
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BAB-ND: LONG-HORIZON MOTION PLANNING WITH
BRANCH-AND-BOUND AND NEURAL DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural-network-based dynamics models learned from observational data have
shown strong predictive capabilities for scene dynamics in robotic manipulation
tasks. However, their inherent non-linearity presents significant challenges for effec-
tive planning. Current planning methods, often dependent on extensive sampling or
local gradient descent, struggle with long-horizon motion planning tasks involving
complex contact events. In this paper, we present a GPU-accelerated branch-and-
bound (BaB) framework for motion planning in manipulation tasks that require
trajectory optimization over neural dynamics models. Our approach employs a
specialized branching heuristic to divide the search space into subdomains and
applies a modified bound propagation method, inspired by the state-of-the-art neu-
ral network verifier α,β-CROWN, to efficiently estimate objective bounds within
these subdomains. The branching process guides planning effectively, while the
bounding process strategically reduces the search space. Our framework achieves
superior planning performance, generating high-quality state-action trajectories and
surpassing existing methods in challenging, contact-rich manipulation tasks such
as non-prehensile planar pushing with obstacles, object sorting, and rope routing
in both simulated and real-world settings. Furthermore, our framework supports
various neural network architectures, ranging from simple multilayer perceptrons
to advanced graph neural dynamics models, and scales efficiently with different
model sizes.

1 INTRODUCTION

Learning-based predictive models using neural networks reduce the need for full-state estimation and
have proven effective across a variety of robotics-related planning tasks in both simulations (Li et al.,
2018; Hafner et al., 2019c; Schrittwieser et al., 2020; Seo et al., 2023) and real-world settings (Lenz
et al., 2015; Finn & Levine, 2017; Tian et al., 2019; Lee et al., 2020; Manuelli et al., 2020; Nagabandi
et al., 2020; Lin et al., 2021; Huang et al., 2022; Driess et al., 2023; Wu et al., 2023; Shi et al., 2023).
While neural dynamics models can effectively predict scene evolution under varying initial conditions
and input actions, their inherent non-linearity presents challenges for traditional model-based planning
algorithms, particularly in long-horizon scenarios.

To address these challenges, the community has developed a range of approaches. Sampling-based
methods such as the Cross-Entropy Method (CEM) (Rubinstein & Kroese, 2013) and Model Predictive
Path Integral (MPPI) (Williams et al., 2017) have gained popularity in manipulation tasks (Lowrey
et al., 2018; Manuelli et al., 2020; Nagabandi et al., 2020; Wang et al., 2023) due to their flexibility,
compatibility with neural dynamics models, and strong GPU support. However, their performance in
more complex, higher-dimensional planning problems is limited and still requires further theoretical
analysis (Yi et al., 2024). Alternatively, more principled optimization approaches, such as Mixed-
Integer Programming (MIP), have been applied to planning problems using sparsified neural dynamics
models with ReLU activations (Liu et al., 2023). Despite achieving global optimality and better
closed-loop control performance, MIP is inefficient and struggles to scale to large neural networks,
limiting its ability to handle larger-scale planning problems.

In this work, we introduce a branch-and-bound (BaB) based framework that achieves stronger
performance on complex planning problems than sampling-based methods, while also scaling to
large neural dynamics models that are intractable for MIP-based approaches. Our framework is
inspired by the success of BaB in neural network verification (Bunel et al., 2018; 2020b; Palma et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

TUackeUWRUld NeXUal¬
D\QaPicV

BaB
PlaQQeU

RRbRWWRUld NeXUal¬
D\QaPicV

BaB
PlaQQeU

PlaQQeUWRUld NeXUal¬
D\QaPicV

ObserYation State, Action

NeZ StateAction

Better Branch & Bound
Planner

Queued
Pruned

Split

Split Queued

Pushing w/ Obstacles Object Merging

Rope Routing Object Sorting

(a) Planning with BaB-ND (b) Benchmark tasks
Figure 1: Framework overview. (a) Our framework takes scene observations and applies a branch-and-
bound (BaB) method to generate robot trajectories using the neural dynamics model (ND). The BaB-ND
planner constructs a search tree by branching the problem into sub-domains and then systematically searches
only in promising sub-domains by evaluating nodes with a bounding procedure. (b) BaB-ND demonstrates
superior long-horizon planning performance compared to existing sampling-based methods and achieves better
closed-loop control in real-world scenarios. We evaluate our framework on various complex planning tasks,
including non-prehensile planar pushing with obstacles, object merging, rope routing, and object pile sorting.

2021), which tackles challenging optimization objectives involving neural networks. State-of-the-art
neural network verifiers such as α,β-CROWN (Xu et al., 2021; Wang et al., 2021; Zhang et al.,
2022a), utilize BaB alongside bound propagation methods (Zhang et al., 2018; Salman et al., 2019),
demonstrating impressive strength and scalability in verification tasks, far surpassing MIP-based
approaches (Tjeng et al., 2019; Anderson et al., 2020). However, unlike neural network verification,
which only requires finding a lower bound of the objective, model-based planning demands high-
quality feasible solutions (i.e., planned state-action trajectories). Thus, significant adaptation and
specialization are necessary for BaB-based approaches to effectively solve planning problems.

Our framework, BaB-ND (Figure 1.a), divides the action space into smaller subdomains through a
novel branching heuristic (branching), estimates objective bounds using a modified bound propagation
procedure to prune subdomains that cannot yield better solutions (bounding), and focuses searches on
the most promising subdomains (searching). We evaluate our approach on contact-rich manipulation
tasks that require long-horizon planning with non-smooth objectives, non-convex feasible regions
(with obstacles), long action sequences, and diverse neural dynamics model architectures (Figure 1.b).
Our results demonstrate that BaB-ND consistently outperforms existing sampling-based methods
by systematically and strategically exploring the action space, while also being significantly more
efficient and scalable than MIP-based approaches by leveraging the inherent structure of neural
networks and GPU support.

We make three key contributions: (1) We propose a general, widely applicable BaB-based framework
for effective long-horizon motion planning over neural dynamics models. (2) Our framework intro-
duces novel branching, bounding, and searching procedures, inspired by neural network verification
algorithms but specifically adapted for planning over neural dynamics models. (3) We demonstrate
the effectiveness, applicability, and scalability of our framework across a range of complex planning
problems, including contact-rich manipulation tasks, the handling of deformable objects, and object
piles, using diverse model architectures such as multilayer perceptrons and graph neural networks.

2 RELATED WORKS

Neural dynamics model learning in manipulation. Dynamics models learned from observations
in simulation or the real world using deep neural networks (DNNs) have been widely and successfully
applied to robotic manipulation tasks (Shi et al., 2023; Wang et al., 2023). Neural dynamics models
can be learned directly from pixel space (Finn et al., 2016; Ebert et al., 2017; 2018; Yen-Chen et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2020; Suh & Tedrake, 2020) or low-dimensional latent space (Watter et al., 2015; Agrawal et al.,
2016; Hafner et al., 2019b;a; Schrittwieser et al., 2020; Wu et al., 2023). Other approaches use more
structured scene representations, such as keypoints (Kulkarni et al., 2019; Manuelli et al., 2020; Li
et al., 2020), particles (Li et al., 2018; Shi et al., 2022; Zhang et al., 2024), and meshes (Huang et al.,
2022). Our work employs keypoint or object-centric representations, and the proposed BaB-ND
framework is compatible with various architectures, ranging from multilayer perceptrons (MLPs) to
graph neural networks (GNNs) (Battaglia et al., 2016; Li et al., 2019).

Model-based planning with neural dynamics models. The highly non-linear and non-convex
nature of neural dynamics models hinders the effective optimization of model-based planning
problems. Previous works (Yen-Chen et al., 2020; Ebert et al., 2017; Nagabandi et al., 2020;
Finn & Levine, 2017; Manuelli et al., 2020; Sacks et al., 2023; Han et al., 2024) utilize sampling-
based algorithms like CEM (Rubinstein & Kroese, 2013) and MPPI (Williams et al., 2017) for online
planning. Despite their flexibility and ability to leverage GPU support, these methods struggle with
large input dimensions due to the exponential growth in required samples. Previous work (Yin
et al., 2022) improved MPPI by introducing dynamics model linearization and covariance control
techniques, but their effectiveness on neural dynamics models remains unclear. Other approaches (Li
et al., 2018; 2019) have used gradient descent to optimize action sequences but encounter challenges
with local optima and non-smooth objective landscapes. Recently, methods inspired by neural
network verification have been developed to achieve safe control and robust planning over systems
involving neural networks (Wei & Liu, 2022; Liu et al., 2023; Hu et al., 2024a; Wu et al., 2024; Hu
et al., 2024b), but their scalability to more complex real-world manipulation tasks is still uncertain.
Moreover, researchers are also exploring the promising direction of performing planning over graphs
of convex sets (GCSs) for contact-rich manipulation tasks Marcucci (2024); Graesdal et al. (2024).
However, these approaches do not incorporate neural networks.

Neural network verification. Neural network verification ensures the reliability and safety of
neural networks (NNs) by formally proving their output properties. This process can be formulated
as finding the lower bound of a minimization problem involving NNs, with early verifiers utilizing
MIP (Tjeng et al., 2019) or linear programming (LP) (Bunel et al., 2018; Lu & Kumar., 2020). These
approaches suffer from scalability issues (Salman et al., 2019; Zhang et al., 2022b; Liu et al., 2021)
because they have limited parallelization capabilities and fail to fully exploit GPU resources. On
the other hand, bound propagation methods such as CROWN (Zhang et al., 2018) can efficiently
propagate bounds on NNs (Eric Wong, 2018; Singh et al., 2019; Wang et al., 2018; Gowal et al., 2019)
in a layer-by-layer manner and can be accelerated on GPUs. Combining bound propagation with
BaB leads to successful approaches in NN verification (Bunel et al., 2020a; De Palma et al., 2021;
Kouvaros & Lomuscio, 2021; Ferrari et al., 2022), and notably, the α,β-CROWN framework (Xu
et al., 2021; Wang et al., 2021; Zhang et al., 2022a) achieved strong verification performance on
large NNs (Bak et al., 2021; Müller et al., 2022). In our model-based planning setting, we utilize the
lower bounds from verification, with modification and specializations, to guide our systematic search
procedure to find high-quality feasible solutions.

3 BRANCH-AND-BOUND FOR PLANNING WITH NEURAL DYNAMICS MODELS

Formulation. We formulate the planning problem as an optimization problem in Eq. 1, where c
is the cost function, t0 is the current time step, and H is the planning horizon. x̂t is the (predicted)
state at time step t, and the current state x̂t0 = xt0 is known. ut ∈ {u | u ≤ u ≤ u} ⊂ Rk is the
robot’s action at each step. fdyn is the known neural dynamics model (Please refer to Section D.3 for
details about learning the neural dynamic model.), which takes state and action at time t and predicts
the next state x̂t+1. The goal of the planning problem is to find a set of optimal actions ut that
minimize the sum of step costs):

min
{ut∈U}

t0+H∑
t=t0

c(x̂t, ut) s.t. x̂t+1 = fdyn(x̂t, ut) =⇒ min
u∈C

f(u) (1)

This problem is challenging because it can have a long planning horizon and involve the non-linear
neural dynamics model fdyn at every step. Existing sampling-based and gradient-based methods may
easily converge to sub-optima without systematic searching, while MIP-based methods are unable
scale up with the size of fdyn and the planning horizon.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

To simplify notations, we can substitute all constraints on x̂t+1 into the objective recursively, and
further simplify the problem as a constrained optimization problem minu∈C f(u) (Eq. 1). Here f
is our final objective, a scalar function that absorbs the neural network fdyn and the cost function
summed in all H steps. u = {ut0:t0+H} ∈ C is the action sequence and C ⊂ Rd is the entire input
space with dimension with d = kH . We also flatten u as a vector containing actions for all time
steps, and use uj to denote a specific dimension. Our goal is to then find the optimal objective value
f∗ and its corresponding optimal action sequence u∗.

<latexit sha1_base64="SAws4SqdJnray3Z2I65HxEhvMro=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMtCNy4r2Ae0Q7mTpm1oJjMmmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIBZcG9f9dgobm1vbO8Xd0t7+weFR+fikpaNEUdakkYhUJ0DNBJesabgRrBMrhmEgWDuY1DO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3e9/rlilt1FyDrxMtJBXI0+uWv3iCiScikoQK17npubPwUleFUsHmpl2gWI53giHUtlRgy7aeL0HNyYZUBGUbKPmnIQv29kWKo9SwM7GQWUq96mfif103M8M5PuYwTwyRdHhomgpiIZA2QAVeMGjGzBKniNiuhY1RIje2pZEvwVr+8TlpXVe+m6j1cV2rXeR1FOINzuAQPbqEG99CAJlB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w+enJH1</latexit>C1
<latexit sha1_base64="gHsbQXEfWOBBCCA50yt/lWVnnmk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dgpb2zu7e8X90sHh0fFJ+fSso2WiCG0TyaXqBVhTzgRtG2Y47cWK4ijgtBtMm5nfnVGlmRSPZh5TP8JjwUJGsLGSP4iwmRDM0+ZiWBuWK27VXQJtEi8nFcjRGpa/BiNJkogKQzjWuu+5sfFTrAwjnC5Kg0TTGJMpHtO+pQJHVPvpMvQCXVllhEKp7BMGLdXfGymOtJ5HgZ3MQup1LxP/8/qJCe/8lIk4MVSQ1aEw4chIlDWARkxRYvjcEkwUs1kRmWCFibE9lWwJ3vqXN0mnVvVuqt5DvdKo53UU4QIu4Ro8uIUG3EML2kDgCZ7hFd6cmfPivDsfq9GCk++cwx84nz+gIJH2</latexit>C2

<latexit sha1_base64="SAws4SqdJnray3Z2I65HxEhvMro=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMtCNy4r2Ae0Q7mTpm1oJjMmmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIBZcG9f9dgobm1vbO8Xd0t7+weFR+fikpaNEUdakkYhUJ0DNBJesabgRrBMrhmEgWDuY1DO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3e9/rlilt1FyDrxMtJBXI0+uWv3iCiScikoQK17npubPwUleFUsHmpl2gWI53giHUtlRgy7aeL0HNyYZUBGUbKPmnIQv29kWKo9SwM7GQWUq96mfif103M8M5PuYwTwyRdHhomgpiIZA2QAVeMGjGzBKniNiuhY1RIje2pZEvwVr+8TlpXVe+m6j1cV2rXeR1FOINzuAQPbqEG99CAJlB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w+enJH1</latexit>C1
<latexit sha1_base64="gHsbQXEfWOBBCCA50yt/lWVnnmk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dgpb2zu7e8X90sHh0fFJ+fSso2WiCG0TyaXqBVhTzgRtG2Y47cWK4ijgtBtMm5nfnVGlmRSPZh5TP8JjwUJGsLGSP4iwmRDM0+ZiWBuWK27VXQJtEi8nFcjRGpa/BiNJkogKQzjWuu+5sfFTrAwjnC5Kg0TTGJMpHtO+pQJHVPvpMvQCXVllhEKp7BMGLdXfGymOtJ5HgZ3MQup1LxP/8/qJCe/8lIk4MVSQ1aEw4chIlDWARkxRYvjcEkwUs1kRmWCFibE9lWwJ3vqXN0mnVvVuqt5DvdKo53UU4QIu4Ro8uIUG3EML2kDgCZ7hFd6cmfPivDsfq9GCk++cwx84nz+gIJH2</latexit>C2

<latexit sha1_base64="gHsbQXEfWOBBCCA50yt/lWVnnmk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dgpb2zu7e8X90sHh0fFJ+fSso2WiCG0TyaXqBVhTzgRtG2Y47cWK4ijgtBtMm5nfnVGlmRSPZh5TP8JjwUJGsLGSP4iwmRDM0+ZiWBuWK27VXQJtEi8nFcjRGpa/BiNJkogKQzjWuu+5sfFTrAwjnC5Kg0TTGJMpHtO+pQJHVPvpMvQCXVllhEKp7BMGLdXfGymOtJ5HgZ3MQup1LxP/8/qJCe/8lIk4MVSQ1aEw4chIlDWARkxRYvjcEkwUs1kRmWCFibE9lWwJ3vqXN0mnVvVuqt5DvdKo53UU4QIu4Ro8uIUG3EML2kDgCZ7hFd6cmfPivDsfq9GCk++cwx84nz+gIJH2</latexit>C2

<latexit sha1_base64="WIJzBrCGtJilmPzLbxy8LpbeCcY=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9k1RD2ScPGIiYAJrORtKdDQ7W7aroZs+B9ePGiMV/+LN/+NXdiDgpM0mcy8lzedIBZcG9f9dgpr6xubW8Xt0s7u3v5B+fCoraNEUdaikYjUfYCaCS5Zy3Aj2H2sGIaBYJ1g0sj8ziNTmkfyzkxj5oc4knzIKRorPfRCNGOKIm3M+rVSv1xxq+4cZJV4OalAjma//NUbRDQJmTRUoNZdz42Nn6IynAo2K/USzWKkExyxrqUSQ6b9dJ56Rs6sMiDDSNknDZmrvzdSDLWehoGdzFLqZS8T//O6iRle+ymXcWKYpItDw0QQE5GsAjLgilEjppYgVdxmJXSMCqmxRWUleMtfXiXti6p3WfVua5V6La+jCCdwCufgwRXU4Qaa0AIKCp7hFd6cJ+fFeXc+FqMFJ985hj9wPn8A3FCSDA==</latexit>C4
<latexit sha1_base64="CyTGQTbyn4Ed/2OI6sL9/efmwEU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxoUZeFblxWsA9oh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1jJRhLaI5FJ1A6wpZ4K2DDOcdmNFcRRw2gkmjczvTKnSTIpHM4upH+GRYCEj2FjJ70fYjAnmaWM+uB6UK27VXQCtEy8nFcjRHJS/+kNJkogKQzjWuue5sfFTrAwjnM5L/UTTGJMJHtGepQJHVPvpIvQcXVhliEKp7BMGLdTfGymOtJ5FgZ3MQupVLxP/83qJCe/8lIk4MVSQ5aEw4chIlDWAhkxRYvjMEkwUs1kRGWOFibE9lWwJ3uqX10n7qurdVL2HWqVey+sowhmcwyV4cAt1uIcmtIDAEzzDK7w5U+fFeXc+lqMFJ985hT9wPn8AoaSR9w==</latexit>C3

<latexit sha1_base64="CyTGQTbyn4Ed/2OI6sL9/efmwEU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxoUZeFblxWsA9oh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1jJRhLaI5FJ1A6wpZ4K2DDOcdmNFcRRw2gkmjczvTKnSTIpHM4upH+GRYCEj2FjJ70fYjAnmaWM+uB6UK27VXQCtEy8nFcjRHJS/+kNJkogKQzjWuue5sfFTrAwjnM5L/UTTGJMJHtGepQJHVPvpIvQcXVhliEKp7BMGLdTfGymOtJ5FgZ3MQupVLxP/83qJCe/8lIk4MVSQ5aEw4chIlDWAhkxRYvjMEkwUs1kRGWOFibE9lWwJ3uqX10n7qurdVL2HWqVey+sowhmcwyV4cAt1uIcmtIDAEzzDK7w5U+fFeXc+lqMFJ985hT9wPn8AoaSR9w==</latexit>C3

1 2

4

5 6

3

<latexit sha1_base64="2/r9gXMSKxGhOKy4ABzGKfqas0c=">AAAB7XicbZDLSgMxFIbPeK3jrerSTbAILqTMiKg7C25cVrEXaIeSSTNtaCYZkoxQhr6B2wqKuPUZfBHBtzHTdqGtPwQ+/v8ccs4JE8608bxvZ2l5ZXVtvbDhbm5t7+wW9/brWqaK0BqRXKpmiDXlTNCaYYbTZqIojkNOG+HgJs8bj1RpJsWDGSY0iHFPsIgRbKx17/qdYskrexOhRfBnULr+fMn1Wu0Uv9pdSdKYCkM41rrle4kJMqwMI5yO3HaqaYLJAPdoy6LAMdVBNpl0hI6t00WRVPYJgybu744Mx1oP49BWxtj09XyWm6cojP/LW6mJroKMiSQ1VJDpZ1HKkZEoXx11maLE8KEFTBSz8yLSxwoTYw/k2kP482svQv2s7F+U/TuvVDmHqQpwCEdwAj5cQgVuoQo1IBDBE4zh2ZHO2Hlz3qelS86s5wD+yPn4AUJVkn8=</latexit>

1
<latexit sha1_base64="xZBHdUwDEy0AJESzGD5xr3NHWGU=">AAAB7XicbZDLSgMxFIbPeK31VnXpJlgEF1pmRNSNWFDEZRV7gXYomTTThmaSIckIZegbuK0rcevehxF8ExcuTC8Lbf0h8PH/55BzThBzpo3rfjpz8wuLS8uZlezq2vrGZm5ru6JloggtE8mlqgVYU84ELRtmOK3FiuIo4LQadK+GefWRKs2keDC9mPoRbgsWMoKNte6PvGYu7xbckdAseBPIX35fX9y8d79KzdxHoyVJElFhCMda1z03Nn6KlWGE0362kWgaY9LFbVq3KHBEtZ+OJu2jfeu0UCiVfcKgkfu7I8WR1r0osJURNh09nQ3NQxRE/+X1xITnfspEnBgqyPizMOHISDRcHbWYosTwngVMFLPzItLBChNjD5S1h/Cm156FynHBOy14d26+eAJjZWAX9uAAPDiDItxCCcpAIIQnGMCzI52B8+K8jkvnnEnPDvyR8/YD082SKg==</latexit>�1

<latexit sha1_base64="2/r9gXMSKxGhOKy4ABzGKfqas0c=">AAAB7XicbZDLSgMxFIbPeK3jrerSTbAILqTMiKg7C25cVrEXaIeSSTNtaCYZkoxQhr6B2wqKuPUZfBHBtzHTdqGtPwQ+/v8ccs4JE8608bxvZ2l5ZXVtvbDhbm5t7+wW9/brWqaK0BqRXKpmiDXlTNCaYYbTZqIojkNOG+HgJs8bj1RpJsWDGSY0iHFPsIgRbKx17/qdYskrexOhRfBnULr+fMn1Wu0Uv9pdSdKYCkM41rrle4kJMqwMI5yO3HaqaYLJAPdoy6LAMdVBNpl0hI6t00WRVPYJgybu744Mx1oP49BWxtj09XyWm6cojP/LW6mJroKMiSQ1VJDpZ1HKkZEoXx11maLE8KEFTBSz8yLSxwoTYw/k2kP482svQv2s7F+U/TuvVDmHqQpwCEdwAj5cQgVuoQo1IBDBE4zh2ZHO2Hlz3qelS86s5wD+yPn4AUJVkn8=</latexit>

1
<latexit sha1_base64="xZBHdUwDEy0AJESzGD5xr3NHWGU=">AAAB7XicbZDLSgMxFIbPeK31VnXpJlgEF1pmRNSNWFDEZRV7gXYomTTThmaSIckIZegbuK0rcevehxF8ExcuTC8Lbf0h8PH/55BzThBzpo3rfjpz8wuLS8uZlezq2vrGZm5ru6JloggtE8mlqgVYU84ELRtmOK3FiuIo4LQadK+GefWRKs2keDC9mPoRbgsWMoKNte6PvGYu7xbckdAseBPIX35fX9y8d79KzdxHoyVJElFhCMda1z03Nn6KlWGE0362kWgaY9LFbVq3KHBEtZ+OJu2jfeu0UCiVfcKgkfu7I8WR1r0osJURNh09nQ3NQxRE/+X1xITnfspEnBgqyPizMOHISDRcHbWYosTwngVMFLPzItLBChNjD5S1h/Cm156FynHBOy14d26+eAJjZWAX9uAAPDiDItxCCcpAIIQnGMCzI52B8+K8jkvnnEnPDvyR8/YD082SKg==</latexit>�1

<latexit sha1_base64="2/r9gXMSKxGhOKy4ABzGKfqas0c=">AAAB7XicbZDLSgMxFIbPeK3jrerSTbAILqTMiKg7C25cVrEXaIeSSTNtaCYZkoxQhr6B2wqKuPUZfBHBtzHTdqGtPwQ+/v8ccs4JE8608bxvZ2l5ZXVtvbDhbm5t7+wW9/brWqaK0BqRXKpmiDXlTNCaYYbTZqIojkNOG+HgJs8bj1RpJsWDGSY0iHFPsIgRbKx17/qdYskrexOhRfBnULr+fMn1Wu0Uv9pdSdKYCkM41rrle4kJMqwMI5yO3HaqaYLJAPdoy6LAMdVBNpl0hI6t00WRVPYJgybu744Mx1oP49BWxtj09XyWm6cojP/LW6mJroKMiSQ1VJDpZ1HKkZEoXx11maLE8KEFTBSz8yLSxwoTYw/k2kP482svQv2s7F+U/TuvVDmHqQpwCEdwAj5cQgVuoQo1IBDBE4zh2ZHO2Hlz3qelS86s5wD+yPn4AUJVkn8=</latexit>

1
<latexit sha1_base64="xZBHdUwDEy0AJESzGD5xr3NHWGU=">AAAB7XicbZDLSgMxFIbPeK31VnXpJlgEF1pmRNSNWFDEZRV7gXYomTTThmaSIckIZegbuK0rcevehxF8ExcuTC8Lbf0h8PH/55BzThBzpo3rfjpz8wuLS8uZlezq2vrGZm5ru6JloggtE8mlqgVYU84ELRtmOK3FiuIo4LQadK+GefWRKs2keDC9mPoRbgsWMoKNte6PvGYu7xbckdAseBPIX35fX9y8d79KzdxHoyVJElFhCMda1z03Nn6KlWGE0362kWgaY9LFbVq3KHBEtZ+OJu2jfeu0UCiVfcKgkfu7I8WR1r0osJURNh09nQ3NQxRE/+X1xITnfspEnBgqyPizMOHISDRcHbWYosTwngVMFLPzItLBChNjD5S1h/Cm156FynHBOy14d26+eAJjZWAX9uAAPDiDItxCCcpAIIQnGMCzI52B8+K8jkvnnEnPDvyR8/YD082SKg==</latexit>�1

<latexit sha1_base64="2/r9gXMSKxGhOKy4ABzGKfqas0c=">AAAB7XicbZDLSgMxFIbPeK3jrerSTbAILqTMiKg7C25cVrEXaIeSSTNtaCYZkoxQhr6B2wqKuPUZfBHBtzHTdqGtPwQ+/v8ccs4JE8608bxvZ2l5ZXVtvbDhbm5t7+wW9/brWqaK0BqRXKpmiDXlTNCaYYbTZqIojkNOG+HgJs8bj1RpJsWDGSY0iHFPsIgRbKx17/qdYskrexOhRfBnULr+fMn1Wu0Uv9pdSdKYCkM41rrle4kJMqwMI5yO3HaqaYLJAPdoy6LAMdVBNpl0hI6t00WRVPYJgybu744Mx1oP49BWxtj09XyWm6cojP/LW6mJroKMiSQ1VJDpZ1HKkZEoXx11maLE8KEFTBSz8yLSxwoTYw/k2kP482svQv2s7F+U/TuvVDmHqQpwCEdwAj5cQgVuoQo1IBDBE4zh2ZHO2Hlz3qelS86s5wD+yPn4AUJVkn8=</latexit>

1
<latexit sha1_base64="xZBHdUwDEy0AJESzGD5xr3NHWGU=">AAAB7XicbZDLSgMxFIbPeK31VnXpJlgEF1pmRNSNWFDEZRV7gXYomTTThmaSIckIZegbuK0rcevehxF8ExcuTC8Lbf0h8PH/55BzThBzpo3rfjpz8wuLS8uZlezq2vrGZm5ru6JloggtE8mlqgVYU84ELRtmOK3FiuIo4LQadK+GefWRKs2keDC9mPoRbgsWMoKNte6PvGYu7xbckdAseBPIX35fX9y8d79KzdxHoyVJElFhCMda1z03Nn6KlWGE0362kWgaY9LFbVq3KHBEtZ+OJu2jfeu0UCiVfcKgkfu7I8WR1r0osJURNh09nQ3NQxRE/+X1xITnfspEnBgqyPizMOHISDRcHbWYosTwngVMFLPzItLBChNjD5S1h/Cm156FynHBOy14d26+eAJjZWAX9uAAPDiDItxCCcpAIIQnGMCzI52B8+K8jkvnnEnPDvyR8/YD082SKg==</latexit>�1

<latexit sha1_base64="2/r9gXMSKxGhOKy4ABzGKfqas0c=">AAAB7XicbZDLSgMxFIbPeK3jrerSTbAILqTMiKg7C25cVrEXaIeSSTNtaCYZkoxQhr6B2wqKuPUZfBHBtzHTdqGtPwQ+/v8ccs4JE8608bxvZ2l5ZXVtvbDhbm5t7+wW9/brWqaK0BqRXKpmiDXlTNCaYYbTZqIojkNOG+HgJs8bj1RpJsWDGSY0iHFPsIgRbKx17/qdYskrexOhRfBnULr+fMn1Wu0Uv9pdSdKYCkM41rrle4kJMqwMI5yO3HaqaYLJAPdoy6LAMdVBNpl0hI6t00WRVPYJgybu744Mx1oP49BWxtj09XyWm6cojP/LW6mJroKMiSQ1VJDpZ1HKkZEoXx11maLE8KEFTBSz8yLSxwoTYw/k2kP482svQv2s7F+U/TuvVDmHqQpwCEdwAj5cQgVuoQo1IBDBE4zh2ZHO2Hlz3qelS86s5wD+yPn4AUJVkn8=</latexit>

1
<latexit sha1_base64="xZBHdUwDEy0AJESzGD5xr3NHWGU=">AAAB7XicbZDLSgMxFIbPeK31VnXpJlgEF1pmRNSNWFDEZRV7gXYomTTThmaSIckIZegbuK0rcevehxF8ExcuTC8Lbf0h8PH/55BzThBzpo3rfjpz8wuLS8uZlezq2vrGZm5ru6JloggtE8mlqgVYU84ELRtmOK3FiuIo4LQadK+GefWRKs2keDC9mPoRbgsWMoKNte6PvGYu7xbckdAseBPIX35fX9y8d79KzdxHoyVJElFhCMda1z03Nn6KlWGE0362kWgaY9LFbVq3KHBEtZ+OJu2jfeu0UCiVfcKgkfu7I8WR1r0osJURNh09nQ3NQxRE/+X1xITnfspEnBgqyPizMOHISDRcHbWYosTwngVMFLPzItLBChNjD5S1h/Cm156FynHBOy14d26+eAJjZWAX9uAAPDiDItxCCcpAIIQnGMCzI52B8+K8jkvnnEnPDvyR8/YD082SKg==</latexit>�1

<latexit sha1_base64="2/r9gXMSKxGhOKy4ABzGKfqas0c=">AAAB7XicbZDLSgMxFIbPeK3jrerSTbAILqTMiKg7C25cVrEXaIeSSTNtaCYZkoxQhr6B2wqKuPUZfBHBtzHTdqGtPwQ+/v8ccs4JE8608bxvZ2l5ZXVtvbDhbm5t7+wW9/brWqaK0BqRXKpmiDXlTNCaYYbTZqIojkNOG+HgJs8bj1RpJsWDGSY0iHFPsIgRbKx17/qdYskrexOhRfBnULr+fMn1Wu0Uv9pdSdKYCkM41rrle4kJMqwMI5yO3HaqaYLJAPdoy6LAMdVBNpl0hI6t00WRVPYJgybu744Mx1oP49BWxtj09XyWm6cojP/LW6mJroKMiSQ1VJDpZ1HKkZEoXx11maLE8KEFTBSz8yLSxwoTYw/k2kP482svQv2s7F+U/TuvVDmHqQpwCEdwAj5cQgVuoQo1IBDBE4zh2ZHO2Hlz3qelS86s5wD+yPn4AUJVkn8=</latexit>

1
<latexit sha1_base64="xZBHdUwDEy0AJESzGD5xr3NHWGU=">AAAB7XicbZDLSgMxFIbPeK31VnXpJlgEF1pmRNSNWFDEZRV7gXYomTTThmaSIckIZegbuK0rcevehxF8ExcuTC8Lbf0h8PH/55BzThBzpo3rfjpz8wuLS8uZlezq2vrGZm5ru6JloggtE8mlqgVYU84ELRtmOK3FiuIo4LQadK+GefWRKs2keDC9mPoRbgsWMoKNte6PvGYu7xbckdAseBPIX35fX9y8d79KzdxHoyVJElFhCMda1z03Nn6KlWGE0362kWgaY9LFbVq3KHBEtZ+OJu2jfeu0UCiVfcKgkfu7I8WR1r0osJURNh09nQ3NQxRE/+X1xITnfspEnBgqyPizMOHISDRcHbWYosTwngVMFLPzItLBChNjD5S1h/Cm156FynHBOy14d26+eAJjZWAX9uAAPDiDItxCCcpAIIQnGMCzI52B8+K8jkvnnEnPDvyR8/YD082SKg==</latexit>�1

<latexit sha1_base64="u70NcyfmJvCCkhYCPzUw/sKnHQQ=">AAACEXicfVDLSgMxFL1TX7W+qi7dBItQoZQZKeqy4MZlBfuQtpRMmmlDk8yQZIQy9Cu61Q9xJ279Ar/DHzDTzkJb8EDI4Zx7w8nxI860cd0vJ7exubW9k98t7O0fHB4Vj09aOowVoU0S8lB1fKwpZ5I2DTOcdiJFsfA5bfuTu9RvP1OlWSgfzTSifYFHkgWMYGOlp6Dc80USzy4HxZJbdRdA68TLSAkyNAbF794wJLGg0hCOte56bmT6CVaGEU5nhV6saYTJBI9o11KJBdX9ZBF4hi6sMkRBqOyRBi3U3xsJFlpPhW8nBTZjveql4n9exd7py7rii5UoJrjtJ0xGsaGSLJMEMUcmRGk9aMgUJYZPLcFEMfsZRMZYYWJsiQXbkrfayTppXVW966r3UCvVa1lfeTiDcyiDBzdQh3toQBMICJjDC7w6c+fNeXc+lqM5J9s5hT9wPn8AXvOd1Q==</latexit>

f(u)
<latexit sha1_base64="u70NcyfmJvCCkhYCPzUw/sKnHQQ=">AAACEXicfVDLSgMxFL1TX7W+qi7dBItQoZQZKeqy4MZlBfuQtpRMmmlDk8yQZIQy9Cu61Q9xJ279Ar/DHzDTzkJb8EDI4Zx7w8nxI860cd0vJ7exubW9k98t7O0fHB4Vj09aOowVoU0S8lB1fKwpZ5I2DTOcdiJFsfA5bfuTu9RvP1OlWSgfzTSifYFHkgWMYGOlp6Dc80USzy4HxZJbdRdA68TLSAkyNAbF794wJLGg0hCOte56bmT6CVaGEU5nhV6saYTJBI9o11KJBdX9ZBF4hi6sMkRBqOyRBi3U3xsJFlpPhW8nBTZjveql4n9exd7py7rii5UoJrjtJ0xGsaGSLJMEMUcmRGk9aMgUJYZPLcFEMfsZRMZYYWJsiQXbkrfayTppXVW966r3UCvVa1lfeTiDcyiDBzdQh3toQBMICJjDC7w6c+fNeXc+lqM5J9s5hT9wPn8AXvOd1Q==</latexit>

f(u)

<latexit sha1_base64="u70NcyfmJvCCkhYCPzUw/sKnHQQ=">AAACEXicfVDLSgMxFL1TX7W+qi7dBItQoZQZKeqy4MZlBfuQtpRMmmlDk8yQZIQy9Cu61Q9xJ279Ar/DHzDTzkJb8EDI4Zx7w8nxI860cd0vJ7exubW9k98t7O0fHB4Vj09aOowVoU0S8lB1fKwpZ5I2DTOcdiJFsfA5bfuTu9RvP1OlWSgfzTSifYFHkgWMYGOlp6Dc80USzy4HxZJbdRdA68TLSAkyNAbF794wJLGg0hCOte56bmT6CVaGEU5nhV6saYTJBI9o11KJBdX9ZBF4hi6sMkRBqOyRBi3U3xsJFlpPhW8nBTZjveql4n9exd7py7rii5UoJrjtJ0xGsaGSLJMEMUcmRGk9aMgUJYZPLcFEMfsZRMZYYWJsiQXbkrfayTppXVW966r3UCvVa1lfeTiDcyiDBzdQh3toQBMICJjDC7w6c+fNeXc+lqM5J9s5hT9wPn8AXvOd1Q==</latexit>

f(u)
<latexit sha1_base64="u70NcyfmJvCCkhYCPzUw/sKnHQQ=">AAACEXicfVDLSgMxFL1TX7W+qi7dBItQoZQZKeqy4MZlBfuQtpRMmmlDk8yQZIQy9Cu61Q9xJ279Ar/DHzDTzkJb8EDI4Zx7w8nxI860cd0vJ7exubW9k98t7O0fHB4Vj09aOowVoU0S8lB1fKwpZ5I2DTOcdiJFsfA5bfuTu9RvP1OlWSgfzTSifYFHkgWMYGOlp6Dc80USzy4HxZJbdRdA68TLSAkyNAbF794wJLGg0hCOte56bmT6CVaGEU5nhV6saYTJBI9o11KJBdX9ZBF4hi6sMkRBqOyRBi3U3xsJFlpPhW8nBTZjveql4n9exd7py7rii5UoJrjtJ0xGsaGSLJMEMUcmRGk9aMgUJYZPLcFEMfsZRMZYYWJsiQXbkrfayTppXVW966r3UCvVa1lfeTiDcyiDBzdQh3toQBMICJjDC7w6c+fNeXc+lqM5J9s5hT9wPn8AXvOd1Q==</latexit>

f(u)

<latexit sha1_base64="u70NcyfmJvCCkhYCPzUw/sKnHQQ=">AAACEXicfVDLSgMxFL1TX7W+qi7dBItQoZQZKeqy4MZlBfuQtpRMmmlDk8yQZIQy9Cu61Q9xJ279Ar/DHzDTzkJb8EDI4Zx7w8nxI860cd0vJ7exubW9k98t7O0fHB4Vj09aOowVoU0S8lB1fKwpZ5I2DTOcdiJFsfA5bfuTu9RvP1OlWSgfzTSifYFHkgWMYGOlp6Dc80USzy4HxZJbdRdA68TLSAkyNAbF794wJLGg0hCOte56bmT6CVaGEU5nhV6saYTJBI9o11KJBdX9ZBF4hi6sMkRBqOyRBi3U3xsJFlpPhW8nBTZjveql4n9exd7py7rii5UoJrjtJ0xGsaGSLJMEMUcmRGk9aMgUJYZPLcFEMfsZRMZYYWJsiQXbkrfayTppXVW966r3UCvVa1lfeTiDcyiDBzdQh3toQBMICJjDC7w6c+fNeXc+lqM5J9s5hT9wPn8AXvOd1Q==</latexit>

f(u)
<latexit sha1_base64="u70NcyfmJvCCkhYCPzUw/sKnHQQ=">AAACEXicfVDLSgMxFL1TX7W+qi7dBItQoZQZKeqy4MZlBfuQtpRMmmlDk8yQZIQy9Cu61Q9xJ279Ar/DHzDTzkJb8EDI4Zx7w8nxI860cd0vJ7exubW9k98t7O0fHB4Vj09aOowVoU0S8lB1fKwpZ5I2DTOcdiJFsfA5bfuTu9RvP1OlWSgfzTSifYFHkgWMYGOlp6Dc80USzy4HxZJbdRdA68TLSAkyNAbF794wJLGg0hCOte56bmT6CVaGEU5nhV6saYTJBI9o11KJBdX9ZBF4hi6sMkRBqOyRBi3U3xsJFlpPhW8nBTZjveql4n9exd7py7rii5UoJrjtJ0xGsaGSLJMEMUcmRGk9aMgUJYZPLcFEMfsZRMZYYWJsiQXbkrfayTppXVW966r3UCvVa1lfeTiDcyiDBzdQh3toQBMICJjDC7w6c+fNeXc+lqM5J9s5hT9wPn8AXvOd1Q==</latexit>

f(u)

<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u <latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u

<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u

<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u <latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u

Figure 2: Seeking f∗ with Branch-and-Bound.
1 Sample on input space C. •: sampled points. ★:

the optimal value f∗. : the current best upper
bound of f∗ from sampling. 2 Branch C into C1
and C2. : the linear lower bounds of f∗ in sub-
domains. 3 Discard C1 since its lower bound is
larger than f

∗
. : the remaining subdomain to be

searched. 4 Search on only C2 and upper bound of
f∗ is improved. : the previous upper bound. 5

Continue to branch C2 and bound on C3 and C4. 6

Search on C3. The upper bound approaches f∗.

Branch-and-bound on a 1D toy example. Our
work proposes to solve the planning problem Eq. 1
using branch-and-bound. Before diving into tech-
nical details, we first provide a toy case of a non-
convex objective function f(u) in 1D space (k =
H = 1, C = [−1, 1]) and illustrate how to use
branch-and-bound to find f∗.

In Figure 2.1, we visualize the landscape of f(u)
with its optimal value f∗. Initially, we don’t know
f∗ but we can sample the function at a few differ-
ent locations (organ points). Although sampling
(searching) often fails to discover the optimal f∗

over C = [−1, 1], it gives an upper bound of f∗

since any orange point has an objective greater than
or equal to f∗. We denote f

∗
as the current best

upper bound (orange dotted line).

In Figure 2.2, we split C into two subdomains C1 and
C2 (branching) and then estimate the lower bound
of the objective with a linear function in both C1 and
C2 (bounding). The key insight is if the lower bound
in one subdomain is larger than f

∗
, then sampling

from that subdomain will not yield any better ob-
jective than f

∗
and we may discard that subdomain

to reduce the search space. In the example, C1 is
discarded in Figure 2.3.

Then, in Figure 2.4, we only perform sampling in
C2 with the same number of samples. Searching in
the reduced space is promising to obtain a better
objective and therefore f

∗
can be improved.

We could repeat these procedures (branching, bounding, and searching) to reduce the sampling space
and improve f

∗
as in Figure 2.5 and Figure 2.6. Finally, f

∗
will converge to f∗. This branch-and-

bound method systematically partitions the input space and iteratively improves the objective. In
practice, heuristics for branching, along with methods for bound estimation and solution search, are
critical to the performance of branch and bound.

Methodology overview. We now discuss how to use the branch-and-bound (BaB) method to find
high-quality actions for the neural dynamics planning problem presented as minu∈C f(u) (Eq. 1).
We define a sub-problem minu∈Ci f(u) as minimizing f(u) in a subdomain Ci, where Ci ⊆ C. Our
algorithm, BaB-ND, involves three components: branching (Figure 3.b, Section 3.1), bounding
(Figure 3.c, Section 3.2), and searching (Figure 3.d, Section 3.3).
• Branching generates a partition {Ci} of some action space C such that

⋃
i Ci = C, and it allows us

to explore the solution space systematically.
• Bounding estimates the lower bound of f(u) on each subdomain Ci (denoted as f∗

Ci
). The lower

bound can be used to prune useless domains and also guide the search for promising domains.

• Searching seeks good feasible solutions and outputs the best objective f
∗
Ci

within each subdomain
Ci. f

∗
Ci

is an upper bound of f∗, as any feasible solution provides an upper bound for the optimal
minimization objective f∗.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(d) Searching(c) Bounding(b) Branching

Target

Current

(a) Configuration

Pusher

Action in 1D<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u

<latexit sha1_base64="ym/sYJk2t3UaCn6BXq858Ow+DDo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REinosePFY0X5AG8pms2mX7m7C7kYooT/Baz2JV3+R4L9x0+agrQ8GHu/NMDMvSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7p6DhVhLZJzGPVC7CmnEnaNsxw2ksUxSLgtBtM7nO/+0KVZrF8NtOE+gKPJIsYwcZKT+HQG1Zrbt1dAK0TryA1KNAaVr8GYUxSQaUhHGvd99zE+BlWhhFOZ5VBqmmCyQSPaN9SiQXVfrY4dYYurBKiKFa2pEEL9fdEhoXWUxFcoUDYboHNWK/6ufif109NdOdnTCapoZIsl0UpRyZG+e8oZIoSw6eWYKKYvReRMVaYGJtQxQbhrb69TjrXde+m7j02as1GEUkZzuAcLsGDW2jCA7SgDQRG8ApzeHMSZ+68Ox/L1pJTzJzCHzifP0TAjrc=</latexit>

d1

<latexit sha1_base64="L04NON9Xf6crY+PjO+On/qAU46I=">AAAB73icbVDLSsNAFL2pr1pfVZduBovgQkpSirosuHFZwT6gDWUymbRD5xFnJkIJ/oLbuhK3/pDg35i0WWjrgQuHc+7l3nuCmDNjXffbKW1sbm3vlHcre/sHh0fV45OuUYkmtEMUV7ofYEM5k7RjmeW0H2uKRcBpL5je5X7vmWrDlHy0s5j6Ao8lixjBNpfCUaMyqtbcursAWideQWpQoD2qfg1DRRJBpSUcGzPw3Nj6KdaWEU5fKsPE0BiTKR7TQUYlFtT46eLWF3SRKSGKlM5KWrRQf0+kWBgzE8EVCkTWLbCdmFU/F//zBomNbv2UyTixVJLlsijhyCqUP49CpimxfJYRTDTL7kVkgjUmNosoD8JbfXuddBt177ruPTRrrWYRSRnO4BwuwYMbaME9tKEDBCbwCnN4c56cufPufCxbS04xcwp/4Hz+AHt5jsw=</latexit>

d2

<latexit sha1_base64="gHsbQXEfWOBBCCA50yt/lWVnnmk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dgpb2zu7e8X90sHh0fFJ+fSso2WiCG0TyaXqBVhTzgRtG2Y47cWK4ijgtBtMm5nfnVGlmRSPZh5TP8JjwUJGsLGSP4iwmRDM0+ZiWBuWK27VXQJtEi8nFcjRGpa/BiNJkogKQzjWuu+5sfFTrAwjnC5Kg0TTGJMpHtO+pQJHVPvpMvQCXVllhEKp7BMGLdXfGymOtJ5HgZ3MQup1LxP/8/qJCe/8lIk4MVSQ1aEw4chIlDWARkxRYvjcEkwUs1kRmWCFibE9lWwJ3vqXN0mnVvVuqt5DvdKo53UU4QIu4Ro8uIUG3EML2kDgCZ7hFd6cmfPivDsfq9GCk++cwx84nz+gIJH2</latexit>C2

<latexit sha1_base64="CyTGQTbyn4Ed/2OI6sL9/efmwEU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxoUZeFblxWsA9oh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1jJRhLaI5FJ1A6wpZ4K2DDOcdmNFcRRw2gkmjczvTKnSTIpHM4upH+GRYCEj2FjJ70fYjAnmaWM+uB6UK27VXQCtEy8nFcjRHJS/+kNJkogKQzjWuue5sfFTrAwjnM5L/UTTGJMJHtGepQJHVPvpIvQcXVhliEKp7BMGLdTfGymOtJ5FgZ3MQupVLxP/83qJCe/8lIk4MVSQ5aEw4chIlDWAhkxRYvjMEkwUs1kRGWOFibE9lWwJ3uqX10n7qurdVL2HWqVey+sowhmcwyV4cAt1uIcmtIDAEzzDK7w5U+fFeXc+lqMFJ985hT9wPn8AoaSR9w==</latexit>C3

<latexit sha1_base64="gHsbQXEfWOBBCCA50yt/lWVnnmk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dgpb2zu7e8X90sHh0fFJ+fSso2WiCG0TyaXqBVhTzgRtG2Y47cWK4ijgtBtMm5nfnVGlmRSPZh5TP8JjwUJGsLGSP4iwmRDM0+ZiWBuWK27VXQJtEi8nFcjRGpa/BiNJkogKQzjWuu+5sfFTrAwjnC5Kg0TTGJMpHtO+pQJHVPvpMvQCXVllhEKp7BMGLdXfGymOtJ5HgZ3MQup1LxP/8/qJCe/8lIk4MVSQ1aEw4chIlDWARkxRYvjcEkwUs1kRmWCFibE9lWwJ3vqXN0mnVvVuqt5DvdKo53UU4QIu4Ro8uIUG3EML2kDgCZ7hFd6cmfPivDsfq9GCk++cwx84nz+gIJH2</latexit>C2

<latexit sha1_base64="SAws4SqdJnray3Z2I65HxEhvMro=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMtCNy4r2Ae0Q7mTpm1oJjMmmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIBZcG9f9dgobm1vbO8Xd0t7+weFR+fikpaNEUdakkYhUJ0DNBJesabgRrBMrhmEgWDuY1DO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3e9/rlilt1FyDrxMtJBXI0+uWv3iCiScikoQK17npubPwUleFUsHmpl2gWI53giHUtlRgy7aeL0HNyYZUBGUbKPmnIQv29kWKo9SwM7GQWUq96mfif103M8M5PuYwTwyRdHhomgpiIZA2QAVeMGjGzBKniNiuhY1RIje2pZEvwVr+8TlpXVe+m6j1cV2rXeR1FOINzuAQPbqEG99CAJlB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w+enJH1</latexit>C1

<latexit sha1_base64="CyTGQTbyn4Ed/2OI6sL9/efmwEU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxoUZeFblxWsA9oh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1jJRhLaI5FJ1A6wpZ4K2DDOcdmNFcRRw2gkmjczvTKnSTIpHM4upH+GRYCEj2FjJ70fYjAnmaWM+uB6UK27VXQCtEy8nFcjRHJS/+kNJkogKQzjWuue5sfFTrAwjnM5L/UTTGJMJHtGepQJHVPvpIvQcXVhliEKp7BMGLdTfGymOtJ5FgZ3MQupVLxP/83qJCe/8lIk4MVSQ5aEw4chIlDWAhkxRYvjMEkwUs1kRGWOFibE9lWwJ3uqX10n7qurdVL2HWqVey+sowhmcwyV4cAt1uIcmtIDAEzzDK7w5U+fFeXc+lqMFJ985hT9wPn8AoaSR9w==</latexit>C3

<latexit sha1_base64="WIJzBrCGtJilmPzLbxy8LpbeCcY=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9k1RD2ScPGIiYAJrORtKdDQ7W7aroZs+B9ePGiMV/+LN/+NXdiDgpM0mcy8lzedIBZcG9f9dgpr6xubW8Xt0s7u3v5B+fCoraNEUdaikYjUfYCaCS5Zy3Aj2H2sGIaBYJ1g0sj8ziNTmkfyzkxj5oc4knzIKRorPfRCNGOKIm3M+rVSv1xxq+4cZJV4OalAjma//NUbRDQJmTRUoNZdz42Nn6IynAo2K/USzWKkExyxrqUSQ6b9dJ56Rs6sMiDDSNknDZmrvzdSDLWehoGdzFLqZS8T//O6iRle+ymXcWKYpItDw0QQE5GsAjLgilEjppYgVdxmJXSMCqmxRWUleMtfXiXti6p3WfVua5V6La+jCCdwCufgwRXU4Qaa0AIKCp7hFd6cJ+fFeXc+FqMFJ985hj9wPn8A3FCSDA==</latexit>C4

<latexit sha1_base64="SAws4SqdJnray3Z2I65HxEhvMro=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMtCNy4r2Ae0Q7mTpm1oJjMmmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIBZcG9f9dgobm1vbO8Xd0t7+weFR+fikpaNEUdakkYhUJ0DNBJesabgRrBMrhmEgWDuY1DO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3e9/rlilt1FyDrxMtJBXI0+uWv3iCiScikoQK17npubPwUleFUsHmpl2gWI53giHUtlRgy7aeL0HNyYZUBGUbKPmnIQv29kWKo9SwM7GQWUq96mfif103M8M5PuYwTwyRdHhomgpiIZA2QAVeMGjGzBKniNiuhY1RIje2pZEvwVr+8TlpXVe+m6j1cV2rXeR1FOINzuAQPbqEG99CAJlB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w+enJH1</latexit>C1

<latexit sha1_base64="WIJzBrCGtJilmPzLbxy8LpbeCcY=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9k1RD2ScPGIiYAJrORtKdDQ7W7aroZs+B9ePGiMV/+LN/+NXdiDgpM0mcy8lzedIBZcG9f9dgpr6xubW8Xt0s7u3v5B+fCoraNEUdaikYjUfYCaCS5Zy3Aj2H2sGIaBYJ1g0sj8ziNTmkfyzkxj5oc4knzIKRorPfRCNGOKIm3M+rVSv1xxq+4cZJV4OalAjma//NUbRDQJmTRUoNZdz42Nn6IynAo2K/USzWKkExyxrqUSQ6b9dJ56Rs6sMiDDSNknDZmrvzdSDLWehoGdzFLqZS8T//O6iRle+ymXcWKYpItDw0QQE5GsAjLgilEjppYgVdxmJXSMCqmxRWUleMtfXiXti6p3WfVua5V6La+jCCdwCufgwRXU4Qaa0AIKCp7hFd6cJ+fFeXc+FqMFJ985hj9wPn8A3FCSDA==</latexit>C4
<latexit sha1_base64="CyTGQTbyn4Ed/2OI6sL9/efmwEU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxoUZeFblxWsA9oh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1jJRhLaI5FJ1A6wpZ4K2DDOcdmNFcRRw2gkmjczvTKnSTIpHM4upH+GRYCEj2FjJ70fYjAnmaWM+uB6UK27VXQCtEy8nFcjRHJS/+kNJkogKQzjWuue5sfFTrAwjnM5L/UTTGJMJHtGepQJHVPvpIvQcXVhliEKp7BMGLdTfGymOtJ5FgZ3MQupVLxP/83qJCe/8lIk4MVSQ5aEw4chIlDWAhkxRYvjMEkwUs1kRGWOFibE9lWwJ3uqX10n7qurdVL2HWqVey+sowhmcwyV4cAt1uIcmtIDAEzzDK7w5U+fFeXc+lqMFJ985hT9wPn8AoaSR9w==</latexit>C3

<latexit sha1_base64="gHsbQXEfWOBBCCA50yt/lWVnnmk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dgpb2zu7e8X90sHh0fFJ+fSso2WiCG0TyaXqBVhTzgRtG2Y47cWK4ijgtBtMm5nfnVGlmRSPZh5TP8JjwUJGsLGSP4iwmRDM0+ZiWBuWK27VXQJtEi8nFcjRGpa/BiNJkogKQzjWuu+5sfFTrAwjnC5Kg0TTGJMpHtO+pQJHVPvpMvQCXVllhEKp7BMGLdXfGymOtJ5HgZ3MQup1LxP/8/qJCe/8lIk4MVSQ1aEw4chIlDWARkxRYvjcEkwUs1kRmWCFibE9lWwJ3vqXN0mnVvVuqt5DvdKo53UU4QIu4Ro8uIUG3EML2kDgCZ7hFd6cmfPivDsfq9GCk++cwx84nz+gIJH2</latexit>C2

<latexit sha1_base64="PVfRUGfhFCLqk/WQy14MANf0i5M=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLQjcsK9gFtKJPppB06yYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVqxttMSaV7ATVcipi3UaDkvURzGgWSd4NpM/e7T1wboeJHnCXcj+g4FqFgFK3UH0QUJ4zKrDkfVmtu3V2ArBOvIDUo0BpWvwYjxdKIx8gkNabvuQn6GdUomOTzyiA1PKFsSse8b2lMI278bBF5Ti6sMiKh0vbFSBbq742MRsbMosBO5hHNqpeL/3n9FMM7PxNxkiKP2fKjMJUEFcnvJyOhOUM5s4QyLWxWwiZUU4a2pYotwVs9eZ10rureTd17uK41ros6ynAG53AJHtxCA+6hBW1goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AcRqRUQ==</latexit>C

<latexit sha1_base64="u70NcyfmJvCCkhYCPzUw/sKnHQQ=">AAACEXicfVDLSgMxFL1TX7W+qi7dBItQoZQZKeqy4MZlBfuQtpRMmmlDk8yQZIQy9Cu61Q9xJ279Ar/DHzDTzkJb8EDI4Zx7w8nxI860cd0vJ7exubW9k98t7O0fHB4Vj09aOowVoU0S8lB1fKwpZ5I2DTOcdiJFsfA5bfuTu9RvP1OlWSgfzTSifYFHkgWMYGOlp6Dc80USzy4HxZJbdRdA68TLSAkyNAbF794wJLGg0hCOte56bmT6CVaGEU5nhV6saYTJBI9o11KJBdX9ZBF4hi6sMkRBqOyRBi3U3xsJFlpPhW8nBTZjveql4n9exd7py7rii5UoJrjtJ0xGsaGSLJMEMUcmRGk9aMgUJYZPLcFEMfsZRMZYYWJsiQXbkrfayTppXVW966r3UCvVa1lfeTiDcyiDBzdQh3toQBMICJjDC7w6c+fNeXc+lqM5J9s5hT9wPn8AXvOd1Q==</latexit>

f(u)

<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u
<latexit sha1_base64="j9H0gR3kEBY+XiXSBwFUgk8ABQQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBBEJOxKUI8BLx4jmAcka5idzCZDZmaXeQhhyU94jSfx6u8I/o2TZA+aWNBQVHXT3RWlnGnj+9/e2vrG5tZ2Yae4u7d/cFg6Om7qxCpCGyThiWpHWFPOJG0YZjhtp4piEXHaikb3M7/1QpVmiXwy45SGAg8kixnBxkntbiQyO3m+7JXKfsWfA62SICdlyFHvlb66/YRYQaUhHGvdCfzUhBlWhhFOJ8Wu1TTFZIQHtOOoxILqMJvfO0HnTumjOFGupEFz9fdEhoXWYxFdoUi4boHNUC/7M/E/r2NNfBdmTKbWUEkWy2LLkUnQLADUZ4oSw8eOYKKYuxeRIVaYGBdT0QURLL+9SprXleCmEjxWy7VqHkkBTuEMLiCAW6jBA9ShAQQ4vMIU3jzrTb1372PRuublMyfwB97nD1t5kRU=</latexit>

u⇤

Better

Split

SplitPrune

Define
<latexit sha1_base64="fiLE1PWh21W4uYWIWrMJLZJiOZc=">AAACBXicbVDLSsNAFJ3UV62vqCtxM1iEilKSUNSNUHDjsoJ9QJuGyWRSh84kYWYilFBc+iUu1Y249Stc+DdO2yy09cDlHs65l5l7/IRRqSzr2ygsLa+srhXXSxubW9s75u5eS8apwKSJYxaLjo8kYTQiTUUVI51EEMR9Rtr+8Hritx+IkDSO7tQoIS5Hg4iGFCOlJc88CCs9n2fp+ARewcCz+w481d3pO55ZtqrWFHCR2DkpgxwNz/zqBTFOOYkUZkjKrm0lys2QUBQzMi71UkkShIdoQLqaRogT6WbTE8bwWCsBDGOhK1Jwqv7eyBCXcsT9M5/rYY7UvZy3J+J/XjdV4aWb0ShJFYnw7K0wZVDFcBIJDKggWLGRJggLqr8L8T0SCCsdXEnnYM9fvUhaTtU+r9q3tXK9lidSBIfgCFSADS5AHdyABmgCDB7BM3gFb8aT8WK8Gx+z0YKR7+yDPzA+fwB1WZXq</latexit>

f(u) = d2
1 + d2

2

Figure 3: Illustration of the branch and bound process. (a) Configuration: we visualize a simplified case of
pushing an object to approach the target with 1D action u. We select two keypoints on the object and target
and denote the distances as d1 and d2. Then we define our objective function f(u) and seek u∗ to minimize
f(u). (b) Branching: we iteratively construct the search tree by splitting, queuing, and even pruning nodes
(sub-domains). In every iteration, only the most promising nodes are prioritized to split, cooperating with
bounding and searching. (c) Bounding: In every sub-domain Ci, we obtain the linear lower bound of f∗ (f∗)
via bound propagation. (d) Searching: we search better solutions with smaller objective (f

∗
) on selected

sub-domains. indicates the most promising sub-domain in every iteration. The search space becomes a smaller
and smaller part of the original input domain C with better solutions found and more sub-domains pruned. A
detailed illustration of our BaB-ND in a simplified robotic manipulation task can be found in Section A.1.

We can always prune subdomain Cj if its f∗
Cj

> f
∗
, where the best upper bound among all subdomains

{Ci} is defined as f
∗
:= mini f

∗
Ci

, since, in Cj , there is no solution better than current best objective
f
∗
. The above procedure can be repeated many times, and each time during branching, some

previously produced subdomains Ci can be picked for further branching, bounding, and searching
while the remaining subdomains are stored in a set P. Our main algorithm is shown in Algorithm 1.

Distinctions from neural network verification. Although this generic BaB framework has been
used in neural network verifiers (Bunel et al., 2018; Wang et al., 2021), to prove a sound lower
bound of f(u) within C, f∗

C ≤ f∗; our BaB-ND seeks a concrete solution ũ (a near-optimal action
sequence) to an objective-minimization problem minu∈C f(u).These fundamental distinctions in
goals lead to different design choices.

We propose new branching heuristics that effectively guides the search for better solutions, extensively
adapt the existing bounding algorithm CROWN (Zhang et al., 2018) to tackle it ineffectiveness and
inefficiency issues under our complex planning settings and integrate a new searching component to
find high-quality action sequences.
3.1 BRANCHING HEURISTICS FOR BAB-ND PLANNING

The efficiency of BaB heavily depends on the quality of branches. Hence, how to select promis-
ing subdomains and how to split subdomains are two essential questions in BaB, referring to
batch_pick_out(P, n) and batch_split ({Ci}) in Algorithm 1. Here we introduce our special-
ized branching heuristics to select and split subdomains for seeking high-quality solutions.

Heuristic for selecting subdomains to split. The function batch_pick_out(P, n) picks n most
promising subdomains for branching, based on their associated f∗

Ci
or f

∗
Ci

. The pickout process must
balance exploitation (focusing on areas around good solutions) and exploration (investigating regions
that have not been thoroughly explored). First, we sort subdomains Ci by f

∗
Ci

in ascending order and
select the first n1 subdomains to form {C1

pick}. subdomains with smaller f
∗
Ci

are prioritized, as good
solutions have been found there. Then, we form another promising set {C2

pick} by sampling n− n1

subdomains from the remaining N subdomains, by softmax with the probability pi defined in Eq. 2,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Branch and bound for planning. Comments are in brown.
1: Function: bab_planning
2: Inputs: f , C, n (batch size), terminate (Termination condition)
3: {(f∗

, ũ)} ← batch_search (f, {C}) ▷ Initially search on the whole C
4: {f∗} ← batch_bound (f, {C}) ▷ Initially bound on the whole C
5: P← {(C, f∗, f

∗
, ũ)} ▷ P is the set of all candidate subdomains

6: while length(P) > 0 and not terminate do
7: {(Ci, f∗

Ci
, f

∗
Ci
, ũCi)} ← batch_pick_out (P, n) ▷ Pick out subdomains to split from P

8: {C lo
i , Cup

i } ← batch_split ({Ci}) ▷ Splits each Ci into two subdomains C lo
i and Cup

i

9: {f∗
Clo
i

, f∗
Cup
i

} ← batch_bound
(
f, {C lo

i , Cup
i }

)
▷ Estimate lower bounds on new subdomains

10: {(f∗
Clo
i
, ũClo

i
), (f

∗
Cup
i
, ũCup

i
)} ← batch_search

(
f, {C lo

i , Cup
i }

)
▷ Search new solutions

11: if min
(
{f∗

Clo
i
, f

∗
Cup
i
}
)
< f

∗ then

12: f
∗ ← min

(
{f∗

Clo
i
, f

∗
Cup
i
}
)

, ũ← argmin
(
{f∗

Clo
i
, f

∗
Cup
i
}
)

▷ Update the best solution if needed

13: P← P
⋃
Pruner

(
f
∗
, {(C lo

i , f
∗
Clo
i

, f
∗
Clo
i
), (Cup

i , f∗
Cup
i

, f
∗
Cup
i
)}
)

▷ Prune bad domains using f
∗

14: Outputs: f∗
, ũ

where T is the temperature and f∗
Ci,scaled

is the f∗
Ci

after min-max normalization for numerical stability.
A smaller f∗

Ci
may indicate some potentially better solutions in Ci, which should be prioritized.

pi =
exp(−f∗

Ci,scaled
/T)∑N

j=1 exp(−f∗
Cj ,scaled

/T)
(2)

Note that this heuristic was not discussed in neural network verification literature since, in the
verification setting, all subdomains must be verified, and thus, the order of which subdomains to pick
out first becomes less important.

Heuristic for splitting subdomains. batch_split ({Ci}) partitions every {Ci} to help search
good solutions. For a box-constrained subdomain Ci := {uj | uj ≤ uj ≤ uj ; j = 0, . . . , d− 1}, it
is natural to split it into two subdomains C lo

i and Cup
i along a dimension j∗ by bisection. Specifically,

C lo
i = {uj | uj∗ ≤ uj∗ ≤ uj∗+uj∗

2 }, Cup
i = {uj | uj∗+uj∗

2 ≤ uj∗ ≤ uj∗}. In both C lo
i and Cup

i ,
uj ≤ uj ≤ uj ,∀j ̸= j∗ holds.

One native way to select j∗ is to choose the dimension with the largest input range uj − uj . This
efficient strategy can help explore good solutions since dimensions with a larger range often indicate
greater variability or uncertainty in f . However, it does not consider the specific landscape of f ,
which may imply more effective splitting dimensions.

We additionally consider the distribution of top w% samples with the best objectives from searching
to partition Ci into promising subdomains worth further searching. Specifically, for every dimension
j, we record the number of top samples satisfying uj ≤ uj ≤ uj+uj

2 and
uj+uj

2 ≤ uj ≤ uj as
nlo
j and nup

j . Then, |nlo
j − nup

j | indicates the distribution bias of top samples along a dimension j. A
dimension with large |nlo

j − nup
j | is critical to objective values in Ci and should be prioritized to split

due to the imbalanced samples on two sides. In this case, it is often possible that one of the two
subdomains Clo

i and C lo
i contains better solutions, and the other one has a larger lower bound of the

objective to be pruned.

Based on the discussion above, we rank input dimensions descendingly by (uj − uj) · |nlo
j − nup

j |,
select the top one as j∗, and then split Ci into two subdomains evenly on dimension j∗. This heuristic
is also quite distinctive from the heuristic discussed in neural network verification literature (Bunel
et al., 2018; 2020b), since we aim to find better feasible solutions, not better lower bounds.

3.2 BOUNDING METHOD FOR BAB-ND PLANNING

Our bounding procedure aims to provide a tight lower bound for the objective function f(u) in any
subdomain, enabling the pruning of unpromising subdomains and the identification of promising

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

ones. While this component is crucial to the effectiveness of BaB, grasping this high-level idea is
sufficient to understand our main algorithm.

Toward the goal of guiding the search with tight bound estimation, a crucial insight here is that
in the planning problem, we don’t require a strictly sound lower bound since our goal is to guide
the searching of a high-quality feasible solution using the lower bound. This is distinct from neural
network verification, where the goal is to prove a sound lower bound of f(u). Based on this
observation, we propose two approaches, propagation early-stop and searching-integrated bounding,
to obtain an efficient estimation of the lower bound f∗

Ci
, leveraging popular bound propagation-based

algorithms like CROWN (Zhang et al., 2018).

Approach 1: Propagation early-stop. CROWN is a bound propagation algorithm that propagates
a linear lower bound (inequality) through the neural network and has been successfully used in
BaB-based neural network verifiers for the bounding step (Xu et al., 2021; Wang et al., 2021). The
linear bound will be propagated backward from the output (in our case, f(u)) to the input of the
network (in our case, u), and be concretized to a concrete lower bound value using the constraints on
inputs (in our case, Ci). However, these linear bounds become increasingly loose when the network is
deep and may produce vacuous lower bounds. In our neural dynamics model planning setting, due
to the long time horizon H involved in Eq. 1, a neural dynamics model will be unrolled H times to
form f(u), leading to very loose bounds that are unhelpful for pruning useless domains during BaB.

To address this challenge, we stop the bound propagation process early to avoid the excessively loose
bound when propagated through multiple layers to the input u. The linear bound will be concretized
using intermediate layer bounds (discussed in Approach 2 below) rather than the constraints on
the inputs. A more formal description of this technique (with technical details on how CROWN is
modified) is presented in Appendix B.2 with an illustrative example.

Approach 2: Search-integrated bounding. In CROWN, the propagation process requires recur-
sively computing intermediate layer bounds (often referred to as pre-activation bounds) through
bound propagation. These pre-activation bounds represent the lower and upper bounds for any inter-
mediate layer that is followed by a nonlinear layer. The time complexity of this process is quadratic
with respect to the number of layers. Directly applying the original CROWN-like bound propagation
is both ineffective and inefficient for long-horizon planning, as the number of pre-activation bounds
increases with the planning horizon. This results in overly loose lower bounds due to the accumulated
relaxation errors and high execution times.

To quickly obtain the pre-activation bounds, we can utilize the by-product of extensive sampling
during searching to form the empirical bounds instead of recursively using CROWN to calculate
these bounds. Specifically, we denote the intermediate layer output for layer v as gv(u), and assume
we have M samples um (m = 1, . . . ,M) from the searching process. We calculate the pre-activation
lower and upper bounds as minm gv(u

m) and maxm gv(u
m) dimension-wisely. Although these

empirical bounds may underestimate the actual bounds, they are sufficient for CROWN to get a good
estimation of f∗ to guide searching.

3.3 SEARCHING APPROACH FOR BAB-ND PLANNING

Given an objective function f and a batch of subdomains {Ci}, batch_search(f, {Ci}) seeks
solutions in these subdomains and outputs the best objectives and associated inputs {(f∗

Ci
, ũCi)}. A

large variety of sampling-based methods can be utilized. We currently adapt CEM as the underlying
method. Other existing methods, such as MPPI or projected Gradient Descent (PGD), can be
alternatives. In typical neural network verification literature, searching is often ignored during
BaB (Wang et al., 2021; Bunel et al., 2020b) since they do not seek high-quality feasible solutions.

To cooperate with the bounding component, we need to additionally record the output of any needed
intermediate layer v, and obtain their bounds as described in Section 3.2. Since we require the
lower bound of the optimal objective f∗

Ci
for every Ci, the outputs of layer v are needed for every Ci,

calculated using the samples within the subdomain Ci.
Considering that the subdomains {Ci} will become smaller and smaller, it is expected that sampling-
based methods could provide good solutions. Moreover, since we always record f

∗
Ci

and its associated
ũCi , they can initialize future searches on at least one of the split subdomains {Clo

i , Cup
i } from {Ci}.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EXPERIMENTAL RESULTS

In this section, we assess the performance of our BaB-ND across a variety of complex robotic
manipulation tasks. Our primary objective is to address three key questions through experiments: 1)
How effectively does our BaB-ND perform long-horizon planning? 2) Is our BaB-ND applicable
to different manipulation scenarios with multi-object interactions and deformable objects? 3) What
is the scalability of our BaB-ND comparing to existing methods? For reproducibility, our code is
available at https://anonymous.4open.science/r/BaB-ND-68C3.

Input dimension

O
bj

ec
tiv

e

Input dimension

D
im

en
si

on
 o

f o
pt

im
al

ity

Figure 4: Optimization result on a syn-
thetic f(u) over increasing dimensions
d. BaB-ND outperforms all baselines on
the optimized objective. We run all meth-
ods multiple times and visualize the me-
dian values with 25th and 75th percentiles
in the shaded area.

Synthetic example. Before deploying our BaB-ND on
robotic manipulation tasks, we create a synthetic function
to test its capability to find optimal solutions in a highly
non-convex problem. We define f(u) = Σd−1

i=0 5u
2
i +

cos 50ui, u ∈ [−1, 1]
d where d is the input dimension.

The optimal solution f∗ ≈ −1.9803d and f(u) has 16 local
optima with two global optima on every dimension. Hence,
optimizing f(u) can be challenging when d increases.

We compare our BaB-ND with three baselines: (1) GD:
projected Gradient Descent on random samples with hyper-
parameter searching on step size; (2) MPPI: Model Pre-
dictive Path Integral with hyper-parameter searching on
noise level and reward temperature; (3) CEM: Decentralized
Cross-Entropy Method (Zhang et al., 2022c) using an en-
semble of CEM instances running independently performing
local improvements of their sampling distributions.

In Figure 4, we visualize the best objective values found by
different methods over different input dimensions up to d =
100. BaB-ND consistently outperforms all baselines which
converge to non-ideal sub-optimal values. For d = 100,
BaB-ND can achieve optimality on 98 to 100 dimensions. This synthetic experiment demonstrate the
potential of BaB-ND on neural dynamics planning tasks, which will be demonstrated below.

Experiment settings. We evaluate our BaB-ND on four complex robotic manipulation tasks
involving non-smooth objectives, non-convex feasible regions and requiring long action sequences.
Different architectures of neural dynamics like MLP and GNN are leveraged for different scenarios.
Please refer to Section D for more details about tasks, dynamics models and cost functions.
• Pushing with Obstacles. In Figure 5.a, this task involves using a pusher to manipulate a “T”-shaped
object to reach a target pose while avoiding collisions with obstacles. An MLP neural dynamics
model is trained with interactions between the pusher and object without obstacles. Obstacles are
modeled in the cost function, making non-smooth landscape and non-convex feasible regions.
• Object Merging. In Figure 5.c, two “L”-shaped objects are merged into a rectangle at a specific
target pose, which requires a long action sequence with multiple contact mode switches.
• Rope Routing. As shown in Figure 5.b, the goal is to route a deformable rope into a tight-fitting
slot (modeled in the cost function) in the 3D action space. Instead of greedily approaching to the
target in initial steps, the robot needs to find the trajectory to finally reach the target.
• Object Sorting. In Figure 5.d, a pusher interacts with a cluster of objects to sort one outlier object
out of the central zone to target while keeping others closely gathered. We use GNN to predict
multi-object interactions. Every long-range action may significantly change the state. Additional
constraints on actions are considered in the cost to avoid crashes between the robot and objects.
We evaluate baselines and BaB-ND on the open-loop planning performance (the best objective
of Eq. 1 found) in simulation and select the best two baselines to evaluate their real-world closed-loop
control performance (the final cost or success rate of executions).

In real-world experiments, we first perform long-horizon planning to get reference trajectories of
states and leverage MPC (Camacho & Bordons Alba, 2013) to efficiently track the trajectories in two
tasks: pushing with obstacles and object merging. In the rope routing task, we directly execute the
planned long-horizon action sequence due to its small sim-to-real gap. In the object sorting task,
since the observations can change greatly after each push, we use MPC to re-plan after every action.

8

https://anonymous.4open.science/r/BaB-ND-68C3

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Lift and routing

Time

(a) Pushing w/ Obstacles (b) Rope Routing
Time

(c) Object Merging

(d) Object Sorting

Time

Target

Initial

Initial

Initial

Target

Target

Time

Figure 5: Qualitative results on real-world manipulation tasks. We evaluate our BaB-ND across four
complex robotic manipulation tasks, involving non-convex feasible regions, requiring long-horizon planning,
with interaction between multiple objects and the deformable rope. For every task, we visualize the initial and
target configurations and one successful trajectory. Please refer to our supplemental video for demonstrations.

Effectiveness. We first evaluate the effectiveness of BaB-ND on pushing with obstacles and object
merging tasks which are contact-rich and require strong long-horizon planning performance. The
quantitative results of open-loop and closed loop performance for these tasks are presented in Figure 6.

In both tasks, our BaB-ND effectively optimizes the objective of Eq. 1 and gives better open-
loop performance than all baselines. The better-planned trajectories can yield better closed-loop
performance in the real world with efficient tracking. Specifically, in the pushing with obstacles task,
GD offers much worse trajectories than others, often resulting in the T-shaped object stuck at one
obstacle. MPPI and CEM can offer trajectories passing through the obstacles but with bad alignment
with the target. In contrast, BaB-ND can not only pass through obstacles successfully, but also often
perfectly align with the final target.

(a
) O

pe
n-

lo
op

Pe

rfo
rm

an
ce

(b
) C

lo
se

d-
lo

op

Pe
rfo

rm
an

ce

Pushing w/ Obstacles Object Merging Rope Routing Object Sorting
* Success rate (↑). Other metrics for closed-loop performance are final costs (↓).

*

Figure 6: Quantitative analysis of planning performance and execution performance in real world.
BaB-ND consistently outperforms baselines on open-loop performance leading better closed-loop performance.
(a) The open-loop performance on all tasks. We report the best objective of Eq. 1 in different test cases found by
all methods. (b) The closed-loop performance of all tasks in real world. GD is not tested due to poor open-loop
performance. We report the success rate for Rope Routing, since a greedy trajectory that horizontally routes the
rope may achieve a low final cost but fails to route it into the slot, while reporting final step costs for other tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Applicability. We assess the applicability of BaB-ND on rope routing and object sorting tasks
involving the manipulation of deformable objects and interactions between multiple objects modeled
by GNNs. The quantitative results in Figure 6 demonstrate our applicability on these tasks.

In the rope routing task, MPPI, CEM and ours achieve similar open-loop performance while GD may
struggle at sub-optimal trajectories, routing the rope horizontally and getting stuck outside the slot.
In the object sorting task, CEM can outperform MPPI in simulation and real-world since MPPI is
more suitable for planning continuous action sequences while actions are discrete in the task. Ours
outperforms CEM with similar median and smaller variance.

R
un

tim
e

(S
ec

on
ds

)

Pl
an

ni
ng

 H
or

iz
on

Model Size

Pl
an

ni
ng

 H
or

iz
on

Model Size

(a) Runtime over different model sizes and planning horizons

M
od

el
 S

iz
e

Runtime (Seconds)

(b) Runtime breakdown
MIP Ours

Figure 7: Quantitative analysis of runtime and scalability. (a) The runtime of MIP and ours on solving simple
planning problems with different model sizes and planning horizons. BaB-ND can handle much larger problems
than MIP. (“Fail” indicates MIP fails to find any feasible solution within 300 seconds.) (b) Runtime breakdown
of our components on large and complex planning problems with H = 20. Runtimes on components except
searching increase a little with increasing of model size, indicating the excellent scalability of our approach.

Scalability. We evaluate the scalability of our BaB-ND on object pushing task with different model
sizes and different planning horizons on multiple test cases comparing with MIP (Liu et al., 2023).
We train the neural dynamics models with different sizes and the same architecture and use the
number of parameters in the single neural dynamics model fdyn to indicate the model size.

In Figure 7 (a), we visualize the average runtime of MIP and ours on test cases with different model
sizes and planning horizons. To be friendly to MIP, we remove all items about the obstacles and
define the objective as the step cost after planning horizon H , c(st0+T , xt0+T , sgoal) instead of the
accumulated cost. However, MIP still only handles small problems. Among all 36 settings, it gives
optimal solutions on 6 settings, gives sub-optimal solutions on 3 settings, and fails to find any solution
on all remaining settings within 300 seconds. On the contrary, our BaB-ND scales up well to large
problems with planning horizon H = 20 and a model containing over 500K parameters.

In Figure 7 (b), we evaluate the runtime of each primary component of our BaB-ND across various
model sizes, ranging from approximately 9K to over 500K, in the context of an original objective for
the pushing w/ obstacles tasks (containing items to model obstacles and accumulated cost among all
steps) over a planning horizon of H = 20 . The breakdown bar chart illustrates that the runtimes for
the branching and bounding components grow relatively slowly across model sizes, which increase
by over 50-fold. Our improved bounding procedure, as discussed in Section 3.2, scales well with
growing model size. In addition, the searching runtime scales in proportion to neural network size
since the majority of searching time is spent on sampling the model with a large batch size on GPUs.

5 CONCLUSION

In this paper, we propose a branch-and-bound-based framework for long-horizon motion planning
in robotic manipulation tasks. We leverage specialized branching heuristics for systematical search
and adapt the bound propagation algorithm from neural network verification to estimate tight bounds
of objectives efficiently. Our framework demonstrates superior planning performance in complex,
contact-rich manipulation tasks and is scalable and adaptable to various model architectures. The
limitations and future directions are discussed in Section A.4.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to poke by
poking: Experiential learning of intuitive physics. arXiv preprint arXiv:1606.07419, 2016.

Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma. Strong
mixed-integer programming formulations for trained neural networks. Mathematical Programming,
183(1):3–39, 2020.

Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results. arXiv preprint arXiv:2109.00498,
2021.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Victor Blomqvist. Pymunk. https://pymunk.org, November 2022.

Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar. A unified view
of piecewise linear neural network verification. In Advances in Neural Information Processing
Systems (NeurIPS), 2018.

Rudy Bunel, Alessandro De Palma, Alban Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli,
Philip H. S. Torr, and M. Pawan Kumar. Lagrangian decomposition for neural network verification.
Conference on Uncertainty in Artificial Intelligence (UAI), 2020a.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and M. Pawan Kumar.
Branch and bound for piecewise linear neural network verification, 2020b.

Eduardo F Camacho and Carlos Bordons Alba. Model Predictive Control. Springer Science &
Business Media, 2013.

Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H. S. Torr, and M. Pawan Kumar.
Scaling the convex barrier with active sets. International Conference on Learning Representations
(ICLR), 2021.

Danny Driess, Zhiao Huang, Yunzhu Li, Russ Tedrake, and Marc Toussaint. Learning multi-object
dynamics with compositional neural radiance fields. In Conference on robot learning, pp. 1755–
1768. PMLR, 2023.

Frederik Ebert, Chelsea Finn, Alex X Lee, and Sergey Levine. Self-supervised visual planning with
temporal skip connections. In CoRL, pp. 344–356, 2017.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual
foresight: Model-based deep reinforcement learning for vision-based robotic control. arXiv
preprint arXiv:1812.00568, 2018.

J. Zico Kolter Eric Wong. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning (ICML), 2018.

Claudio Ferrari, Mark Niklas Muller, Nikola Jovanovic, and Martin Vechev. Complete verification
via multi-neuron relaxation guided branch-and-bound. arXiv preprint arXiv:2205.00263, 2022.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2786–2793. IEEE, 2017.

Chelsea Finn, Ian Goodfellow, and Sergey Levine. Unsupervised learning for physical interaction
through video prediction. arXiv preprint arXiv:1605.07157, 2016.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan
Uesato, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval bound propagation
for training verifiably robust models. Proceedings of the IEEE International Conference on
Computer Vision (ICCV), 2019.

11

https://pymunk.org

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Bernhard Paus Graesdal, Shao Yuan Chew Chia, Tobia Marcucci, Savva Morozov, Alexandre Amice,
Pablo A. Parrilo, and Russ Tedrake. Towards tight convex relaxations for contact-rich manipulation,
2024. URL https://arxiv.org/abs/2402.10312.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019b.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565, 2019c.

Tyler Han, Alex Liu, Anqi Li, Alex Spitzer, Guanya Shi, and Byron Boots. Model predictive control
for aggressive driving over uneven terrain, 2024.

Hanjiang Hu, Jianglin Lan, and Changliu Liu. Real-time safe control of neural network dynamic
models with sound approximation, 2024a.

Hanjiang Hu, Yujie Yang, Tianhao Wei, and Changliu Liu. Verification of neural control barrier
functions with symbolic derivative bounds propagation. In 8th Annual Conference on Robot
Learning, 2024b. URL https://openreview.net/forum?id=jnubz7wB2w.

Zixuan Huang, Xingyu Lin, and David Held. Mesh-based dynamics model with occlusion reasoning
for cloth manipulation. In Robotics: Science and Systems (RSS), 2022.

Panagiotis Kouvaros and Alessio Lomuscio. Towards scalable complete verification of relu neural
networks via dependency-based branching. In IJCAI, pp. 2643–2650, 2021.

Tejas D Kulkarni, Ankush Gupta, Catalin Ionescu, Sebastian Borgeaud, Malcolm Reynolds, Andrew
Zisserman, and Volodymyr Mnih. Unsupervised learning of object keypoints for perception and
control. Advances in neural information processing systems, 32:10724–10734, 2019.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47), 2020.

Ian Lenz, Ross A Knepper, and Ashutosh Saxena. Deepmpc: Learning deep latent features for model
predictive control. In Robotics: Science and Systems, volume 10, pp. 25. Rome, Italy, 2015.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning
particle dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint
arXiv:1810.01566, 2018.

Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B Tenenbaum, Antonio Torralba, and Russ Tedrake.
Propagation networks for model-based control under partial observation. In 2019 International
Conference on Robotics and Automation (ICRA), pp. 1205–1211. IEEE, 2019.

Yunzhu Li, Antonio Torralba, Anima Anandkumar, Dieter Fox, and Animesh Garg. Causal discovery
in physical systems from videos. Advances in Neural Information Processing Systems, 33, 2020.

Xingyu Lin, Yufei Wang, Zixuan Huang, and David Held. Learning visible connectivity dynamics
for cloth smoothing. In Conference on Robot Learning, 2021.

Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, and Mykel J.
Kochenderfer. Algorithms for verifying deep neural networks. Foundations and Trends® in
Optimization, 4(3-4):244–404, 2021.

Ziang Liu, Genggeng Zhou, Jeff He, Tobia Marcucci, Li Fei-Fei, Jiajun Wu, and Yunzhu Li. Model-
based control with sparse neural dynamics. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=ymBG2xs9Zf.

12

https://arxiv.org/abs/2402.10312
https://openreview.net/forum?id=jnubz7wB2w
https://openreview.net/forum?id=ymBG2xs9Zf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control. arXiv preprint
arXiv:1811.01848, 2018.

Jingyue Lu and M. Pawan Kumar. Neural network branching for neural network verification. In
International Conference on Learning Representations (ICLR), 2020.

Lucas Manuelli, Yunzhu Li, Pete Florence, and Russ Tedrake. Keypoints into the future:
Self-supervised correspondence in model-based reinforcement learning. arXiv preprint
arXiv:2009.05085, 2020.

Tobia Marcucci. Graphs of Convex Sets with Applications to Optimal Control and Motion Planning.
PhD thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2024.

Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T Johnson. The third
international verification of neural networks competition (vnn-comp 2022): Summary and results.
arXiv preprint arXiv:2212.10376, 2022.

Anusha Nagabandi, Kurt Konolige, Sergey Levine, and Vikash Kumar. Deep dynamics models for
learning dexterous manipulation. In Conference on Robot Learning, pp. 1101–1112. PMLR, 2020.

Alessandro De Palma, Rudy Bunel, Aymeric Desmaison, Krishnamurthy Dvijotham, Pushmeet Kohli,
Philip H. S. Torr, and M. Pawan Kumar. Improved branch and bound for neural network verification
via lagrangian decomposition. arXiv preprint arXiv:2104.06718, 2021.

Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified approach to combina-
torial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business
Media, 2013.

Jacob Sacks, Rwik Rana, Kevin Huang, Alex Spitzer, Guanya Shi, and Byron Boots. Deep model
predictive optimization, 2023.

Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A convex relaxation
barrier to tight robustness verification of neural networks. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Younggyo Seo, Danijar Hafner, Hao Liu, Fangchen Liu, Stephen James, Kimin Lee, and Pieter Abbeel.
Masked world models for visual control. In Conference on Robot Learning, pp. 1332–1344. PMLR,
2023.

Haochen Shi, Huazhe Xu, Zhiao Huang, Yunzhu Li, and Jiajun Wu. Robocraft: Learning to see,
simulate, and shape elasto-plastic objects with graph networks. arXiv preprint arXiv:2205.02909,
2022.

Haochen Shi, Huazhe Xu, Samuel Clarke, Yunzhu Li, and Jiajun Wu. Robocook: Long-horizon
elasto-plastic object manipulation with diverse tools, 2023.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for
certifying neural networks. Proceedings of the ACM on Programming Languages (POPL), 2019.

HJ Suh and Russ Tedrake. The surprising effectiveness of linear models for visual foresight in object
pile manipulation. arXiv preprint arXiv:2002.09093, 2020.

Stephen Tian, Frederik Ebert, Dinesh Jayaraman, Mayur Mudigonda, Chelsea Finn, Roberto Calandra,
and Sergey Levine. Manipulation by feel: Touch-based control with deep predictive models. In
2019 International Conference on Robotics and Automation (ICRA), pp. 818–824. IEEE, 2019.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
2018.

Shiqi Wang, Huan Zhang, Kaidi Xu, Suman Jana, Xue Lin, Cho-Jui Hsieh, and Zico Kolter. Beta-
crown: Efficient bound propagation with per-neuron split constraints for complete and incomplete
neural network robustness verification. In Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Yixuan Wang, Yunzhu Li, Katherine Driggs-Campbell, Li Fei-Fei, and Jiajun Wu. Dynamic-
Resolution Model Learning for Object Pile Manipulation. In Proceedings of Robotics: Science
and Systems, Daegu, Republic of Korea, July 2023. doi: 10.15607/RSS.2023.XIX.047.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to
control: A locally linear latent dynamics model for control from raw images. arXiv preprint
arXiv:1506.07365, 2015.

Tianhao Wei and Changliu Liu. Safe control with neural network dynamic models, 2022.

Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive path integral
control: From theory to parallel computation. Journal of Guidance, Control, and Dynamics, 40(2):
344–357, 2017.

Junlin Wu, Huan Zhang, and Yevgeniy Vorobeychik. Verified safe reinforcement learning for neural
network dynamic models, 2024. URL https://arxiv.org/abs/2405.15994.

Philipp Wu, Alejandro Escontrela, Danijar Hafner, Pieter Abbeel, and Ken Goldberg. Daydreamer:
World models for physical robot learning. In Conference on Robot Learning, pp. 2226–2240.
PMLR, 2023.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. International Conference on Learning Representations (ICLR), 2021.

Lin Yen-Chen, Maria Bauza, and Phillip Isola. Experience-embedded visual foresight. In Conference
on Robot Learning, pp. 1015–1024. PMLR, 2020.

Zeji Yi, Chaoyi Pan, Guanqi He, Guannan Qu, and Guanya Shi. Covo-mpc: Theoretical analysis of
sampling-based mpc and optimal covariance design, 2024.

Ji Yin, Zhiyuan Zhang, Evangelos Theodorou, and Panagiotis Tsiotras. Trajectory distribution
control for model predictive path integral control using covariance steering. In 2022 International
Conference on Robotics and Automation (ICRA), pp. 1478–1484, 2022. doi: 10.1109/ICRA46639.
2022.9811615.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
General cutting planes for bound-propagation-based neural network verification. Advances in
Neural Information Processing Systems, 2022a.

Huan Zhang, Shiqi Wang, Kaidi Xu, Yihan Wang, Suman Jana, Cho-Jui Hsieh, and Zico Kolter. A
branch and bound framework for stronger adversarial attacks of ReLU networks. In International
Conference on Machine Learning (ICML), pp. 26591–26604. PMLR, 2022b.

Kaifeng Zhang, Baoyu Li, Kris Hauser, and Yunzhu Li. Adaptigraph: Material-adaptive graph-based
neural dynamics for robotic manipulation. In Proceedings of Robotics: Science and Systems (RSS),
2024.

Zichen Zhang, Jun Jin, Martin Jagersand, Jun Luo, and Dale Schuurmans. A simple decentralized
cross-entropy method, 2022c. URL https://arxiv.org/abs/2212.08235.

14

https://arxiv.org/abs/2405.15994
https://arxiv.org/abs/2212.08235

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

(d) Searching(c) Bounding(b) Branching

Target

Current

(a) Configuration

Pusher

Action in 1D<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u

<latexit sha1_base64="ym/sYJk2t3UaCn6BXq858Ow+DDo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBg5REinosePFY0X5AG8pms2mX7m7C7kYooT/Baz2JV3+R4L9x0+agrQ8GHu/NMDMvSDjTxnW/ndLG5tb2Tnm3srd/cHhUPT7p6DhVhLZJzGPVC7CmnEnaNsxw2ksUxSLgtBtM7nO/+0KVZrF8NtOE+gKPJIsYwcZKT+HQG1Zrbt1dAK0TryA1KNAaVr8GYUxSQaUhHGvd99zE+BlWhhFOZ5VBqmmCyQSPaN9SiQXVfrY4dYYurBKiKFa2pEEL9fdEhoXWUxFcoUDYboHNWK/6ufif109NdOdnTCapoZIsl0UpRyZG+e8oZIoSw6eWYKKYvReRMVaYGJtQxQbhrb69TjrXde+m7j02as1GEUkZzuAcLsGDW2jCA7SgDQRG8ApzeHMSZ+68Ox/L1pJTzJzCHzifP0TAjrc=</latexit>

d1

<latexit sha1_base64="L04NON9Xf6crY+PjO+On/qAU46I=">AAAB73icbVDLSsNAFL2pr1pfVZduBovgQkpSirosuHFZwT6gDWUymbRD5xFnJkIJ/oLbuhK3/pDg35i0WWjrgQuHc+7l3nuCmDNjXffbKW1sbm3vlHcre/sHh0fV45OuUYkmtEMUV7ofYEM5k7RjmeW0H2uKRcBpL5je5X7vmWrDlHy0s5j6Ao8lixjBNpfCUaMyqtbcursAWideQWpQoD2qfg1DRRJBpSUcGzPw3Nj6KdaWEU5fKsPE0BiTKR7TQUYlFtT46eLWF3SRKSGKlM5KWrRQf0+kWBgzE8EVCkTWLbCdmFU/F//zBomNbv2UyTixVJLlsijhyCqUP49CpimxfJYRTDTL7kVkgjUmNosoD8JbfXuddBt177ruPTRrrWYRSRnO4BwuwYMbaME9tKEDBCbwCnN4c56cufPufCxbS04xcwp/4Hz+AHt5jsw=</latexit>

d2

<latexit sha1_base64="gHsbQXEfWOBBCCA50yt/lWVnnmk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dgpb2zu7e8X90sHh0fFJ+fSso2WiCG0TyaXqBVhTzgRtG2Y47cWK4ijgtBtMm5nfnVGlmRSPZh5TP8JjwUJGsLGSP4iwmRDM0+ZiWBuWK27VXQJtEi8nFcjRGpa/BiNJkogKQzjWuu+5sfFTrAwjnC5Kg0TTGJMpHtO+pQJHVPvpMvQCXVllhEKp7BMGLdXfGymOtJ5HgZ3MQup1LxP/8/qJCe/8lIk4MVSQ1aEw4chIlDWARkxRYvjcEkwUs1kRmWCFibE9lWwJ3vqXN0mnVvVuqt5DvdKo53UU4QIu4Ro8uIUG3EML2kDgCZ7hFd6cmfPivDsfq9GCk++cwx84nz+gIJH2</latexit>C2

<latexit sha1_base64="CyTGQTbyn4Ed/2OI6sL9/efmwEU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxoUZeFblxWsA9oh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1jJRhLaI5FJ1A6wpZ4K2DDOcdmNFcRRw2gkmjczvTKnSTIpHM4upH+GRYCEj2FjJ70fYjAnmaWM+uB6UK27VXQCtEy8nFcjRHJS/+kNJkogKQzjWuue5sfFTrAwjnM5L/UTTGJMJHtGepQJHVPvpIvQcXVhliEKp7BMGLdTfGymOtJ5FgZ3MQupVLxP/83qJCe/8lIk4MVSQ5aEw4chIlDWAhkxRYvjMEkwUs1kRGWOFibE9lWwJ3uqX10n7qurdVL2HWqVey+sowhmcwyV4cAt1uIcmtIDAEzzDK7w5U+fFeXc+lqMFJ985hT9wPn8AoaSR9w==</latexit>C3

<latexit sha1_base64="gHsbQXEfWOBBCCA50yt/lWVnnmk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dgpb2zu7e8X90sHh0fFJ+fSso2WiCG0TyaXqBVhTzgRtG2Y47cWK4ijgtBtMm5nfnVGlmRSPZh5TP8JjwUJGsLGSP4iwmRDM0+ZiWBuWK27VXQJtEi8nFcjRGpa/BiNJkogKQzjWuu+5sfFTrAwjnC5Kg0TTGJMpHtO+pQJHVPvpMvQCXVllhEKp7BMGLdXfGymOtJ5HgZ3MQup1LxP/8/qJCe/8lIk4MVSQ1aEw4chIlDWARkxRYvjcEkwUs1kRmWCFibE9lWwJ3vqXN0mnVvVuqt5DvdKo53UU4QIu4Ro8uIUG3EML2kDgCZ7hFd6cmfPivDsfq9GCk++cwx84nz+gIJH2</latexit>C2

<latexit sha1_base64="SAws4SqdJnray3Z2I65HxEhvMro=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMtCNy4r2Ae0Q7mTpm1oJjMmmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIBZcG9f9dgobm1vbO8Xd0t7+weFR+fikpaNEUdakkYhUJ0DNBJesabgRrBMrhmEgWDuY1DO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3e9/rlilt1FyDrxMtJBXI0+uWv3iCiScikoQK17npubPwUleFUsHmpl2gWI53giHUtlRgy7aeL0HNyYZUBGUbKPmnIQv29kWKo9SwM7GQWUq96mfif103M8M5PuYwTwyRdHhomgpiIZA2QAVeMGjGzBKniNiuhY1RIje2pZEvwVr+8TlpXVe+m6j1cV2rXeR1FOINzuAQPbqEG99CAJlB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w+enJH1</latexit>C1

<latexit sha1_base64="CyTGQTbyn4Ed/2OI6sL9/efmwEU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxoUZeFblxWsA9oh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1jJRhLaI5FJ1A6wpZ4K2DDOcdmNFcRRw2gkmjczvTKnSTIpHM4upH+GRYCEj2FjJ70fYjAnmaWM+uB6UK27VXQCtEy8nFcjRHJS/+kNJkogKQzjWuue5sfFTrAwjnM5L/UTTGJMJHtGepQJHVPvpIvQcXVhliEKp7BMGLdTfGymOtJ5FgZ3MQupVLxP/83qJCe/8lIk4MVSQ5aEw4chIlDWAhkxRYvjMEkwUs1kRGWOFibE9lWwJ3uqX10n7qurdVL2HWqVey+sowhmcwyV4cAt1uIcmtIDAEzzDK7w5U+fFeXc+lqMFJ985hT9wPn8AoaSR9w==</latexit>C3

<latexit sha1_base64="WIJzBrCGtJilmPzLbxy8LpbeCcY=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9k1RD2ScPGIiYAJrORtKdDQ7W7aroZs+B9ePGiMV/+LN/+NXdiDgpM0mcy8lzedIBZcG9f9dgpr6xubW8Xt0s7u3v5B+fCoraNEUdaikYjUfYCaCS5Zy3Aj2H2sGIaBYJ1g0sj8ziNTmkfyzkxj5oc4knzIKRorPfRCNGOKIm3M+rVSv1xxq+4cZJV4OalAjma//NUbRDQJmTRUoNZdz42Nn6IynAo2K/USzWKkExyxrqUSQ6b9dJ56Rs6sMiDDSNknDZmrvzdSDLWehoGdzFLqZS8T//O6iRle+ymXcWKYpItDw0QQE5GsAjLgilEjppYgVdxmJXSMCqmxRWUleMtfXiXti6p3WfVua5V6La+jCCdwCufgwRXU4Qaa0AIKCp7hFd6cJ+fFeXc+FqMFJ985hj9wPn8A3FCSDA==</latexit>C4

<latexit sha1_base64="SAws4SqdJnray3Z2I65HxEhvMro=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMtCNy4r2Ae0Q7mTpm1oJjMmmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIBZcG9f9dgobm1vbO8Xd0t7+weFR+fikpaNEUdakkYhUJ0DNBJesabgRrBMrhmEgWDuY1DO/PWVK80g+mlnM/BBHkg85RWMlvxeiGVMUaX3e9/rlilt1FyDrxMtJBXI0+uWv3iCiScikoQK17npubPwUleFUsHmpl2gWI53giHUtlRgy7aeL0HNyYZUBGUbKPmnIQv29kWKo9SwM7GQWUq96mfif103M8M5PuYwTwyRdHhomgpiIZA2QAVeMGjGzBKniNiuhY1RIje2pZEvwVr+8TlpXVe+m6j1cV2rXeR1FOINzuAQPbqEG99CAJlB4gmd4hTdn6rw4787HcrTg5Dun8AfO5w+enJH1</latexit>C1

<latexit sha1_base64="WIJzBrCGtJilmPzLbxy8LpbeCcY=">AAAB9XicbVBNTwIxFHyLX4hfqEcvjcTEE9k1RD2ScPGIiYAJrORtKdDQ7W7aroZs+B9ePGiMV/+LN/+NXdiDgpM0mcy8lzedIBZcG9f9dgpr6xubW8Xt0s7u3v5B+fCoraNEUdaikYjUfYCaCS5Zy3Aj2H2sGIaBYJ1g0sj8ziNTmkfyzkxj5oc4knzIKRorPfRCNGOKIm3M+rVSv1xxq+4cZJV4OalAjma//NUbRDQJmTRUoNZdz42Nn6IynAo2K/USzWKkExyxrqUSQ6b9dJ56Rs6sMiDDSNknDZmrvzdSDLWehoGdzFLqZS8T//O6iRle+ymXcWKYpItDw0QQE5GsAjLgilEjppYgVdxmJXSMCqmxRWUleMtfXiXti6p3WfVua5V6La+jCCdwCufgwRXU4Qaa0AIKCp7hFd6cJ+fFeXc+FqMFJ985hj9wPn8A3FCSDA==</latexit>C4
<latexit sha1_base64="CyTGQTbyn4Ed/2OI6sL9/efmwEU=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsxoUZeFblxWsA9oh5JJM21oJhmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEHOmjet+O4WNza3tneJuaW//4PCofHzS1jJRhLaI5FJ1A6wpZ4K2DDOcdmNFcRRw2gkmjczvTKnSTIpHM4upH+GRYCEj2FjJ70fYjAnmaWM+uB6UK27VXQCtEy8nFcjRHJS/+kNJkogKQzjWuue5sfFTrAwjnM5L/UTTGJMJHtGepQJHVPvpIvQcXVhliEKp7BMGLdTfGymOtJ5FgZ3MQupVLxP/83qJCe/8lIk4MVSQ5aEw4chIlDWAhkxRYvjMEkwUs1kRGWOFibE9lWwJ3uqX10n7qurdVL2HWqVey+sowhmcwyV4cAt1uIcmtIDAEzzDK7w5U+fFeXc+lqMFJ985hT9wPn8AoaSR9w==</latexit>C3

<latexit sha1_base64="gHsbQXEfWOBBCCA50yt/lWVnnmk=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi4L3bisYB/QDiWTZtrQTDImmUIZ+h1uXCji1o9x59+YaWehrQcCh3Pu5Z6cIOZMG9f9dgpb2zu7e8X90sHh0fFJ+fSso2WiCG0TyaXqBVhTzgRtG2Y47cWK4ijgtBtMm5nfnVGlmRSPZh5TP8JjwUJGsLGSP4iwmRDM0+ZiWBuWK27VXQJtEi8nFcjRGpa/BiNJkogKQzjWuu+5sfFTrAwjnC5Kg0TTGJMpHtO+pQJHVPvpMvQCXVllhEKp7BMGLdXfGymOtJ5HgZ3MQup1LxP/8/qJCe/8lIk4MVSQ1aEw4chIlDWARkxRYvjcEkwUs1kRmWCFibE9lWwJ3vqXN0mnVvVuqt5DvdKo53UU4QIu4Ro8uIUG3EML2kDgCZ7hFd6cmfPivDsfq9GCk++cwx84nz+gIJH2</latexit>C2

<latexit sha1_base64="PVfRUGfhFCLqk/WQy14MANf0i5M=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rLQjcsK9gFtKJPppB06yYSZG6GEfoYbF4q49Wvc+TdO2iy09cDA4Zx7mXNPkEhh0HW/ndLG5tb2Tnm3srd/cHhUPT7pGJVqxttMSaV7ATVcipi3UaDkvURzGgWSd4NpM/e7T1wboeJHnCXcj+g4FqFgFK3UH0QUJ4zKrDkfVmtu3V2ArBOvIDUo0BpWvwYjxdKIx8gkNabvuQn6GdUomOTzyiA1PKFsSse8b2lMI278bBF5Ti6sMiKh0vbFSBbq742MRsbMosBO5hHNqpeL/3n9FMM7PxNxkiKP2fKjMJUEFcnvJyOhOUM5s4QyLWxWwiZUU4a2pYotwVs9eZ10rureTd17uK41ros6ynAG53AJHtxCA+6hBW1goOAZXuHNQefFeXc+lqMlp9g5hT9wPn8AcRqRUQ==</latexit>C

<latexit sha1_base64="u70NcyfmJvCCkhYCPzUw/sKnHQQ=">AAACEXicfVDLSgMxFL1TX7W+qi7dBItQoZQZKeqy4MZlBfuQtpRMmmlDk8yQZIQy9Cu61Q9xJ279Ar/DHzDTzkJb8EDI4Zx7w8nxI860cd0vJ7exubW9k98t7O0fHB4Vj09aOowVoU0S8lB1fKwpZ5I2DTOcdiJFsfA5bfuTu9RvP1OlWSgfzTSifYFHkgWMYGOlp6Dc80USzy4HxZJbdRdA68TLSAkyNAbF794wJLGg0hCOte56bmT6CVaGEU5nhV6saYTJBI9o11KJBdX9ZBF4hi6sMkRBqOyRBi3U3xsJFlpPhW8nBTZjveql4n9exd7py7rii5UoJrjtJ0xGsaGSLJMEMUcmRGk9aMgUJYZPLcFEMfsZRMZYYWJsiQXbkrfayTppXVW966r3UCvVa1lfeTiDcyiDBzdQh3toQBMICJjDC7w6c+fNeXc+lqM5J9s5hT9wPn8AXvOd1Q==</latexit>

f(u)

<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u
<latexit sha1_base64="j9H0gR3kEBY+XiXSBwFUgk8ABQQ=">AAAB83icbVDLSgNBEOz1GeMr6tHLYBBEJOxKUI8BLx4jmAcka5idzCZDZmaXeQhhyU94jSfx6u8I/o2TZA+aWNBQVHXT3RWlnGnj+9/e2vrG5tZ2Yae4u7d/cFg6Om7qxCpCGyThiWpHWFPOJG0YZjhtp4piEXHaikb3M7/1QpVmiXwy45SGAg8kixnBxkntbiQyO3m+7JXKfsWfA62SICdlyFHvlb66/YRYQaUhHGvdCfzUhBlWhhFOJ8Wu1TTFZIQHtOOoxILqMJvfO0HnTumjOFGupEFz9fdEhoXWYxFdoUi4boHNUC/7M/E/r2NNfBdmTKbWUEkWy2LLkUnQLADUZ4oSw8eOYKKYuxeRIVaYGBdT0QURLL+9SprXleCmEjxWy7VqHkkBTuEMLiCAW6jBA9ShAQQ4vMIU3jzrTb1372PRuublMyfwB97nD1t5kRU=</latexit>

u⇤

Better

Split

SplitPrune

Define
<latexit sha1_base64="fiLE1PWh21W4uYWIWrMJLZJiOZc=">AAACBXicbVDLSsNAFJ3UV62vqCtxM1iEilKSUNSNUHDjsoJ9QJuGyWRSh84kYWYilFBc+iUu1Y249Stc+DdO2yy09cDlHs65l5l7/IRRqSzr2ygsLa+srhXXSxubW9s75u5eS8apwKSJYxaLjo8kYTQiTUUVI51EEMR9Rtr+8Hritx+IkDSO7tQoIS5Hg4iGFCOlJc88CCs9n2fp+ARewcCz+w481d3pO55ZtqrWFHCR2DkpgxwNz/zqBTFOOYkUZkjKrm0lys2QUBQzMi71UkkShIdoQLqaRogT6WbTE8bwWCsBDGOhK1Jwqv7eyBCXcsT9M5/rYY7UvZy3J+J/XjdV4aWb0ShJFYnw7K0wZVDFcBIJDKggWLGRJggLqr8L8T0SCCsdXEnnYM9fvUhaTtU+r9q3tXK9lidSBIfgCFSADS5AHdyABmgCDB7BM3gFb8aT8WK8Gx+z0YKR7+yDPzA+fwB1WZXq</latexit>

f(u) = d2
1 + d2

2

Figure A8: Illustration of the branch and bound process. (a) Configuration: we visualize a simplified
case of pushing an object to approach the target with 1D action u. We select two keypoints on the object
and target and denote the distances as d1 and d2. Then we define our objective function f(u) and seek u∗ to
minimize f(u). (b) Branching: we iteratively construct the search tree by splitting, queuing, and even pruning
nodes (sub-domains). In every iteration, only the most promising nodes are prioritized to split, cooperating
with bounding and searching. (c) Bounding: In every sub-domain Ci, we obtain the linear lower bound of f∗

(f∗) via bound propagation. (d) Searching: we search better solutions with smaller objective (f
∗
) on selected

sub-domains. indicates the most promising sub-domain in every iteration. The search space becomes a smaller
and smaller part of the original input domain C with better solutions found and more sub-domains pruned.

A EXTENDED FORMULATION AND METHOD OVERVIEW

A.1 ILLUSTRATION OF BAB-ND ON A SIMPLIFIED TASK

We replicate Figure 3 here as Figure A8 to introduce theoretical concepts in Section 3, and to illustrate
BaB-ND on a simplified robotic manipulation task.

Configuration. In Figure A8.a, we first define the configuration of the task, where the robot moves
left or right to push an object toward the target.

The 1D action u ∈ C in this case represents the movement of the robot pusher, with C = [−l, l] as
its domain, where l is the maximum movement distance (e.g., 1, cm in practice). A value of u < 0
means the robot moves left, while u > 0 means the robot moves right.

The objective f(u) measures the distance between the object and the target under a specific action u.
In this case, f(u) = d21 + d22, where d1 is the distance between a keypoint (P1) on the object and the
corresponding keypoint (P1,T) on the target, and d2 is the distance between another keypoint pair
(P2 and P2,T). For example, if the robot moves left (u < 0), d2 decreases while d1 increases.

The values of d1 and d2 depend on a neural network dynamics model fdyn. This model takes as input
the current positions of P1 and P2 related to the pusher, along with an action u, to predict the next
positions of P1 and P2. Based on these predictions, d1 and d2 are updated accordingly and f(u) may
exhibit non-convex behavior.

Formulation of BaB. Our goal in planning is to find the optimal action u∗ that minimizes f(u).
To achieve this, we propose a branch-and-bound-based method. In Figure A8.b, c, and d, we illustrate
three components of our method. We first introduce some concepts below.

A subdomain Ci ∈ C is a subset of the entire input domain C. For example, in Figure A8.b, we
initially split C = [−l, l] into two subdomains: C1 = [−l, 0] and C2 = [0, l], to separately analyze left
and right movements.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Each subdomain Ci has associated lower and upper bounds of the best objective in it: f∗
Ci

and f
∗
Ci

.
These represent the bounds of the best objective in Ci (f∗

Ci
:= minu∈Ci f(u)). For example, if the

optimal objective (the sum of the squared distances between keypoint pairs, d21+d22) given by the best
action in Ci is 2, we might estimate f∗

Ci
= 1 and f

∗
Ci

= 3. (1 ≤ minu∈Ci d
2
1+d22 = 2 ≤ 3.) Intuitively,

f∗
Ci

overestimates the effect of the optimal action on improving f(u), while f
∗
Ci

underestimates it.

We split the original domain C into multiple subdomains Ci with branching, compute f∗
Ci

using

bounding (Figure A8.c), and f
∗
Ci

using searching (Figure A8.d). These bounds allow us to determine
whether a subdomain Ci is promising for containing the optimal action u∗ or whether it can be pruned
as unpromising. For instance, in Figure A8, assume f∗

C1
= 4 and f

∗
C2

= 3, it means that no objective
better than 4 can be achieved in C1, while no objective worse than 3 can occur in C2. In this case, we
can directly prune C1 without further exploration in it.

Branching. In Figure A8.b, we visualize the branching process, which constructs a search tree
iteratively. We first split C = [−l, l] into two subdomains: C1 = [−l, 0] and C2 = [0, l], allowing us
to consider left and right movements separately. We can iteratively split any subdomain into smaller
subdomains. For example, C2 can be further split into C3 and C4.

Naively, we could search every subdomain and select the best action among all subdomains as our
final best action. However, this approach is computationally expensive, especially when C is divided
into many small subdomains. Therefore, we need to prune unpromising subdomains to reduce the
search space and computational overhead.

Bounding. Pruning relies on the bounding component (Figure A8.c), which provides f∗, the lower
bound of f(u) within a given input domain. In our simplified case, f∗ represents the lower bound of
the sum of the squared distances between keypoint pairs.

This bounding process is performed for every subdomain. Within a specific subdomain, such as
C1, we estimate a linear function g(u) that is always smaller than or equal to f(u) in C1 (i.e.,
g(u) ≤ f(u),∀u ∈ C1). We then use the minimum value of g(u) in C1 as the lower bound of f(u) in
C1 (i.e., f∗

C1
:= minu∈C1 g(u)). This estimation is based on CROWN and our adaptations.

Intuitively, subdomains with large lower bounds can be treated as unpromising, while those with small
lower bounds are considered promising. Using these lower bounds, we can prioritize the promising
subdomains and prune unpromising subdomains whose lower bounds exceed f

∗
, the best objective

found so far.

Searching. The best objective found, f
∗
:= mini f

∗
Ci

, is the best objective among all subdomains,
where f

∗
Ci

represents the upper bound of the best objective in Ci, obtained through the searching
process using sampling-based methods, as shown in Figure A8.d.

Specifically, f
∗
Ci

:= minuk∈Ci f(uk) is the best objective among all input samples uk in Ci. This is
valid because ∀uk ∈ Ci, f

∗ ≤ f(uk) holds. Thus, any f(uk) can serve as an upper bound for f
∗
Ci

,
but we select the best one to achieve a tighter bound on f

∗
Ci

.

With more subdomains being pruned in the branch-and-bound process, sampling-based methods can
be applied to progressively smaller input spaces, enabling the discovery of better objectives. This
process may ultimately converge to the actual optimal value f∗ and identify the optimal action u∗.

A.2 ALGORITHM OF BAB-ND

The BaB-ND algorithm Algorithm 2 takes an objective function f with neural networks, a domain C
as input space and a termination condition if necessary. The sub-procedure batch_search seeks
better solutions on domains {Ci}. It returns the best objectives {f∗

Ci
} and corresponding solution

{ũCi
} for n selected subdomains simultaneously. The sub-procedure batch_bound computes the

lower bounds of f∗ on domains {Ci} in the way described in Section 3.2. It operates in a batch and
returns the lower bounds {f∗

Ci
}.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 2 Branch and bound for planning. Comments are in brown.
1: Inputs: f , C, n (batch size), terminate (Termination condition)
2: {(f∗

, ũ)} ← batch_search (f, {C}) ▷ Initially search on the whole C
3: {f∗} ← batch_bound (f, {C}) ▷ Initially bound on the whole C
4: P← {(C, f∗, f

∗
, ũ)} ▷ P is the set of all candidate subdomains

5: while length(P) > 0 and not terminate do
6: {(Ci, f∗

Ci
, f

∗
Ci
, ũCi)} ← batch_pick_out (P, n) ▷ Pick subdomains to split and remove them from P

7: {C lo
i , Cup

i } ← batch_split ({Ci}) ▷ Each Ci splits into two subdomains C lo
i and Cup

i

8: {(f∗
Clo
i
, ũClo

i
), (f

∗
Cup
i
, ũCup

i
)} ← batch_search

(
f, {C lo

i , Cup
i }

)
▷ Search new solutions

9: {f∗
Clo
i

, f∗
Cup
i

} ← batch_bound
(
f, {C lo

i , Cup
i }

)
▷ Compute lower bounds on new subdomains

10: if min
(
{f∗

Clo
i
, f

∗
Cup
i
}
)
< f

∗ then

11: f
∗ ← min

(
{f∗

Clo
i
, f

∗
Cup
i
}
)

, ũ← argmin
(
{f∗

Clo
i
, f

∗
Cup
i
}
)

▷ Update the best solution if needed

12: P← P
⋃
Pruner

(
f
∗
, {(C lo

i , f
∗
Clo
i

, f
∗
Clo
i
), (Cup

i , f∗
Cup
i

, f
∗
Cup
i
)}
)

▷ Prune bad domains using f
∗

13: Outputs: f∗
, ũ

In the algorithm, we maintain f
∗

and ũ as the best objective and solution we can find. We also
maintain a global set P storing all the candidate subdomains which f∗

Ci
≥ f

∗
. Initially, we only

have the whole input domain C, so we perform batch_search and batch_bound on C and initialize
current f

∗
, ũ and P (Line 2-4).

Then we utilize the power of GPUs to split, search and bound subdomains in parallel and always
maintain P (Line 6-11). Specifically, batch_pick_out selects n (batch size) promising subdomains
from P. If the length of P is less than n, then we reduce n to the length of P. batch_split splits
each selected Ci to two subdomains C lo

i and Cup
i according to a branch heuristic in parallel. Pruner

filters out bad subdomains (proved with f∗
Ci

> f
∗
) and we insert the remaining ones to P.

The loop breaks if there is no subdomain left in P or some other pre-defined termination conditions
such as timeout and find good enough objective f

∗ ≤ fth, are satisfied (Line 5). We finally return the
best objective f

∗
and corresponding solution ũ.

A.3 DISTINCTIONS BETWEEN BAB-ND AND NEURAL NETWORK VERIFICATION ALGORITHMS

Goals. BaB-ND aims to optimize an objective function involving neural dynamics models to solve
challenging planning problems, seeking a concrete solution ũ (a near-optimal action sequence) to
an objective-minimization problem minu∈C f(u). In contrast, neural network verification focuses
on proving a sound lower bound of f(u) in the space C, concrete solution ũ is not needed.. These
fundamental distinctions in goals lead to different algorithm design choices.

Branching Heuristics. In BaB-ND, branching heuristics are designed to effectively guide the
search for better concrete solutions, considering both the lower and upper bounds of the best objective.
In neural network verification, branching heuristics focus solely on improving the lower bounds.

Bounding Approaches. While existing bounding approaches, such as CROWN from neural net-
work verification, can provide provable lower bounds for objectives, they are neither effective nor
efficient for planning problems. To address this, we adapt the CROWN algorithm with propagation
early-stop and search-integrated bounding to efficiently obtain tight bound estimations.

Searching Components. BaB-ND includes an additional searching component in the branch-and-
bound procedure to find the optimal solution to planning problems. Neural network verifiers typically
do not have this component, as they focus solely on obtaining lower bounds of objective over an
input space rather than identifying objective values for specific inputs. We further adapt the searching
component to benefit from the BaB procedure while also guiding BaB for improved searching.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.4 LIMITATIONS AND FUTURE DIRECTIONS

In this section we discuss a few limitations of our work and potential directions for future work.

Planning performance depends on the prediction errors of neural dynamics models. The neural
dynamics model may not perfectly match the real world. As a result, our optimization framework,
BaB-ND, may achieve a low objective as predicted by the learned dynamics model but still miss
the target (e.g., the model predicts that a certain action reaches the target, but in reality, the pushing
action overshoots). While improving model accuracy is not the primary focus of this paper, future
research could explore more robust formulations that account for potential errors in neural dynamics
models to improve overall performance and reliability.

Optimality of our solution may be influenced by the underlying searching algorithms. The planning
performance of BaB-ND is inherently influenced by the underlying sampling-based searching al-
gorithms (e.g., sampling-based methods may over-exploit or over-explore the objective landscape,
resulting in suboptimal solutions in certain domains). Although our branch-and-bound procedure
can mitigate this issue by systematically exploring the input space and efficiently guiding the search,
incorporating advanced sampling-based searching algorithms with proper parameter scheduling into
BaB-ND could improve its ability to tackle more challenging planning problems.

Improved branching heuristics and strategies are needed for more efficiently guiding the search for
more challenging settings. There is still room for improving the branching heuristics and bounding
strategies to generalize across diverse tasks (e.g., our current strategy may not always find the optimal
axis to branch). Future efforts could focus on developing more generalizable strategies for broader
applications, potentially leveraging reinforcement learning approaches.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B MORE DETAILS ABOUT BOUNDING

B.1 PROOFS OF CROWN BOUNDING

In this section, we first share the background of neural network verification including its formulation
and a efficient linear bound propagation method CROWN (Zhang et al., 2018) to calculate bounds
over neural networks. We take the Multilayer perceptron (MLP) with ReLU activation as the example
and CROWN is a general framework which is suitable to different activations and model architectures.

Definition. We define the input of a neural network as x ∈ Rd0 , and define the weights and
biases of an L-layer neural network as W(i) ∈ Rdi×di−1 and b(i) ∈ Rdi (i ∈ {1, · · · , L}) re-
spectively. The neural network function f : Rd0 → R is defined as f(x) = z(L)(x), where
z(i)(x) = W(i)ẑ(i−1)(x) + b(i), ẑ(i)(x) = σ(z(i)(x)) and ẑ(0)(x) = x. σ is the activation function
and we use ReLU throughout this paper. When the context is clear, we omit ·(x) and use z

(i)
j and

ẑ
(i)
j to represent the pre-activation and post-activation values of the j-th neuron in the i-th layer.

Neural network verification seeks the solution of the optimization problem in Eq. 3:

min f(x) := z(L) s.t. z(i) = W(i)ẑ(i−1) + b(i), ẑ(i) = σ(z(i)), x ∈ C, i ∈ {1, · · · , L− 1} (3)
The set C defines the allowed input region and our aim is to find the minimum of f(x) for x ∈ C, and
throughout this paper we consider C as an ℓp ball around a data example x0: C = {x | ∥x−x0∥p ≤ ϵ}.

First, let we consider the neural network with only linear layers. in this case, it is easily to get a
linear relationship between x and f(x) that f(x) = Wx+ b no matter what is the value of L and
derive the closed form of f∗ = min f(x) for x ∈ C. With this idea in our mind, for neural networks
with non-linear activation layers, if we could bound them with some linear functions, then it is still
possible to bound f(x) with linear functions.

Then, we show that the non-linear activation ReLU layer ẑ = ReLU(z) can be bounded by two linear
functions in three cases according to the range of pre-activation bounds l ≤ z ≤ u: active (l ≥ 0),
inactive (u ≤ 0) and unstable (l < 0 < u) in Lemma B.1.
Lemma B.1 (Relaxation of a ReLU layer in CROWN). Given pre-activation vector z ∈ Rd, l ≤ z ≤
u (element-wise), ẑ = ReLU(z), we have

Dz + b ≤ ẑ ≤ Dz + b,

where D,D ∈ Rd×d are diagonal matrices defined as:

Dj,j =


1, if lj ≥ 0

0, if uj ≤ 0

αj , if uj > 0 > lj

Dj,j =


1, if lj ≥ 0

0, if uj ≤ 0
uj

uj−lj
, if uj > 0 > lj

(4)

α ∈ Rd is a free vector s.t., 0 ≤ α ≤ 1. b,b ∈ Rd are defined as

bj =

{
0, if lj > 0 or uj ≤ 0

0, if uj > 0 > lj .
bj =

{
0, if lj > 0 or uj ≤ 0

− uj lj
uj−lj

, if uj > 0 > lj .
(5)

Proof. For the j-th ReLU neuron, if lj ≥ 0, then ReLU(zj) = zj ; if uj < 0, then ReLU(zj) = 0.
For the case of lj < 0 < uj , the ReLU function can be linearly upper and lower bounded within this
range:

αjzj ≤ ReLU(zj) ≤
uj

uj − lj
(zj − lj) ∀ lj ≤ zj ≤ uj

where 0 ≤ αj ≤ 1 is a free variable - any value between 0 and 1 produces a valid lower bound.

Next we apply the linear relaxation of ReLU to the L-layer neural network f(x) to further derive
the linear lower bound of f(x). The idea is to propagate a weight matrix W̃ and bias vector b̃ from
the L-th layer to 1-th layer. Specifically, when propagate through ReLU layer, we should greedily
select upper bound of ẑj when W̃i,j is negative and select lower bound of ẑj when W̃i,j is positive
to calculate the lower bound of f(x). When propagate through linear layer, we do not need to do
such selection since there is no relaxation on linear layer.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Theorem B.2 (CROWN bound propagation on neural network). Given the L-layer neural network
f(x) as defined in Eq. 3, we could find a linear function with respect to input x.

f(x) := z(L) ≥ W̃
(1)

x+ b̃
(1)

(6)

where W̃ and b̃ are recursively defined as following:

W̃
(l)

= A(l)W(l), b̃
(l)

= A(l)b(l) + d(l),∀l = 1 . . . L (7)

A(L) = I ∈ RdL×dL , b̃
(L)

= 0 (8)

A(l) = W̃
(l+1)

≥0 D(l) + W̃
(l+1)

<0 D
(l) ∈ Rdl+1×dl ,∀l = 1 . . . L− 1 (9)

d(l) = W̃
(l+1)

≥0 b(l) + W̃
(l+1)

<0 b
(l)

+ b̃
(l)
,∀l = 1 . . . L− 1 (10)

where ∀l = 1 . . . L− 1,D(l),D
(l) ∈ Rdl×dl and b(l),b

(l) ∈ Rdl are defined as in Lemma B.1. And
subscript “≥ 0” stands for taking positive elements from the matrix while setting other elements to
zero, and vice versa for subscript “< 0”.

Proof. First we have

f(x) := z(L) = A(L)z(L) + d(L)

= A(L)W(L)ẑ(L−1) +A(L)b(L) + d(L)

= W̃
(L)

ẑ(L−1) + b̃
(L)

(11)

Refer to Lemma B.1, we have

D(L−1)z(L−1) + b(L−1) ≤ ẑ(L−1) ≤ D
(L−1)

z(L−1) + b
(L−1)

(12)

Then we can form the lower bound of z(L) element by element: we greedily select the upper

bound ẑ
(L−1)
j ≤ D

(L−1)

j,j z
(L−1)
j + b

(L−1)

j when W̃
(L)

i,j is negative, and select the lower bound

ẑ
(L−1)
j ≥ D

(L−1)
j,j z

(L−1)
j + b

(L−1)
j otherwise. It can be formatted as

W̃
(L)

ẑ(L−1) + b̃
(L) ≥ A(L−1)z(L−1) + d(L−1) (13)

where A(L−1) ∈ RdL×dL−1 is defined as

A
(L−1)
i,j =

W̃
(L)

i,j D
(L−1)

j,j , if W̃
(L)

i,j < 0

W̃
(L)

i,j D
(L−1)
j,j , if W̃

(L)

i,j ≥ 0
(14)

for simplicity, we rewrite it in matrix form as

A(L−1) = W̃
(L)

≥0D
(L−1) + W̃

(L)

<0D
(L−1)

(15)

And d(L−1) ∈ RdL is similarly defined as

d(L−1) = W̃
(L)

≥0 b
(L−1) + W̃

(L)

<0 b
(L−1)

+ b̃
(L)

(16)

Then we continue to replace z(L−1) in Eq. 13 as W(L−1)ẑ(L−2) + b(L−1)

W̃
(L)

ẑ(L−1) + b̃
(L) ≥ (A(L−1)W(L−1))ẑ(L−2) +A(L−1)b(L−1) + d(L−1)

= W̃
(L−1)

ẑ(L−2) + b̃
(L−1)

(17)

By continuing to propagate the linear inequality to the first layer, we get

f(x) ≥ W̃
(1)

ẑ(0) + b̃
(1)

= W̃
(1)

x+ b̃
(1)

(18)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

After getting the linear lower bound of f(x), and given x ∈ C, we could solve the linear lower bound
in closed form as in Theorem B.3. It is given by the Hölder’s inequality.
Theorem B.3 (Bound Concretization under ℓp ball Perturbations). Given the L-layer neural network
f(x) as defined in Eq. 3, and input x ∈ C = Bp(x0, ϵ) = {x | ∥x − x0∥p ≤ ϵ}, we could find

concrete lower bound of f(x) by solving the optimization problem minx∈C W̃
(1)

x + b̃
(1)

and its
solution gives

min
x∈C

f(x) ≥ min
x∈C

W̃
(1)

x+ b̃
(1) ≥ −ϵ∥W̃(1)∥q + W̃

(1)
x0 + b̃

(1)
(19)

where 1
p + 1

q = 1 and ∥ · ∥q denotes taking ℓq-norm for each row in the matrix and the result makes
up a vector.

Proof.

min
x∈C

W̃
(1)

x+ b̃
(1)

(20)

= min
λ∈Bp(0,1)

W̃
(1)

(x0 + ϵλ) + b̃
(1)

(21)

=ϵ(min
λ∈Bp(0,1)

W̃
(1)

λ) + W̃
(1)

x0 + b̃
(1)

(22)

=− ϵ(max
λ∈Bp(0,1)

−W̃
(1)

λ) + W̃
(1)

x0 + b̃
(1)

(23)

≥− ϵ(max
λ∈Bp(0,1)

|W̃(1)
λ|) + W̃

(1)
x0 + b̃

(1)
(24)

≥− ϵ(max
λ∈Bp(0,1)

∥W̃(1)∥q∥λ∥p) + W̃
(1)

x0 + b̃
(1)

(Hölder’s inequality) (25)

=− ϵ∥W̃(1)∥q + W̃
(1)

x0 + b̃
(1)

(26)

B.2 DETAILS ABOUT BOUND PROPAGATION EARLY-STOP

Algorithm 3 Bound Propagation w/ Early-stop.

1: Function: compute_bound
2: Inputs: computational graph G, output node o,

early-stop set S
3: CROWN_init(G, o)
4: Q← Queue(), Q.push(o)
5: while length(Q) > 0 do
6: v ← Q.pop()
7: for w ∈ In(v) do
8: dw −= 1
9: if dw = 0 and w /∈ I then

10: Q.push(w)

11: if v ∈ S then
12: continue
13: CROWN_prop(v)
14: f∗ ← CROWN_concretize(I,S)
15: Outputs: f∗

We parse the objective function f into a compu-
tational graph G = (V,E), where V and E are
the sets of nodes and edges, respectively. This
process can be accomplished using popular deep
learning frameworks, such as PyTorch, which sup-
port not only neural networks but also more general
functions. In the graph G, any mathematical op-
eration is represented as a node v ∈ V, and the
edges e = (w, v) ∈ E define the flow of compu-
tation. The input u, constant values, and model
parameters constitute the input nodes of G, form-
ing the input set I = {v | In(v) = ∅}, where
In(v) = {w | (w, v) ∈ E} denotes the set of input
nodes for a node v. Any arithmetic operation, such
as ReLU, which requires input operands, is also rep-
resented as a node in G but with a non-empty input
set. The node o is the sole output node of G and
provides the scalar objective value f in our case.

Our method (Algorithm 3) takes as input the graph G of f , the output node o to bound, and a set
of early-stop nodes S ⊂ V. It outputs the lower bound of the value of o, i.e., f∗. It first performs
CROWN_init to initialize dv for all nodes v, representing the number of output nodes of v that have
not yet been visited.

The algorithm maintains a queue Q of nodes to visit and performs a Breadth First Search (BFS) on G,
starting from o. When visiting a node v, it traverses all input nodes w of v, decrementing dw. If all

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

output nodes of w have been visited and w is not an input node of G, w is added to Q for propagation
(Lines 7–10). The key modification occurs in Lines 11–12, where bound propagation from v to all its
input nodes is stopped if v ∈ S.

Finally, the algorithm concretizes the output bound f∗ at nodes v ∈ I ∪ S based on their lower and
upper bounds lv and uv. We assume lv and uv are known for v ∈ I since the input range of Nu, as
well as all constant values and model parameters, is known. And for any v ∈ S, its lv and uv are
given by minm gv(u

m) and maxm gv(u
m) from Search-integrated bounding in Section 3.2

G
ra

ph
Q

ue
ue

Step 1

Linear
<latexit sha1_base64="PIlITteGuwfc3Z1QNUu8gcUtUuo=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhBsDHcS1DJgY2ER0XxAcoS9zV6yZG/v2J0TwpGfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjG6mfuuJayNi9YjjhPsRHSgRCkbRSg93516vVHYr7gxkmXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Uu6nhCWUjOuAdSxWNuPGz2akTcmqVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugyv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadIo2BG/x5WXSvKh4lxXvvlquVfM4CnAMJ3AGHlxBDW6hDg1gMIBneIU3RzovzrvzMW9dcfKZI/gD5/MHemGNOg==</latexit>

L � 1

Linear
<latexit sha1_base64="zU34yLFsUm53n7VQPE+vsRjOdIw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs27frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzQKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7Gsy4AqZERNLKFPc3krYiCrKjM2mZEPwll9eJe2LqndZ9Zq1Sr2Wx1GEEziFc/DgCupwCw1oAQOEZ3iFN+fReXHenY9Fa8HJZ47hD5zPH6FLjMg=</latexit>

L

ReLU

<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u

<latexit sha1_base64="ajPbPvogsg671uktm/7Ffg397Yo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W966rXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyLOM4g==</latexit>

f

Step 2

Linear
<latexit sha1_base64="PIlITteGuwfc3Z1QNUu8gcUtUuo=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhBsDHcS1DJgY2ER0XxAcoS9zV6yZG/v2J0TwpGfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjG6mfuuJayNi9YjjhPsRHSgRCkbRSg93516vVHYr7gxkmXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Uu6nhCWUjOuAdSxWNuPGz2akTcmqVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugyv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadIo2BG/x5WXSvKh4lxXvvlquVfM4CnAMJ3AGHlxBDW6hDg1gMIBneIU3RzovzrvzMW9dcfKZI/gD5/MHemGNOg==</latexit>

L � 1

Linear
<latexit sha1_base64="zU34yLFsUm53n7VQPE+vsRjOdIw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs27frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzQKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7Gsy4AqZERNLKFPc3krYiCrKjM2mZEPwll9eJe2LqndZ9Zq1Sr2Wx1GEEziFc/DgCupwCw1oAQOEZ3iFN+fReXHenY9Fa8HJZ47hD5zPH6FLjMg=</latexit>

L

ReLU

<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u

<latexit sha1_base64="ajPbPvogsg671uktm/7Ffg397Yo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W966rXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyLOM4g==</latexit>

f

Step 3

Linear
<latexit sha1_base64="PIlITteGuwfc3Z1QNUu8gcUtUuo=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhBsDHcS1DJgY2ER0XxAcoS9zV6yZG/v2J0TwpGfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjG6mfuuJayNi9YjjhPsRHSgRCkbRSg93516vVHYr7gxkmXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Uu6nhCWUjOuAdSxWNuPGz2akTcmqVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugyv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadIo2BG/x5WXSvKh4lxXvvlquVfM4CnAMJ3AGHlxBDW6hDg1gMIBneIU3RzovzrvzMW9dcfKZI/gD5/MHemGNOg==</latexit>

L � 1

Linear
<latexit sha1_base64="zU34yLFsUm53n7VQPE+vsRjOdIw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs27frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzQKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7Gsy4AqZERNLKFPc3krYiCrKjM2mZEPwll9eJe2LqndZ9Zq1Sr2Wx1GEEziFc/DgCupwCw1oAQOEZ3iFN+fReXHenY9Fa8HJZ47hD5zPH6FLjMg=</latexit>

L

ReLU

<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u

<latexit sha1_base64="ajPbPvogsg671uktm/7Ffg397Yo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W966rXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyLOM4g==</latexit>

f

Linear
<latexit sha1_base64="zU34yLFsUm53n7VQPE+vsRjOdIw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs27frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzQKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7Gsy4AqZERNLKFPc3krYiCrKjM2mZEPwll9eJe2LqndZ9Zq1Sr2Wx1GEEziFc/DgCupwCw1oAQOEZ3iFN+fReXHenY9Fa8HJZ47hD5zPH6FLjMg=</latexit>

L

<latexit sha1_base64="ajPbPvogsg671uktm/7Ffg397Yo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W966rXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyLOM4g==</latexit>

f ReLU

<latexit sha1_base64="ajPbPvogsg671uktm/7Ffg397Yo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W966rXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyLOM4g==</latexit>

f

Step 4

Linear
<latexit sha1_base64="PIlITteGuwfc3Z1QNUu8gcUtUuo=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhBsDHcS1DJgY2ER0XxAcoS9zV6yZG/v2J0TwpGfYGOhiK2/yM5/4ya5QhMfDDzem2FmXpBIYdB1v52V1bX1jc3CVnF7Z3dvv3Rw2DRxqhlvsFjGuh1Qw6VQvIECJW8nmtMokLwVjG6mfuuJayNi9YjjhPsRHSgRCkbRSg93516vVHYr7gxkmXg5KUOOeq/01e3HLI24QiapMR3PTdDPqEbBJJ8Uu6nhCWUjOuAdSxWNuPGz2akTcmqVPgljbUshmam/JzIaGTOOAtsZURyaRW8q/ud1Ugyv/UyoJEWu2HxRmEqCMZn+TfpCc4ZybAllWthbCRtSTRnadIo2BG/x5WXSvKh4lxXvvlquVfM4CnAMJ3AGHlxBDW6hDg1gMIBneIU3RzovzrvzMW9dcfKZI/gD5/MHemGNOg==</latexit>

L � 1

Linear
<latexit sha1_base64="zU34yLFsUm53n7VQPE+vsRjOdIw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs27frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzQKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7Gsy4AqZERNLKFPc3krYiCrKjM2mZEPwll9eJe2LqndZ9Zq1Sr2Wx1GEEziFc/DgCupwCw1oAQOEZ3iFN+fReXHenY9Fa8HJZ47hD5zPH6FLjMg=</latexit>

L

ReLU

<latexit sha1_base64="nVHflUJrV0ftvWcqj5k0Rms+AG4=">AAACDnicfVDLSgMxFL1TX7W+qi7dBIvgopQZKeqy4MZlBfuAdiiZNNPGJpkhyQhl6D90qx/iTtz6C36HP2CmnYW24IGQwzn3hpMTxJxp47pfTmFjc2t7p7hb2ts/ODwqH5+0dZQoQlsk4pHqBlhTziRtGWY47caKYhFw2gkmd5nfeaZKs0g+mmlMfYFHkoWMYGOldj8QaTIblCtuzV0ArRMvJxXI0RyUv/vDiCSCSkM41rrnubHxU6wMI5zOSv1E0xiTCR7RnqUSC6r9dJF2hi6sMkRhpOyRBi3U3xspFlpPRWAnBTZjvepl4n9e1d7Zy7oaiJUoJrz1UybjxFBJlknChCMToawbNGSKEsOnlmCimP0MImOsMDG2wZJtyVvtZJ20r2redc17qFca9byvIpzBOVyCBzfQgHtoQgsIPMEcXuDVmTtvzrvzsRwtOPnOKfyB8/kDu8+dAA==</latexit>u

<latexit sha1_base64="ajPbPvogsg671uktm/7Ffg397Yo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQ7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W966rXrFXqtTyOIpzBOVyCBzdQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyLOM4g==</latexit>

f

Linear
<latexit sha1_base64="zU34yLFsUm53n7VQPE+vsRjOdIw=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe4kqGXAxsIiARMDyRH2NnPJmr29Y3dPCEd+gY2FIrb+JDv/jZvkCk18MPB4b4aZeUEiuDau++0U1tY3NreK26Wd3b39g/LhUVvHqWLYYrGIVSegGgWX2DLcCOwkCmkUCHwIxjcz/+EJleaxvDeTBP2IDiUPOaPGSs27frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzQKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7Gsy4AqZERNLKFPc3krYiCrKjM2mZEPwll9eJe2LqndZ9Zq1Sr2Wx1GEEziFc/DgCupwCw1oAQOEZ3iFN+fReXHenY9Fa8HJZ47hD5zPH6FLjMg=</latexit>

L

ReLU

Figure A9: Bound propagation with early-
stop on an L-layer MLP f(u). Bound prop-
agation starts from the node of output f and
then backwards layer by layer to the L− 1-
th linear layer. The backward flow is high-
lighted as and stop at . In the queue, the
node popped at every step is semitransparent.

An illustrative example for bounding. Assume f(u)
is an L-layer MLP. We illustrate how to estimate its lower
bound f∗ with early stopping at the last ReLU layer in Fig-
ure A9. For simplicity, we denote the output f(u), the
L-th linear layer, the ReLU layer, the L−1-th linear layer,
and the input u as nodes Nf , NL, NR, NL−1, and Nu, re-
spectively. Additionally, we denote f(u) = z(L)(u) as
the output value of node NL, ẑ(L−1)(u) as the input of NL
and output of NR, and z(L−1)(u) as the input of NR and
output of NL−1.

In Step 1, we initialize CROWN and the queue Q for
traversal, starting with the output node Nf . In Step 2, we
update the out-degree of node NL which is the input of
Nf , and propagate from Nf to NL. Since dL = 0 indicates
that all its outputs (in this case, only Nf) have been visited,
node NL is added to Q. In Step 3, we continue propagation
to the input of NL, which is the node NR. Then NR is added
to Q. In Step 4, we visit NR, which is defined as an early-
stop node. The backward flow stops propagating to its
input node NL−1, and NL−1 is not added to Q because it
is not an input node. Since Q is now empty, the bound
propagation is complete.

Finally, we require the lower and upper bounds of ẑ(L−1)(u) (the input value of NR and the output
value of NL−1) to compute f∗. Using our Search-integrated bounding approach, these bounds are
obtained empirically from samples during the searching process.

A deeper look at the illustrative example. We now connect the CROWN theorem in Section B.1 to
our illustrative example to better understand the behaviors of CROWN_prop and CROWN_concretize.
Here, the input x in Section B.1 corresponds to u.

In Step 2, since v = L is a linear layer, calling CROWN_prop corresponds to the propagation in Eq. 11.
Note that no relaxation is introduced when propagating through the linear layer.

In Step 3, v = R is a non-linear ReLU layer, and calling CROWN_prop corresponds to the propagation
in Eq. 13. This step requires a linear estimation of the non-linear layer as described in Eq. 12, which
is obtained from the lower and upper bounds of the input to NR (i.e., ẑ(L−1)(u)) using Lemma B.1.
At this stage, linear relaxation is introduced for the non-linear layer, potentially loosening the final
lower bound of f(u).

The lower and upper bounds of ẑ(L−1)(u) are referred to as intermediate layer bounds or pre-
activation bounds in Section 3.2. However, these bounds are initially unknown in practice. In the
original CROWN algorithm, computing these bounds requires recursively calling compute_bound
with o = L− 1. In our approach, these bounds are instead estimated empirically from samples during
the searching process, as they serve as the input bounds for the early-stop node NR.

Now assume we have obtained the intermediate layer bounds and propagated the linear relation
through the non-linear node NR. With the early-stop mechanism, we stop further propagation to
NL−1 and subsequently to the input Nu. At this point, CROWN_concretize is called to compute f∗

using the intermediate layer bounds and the relaxed linear relation between NR and Nf obtained from
propagation. Specifically, this can be achieved by replacing x with ẑ(L−1)(u) in Theorem B.3.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

In contrast, the original CROWN algorithm continues propagating through NL−1 and eventually to
the input Nu, then calls CROWN_concretize using the linear relation between Nu and Nf and the
lower and upper bounds of Nu, as described in Theorem B.3.

Improvement of our approaches. Here, we discuss why our bounding approaches (Propagation
early-stop and Search-integrated bounding) achieve much tighter bound estimations and greater
efficiency compared to the original CROWN.

Efficiency: The original CROWN performs bound propagation through every layer and recursively
computes each intermediate layer bound by propagating it back to the input. This process results in a
quadratic time complexity with respect to the number of layers. In contrast, our method conducts
bound propagation only from Nf to a few early-stop nodes and derives the input bounds of these
nodes from prior sampling-based searching without recursively calling CROWN. As a result, the
time complexity of our approach can be linear with respect to the number of layers and even constant
under certain configurations of early-stop nodes.

Effectiveness: As introduced earlier, the looseness in bound estimation stems from the linear relaxation
of non-linear layers. In the original CROWN, the number of linear relaxations is quadratic with
respect to the number of non-linear layers. In our approach, the bounding procedure involves far
fewer linear relaxations. Furthermore, the empirical bounds obtained from searching, which may
slightly underestimate the actual bounds, contribute to further tightening the bound estimation.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C ADDITIONAL EXPERIMENT RESULTS

C.1 SCALABILITY ANALYSIS

Comparison with sampling-based methods. we conducted an experiment to compare the scala-
bility of our BaB-ND with sampling-based methods on complex planning problems. We used the
same model sizes and planning horizons as in Figure 7 (a), optimizing the complex objective function
applied in the Pushing with Obstacles task. Parameters for all methods were adjusted to ensure
similar runtimes for the largest problems.

The results in Figure A10 show that the runtime of our BaB-ND is less sensitive to the increasing
complexity of planning problems compared to sampling-based methods. While BaB-ND incurs
additional overhead from initializing α,β-CROWN and performing branching and bounding, making
it less efficient than sampling-based methods for small problems.

Pl
an

ni
ng

 H
or

iz
on

Model Size Model Size

Pl
an

ni
ng

 H
or

iz
on

Model Size

Pl
an

ni
ng

 H
or

iz
on

Model Size

Pl
an

ni
ng

 H
or

iz
on

R
un

tim
e

(S
ec

on
ds

)

GD MPPI CEM CROWN

Figure A10: Comparison of runtime with sampling-based methods. Although our BaB-ND is less efficient
on small planning problems than baselines, it achieves the similar efficiency on larger planning problems.

We also report the average objectives for all methods on the largest four planning problems to evaluate
their effectiveness in Table A1. Overall, the performance gaps between our BaB-ND and the baselines
increase with the size of the problem, highlighting the ineffectiveness of sampling-based methods for
large, complex planning problems.

Table A1: Comparison of planning performance across different configurations

Method Planning Problem Size

(134.2K,15) (134.2K,20) (530.2K,15) (530.2K,20)

GD 57.2768 64.4789 54.7078 60.2575
MPPI 47.4451 53.7356 45.1371 45.6338
CEM 47.0403 47.6487 43.8235 38.8712
Ours 46.0296 46.1938 41.6218 34.6972

Additionally, we evaluate the planning performance of sampling-based methods and our approach
on the same simple synthetic planning problems as those in Figure 7. We report only the six cases
that MIP can solve optimally within 300 seconds. The results in Table A2 show that, under these
much simpler settings compared to those of our main experiments, all methods perform similarly.
Sampling-based methods (MPPI, CEM, and ours) achieve a gap under the order of 1×10−4 compared
to MIP with an optimality guarantee.

Table A2: Comparison of planning performance on simple synthetic planning problems

Method Planning Problem Size

(0.232K,1) (0.712K,1) (2.440K,1) (0.232K,3) (0.712K,3) (0.232K,5)

MIP 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069
GD 30.3622 32.9750 33.5496 22.3242 28.1404 17.0681
MPPI 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069
CEM 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069
Ours 30.3592 32.9750 33.5496 22.1539 28.0832 15.6069

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

R
un

tim
e

(S
ec

on
ds

)

Pl
an

ni
ng

 H
or

iz
on

Model Size Model Size

Pl
an

ni
ng

 H
or

iz
on

CPU GPU

Figure A11: Comparison of runtime on CPU and GPU.
GPU acceleration improves the scalability of BaB-ND much.

Comparison with CPU version. We
evaluate the performance improvement
from CPU to GPU in Figure A11. We use
the same test cases as in Figure 7 and re-
port “NaN” if the process does not termi-
nate within 300 seconds.

The results clearly demonstrate that our
implementation benefits significantly from
GPU acceleration, achieving over 10x
speedup compared to the CPU version,
even for small planning problems.

C.2 COMPARISON WITH CONVENTIONAL MOTION PLANNING APPROACHES

We conduct an additional experiment on task Pushing with Obstacle to compare the planning
performance of our sampling-based baselines, our BaB-ND and two conventional motion planning
approaches: 1. Rapidly-exploring Random Tree (RRT); 2. Probabilistic Roadmap (PRM). In Table A3.
Since RRT and PRM do not optimize the objective as we did in sampling-based methods and our
BaB-ND, we only report the step cost at planning horizon H as the final step cost instead of the
planning objective.

Table A3: Comparison of planning performance with RRT and PRM

GD MPPI CEM RRT PRM Ours

Final step cost (↓) 4.1238 1.5082 1.0427 10.6472 1.6784 0.2339

The results demonstrate that our method significantly outperforms all other approaches. Imple-
mentation details for RRT and PRM have been included in Appendix D. The main reasons for the
performance gap are as follows: 1. The search space in our task is complex and continuous, making
it challenging for discrete sampling methods like RRT and PRM to achieve effective coverage. 2.
These methods are prone to getting stuck on obstacles, often failing to reach the target state.

C.3 ABLATION STUDY AND HYPER-PARAMETER ANALYSIS

Ablation study. We conduct an additional ablation study on the Pushing with Obstacles and Object
Sorting tasks to evaluate how different design choices impact planning performance in Table A4.

Table A4: Ablation study on branching and bounding components

(a) Heuristics for Selecting subdomains to Split

f∗
Ci

and f
∗
Ci

f
∗
Ci

only f∗
Ci

only

Pushing w/ Obstacles 31.9839 32.2777 32.6112
Object Sorting 31.0482 32.1249 33.2462

(b) Heuristics for Splitting subdomains

(uj − uj) · ∥n
lo
j − nup

j ∥ (uj − uj) ∥nlo
j − nup

j ∥

Pushing w/ Obstacles 31.9839 32.3869 32.6989
Object Sorting 31.0482 34.5114 32.8438

(c) Bounding Component

Ours Zero f∗
Ci

Zero f∗
Ci

+ f∗
Ci

only

Pushing w/ Obstacles 31.9839 32.3419 34.6227
Object Sorting 31.0482 33.6110 34.4535

(a) Heuristics for selecting subdomains to split: 1. Select based on both lower and upper bounds f∗
Ci

and f
∗
Ci

. 2. Select based only on (f
∗
Ci

only. 3. Select based only on f∗
Ci

only. Among these heuristics,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

selecting promising subdomains based on both f∗
Ci

and f
∗
Ci

achieves better planning performance by
balancing exploitation and exploration effectively compared to the other strategies.

(b) Heuristics for splitting subdomains: 1. Split based on the largest (uj − uj) · |nlo
j − nup

j |. 2. Split
based on the largest (uj − uj). 3. Split based on the largest |nlo

j − nup
j |. Our heuristic demonstrates

superior planning performance by effectively identifying important input dimensions to split.

(c) Bounding components: 1. Use our bounding approach with propagation early-stop and search-
integrated bounding. 2. Use constant zero as trivial lower bounds to disable the bounding component.
3. Disable both the bounding component and the heuristic for selecting subdomains to split. Our
bounding component improves planning performance by obtaining tight bound estimations, helping
prune unpromising subdomains to reduce the search space, and prioritizing promising subdomains
for searching.

Hyper-parameter analysis. We adjust three hyper-parameters in BaB-ND for the tasks Pushing
with Obstacles and Object Sorting to evaluate its hyper-parameter sensitivity:

• η = n1

n ∈ [0, 1], the ratio of the number of subdomains picked with the best upper bounds (n1) to
the number of all picked subdomains (n) in the heuristic used for selecting subdomains to split. A
larger η promotes exploitation, while a smaller η encourages exploration.
• T ∈ R, the temperature of softmax sampling in the heuristic for subdomain selection. A larger
T results in more uniform and random sampling, whereas a smaller T leads to more deterministic
selection of subdomains with the smaller lower bounds.
• w ∈ (0, 100], the percentage of top samples used in the heuristic for splitting subdomains. A larger
w results in more conservative decisions by considering more samples, while a smaller w leads to
more aggressive splitting.

We report the mean objectives under different hyper-parameter configurations in Table A5. The base
hyper-parameter configuration is η = 0.75, T = 0.05, and w = 1. For benchmarking, we vary at
most one hyper-parameter at a time while keeping the others fixed at the base configuration.

Table A5: Planning performance under different hyper-parameter configurations

(a) hyper-parameter η

η = 0.25 η = 0.50 η = 0.75

Pushing w/ Obstacles 31.8574 31.9828 31.9839
Object Sorting 30.1760 30.2795 31.0482

(b) hyper-parameter T

T = 0.05 T = 1 T = 20

Pushing w/ Obstacles 31.9839 32.3990 32.1267
Object Sorting 31.0482 31.2366 31.8263

(c) hyper-parameter w

w = 0.1 w = 1 w = 10

Pushing w/ Obstacles 32.0068 31.9839 32.0599
Object Sorting 30.5953 31.0482 31.1545

The results show that different hyper-parameter configurations produce slight variations in objectives,
but the gaps are relatively small. This indicates that our BaB-ND is not highly sensitive to these
hyper-parameters. Consequently, it is feasible in practice to use a fixed hyper-parameter configuration
that delivers reasonable performance across different test cases and tasks.

C.4 QUANTITATIVE ANALYSIS ON SEARCH SPACE

We conducted an experiment to measure the normalized space size of pruned subdomains over
iterations. In Table A6, we report three metrics over the brand-and-bound iterations: 1. the normalized
space size of pruned subdomains, 2. the size of the selected subdomains, and 3. the improvement in
the objective value.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

With increasing iterations, the average and best total space size of pruned subdomains increases
rapidly and then converges, demonstrating the effectiveness of our bounding methods. Once the
pruned space size reaches a plateau, the total space size of selected promising subdomains continues
to decrease, indicating that the estimated lower bounds remain effective in identifying promising
subdomains. The decreasing objective over iterations further confirms that BaB-ND focuses on the
most promising subdomains, reducing space size to the magnitude of 1× 10−4.

Table A6: Performance Metrics Over Iterations

Metric Iterations

0 4 8 12 16 20

Pruned space size (Avg, ↑) 0.0000 0.7000 0.8623 0.8725 0.8744 0.8749
Pruned space size (Best, ↑) 0.0000 0.8750 0.9921 0.9951 0.9951 0.9952
Selected space size (Avg, ↓) 1.0000 0.3000 0.0412 0.0048 0.0005 0.0003
Best objective (Avg, ↓) 41.1222 36.0511 35.5091 34.8024 33.8991 33.3265

C.5 PERFORMANCE CHANGE WITH VARYING INPUT DISCONTINUITIES.

We conducted a follow-up experiment by removing the obstacles (non-feasible regions) in the problem
of Pushing with Obstacles, simplifying the objective function. Below, we report the performance
of different methods on the simplified objective function (w/o obstacles) and the original objective
function (w/ obstacles) in Table A7.

The results show that in simple cases, although our BaB-ND consistently outperforms baselines, MPPI
and CEM provide competitive performance. In contrast, in complex cases, BaB-ND significantly
outperforms the baselines, demonstrating its effectiveness in handling discontinuities and constraints.

Table A7: Performance comparison varying input discontinuities

(a) Objective w/o obstacles

(134.2K,15) (134.2K,20) (530.2K,15) (530.2K,20)

GD 64.5308 64.2956 63.0130 60.6300
MPPI 34.4295 26.9970 33.8077 26.1204
CEM 34.3864 26.7688 33.6669 25.9599
Ours 34.2347 26.4841 33.6144 25.6603

(b) Objective w/ obstacles (Table A1)

(134.2K,15) (134.2K,20) (530.2K,15) (530.2K,20)

GD 57.2768 64.4789 54.7078 60.2575
MPPI 47.4451 53.7356 45.1371 45.6338
CEM 47.0403 47.6487 43.8235 38.8712
Ours 46.0296 46.1938 41.6218 34.6972

C.6 FURTHER SCALABILITY ANALYSIS ON THE SYNTHETIC EXAMPLE

We extend our experiment on the synthetic example shown in Figure 4, as this allows us to easily
scale up the input dimension while knowing the optimal objectives. We vary the input dimension N
from 50 to 300 and compare our BaB-ND with MPPI and CEM.

Although this synthetic example is simpler than practical cases, it provides valuable insights into
the expected computational cost and solution quality as we scale to high-dimensional problems. It
demonstrates the potential of BaB-ND in handling complex scenarios such as 3D tasks. We report
the gaps between the best objective found by different baseline methods and the optimal objective
value below.

The results in Table A8 show that our BaB much outperforms baselines when the input dimension
increases. These results are expected since existing sampling-based methods search for solutions
across the entire input space, requiring an exponentially increasing number of samples to achieve

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

sufficient coverage. In contrast, our BaB-ND strategically splits and prunes unpromising regions of
the input space, guiding and improving the effectiveness of existing sampling-based methods.

Table A8: Performance comparison across different input dimensions (Metric: Gap to f∗, ↓)

Method Input dimension N

50 100 150 200 250 300

MPPI 7.4467 45.1795 105.1584 181.1274 259.1044 357.3273
CEM 5.1569 15.6328 26.3735 39.3862 61.6739 92.4286
Ours 0.0727 0.2345 0.4210 0.6976 1.2824 1.7992

We further report the following metrics about our BaB-ND in Table A9 to better understand the
behavior of BaB-ND under high-dimensional cases: 1. The gap between the best objective found and
the optimal objective value as above, 2. The normalized space size of pruned subdomains at the last
iteration, 3. The normalized space size of selected subdomains at the last iteration, and 4. The total
runtime.

The results demonstrate that our BaB-ND effectively focuses on small regions to search for better
objectives, while the runtime increases approximately linearly with input dimension under GPU
acceleration.

Table A9: Performance metrics across different input dimensions N

Metric Input Dimensions N

50 100 150 200 250 300

Gap to f∗ (↓) 0.0727 0.2345 0.4210 0.6976 1.2824 1.7992
Selected Space Size (↓) 0.0002 0.0017 0.0026 0.0042 0.0064 0.0040
Pruned Space Size (↑) 0.8515 0.6073 0.3543 0.1762 0.0579 0.0113
Runtime (↓) 4.2239 6.5880 9.5357 11.6504 13.7430 15.8053

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D EXPERIMENT DETAILS

D.1 DEFINITION OF ACTIONS AND STATES

We begin by defining the notations used throughout the following sections. The state is denoted as x,
the action as u, and the end effector or pusher position as p. The specific definitions of these terms
vary across different tasks, which are detailed below:

Pushing w/ Obstacles. As illustrated in Figure A12.a, the state is defined by four key points on the
“T” object. The action corresponds to the 2D movement of the pusher.

Object Merging. As depicted in Figure A12.b, the state is represented by six key points on the “L”
objects (each “L” has three key points). The action is defined as the 2D movement of the pusher.

Object Sorting. As illustrated in Figure A12.c, the state consists of the positions of the object
pieces. The action differs slightly in this task as it performs a long push. Specifically, the action is
defined by the 2D initial position of the pusher and its subsequent 2D movement in the xy-plane.

Rope Routing. As shown in Figure A12.d, the state of the rope is represented by ten uniformly
sampled key points. The action is defined by the 3D movement of the gripper along the xyz axes in
3D space.

For all tasks, we do not explicitly determine the contact points between the robot and objects. Instead,
our BaB-ND framework outputs a sequence of end-effector positions for the robot to follow, which
implicitly decides, for instance, which side of the “T”-shaped object is being pushed.

D.2 DATA COLLECTION

For training the dynamics model, we randomly collect interaction data from simulators. For Pushing
with Obstacles, Object Merging, and Object Sorting tasks, we use Pymunk (Blomqvist, 2022) to
collect data, and for the Rope Routing task, we use FleX to generate data. In the following paragraphs,
we will introduce the data generation process for different tasks in detail.

Pushing w/ Obstacles. As shown in Figure A12.a, the pusher is simulated as a 5mm cylinder. The
stem of the “T”-shaped object has a length of 90mm and a width of 30mm, while the bar has a length
of 120mm and a width of 30mm. The pushing action along the x-y axis is limited to 30mm. We don’t
add explicit obstacles in the data generation process, while the obstacles are added as penalty terms
during planning. We generated 32,000 episodes, each containing 30 pushing actions between the
pusher and the “T”-shaped object.

Object Merging. As shown in Figure A12.b, the pusher is simulated as a 5mm cylinder. The leg of
the “L”-shaped object has a length of 30mm and a width of 30mm, while the foot has a length of
90mm and a width of 30mm. The pushing action along the x-y axis is limited to 30mm. We generated
64,000 episodes, each containing 40 pushing actions between the pusher and the two “L”-shaped
objects.

Object Sorting. As shown in Figure A12.c, the pusher is simulated as a rectangle measuring 45mm
by 3.5mm. The radius of the object pieces is set to 15mm. For this task, we use long push as our
action representation, which generates the start position and pushing action length along the x-y axis.
The pushing action length is bounded between -100mm and 100mm. We generated 32,000 episodes,
each containing 12 pushing actions between the pusher and the object pieces.

Rope Routing. As shown in Figure A12.d, we use a xArm6 robot with gripper to interact with the
rope. The rope has a length of 30cm and a radius of 0.03cm. One end of the rope is fixed while the
gripper grasps the other end. We randomly sample actions in 3D space, with the action bound set to
30cm. The constraint is that the distance between the gripper position and the fixed end of the rope
cannot exceed the rope length. We generated 15,000 episodes, each containing 6 random actions. For
this task, we will post-process the dataset and split each action into 2cm sections.

D.3 DETAILS OF NEURAL DYNAMICS MODEL LEARNING

We learn the neural dynamics model from the state-action pairs collected from interactions with
the environment. Let the state and action at time t be denoted as xt and ut. Our goal is to learn a

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) Pushing w/ Obstacles (b) Object Merging (c) Object Sorting (d) Rope Routing

Figure A12: Simulation environments visualization. We use Pymunk to simulate environments involving
only rigid body interactions. For manipulating the deformable rope, we utilize NVIDIA FleX to simulate the
interactions between the rope and the robot gripper.

predictive model fdyn, instantiated as a neural network, that takes a short sequence of states and
actions with l-step history and predicts the next state at time t+ 1:

x̂t+1 = fdyn(xt, ut). (27)
To train the dynamics model for better long-term prediction, we iteratively predict future states over a
time horizon Th and optimize the neural network parameters by minimizing the mean squared error
(MSE) between the predictions and the ground truth future states:

L =
1

Th

l+Th∑
t=l+1

∥xt+1 − fdyn(x̂t, ut)∥22. (28)

For different tasks, we choose different types of model architecture and design different input outputs.
For Pushing with Obstacles, Object Merging, and Rope routing tasks, we use MLP as our dynamics
model; And for the Object Sorting task, we utilize GNN as the dynamics model, since the pieces are
naturally modeled by Graph. Below is the detailed information for each task.

Pushing w/ Obstacles. We use a four-layer MLP with [128, 256, 256, 128] neurons in each
respective layer. The model is trained with an Adam optimizer for 7 epochs, using a learning rate of
0.001. A cosine learning rate scheduler is applied to regularize the learning rate. For the model input,
we select four key points on the object, and calculate their relative coordinates to the current pusher
position. These coordinates are concatenated with the current pusher action (resulting in a input
dimension of 10) and input into the model. For the loss function, given the current state and action
sequence, the model predicts the next 6 states, and we compute the MSE loss with the ground truth.

Object Merging. We use the same architecture, optimizer, training epochs, and learning rate
scheduler as in the Pushing w/ Obstacles setup. For the model input, we select three key points for
each object, and calculate their relative coordinates to the current pusher positions. These coordinates
are then concatenated with the current pusher action (resulting in a state dimension of 12) and input
into the model. We also use the same loss function as in the Pushing with Obstacles setup.

Object Sorting. We use the same architecture as DPI-Net (Li et al., 2018). The model is trained
with an Adam optimizer for 15 epochs, with a learning rate of 0.001, and a cosine learning rate
scheduler to adjust the learning rate. For the model input, we construct a fully connected graph neural
network using the center position of each piece. We then calculate their relative coordinates to the
current and next pusher positions. These coordinates are concatenated as the node embedding and
input into the model. For the loss function, given the current state and action sequence, the model
predicts the next 6 states, and we compute the MSE loss with the ground truth.

Rope Routing. We use a two-layer MLP with 128 neurons in each layer. The model is trained with
an Adam optimizer for 50 epochs, with a learning rate of 0.001, and a cosine learning rate scheduler
to adjust the learning rate. For the model input, we use farthest point sampling to select 10 points
on the rope, reordered from closest to farthest from the gripper. We then calculate their relative
coordinates to both the current and next gripper positions, concatenate these coordinates, and input
them into the model. For the loss function, given the current state and action sequence, the model
predicts the next 8 states, and we compute the MSE loss with the ground truth.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

D.4 DEFINITION OF COST FUNCTIONS

In this section, we will introduce our cost functions for model-based planning Eq. 1 across different
tasks. For every task, we assume the initial and target state x0 and xtarget are given. We denote the
position of the end-effector at time t as pt. In tasks involving continuous actions like Pushing w/
Obstacles, Object Merging, and Rope Routing, action ut is defined as the movement of end-effector,
pt = pt−1 + ut and p0 is given by initial configuration. In the task of Object Sorting involving
discrete pushing, pt is given by the action ai as the pusher position before pushing. In settings with
obstacles, we set the set of obstacles as O. Every o ∈ O has its associated static position and size as
po and so. Our cost functions are designed to handle discontinuities and constraints introduced by
obstacles, and BaB-ND can work effectively on these complex cost functions.

Pushing w/ Obstacles. As introduced before, we formalize the obstacles as penalty terms rather
than explicitly introducing them in the dynamics model. Our cost function is defined by a cost to the
goal position plus a penalty cost indicating whether the object or pusher collides with the obstacle.
The detailed cost is listed in Eq. 29.

ct = c(xt, ut) = wt ∥xt − xtarget∥
+ λ

∑
o∈O

(ReLU(so − ∥pt − po∥) + ReLU(so − ∥xt − po∥)) (29)

where ∥xt − xtarget∥ gives the difference between the state at time t and the target. ∥pt − po∥ and
∥xt − po∥ give the distance between the obstacle o and the end-effector and the object. Two ReLU
items yield positive values (penalties) when the pusher or object are located within the obstacle o. wt

is the weight increasing with time t to encourage the alignment to the target. λ is the large constant
value to avoid any collision. In implementation, xt is a concatenation of positions of keypoints,
∥xt − po∥ is calculated keypoint-wisely. Ideally, cT can be optimized to 0 by a strong planner with
the proper problem configuration.

Object Merging. In this task requiring long horizon planning to manipulate two objects, we don’t
set obstacles and only consider the different between state at every time step and the target. The cost
is shown in Eq. 30.

ct = wt ∥xt − xtarget∥ (30)

Object Sorting. In this task, a pusher interacts with a cluster of object pieces belonging to different
classes. We set xtarget as the target position for every class. Additionally, for safety concerns to
prevent the pusher from pressing on the object pieces, we introduce obstacles defined as the object
pieces in the cost Eq. 31. For every object piece o, its size so is set as larger than the actual size in the
cost and its position po is given by xt. with the sizes larger than that of objects. The definition of the
penalty is similar to that in Pushing w/ Obstacles.

ct = wt ∥xt − xtarget∥+ λ
∑
o∈O

ReLU(so − ∥pt − po∥) (31)

Rope Routing. In this task containing the deformable rope, we sample some keypoints by Farthest
Point Sampling (FPS). xtarget is defined as the target positions of sampled keypoints. The cost is
defined in Eq. 32 which is similar to the one in pushing w/ obstacles. Here, two obstacles are
introduced to form the tight-fitting slot. In implementation, naively applying such cost does not
always achieve our target routing the rope into the slot since a trajectory greedily translating in
z-direction without lift maybe achieve optimum. Hence, we additionally modify the formulation by
assigning different weights for different directions (x, y, z) when calculating ∥xt − xtarget∥ to make
sure the desirable trajectory yields the lowest cost.

ct = wt ∥xt − xtarget∥+ λ
∑
o∈O

(ReLU(so − ∥pt − po∥) + ReLU(so − ∥xt − po∥)) (32)

D.5 DETAILS OF REAL WORLD DEPLOYMENT

We have four cameras observing the environment from the corners of the workspace. We implemented
task-specific perception modules to determine the object states from the multi-view RGB-D images.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Pushing w/ obstacles and Object Merging. We use a two-level planning framework in these
two tasks, involving both long-horizon and short-horizon planning. First, given the initial state (s0)
and pusher position, we perform long-horizon open-loop planning to obtain a reference trajectory
(s0, a0, s1, a1, . . . , sN). Next, an MPPI planner is used as a local controller to efficiently track this
trajectory. Since the local planning horizon is relatively short, the local controller operates at a higher
frequency. In local planning phase, the reference trajectory is treated as a queue of subgoals. Initially,
we set s1 as the subgoal and use the local controller to plan a local trajectory. Once s1 is reached, s2
is set as the next subgoal. By iterating this process, we ultimately reach the final goal state.

For perception, we filter the point clouds based on color from four cameras and use ICP alignment
with the provided object mesh to determine the object states.

Rope Routing. For the rope routing task, we observe that the sim-to-real gap is relatively small.
Therefore, the long-horizon planned trajectory is executed directly in an open-loop manner.

For perception, we begin by using GroundingDINO and SAM to generate the mask for the rope and
extract its corresponding point cloud. Subsequently, we apply farthest point sampling to identify 10
key points on the rope, representing its object state.

Object Sorting. There are relatively large observation changes after each pushing action. This
creates a noticeable sim-to-real gap for the planned long-horizon trajectory. As a result, we replan the
trajectory after each action.

For perception, we filter the point clouds based on color from four cameras and use K-means
clustering to separate different object pieces.

D.6 IMPLEMENTATION DETAILS OF CONVENTIONAL MOTION PLANNING APPROACHES

For RRT, as shown in Algorithm 4, in each step, we sample a target state and find the nearest node in
the RRT tree. We sample 1000 actions and use the dynamics model to predict 1000 future states. We
select the state that is closest to the sampled target and does not collide with obstacles, then add it
to the tree. We allow it to plan for 60 seconds, during which it can expand a tree with about 4000
nodes(Nmax = 4000). To avoid getting stuck in local minima, we randomly sample target states 50%
of the time, and for the other 50%, we select the goal state as the target.

Algorithm 4 Rapidly-Exploring Random Tree (RRT)

1: Input: Initial state x0, goal state xgoal, search space X (X is object states space), maximum
iterations Nmax, action upper and lower bound {u, u}, threshold δ

2: Output: A path from x0 to xgoal or failure
3: Initialize tree T with root node x0

4: for i = 1 to Nmax do
5: Sample a random state xrand from X
6: Find the nearest node xnear in T to xrand
7: Sample 1000 action within {u, u} as a set U , and compute the corresponding next states by

Xnew = fdyn(xnear,U)
8: Select the nearest, collision-free next state from Xnew as the xnew

9: Add xnew to T with an edge from xnear

10: if xnew is within δ of xgoal then
11: Add xgoal to T with an edge from xnew
12: return Path from x0 to xgoal in T

13: return Failure (No valid path found within Nmax iterations)

For PRM, as shown in Algorithm 5, the PRM construction algorithm generates a probabilistic
roadmap by sampling N pairs of object states and pusher positions from the search space, adding
these pairs as nodes, and connecting nodes within a defined threshold δ. Here, we set N = 100K
and δ = 0.15. The roadmap is represented as a graph G = (V,E), where V includes the sampled
nodes, and E contains edges representing feasible connections. The planning over PRM Algorithm 6
uses this roadmap to find a path from the initial state to the goal state. It first integrates the initial

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

state into the graph and connects it to nearby nodes, removes any nodes and edges colliding with
obstacles, and applies A* search to find an optimal path.

Algorithm 5 Probabilistic Roadmap (PRM) Construction

1: Input: Search space {X ,P} (X : object state space, P : pusher position space), number of nodes
N , connection threshold δ

2: Output: A constructed PRM G = (V,E)
▷ Step 1: Initialize the roadmap

3: Initialize the roadmap G = (V,E) with V = ∅ and E = ∅
▷ Step 2: Sample nodes in the state space

4: Randomly sample N pairs (x, p) from {X ,P}
5: Add the sampled pairs as nodes in G: V = {vi | i ≤ N}, where vi = (xi, pi)

▷ Step 3: Connect nodes within the threshold
6: for i = 1 to N do
7: for j = 1 to N do
8: if i ̸= j then ▷ Avoid self-loops
9: Compute action u = pj − pi

10: Predict the next state xnew = fdyn(xi, u)
11: if distance(xnew, xj) < δ then ▷ Check proximity
12: Add an edge eij = {vi → vj} to E

▷ Step 4: Return the constructed roadmap
13: return G = (V,E)

Algorithm 6 Planning over PRM

1: Input: Initial state xinit, initial pusher position pinit, goal state xgoal, obstacle space {Xobs,Pobs},
constructed PRM G = (V,E), connection threshold δ

2: Output: A path from xinit to xgoal or failure
▷ Add the initial state to the graph

3: Add (xinit, pinit) to V
▷ Connect the initial state to nearby nodes in the PRM

4: for each node vj ∈ V do
5: Compute action u = pj − pinit
6: Predict the next state xnew = fdyn(xinit, u)
7: if distance(xnew, xj) < δ then
8: Add an edge {vinit → vj} to E

9: Remove all edges and nodes in G that collide with obstacles {Xobs,Pobs}
10: Use the A* search algorithm to find a path from vinit = (xinit, pinit) to xgoal in G
11: Identify the node vnearest closest to xgoal
12: Extract the path from vinit to vnearest ▷ Extract the path from the graph
13: Return the extracted path

33

