most one hyper-parameter at a time while keeping the others fixed at the base configuration.

Table A5: Planning performance under different hyper-parameter configurations

(a) hyper-parameter η

η = 0.25 η = 0.50 η = 0.75

Pushing w/ Obstacles 31.8574 31.9828 31.9839
Object Sorting 30.1760 30.2795 31.0482

(b) hyper-parameter T

T = 0.05 T = 1 T = 20

Pushing w/ Obstacles 31.9839 32.3990 32.1267
Object Sorting 31.0482 31.2366 31.8263

(c) hyper-parameter w

w = 0.1 w = 1 w = 10

Pushing w/ Obstacles 32.0068 31.9839 32.0599
Object Sorting 30.5953 31.0482 31.1545

The results show that different hyper-parameter configurations produce slight variations in objectives,
but the gaps are relatively small. This indicates that our BaB-ND is not highly sensitive to these
hyper-parameters. Consequently, it is feasible in practice to use a fixed hyper-parameter configuration
that delivers reasonable performance across different test cases and tasks.

C.4 QUANTITATIVE ANALYSIS ON SEARCH SPACE

We conducted an experiment to measure the normalized space size of pruned subdomains over
iterations. In Table A6, we report three metrics over the brand-and-bound iterations: 1. the normalized
space size of pruned subdomains, 2. the size of the selected subdomains, and 3. the improvement in
the objective value.
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With increasing iterations, the average and best total space size of pruned subdomains increases
rapidly and then converges, demonstrating the effectiveness of our bounding methods. Once the
pruned space size reaches a plateau, the total space size of selected promising subdomains continues
to decrease, indicating that the estimated lower bounds remain effective in identifying promising
subdomains. The decreasing objective over iterations further confirms that BaB-ND focuses on the
most promising subdomains, reducing space size to the magnitude of 1× 10−4.

Table A6: Performance Metrics Over Iterations

Metric Iterations

0 4 8 12 16 20

Pruned space size (Avg, ↑) 0.0000 0.7000 0.8623 0.8725 0.8744 0.8749
Pruned space size (Best, ↑) 0.0000 0.8750 0.9921 0.9951 0.9951 0.9952
Selected space size (Avg, ↓) 1.0000 0.3000 0.0412 0.0048 0.0005 0.0003
Best objective (Avg, ↓) 41.1222 36.0511 35.5091 34.8024 33.8991 33.3265

C.5 PERFORMANCE CHANGE WITH VARYING INPUT DISCONTINUITIES.

We conducted a follow-up experiment by removing the obstacles (non-feasible regions) in the problem
of Pushing with Obstacles, simplifying the objective function. Below, we report the performance
of different methods on the simplified objective function (w/o obstacles) and the original objective
function (w/ obstacles) in Table A7.

The results show that in simple cases, although our BaB-ND consistently outperforms baselines, MPPI
and CEM provide competitive performance. In contrast, in complex cases, BaB-ND significantly
outperforms the baselines, demonstrating its effectiveness in handling discontinuities and constraints.

Table A7: Performance comparison varying input discontinuities

(a) Objective w/o obstacles

(134.2K,15) (134.2K,20) (530.2K,15) (530.2K,20)

GD 64.5308 64.2956 63.0130 60.6300
MPPI 34.4295 26.9970 33.8077 26.1204
CEM 34.3864 26.7688 33.6669 25.9599
Ours 34.2347 26.4841 33.6144 25.6603

(b) Objective w/ obstacles (Table A1)

(134.2K,15) (134.2K,20) (530.2K,15) (530.2K,20)

GD 57.2768 64.4789 54.7078 60.2575
MPPI 47.4451 53.7356 45.1371 45.6338
CEM 47.0403 47.6487 43.8235 38.8712
Ours 46.0296 46.1938 41.6218 34.6972

C.6 FURTHER SCALABILITY ANALYSIS ON THE SYNTHETIC EXAMPLE

We extend our experiment on the synthetic example shown in Figure 4, as this allows us to easily
scale up the input dimension while knowing the optimal objectives. We vary the input dimension N
from 50 to 300 and compare our BaB-ND with MPPI and CEM.

Although this synthetic example is simpler than practical cases, it provides valuable insights into
the expected computational cost and solution quality as we scale to high-dimensional problems. It
demonstrates the potential of BaB-ND in handling complex scenarios such as 3D tasks. We report
the gaps between the best objective found by different baseline methods and the optimal objective
value below.

The results in Table A8 show that our BaB much outperforms baselines when the input dimension
increases. These results are expected since existing sampling-based methods search for solutions
across the entire input space, requiring an exponentially increasing number of samples to achieve
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sufficient coverage. In contrast, our BaB-ND strategically splits and prunes unpromising regions of
the input space, guiding and improving the effectiveness of existing sampling-based methods.

Table A8: Performance comparison across different input dimensions (Metric: Gap to f∗, ↓)

Method Input dimension N

50 100 150 200 250 300

MPPI 7.4467 45.1795 105.1584 181.1274 259.1044 357.3273
CEM 5.1569 15.6328 26.3735 39.3862 61.6739 92.4286
Ours 0.0727 0.2345 0.4210 0.6976 1.2824 1.7992

We further report the following metrics about our BaB-ND in Table A9 to better understand the
behavior of BaB-ND under high-dimensional cases: 1. The gap between the best objective found and
the optimal objective value as above, 2. The normalized space size of pruned subdomains at the last
iteration, 3. The normalized space size of selected subdomains at the last iteration, and 4. The total
runtime.

The results demonstrate that our BaB-ND effectively focuses on small regions to search for better
objectives, while the runtime increases approximately linearly with input dimension under GPU
acceleration.

Table A9: Performance metrics across different input dimensions N

Metric Input Dimensions N

50 100 150 200 250 300

Gap to f∗ (↓) 0.0727 0.2345 0.4210 0.6976 1.2824 1.7992
Selected Space Size (↓) 0.0002 0.0017 0.0026 0.0042 0.0064 0.0040
Pruned Space Size (↑) 0.8515 0.6073 0.3543 0.1762 0.0579 0.0113
Runtime (↓) 4.2239 6.5880 9.5357 11.6504 13.7430 15.8053
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D EXPERIMENT DETAILS

D.1 DEFINITION OF ACTIONS AND STATES

We begin by defining the notations used throughout the following sections. The state is denoted as x,
the action as u, and the end effector or pusher position as p. The specific definitions of these terms
vary across different tasks, which are detailed below:

Pushing w/ Obstacles. As illustrated in Figure A12.a, the state is defined by four key points on the
“T” object. The action corresponds to the 2D movement of the pusher.

Object Merging. As depicted in Figure A12.b, the state is represented by six key points on the “L”
objects (each “L” has three key points). The action is defined as the 2D movement of the pusher.

Object Sorting. As illustrated in Figure A12.c, the state consists of the positions of the object
pieces. The action differs slightly in this task as it performs a long push. Specifically, the action is
defined by the 2D initial position of the pusher and its subsequent 2D movement in the xy-plane.

Rope Routing. As shown in Figure A12.d, the state of the rope is represented by ten uniformly
sampled key points. The action is defined by the 3D movement of the gripper along the xyz axes in
3D space.

For all tasks, we do not explicitly determine the contact points between the robot and objects. Instead,
our BaB-ND framework outputs a sequence of end-effector positions for the robot to follow, which
implicitly decides, for instance, which side of the “T”-shaped object is being pushed.

D.2 DATA COLLECTION

For training the dynamics model, we randomly collect interaction data from simulators. For Pushing
with Obstacles, Object Merging, and Object Sorting tasks, we use Pymunk (Blomqvist, 2022) to
collect data, and for the Rope Routing task, we use FleX to generate data. In the following paragraphs,
we will introduce the data generation process for different tasks in detail.

Pushing w/ Obstacles. As shown in Figure A12.a, the pusher is simulated as a 5mm cylinder. The
stem of the “T”-shaped object has a length of 90mm and a width of 30mm, while the bar has a length
of 120mm and a width of 30mm. The pushing action along the x-y axis is limited to 30mm. We don’t
add explicit obstacles in the data generation process, while the obstacles are added as penalty terms
during planning. We generated 32,000 episodes, each containing 30 pushing actions between the
pusher and the “T”-shaped object.

Object Merging. As shown in Figure A12.b, the pusher is simulated as a 5mm cylinder. The leg of
the “L”-shaped object has a length of 30mm and a width of 30mm, while the foot has a length of
90mm and a width of 30mm. The pushing action along the x-y axis is limited to 30mm. We generated
64,000 episodes, each containing 40 pushing actions between the pusher and the two “L”-shaped
objects.

Object Sorting. As shown in Figure A12.c, the pusher is simulated as a rectangle measuring 45mm
by 3.5mm. The radius of the object pieces is set to 15mm. For this task, we use long push as our
action representation, which generates the start position and pushing action length along the x-y axis.
The pushing action length is bounded between -100mm and 100mm. We generated 32,000 episodes,
each containing 12 pushing actions between the pusher and the object pieces.

Rope Routing. As shown in Figure A12.d, we use a xArm6 robot with gripper to interact with the
rope. The rope has a length of 30cm and a radius of 0.03cm. One end of the rope is fixed while the
gripper grasps the other end. We randomly sample actions in 3D space, with the action bound set to
30cm. The constraint is that the distance between the gripper position and the fixed end of the rope
cannot exceed the rope length. We generated 15,000 episodes, each containing 6 random actions. For
this task, we will post-process the dataset and split each action into 2cm sections.

D.3 DETAILS OF NEURAL DYNAMICS MODEL LEARNING

We learn the neural dynamics model from the state-action pairs collected from interactions with
the environment. Let the state and action at time t be denoted as xt and ut. Our goal is to learn a
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(a) Pushing w/ Obstacles (b) Object Merging (c) Object Sorting (d) Rope Routing

Figure A12: Simulation environments visualization. We use Pymunk to simulate environments involving
only rigid body interactions. For manipulating the deformable rope, we utilize NVIDIA FleX to simulate the
interactions between the rope and the robot gripper.

predictive model fdyn, instantiated as a neural network, that takes a short sequence of states and
actions with l-step history and predicts the next state at time t+ 1:

x̂t+1 = fdyn(xt, ut). (27)
To train the dynamics model for better long-term prediction, we iteratively predict future states over a
time horizon Th and optimize the neural network parameters by minimizing the mean squared error
(MSE) between the predictions and the ground truth future states:

L =
1

Th

l+Th∑
t=l+1

∥xt+1 − fdyn(x̂t, ut)∥22. (28)

For different tasks, we choose different types of model architecture and design different input outputs.
For Pushing with Obstacles, Object Merging, and Rope routing tasks, we use MLP as our dynamics
model; And for the Object Sorting task, we utilize GNN as the dynamics model, since the pieces are
naturally modeled by Graph. Below is the detailed information for each task.

Pushing w/ Obstacles. We use a four-layer MLP with [128, 256, 256, 128] neurons in each
respective layer. The model is trained with an Adam optimizer for 7 epochs, using a learning rate of
0.001. A cosine learning rate scheduler is applied to regularize the learning rate. For the model input,
we select four key points on the object, and calculate their relative coordinates to the current pusher
position. These coordinates are concatenated with the current pusher action (resulting in a input
dimension of 10) and input into the model. For the loss function, given the current state and action
sequence, the model predicts the next 6 states, and we compute the MSE loss with the ground truth.

Object Merging. We use the same architecture, optimizer, training epochs, and learning rate
scheduler as in the Pushing w/ Obstacles setup. For the model input, we select three key points for
each object, and calculate their relative coordinates to the current pusher positions. These coordinates
are then concatenated with the current pusher action (resulting in a state dimension of 12) and input
into the model. We also use the same loss function as in the Pushing with Obstacles setup.

Object Sorting. We use the same architecture as DPI-Net (Li et al., 2018). The model is trained
with an Adam optimizer for 15 epochs, with a learning rate of 0.001, and a cosine learning rate
scheduler to adjust the learning rate. For the model input, we construct a fully connected graph neural
network using the center position of each piece. We then calculate their relative coordinates to the
current and next pusher positions. These coordinates are concatenated as the node embedding and
input into the model. For the loss function, given the current state and action sequence, the model
predicts the next 6 states, and we compute the MSE loss with the ground truth.

Rope Routing. We use a two-layer MLP with 128 neurons in each layer. The model is trained with
an Adam optimizer for 50 epochs, with a learning rate of 0.001, and a cosine learning rate scheduler
to adjust the learning rate. For the model input, we use farthest point sampling to select 10 points
on the rope, reordered from closest to farthest from the gripper. We then calculate their relative
coordinates to both the current and next gripper positions, concatenate these coordinates, and input
them into the model. For the loss function, given the current state and action sequence, the model
predicts the next 8 states, and we compute the MSE loss with the ground truth.
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D.4 DEFINITION OF COST FUNCTIONS

In this section, we will introduce our cost functions for model-based planning Eq. 1 across different
tasks. For every task, we assume the initial and target state x0 and xtarget are given. We denote the
position of the end-effector at time t as pt. In tasks involving continuous actions like Pushing w/
Obstacles, Object Merging, and Rope Routing, action ut is defined as the movement of end-effector,
pt = pt−1 + ut and p0 is given by initial configuration. In the task of Object Sorting involving
discrete pushing, pt is given by the action ai as the pusher position before pushing. In settings with
obstacles, we set the set of obstacles as O. Every o ∈ O has its associated static position and size as
po and so. Our cost functions are designed to handle discontinuities and constraints introduced by
obstacles, and BaB-ND can work effectively on these complex cost functions.

Pushing w/ Obstacles. As introduced before, we formalize the obstacles as penalty terms rather
than explicitly introducing them in the dynamics model. Our cost function is defined by a cost to the
goal position plus a penalty cost indicating whether the object or pusher collides with the obstacle.
The detailed cost is listed in Eq. 29.

ct = c(xt, ut) = wt ∥xt − xtarget∥
+ λ

∑
o∈O

(ReLU(so − ∥pt − po∥) + ReLU(so − ∥xt − po∥)) (29)

where ∥xt − xtarget∥ gives the difference between the state at time t and the target. ∥pt − po∥ and
∥xt − po∥ give the distance between the obstacle o and the end-effector and the object. Two ReLU
items yield positive values (penalties) when the pusher or object are located within the obstacle o. wt

is the weight increasing with time t to encourage the alignment to the target. λ is the large constant
value to avoid any collision. In implementation, xt is a concatenation of positions of keypoints,
∥xt − po∥ is calculated keypoint-wisely. Ideally, cT can be optimized to 0 by a strong planner with
the proper problem configuration.

Object Merging. In this task requiring long horizon planning to manipulate two objects, we don’t
set obstacles and only consider the different between state at every time step and the target. The cost
is shown in Eq. 30.

ct = wt ∥xt − xtarget∥ (30)

Object Sorting. In this task, a pusher interacts with a cluster of object pieces belonging to different
classes. We set xtarget as the target position for every class. Additionally, for safety concerns to
prevent the pusher from pressing on the object pieces, we introduce obstacles defined as the object
pieces in the cost Eq. 31. For every object piece o, its size so is set as larger than the actual size in the
cost and its position po is given by xt. with the sizes larger than that of objects. The definition of the
penalty is similar to that in Pushing w/ Obstacles.

ct = wt ∥xt − xtarget∥+ λ
∑
o∈O

ReLU(so − ∥pt − po∥) (31)

Rope Routing. In this task containing the deformable rope, we sample some keypoints by Farthest
Point Sampling (FPS). xtarget is defined as the target positions of sampled keypoints. The cost is
defined in Eq. 32 which is similar to the one in pushing w/ obstacles. Here, two obstacles are
introduced to form the tight-fitting slot. In implementation, naively applying such cost does not
always achieve our target routing the rope into the slot since a trajectory greedily translating in
z-direction without lift maybe achieve optimum. Hence, we additionally modify the formulation by
assigning different weights for different directions (x, y, z) when calculating ∥xt − xtarget∥ to make
sure the desirable trajectory yields the lowest cost.

ct = wt ∥xt − xtarget∥+ λ
∑
o∈O

(ReLU(so − ∥pt − po∥) + ReLU(so − ∥xt − po∥)) (32)

D.5 DETAILS OF REAL WORLD DEPLOYMENT

We have four cameras observing the environment from the corners of the workspace. We implemented
task-specific perception modules to determine the object states from the multi-view RGB-D images.
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Pushing w/ obstacles and Object Merging. We use a two-level planning framework in these
two tasks, involving both long-horizon and short-horizon planning. First, given the initial state (s0)
and pusher position, we perform long-horizon open-loop planning to obtain a reference trajectory
(s0, a0, s1, a1, . . . , sN ). Next, an MPPI planner is used as a local controller to efficiently track this
trajectory. Since the local planning horizon is relatively short, the local controller operates at a higher
frequency. In local planning phase, the reference trajectory is treated as a queue of subgoals. Initially,
we set s1 as the subgoal and use the local controller to plan a local trajectory. Once s1 is reached, s2
is set as the next subgoal. By iterating this process, we ultimately reach the final goal state.

For perception, we filter the point clouds based on color from four cameras and use ICP alignment
with the provided object mesh to determine the object states.

Rope Routing. For the rope routing task, we observe that the sim-to-real gap is relatively small.
Therefore, the long-horizon planned trajectory is executed directly in an open-loop manner.

For perception, we begin by using GroundingDINO and SAM to generate the mask for the rope and
extract its corresponding point cloud. Subsequently, we apply farthest point sampling to identify 10
key points on the rope, representing its object state.

Object Sorting. There are relatively large observation changes after each pushing action. This
creates a noticeable sim-to-real gap for the planned long-horizon trajectory. As a result, we replan the
trajectory after each action.

For perception, we filter the point clouds based on color from four cameras and use K-means
clustering to separate different object pieces.

D.6 IMPLEMENTATION DETAILS OF CONVENTIONAL MOTION PLANNING APPROACHES

For RRT, as shown in Algorithm 4, in each step, we sample a target state and find the nearest node in
the RRT tree. We sample 1000 actions and use the dynamics model to predict 1000 future states. We
select the state that is closest to the sampled target and does not collide with obstacles, then add it
to the tree. We allow it to plan for 60 seconds, during which it can expand a tree with about 4000
nodes(Nmax = 4000). To avoid getting stuck in local minima, we randomly sample target states 50%
of the time, and for the other 50%, we select the goal state as the target.

Algorithm 4 Rapidly-Exploring Random Tree (RRT)

1: Input: Initial state x0, goal state xgoal, search space X (X is object states space), maximum
iterations Nmax, action upper and lower bound {u, u}, threshold δ

2: Output: A path from x0 to xgoal or failure
3: Initialize tree T with root node x0

4: for i = 1 to Nmax do
5: Sample a random state xrand from X
6: Find the nearest node xnear in T to xrand
7: Sample 1000 action within {u, u} as a set U , and compute the corresponding next states by

Xnew = fdyn(xnear,U)
8: Select the nearest, collision-free next state from Xnew as the xnew

9: Add xnew to T with an edge from xnear

10: if xnew is within δ of xgoal then
11: Add xgoal to T with an edge from xnew
12: return Path from x0 to xgoal in T

13: return Failure (No valid path found within Nmax iterations)

For PRM, as shown in Algorithm 5, the PRM construction algorithm generates a probabilistic
roadmap by sampling N pairs of object states and pusher positions from the search space, adding
these pairs as nodes, and connecting nodes within a defined threshold δ. Here, we set N = 100K
and δ = 0.15. The roadmap is represented as a graph G = (V,E), where V includes the sampled
nodes, and E contains edges representing feasible connections. The planning over PRM Algorithm 6
uses this roadmap to find a path from the initial state to the goal state. It first integrates the initial
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state into the graph and connects it to nearby nodes, removes any nodes and edges colliding with
obstacles, and applies A* search to find an optimal path.

Algorithm 5 Probabilistic Roadmap (PRM) Construction

1: Input: Search space {X ,P} (X : object state space, P : pusher position space), number of nodes
N , connection threshold δ

2: Output: A constructed PRM G = (V,E)
▷ Step 1: Initialize the roadmap

3: Initialize the roadmap G = (V,E) with V = ∅ and E = ∅
▷ Step 2: Sample nodes in the state space

4: Randomly sample N pairs (x, p) from {X ,P}
5: Add the sampled pairs as nodes in G: V = {vi | i ≤ N}, where vi = (xi, pi)

▷ Step 3: Connect nodes within the threshold
6: for i = 1 to N do
7: for j = 1 to N do
8: if i ̸= j then ▷ Avoid self-loops
9: Compute action u = pj − pi

10: Predict the next state xnew = fdyn(xi, u)
11: if distance(xnew, xj) < δ then ▷ Check proximity
12: Add an edge eij = {vi → vj} to E

▷ Step 4: Return the constructed roadmap
13: return G = (V,E)

Algorithm 6 Planning over PRM

1: Input: Initial state xinit, initial pusher position pinit, goal state xgoal, obstacle space {Xobs,Pobs},
constructed PRM G = (V,E), connection threshold δ

2: Output: A path from xinit to xgoal or failure
▷ Add the initial state to the graph

3: Add (xinit, pinit) to V
▷ Connect the initial state to nearby nodes in the PRM

4: for each node vj ∈ V do
5: Compute action u = pj − pinit
6: Predict the next state xnew = fdyn(xinit, u)
7: if distance(xnew, xj) < δ then
8: Add an edge {vinit → vj} to E

9: Remove all edges and nodes in G that collide with obstacles {Xobs,Pobs}
10: Use the A* search algorithm to find a path from vinit = (xinit, pinit) to xgoal in G
11: Identify the node vnearest closest to xgoal
12: Extract the path from vinit to vnearest ▷ Extract the path from the graph
13: Return the extracted path

33


