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Abstract

Advanced reasoning capabilities in Large Language Models (LLMs) have caused
higher hallucination prevalence; yet most mitigation work focuses on after-the-fact
filtering rather than shaping the queries that trigger them. We introduce Query-
Bandits, a bandit framework that designs rewrite strategies to maximize a reward
model, that encapsulates hallucination propensity based upon the sensitivities of
17 linguistic features of the input query—and therefore, proactively steer LLMs
away from generating hallucinations. Across 13 diverse QA benchmarks and 1,050
lexically perturbed queries per dataset, our top contextual QueryBandit (Thomp-
son Sampling) achieves an 87.5% win rate over a no-rewrite baseline and also
outperforms zero-shot static prompting ("paraphrase" or "expand") by 42.6% and
60.3% respectively. Therefore, we empirically substantiate the effectiveness of
QueryBandits in mitigating hallucination via the intervention that takes the form of
a query rewrite. Interestingly, certain static prompting strategies, which constitute
a considerable number of current query rewriting literature, have a higher cumula-
tive regret than the no-rewrite baseline, signifying that static rewrites can worsen
hallucination. Moreover, we discover that the converged per-arm regression feature
weight vectors substantiate that there is no single rewrite strategy optimal for all
queries. In this context, guided rewriting via exploiting semantic features with
QueryBandits can induce significant shifts in output behavior through forward-pass
mechanisms, bypassing the need for retraining or gradient-based adaptation.

1 Introduction

As Large Language Models (LLMs) grow more powerful, their hallucinations increase in severity
[76, 101]. Hallucinations refer to the generation of inaccurate outputs, according to the LLM’s
internal "understanding" of the query [41]. Mitigation efforts, however, remain largely confined
to retrofitting the outputs instead of reshaping the query [41, 102], even though LLM outputs are
highly variable to lexical perturbations of the incoming query [112, 16]. This style of analysis is in
line with recent trends of mechanistic interpretability [3], where interpretable subgraphs of neural
architectures are sought on the internal embeddings. However, these subgraphs may be unavailable
due to enterprise restrictions [103]; moreover, there is no clear way to link a particular subgraph
template with hallucination.

In this work, we design interventions to mitigate hallucinations based on semantic features of a query.
To formalize the relationship between a query and hallucination, we associate with each query the
output’s propensity to be hallucinatory, which is implicitly associated with a reward model. We
further hypothesize that this distribution is a function of a potential intervention which takes the form
of a query rewrite. To be more precise, for sllm ∈ [0, 1], a binary score assigned by an LLM-based
judge [66, 1], sfuzz ∈ [0, 1], a fuzzy string similarity metric [8], and sbleu ∈ [0, 1], the BLEU-1 score
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Can you determine 
the number of 
integers between 
6 and 74/5?  

First, let's calculate \( \frac{74}{5} \): \frac{74}{5} = 14.8.  Now, we need to determine the number of integers 
between 6 and 14.8. The integers between 6 and 14.8 are 7, 8, 9, 10, 11, 12, 13, and 14.
This gives us a total of 8 integers.  However, the answer choices provided do not include 8. Let's re-
evaluate the problem to ensure there is no misunderstanding:  The integers between 6 and 14.8 are indeed 7 
through 14, which is 8 integers.  It seems there might be an error in the answer choices provided. 

Given the mathematical expression 74/5, which represents 
the division of 74 by 5, can you calculate the number of 
whole numbers or integers that fall within the range 
starting from 6 up to the result of this division? This 
involves understanding both the division operation and the 
concept of counting integers within a specified range.

First, let's calculate the result of the division \( \frac{74}{5} \). 
\[ \frac{74}{5} = 14.8 \].  Now, we need to count the whole 
numbers or integers that fall within the range starting from 6 up 
to 14.8. The integers in this range are: 6, 7, 8, 9, 10, 11, 12, 13, 14
There are 9 integers in this range.  
Therefore, the correct answer is: 9
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Figure 1: QueryBandits and Its Success in Mitigating Hallucination. The original query xt

induces a hallucinatory output: the LLM calculates 8 integers between 6 and 74/5. QueryBandits, by
leveraging the feature vector, selects the EXPAND rewrite strategy. The rewritten query x′

t generates
an accurate output of 9 integers. Noticeably, the feature vectors are different in the rewrite x′

t -
subordination (more complex clauses) is now present while specialization (query requiring domain-
specific knowledge for understanding) is absent - signifying effects of the EXPAND strategy.

capturing unigram lexical overlap [79, 61, 13], we define hallucination in terms of a reward model
rt = α · sllm +β · sfuzz +γ · sbleu where hallucinatory responses are those associated with low rewards.
Through our ablations, we also discover the Pareto-optimal balance of weights (Fig. 2a), by assigning
a higher weight on LLM-as-a-judge, which is also evidenced in studies that highlight the efficacy of
LLMs in Natural Language Generation (NLG) evaluation tasks [109, 121, 30]. As we are agnostic to
the stationarity of the reward distribution or lack thereof due to the extreme dimensionality of the
output space [86, 40], we propose to evaluate whether rewrite strategies exhibit advantages when
seeking to optimize the average reward or its worst case.

The usage of reinforcement learning (RL) [99] methods have been applied in Natural Language
Processing (NLP) tasks such as optimizing document-level query search [75], fine-tuning LLMs
[25, 78], and post-training [73]. Despite its prevalent usage, to our knowledge, there is no in-depth
interactive rewriting research to mitigate hallucination. We focus on bandit based methods because:
(i) modeling the long-term value of hallucination manifestation would require multiple queries from a
common sub-population; (ii) averaging hallucination propensity across distinct contexts may obscure
per-query contextual idiosyncrasies; and (iii) the token concatenation that defines how vocabulary
sampling occurs in output generation is deterministic, meaning it is unclear if an MDP transition
model may even be defined. That is not to say bandit methods have no precedent in NLP. Proximal
Policy Optimization [92] variants for LLMs such as GRPO (Group Relative Policy Optimization)
[96] and ReMax [58] also remove the critic via grouped Monte Carlo or baseline-adjusted returns.

We have meticulously selected five distinct rewriting arms/strategies; to our knowledge, current
research tends to pursue a "one-size-for-all" approach, leveraging one of these rewriting strategies
for all query types, and does not pursue guided rewrites via bandits [68, 112]. We also have
rigorously selected 17 different linguistic features that are known to hinder/enhance human or LLM
understanding (Table 1). We frame query rewriting as an online decision problem and by leveraging
per-query features, our bandit framework, QueryBandits, allocates exploration where uncertainty is
high and exploitation where features are meaningful—resulting in hallucination reduction.

Contribution 1: We introduce an empirically validated reward function, combining an LLM-judge,
fuzzy-match, and BLEU metrics (with α, β, γ = (0.6, 0.3, 0.1)) chosen inside the 1% Pareto-
optimal frontier on a held-out human-labeled set, to drive context-aware bandit learning (Fig. 2a).
Guided by this reward signal, our contextual QueryBandits learn to tailor each query rewrite to its
linguistic/contextual fingerprint. Our best performing contextual bandit, QueryBandits-Thompson
Sampling, drives a 87.5% win-rate boost over the NO-REWRITE baseline—a considerable margin
that highlights the efficacy of rewriting in reducing hallucination.
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Contribution 2: QueryBandits-Thompson Sampling delivers a decisive 42% gain against the pre-
dominant static prompting strategy (PARAPHRASE), underscoring that feature-aware rewriting with
bandits is effective for mitigating hallucination. In Figure 4, it is clear that the contextual QueryBan-
dits hone into the optimal rewrite quickly, accruing an order-of-magnitude less cumulative regret
than static prompting, vanilla (non-contextual) bandits, or no-rewriting. These gains confirm that
a feature-aware, online adaptation mechanism can consistently outpace one-shot heuristics in miti-
gating hallucinations. An interesting finding is that some static prompting methods have a higher
cumulative regret than NO-REWRITE, demonstrating that zero-shot prompting can cause more severe
hallucinations.

Contribution 3: We provide empirical evidence that there is no single rewrite strategy that maximizes
the reward for all types of queries. Our analysis of the per-arm regression weights (Figure 6) reveals
how each arm’s effectiveness hinges on the semantic features of a query. For example, if a query
displays the feature (Domain) Specialization, meaning that the query can only be understood with
domain-specific knowledge, the rewrite arm EXPAND is very effective in contrast to SIMPLIFY
(Figure 1). Crucially, ablating the 17-dimensional feature input causes QueryBandits-Thompson
Sampling’s performance to drop to just 81.7% win rate and 754.66 exploration-adjusted reward. This
performance gap confirms that the linguistic features carry an associative signal about optimal rewrite
strategy. Finally, we observe that across datasets, higher feature variance coincides with greater
variance in arm selection (Figure 5), resulting in genuinely diverse arm choices (Figure 2b).

Contribution 4: Optimizing queries post-training by embedding them directly into the stage of
prompting with minimal computational or token overhead constitutes an efficient strategy for trust-
worthy interfacing with LLMs, particularly under resource-constrained or latency-sensitive conditions.
We bypass the need for retraining or gradient-based adaptation through purely forward-pass mecha-
nisms. Moreover, through QueryBandits, we provide a mechanism to interpret the sensitivity of LLM
performance to contextual rewrites.

Interesting Findings: On many standard benchmark datasets, we discover that linear contextual
bandits converge almost exclusively to the NO REWRITE arm (Figure 8), empirically exposing LLM’s
tendency for query memorization on benchmarks. Only when we introduce semantically invariant
but lexically perturbed queries does the policy meaningfully diversify across rewrite strategies; a
meaningful insight for the research community that surface-form novelty is essential in training query
rewriting algorithms. On the non-contextual bandits, we empirically discover that they converge to
a single rewrite strategy within a dataset, in contrast to contextual bandits that tend to diversify its
choices conditioned on the presence/absence of linguistic features.

2 Related Work

LLM Hallucinations are known to erode trustworthiness from a societal perspective [24]. Recently,
certain conceptual analyses frame it as a new epistemic failure mode, requiring dedicated mitigation
agendas [118, 78]. Moreover, the release of more advanced reasoning models are concerningly
generating more hallucinations, as reported in OpenAI’s technical report [76] on o3 and o4-mini. The
Times [101] recently reported real-world case studies on how fabricated LLM outputs are prompting
legal accountability. Especially, the advent of more LLM-Agent enabled systems [113, 111] will
engender the compounding cost of hallucinations.

Thus, mitigation is regarded as indispensable for faithful LLM interactions [41, 102, 38] and research
is expanding from post-hoc detection [69], to preemptive grounding. Parallel to human-in-the-
loop RLHF, RL from AI Feedback (RLAIF) trains a reward model on preferences generated by an
LLM—bypassing expensive human labels—while exceeding RLHF quality on summarization and
dialogue tasks [53, 78, 18]. Watson et al. [112] introduced pre-generation hallucination estimation
via query perturbations. Ma et al. [68] has proposed the Rewrite-Retrieve-Read framework for
Retrieval Augmented Generation pipelines while human-designed query rules has been heavily used
for rewriting [64, 70, 15]. A common theme is that either raw prompting or manual heuristics is used
- not guided rewrites, through contextual signals of the original query.

Blevins et al. [11] has conducted extensive research on the strong performance of Pretrained Language
Models (PLMs) to retrieve linguistic features of a query in a few-shot manner. We employ this research
and leverage an LLM to identify key linguistic features as outlined in Table 1. For the selection of
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Table 1: Binary linguistic feature vector f ∈ {0, 1}17 identified as challenging from a linguistics
and LLM perspective. Features are grouped by type and grounded in prior work. For more specific
examples, see Appendix Table 5.

Feature Description Citation

Structural Features

Anaphora Contains anaphoric references (e.g., it, this) [93, 14]
Subordination Contains multiple subordinate clauses [39, 2, 11]

Scenario-Based Features

Mismatch Query (e.g. open-ended) does not match task (e.g. retrieval) [31, 46]
Presupposition Assumptions within the query are implicitly regarded as truthful [47, 55, 106]
Pragmatics Queries with discourse-driven intent (i.e. "can you pass me the salt") [97, 55, 89]

Lexical Features

Rarity Presence of rare words with poor representation [90, 49]
Negation Presence of negation (e.g., not, never) [37, 48, 104]
Superlative Usage of superlative forms (e.g., best, largest) with implicit semantics [81, 29]
Polysemy Presence of words that have multiple, related-meanings [5, 34]

Stylistic Complexity

Answerability Query is not highly speculative, sarcastic or rhetorical [82, 9, 56]
Excessive Overloaded with a large amount of details and information [57, 65]
Subjectivity Query requires LLM to reflect creatively and engender a personal opinion [28, 67]
Ambiguity Presence of ambiguous phrasing that opens multiple interpretations [12, 50, 63]

Semantic Grounding

Grounding Presence of clear intention and goal [22, 114]
Constraints Presence of temporal/spatial/task-specific constraints [42, 56]
Entities Presence of verifiable entities [54, 6, 110]
Specialization Query requires domain-specific knowledge for understanding [113, 17, 123]

Table 2: Overview of datasets, including domain, license, number of examples, associated scenarios,
etc. These datasets span a diverse range of question types, domains, and reasoning skills, supporting
robust evaluation. E = Extractive, M = Multiple Choice, A = Abstractive.

Dataset Scenario Domain License Count Citation

SQuADv2 E, A Wikipedia CC BY-SA 4.0 86K [84, 85]
TruthfulQA M, A General Knowledge Apache-2.0 807 [62]
SciQ M, A Science CC BY-NC 3.0 13K [43]
MMLU M Various MIT 15K [36]
PIQA M Physical Commonsense AFL-3.0 17K [10]
BoolQ M Yes/No Questions CC BY-SA 3.0 13K [19, 108]
OpenBookQA M Science Reasoning Apache-2.0 6K [72]
MathQA M Mathematics Apache-2.0 8K [4]
ARC-Easy M Science CC BY-SA 4.0 5K [21]
ARC-Challenge M Science CC BY-SA 4.0 2.6K [21]
WikiQA A Wikipedia QA Other 1.5K [116]
HotpotQA A Multi-hop Reasoning CC BY-SA 4.0 72K [117]
TriviaQA A Trivia Apache-2.0 88K [44]

these features, we have thoroughly reviewed not only existing LLM literature but also traditional
linguistics to identify features that are known to impact both human and LLM understanding.

3 Methodology and Evaluation Metrics

In this section, we define the key ingredients to formulate a sequential decision-making problem as a
multi-armed bandit [52]. Specifically, we define the action space, contextual attributes, and reward.
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Bandit Formulation. In the contextual bandit framework [52], a learner is faced with, given a
context vector xt ∈ X ⊂ Rd at time t, selecting an arm at from an action set A. Upon that basis,
Nature reveals a reward rt(xt, at) which is a function of the context and arm. To be more precise,
the reward is defined as r : X × A → R. The goal of a bandit algorithm is to select arms that are
eventually good with respect to the average (or cumulative) reward. In the stochastic bandit setting,
specifically, one is interested in selecting arms according to a policy π : X → ρ(A) which performs
as well as maxπ∈Π E[r(x, π(x))]. Here ρ(A) denotes the probability simplex over K arms, and Π is
some class of policies. Next we specify the concrete choices of action space, context variables, and
rewards for the query rewrite setting.

Action Space. Let A = {a0, a1, a2, a3, a4} denote the set of rewriting strategies (arms), where each
arm represents a distinct style of query reformulation implemented via prompt-based instructions to
an LLM. As outlined in §2, previous research tends to take a "one-size-for-all" approach,

▶ a0: Paraphrasing - The incoming query is rewritten using a prompt such as “Paraphrase this ques-
tion while preserving its meaning.” This introduces lexical diversity while maintaining semantic
similarity, testing whether alternative phrasings reduce hallucination. Many have explored how
paraphrasing can improve factual consistency in LLMs [16, 27, 115] .

▶ a1: Simplification - The incoming query is rewritten to eliminate nested clauses or complex syntax.
This targets hallucinations caused by long-range dependencies or overloaded details - and borrows
ideas from educational psychology where simpler, granular, prompts enable a child to learn a new
skill [59]. Recently, Van et al. [105], Zhou et al. [124] report on how simplified prompts decrease
off-topic generations and enable complex reasoning tasks.

▶ a2: Disambiguation - The query is rewritten by disambiguating vague references (e.g., ambiguous
pronouns or temporal expressions). Many have conducted extensive studies on LLMs’ inabilities
to resolve ambiguous queries which leads to subpar performance [26, 94, 23].

▶ a3: Expansion - The query is rewritten to explicitly expand on relevant named entities or attributes,
elaborating on contextual cues through generation [120]. Since transformers-based LLMs optimize
next-token likelihood over attention-mediated context windows [107], appending fine-grained
query constraints effectively conditions the model on a richer semantic prefix.

▶ a4: Clarification of Certain Terms - The query is rewritten to clarify the lexical and semantic
meaning of jargons. Since LLMs are pre-trained on broad domain corpora using maximum
likelihood next token prediction, rare domain-specific jargons [20] suffer from sparse exposure
and less-calibrated embeddings [87, 80].

Contextual Attributes. For each incoming query, we extract a 17-dimensional binary feature vector
f ∈ {0, 1}17 that captures key linguistic properties as outlined in Table 1, grounded by related works
in NLP (§2). We have rigorously selected features that are known to impact both human linguistic
understanding and LLM performance.

Reward Model. We model each rewritten query’s reward rt ∈ [0, 1] as a convex combination of
three complementary correctness signals:

rt = α sllm + β sfuzz + γ sbleu, α+ β + γ = 1, α, β, γ ≥ 0 (1)
▶ sllm ∈ {0, 1} is a binary consistency judgment by a GPT-4o-based assessor, calibrated on factual

correctness between system and reference answers [66, 1].
▶ sfuzz ∈ [0, 1] is token-set similarity from RapidFuzz [8], capturing soft string overlap.
▶ sbleu ∈ [0, 1] is the BLEU-1 score (unigram precision) under a unit-cap [79, 61, 13], ensuring

lexical fidelity.

This multi-faceted formulation mitigates individual failure modes inherent in any single metric
(e.g. BLEU’s paraphrase blindness or edit-distance oversensitivity) while remaining bounded for
stable learning. Following Wang et al. [109], we leverage the strength of LLMs-as-judges, and, as
demonstrated by Test-Time RL [125], even noisy, self-supervised signals (e.g. pseudo-labels from
majority-voted LLM outputs) can effectively guide policy updates. However, to validate that our
convex proxy aligns with human judgment, we assembled a held-out, manually labeled set of 100
query–answer pairs and measured ROC–AUC of rt against binary human labels (Figure 2a). See Alg.
1 in Appendix A.2 for further detail.

Reward-Weight Simplex Analysis. We swept (α′, β′, γ′) over a triangular grid (α′ + β′ + γ′ = 1)
and computed ROC–AUC on the human-labeled validation set. Figure 2a plots each grid point’s AUC
and overlays the 1% Pareto frontier (dark region). Our manual weights (α, β, γ) = (0.6, 0.3, 0.1) lie
well inside this frontier, demonstrating robustness. The Pareto frontier reveals the following:
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(a) ROC–AUC Pareto frontier on the
reward-weight simplex.

(b) Mean-reward ranks (1 = best) of each rewrite arm per dataset under
our contextual bandit; color intensity indicates closeness to the top rank.

Figure 2: (a) Our chosen (α, β, γ) lies deep in the 1% optimal frontier. (b) Breakdown of per-dataset
arm performance: different datasets consistently favor different rewrite strategies

▶ LLM-Judge Robustness (α): The ROC–AUC surface is nearly invariant when α varies by ±0.2:
AUC shifts by <0.5%, indicating our formulation tolerates large LLM-judge weight swings.

▶ Fuzzy-Match Sensitivity (β): Small increases in β rapidly exit the Pareto region, showing that
the fuzzy-match term must be tuned carefully to avoid degrading overall accuracy.

▶ BLEU-Only Pitfall (γ): As γ increases, ROC–AUC steadily declines, bottoming out at γ = 1
(pure-BLEU), where the model over-emphasizes surface overlap at the expense of true correctness.

▶ Pareto-Optimal Region: Our chosen (0.6, 0.3, 0.1) sits deep in the high-AUC plateau, confirming
it is a Pareto-optimal trade-off among semantic, fuzzy, and lexical signals.

Together, these experiments on manually labeled data substantiate our reward design: the LLM-
judge component provides a forgiving anchor, fuzzy-match demands precise calibration, and BLEU
contributes complementary lexical oversight.

Remark 1 (On RL Methods vs. Bandits) Within LLMs, for each input query, the transformer
attends over the fixed context window and computes a softmax over the vocabulary to maximize
token likelihood [83]. Consequently, we believe that hallucinations occur at the moment of generation
for that single query, making hallucination a per-query phenomenon. Indeed, recent PPO variants
for LLMs—GRPO [96] and ReMax [58]—remove the critic via grouped Monte Carlo or baseline-
adjusted returns, highlighting critic-free policies that our bandit formulations naturally generalize.
Therefore, a full-episodic RL problem, which must solve a Markov decision process with long-
horizon credit assignment and nonstationary transition dynamics [99], can be practically suboptimal.
Moreover, many of these methods rely on estimating a fixed average reward or state-action value
Q(s,a) which can obscure per-query idiosyncrasies; if the optimal rewrite arm varies sharply with
linguistic context, a mere empirical average will yield suboptimal policies.

Remark 2 (Linkage between Algorithm Choices and RL Methods) Furthermore, it should be un-
derscored that several algorithms whose usage we investigate here have analogues in RL: posterior
sampling (PSRL) [77] as an analogue for Thompson sampling [100]; follow-the-regularized leader
(FTRL) and its variants [95], originate from proximal gradient algorithms [88] whose usage in RL as
proximal policy optimization (PPO) [91] is well-established. Other PPO-style advances like DAPO
[119] improve exploration-exploitation via dynamic sampling and reward filtering, and VAPO [122]
demonstrates stable Long-CoT training with an explicit value model—showing the spectrum from
model-based to model-free approaches that contextual bandits sit within.

Choice of Algorithms. For linear contextual bandits we fit a per-arm linear model x⊤
t θk and choose

either a UCB (LinUCB [51] / KL-UCB [32]), an FTRL regularized weight [71], or a posterior draw
(Thompson sampling [100]). For adversarial bandits we consider two parameter-free adversarial
methods—EXP3 [7] and FTPL [45, 98]. For full scoring, update equations and regret bounds, see
Appendix A.2 and Algorithm 1.

Evaluation Metrics. We assess each rewrite policy using three complementary metrics that capture
both its ability to explore promising rewrites and its final accuracy relative to a no-rewrite baseline.
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# Groups Mean ROC–AUC 95% CI

5 0.9524 [0.9165, 0.9884]
10 0.9720 [0.9549, 0.9891]
15 0.9709 [0.9581, 0.9836]
25 0.9747 [0.9674, 0.9821]
50 0.9695 [0.9633, 0.9756]
75 0.9745 [0.9688, 0.9801]

100 0.9709 [0.9626, 0.9792]
150 0.9767 [0.9716, 0.9819]
200 0.9710 [0.9653, 0.9767]
300 0.9734 [0.9709, 0.9758]
400 0.9741 [0.9713, 0.9769]
500 0.9736 [0.9703, 0.9769]
600 0.9732 [0.9701, 0.9763]
700 0.9721 [0.9695, 0.9748]
800 0.9719 [0.9699, 0.9738]
900 0.9725 [0.9716, 0.9734]

1000 0.9737 [0.9721, 0.9753]

Macro-avg 0.9729 –

(a) Validity of the exploration-adjusted reward
radj as a correctness proxy. Mean ROC–AUC
and 95% Confidence Intervals (±1.96 SE); 10
resamples per n. By ∼150 groups, the CI lower
bound exceeds 0.97.

(b) Mean ROC-AUC vs. sample size n, with 95% CIs.

(c) Distribution of rt for correct vs. wrong (normalized den-
sity). Our reward presents a clear separation between our
human validated labels.

Figure 3: Summary of reward validity. Left: (a) numerical ROC–AUC and CIs across sample sizes.
Right: (b) power curve; (c) class-conditional reward histogram of rt vs. human labels.

All three metrics together give a balanced view of (1) how well a policy explores and exploits, (2)
how quickly it converges to good answers, and (3) how often it beats the baseline in reward.

Metric 1: Exploration-Adjusted Reward. Let rt ∈ [0, 1] be the reward at pull t and let Ht ∈ [0, 1]
be the normalized Shannon entropy of the policy’s strategy-selection history up to t. We define the
final exploration-adjusted reward as

Radj =

T∑
t=1

(
rt + λHt

)
,

where λ = 0.1 weights the bonus for exploration and T is the trajectory length. This metric rewards
policies that both achieve high per-pull rewards and maintain sufficient exploration.

Metric 2: Mean Cumulative Regret. At each pull we compute instantaneous regret as the gap
between the oracle reward (the best achievable rewrite) and the observed reward. Summing these
gives the cumulative regret per run, and we report its average over all runs. Where r∗t is the maximal
reward at pull t:

Regret =
1

N

∑
runs

T∑
t=1

(
r∗t − rt

)
,

Metric 3: Win Rate vs. Baseline. To measure final correctness head-to-head, we treat each test
pull t as an independent trial and compute the fraction of trials for which a policy’s reward rpolicyt

strictly exceeds the no-rewrite baseline’s reward rbaset . This directly quantifies how often each rewrite
outperforms doing nothing. For N = 100 test queries, the win rate is

WinRate =
1

N

N∑
t=1

1
[
rpolicyt > rbaset

]
× 100%
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Figure 4: Cumulative reward averaged across all datasets over the no-rewrite baseline for each
algorithm (sorted by final performance), highlighting the superior gains achieved by contextual
bandits compared to non-contextual learners and static prompt-based rewrites.

4 Experiments

Pipeline. For each decision round t:

xt

Extr. feat.
ft∈{0,1}d

−−−−−−−→ ft

Select at

(rewrite strat.)−−−−−−−−→ x′
t = gat(xt)

LLM−−−−→ yt

Eval.
rt∈[0,1]−−−−−−→ rt

Update Bandit
↫

1. Feature Extraction. For query xt, compute d-dimensional linguistic feature vector ft ∈ {0, 1}d.
2. Arm Selection. The bandit receives ft and selects a rewrite arm at ∈ {1, . . . ,K}.
3. Query Rewriting. Apply the selected arm to obtain the candidate query x′

t = gat(xt) .
4. LLM Inference. Issue x′

t to gpt-4o-2024-08-06, producing response yt.
5. Reward Evaluation. Compute scalar reward rt ∈ [0, 1] via our reward formulation.
6. Bandit Update. Update the internal state of the bandit based on (at, rt).

Dataset and Query Construction. We evaluate on D = 13 diverse QA benchmarks (see Table 2).
For each dataset, we sample |Q| queries satisfying: (1) Original Answerability: the query in the
dataset (q) is answered correctly by gpt-4o-2024-08-06, and (2) Perturbation Validity: of its five
lexically perturbed but semantically invariant versions of the dataset’s query, measured by numerous
metrics such as LLM-as-judge and n-gram based metrics [60, 79, 109, 30], between one and three
perturbations yield incorrect answers. Then, we randomly choose xt in |Q| to train QueryBandits.

The importance of this query construction process deserves emphasis. Through our investigations, we
have discovered that the ubiquity of benchmark datasets in Table 2 within pre-training and fine-tuning
regimes has engendered a potentially pernicious form of prompt memorization. When we deploy
our linear contextual bandits, the policy converges almost exclusively to no-rewriting, effectively
demonstrating that the LLM has most likely memorized these exact phrasings rather than learning to
exploit deeper linguistic structure (Figure 8). To evaluate genuine rewrite efficacy—and to prevent
our results from collapsing into a trivial memorization baseline—we therefore choose a perturbed
version of the dataset’s query to construct the incoming query for our bandits. This experimental
setup thus prioritizes query-rewriting strategies that are non-degenerate.

Experimental Configuration. We compare three non-contextual and six linear contextual bandits
against zero-shot prompting and a no-rewrite baseline. All reported metrics are averaged over all
dataset runs per algorithm. We compare M bandit algorithms and prompting strategies over K = 5
rewrite arms. Each algorithm runs for T = |QD| rounds on each of the D datasets (Table 2).
Thus, Total Pulls = M × D × |QD| = 253, 440, with |QD| ≈ 1050, M = 15, and D = 16.
We bootstrap samples with replacement for TruthfulQA to obtain approximately 1050 queries.
Hyperparameters (learning rates, exploration coefficients, regularization constants) are tuned via grid
search on a held-out validation set.

5 Results

Hypothesis 1: Can QueryBandits reduce hallucination? Table 3 and Figure 4 compares our
QueryBandit algorithms against the baseline and five static prompting scenarios on 13 QA benchmarks
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Table 3: Rewrite-policy performance: final cumulative exploration-adjusted reward, mean cumulative
regret, and win rate vs. no-rewrite baseline.

Algorithm Contextual? Adj. Reward ↑ Cum. Regret ↓ Win Rate ↑
Thompson Sampling (Contextual) ✓ 819.04 135.84 87.5%
LinUCB with KL ✓ 818.79 136.00 87.0%
LinUCB ✓ 818.60 136.12 86.9%
Linear ϵ-FTRL ✓ 799.57 155.30 85.0%
EXP3 (Non-Contextual) ✗ 797.47 157.31 86.5%
Linear EXP3 ✓ 781.05 173.60 83.8%
Thompson Sampling (Non-Contextual) ✗ 754.66 200.18 81.7%
Linear FTPL ✓ 738.07 216.54 76.3%
FTPL (Non-Contextual) ✗ 716.05 238.85 62.8%

Prompting (Paraphrase) – 732.39 222.56 44.9%
Prompting (Simplify) – 730.13 224.42 50.1%
Prompting (Disambiguate) – 713.65 241.25 42.4%
Prompting (Clarify Terms) – 711.65 243.35 38.2%
Prompting (Expand) – 639.25 315.71 27.2%

Baseline (No Rewrite) – 729.20 225.85 –

(1,050 queries per dataset). Our top contextual learner—Thompson Sampling with the 17-dimensional
feature vector—achieves an 87.5% win rate and 819.04 exploration-adjusted reward, compared to
the BASELINE: NO REWRITE, signifying that contextual query rewriting can reduce hallucination.
As a side note: we aggregate results across datasets rather than report per-dataset Monte Carlo trials,
as within-dataset permutation yielded trivial randomization.

Hypothesis 2: Can QueryBandits outperform prompting? Our best performing bandit, Thompson
Sampling, exceeds the performance of static prompting for PROMPTING (PARAPHRASE) (44.9% /
732.39) and PROMPTING (EXPAND) (27.2% / 639.25), as seen in Table 3 and Figure 4. These gains
confirm that raw static prompting cannot approach the effectiveness of a learner that adapts its rewrite
choice to each query’s linguistic fingerprint. By framing rewrite selection as an online decision
problem and leveraging per-query context, QueryBandits allocate exploration where uncertainty is
high and exploitation where features reliably predict hallucination risk—resulting in up to double the
hallucination reduction of any static strategy, with no additional model fine-tuning.

Hypothesis 3: Do linear contextual bandits outperform those which are oblivious to context?
Crucially, ablating the 17-dimensional feature input causes Thompson Sampling’s performance
to drop to just 81.7% win rate and 754.66 exploration-adjusted reward (–5.8 pts, –64.38 reward
points), despite identical hyperparameters and run count. Since our reward directly measures output
correctness, this performance gap confirms that the linguistic features carry associative signal about
hallucination risk. Moreover, the majority of our linear QueryBandits outperform those which are
oblivious to context (Fig. 4), signifying the importance of taking context into account in rewrites.

Hypothesis 4: Is there an association between query features and reward? Each rewrite arm
seems to exhibit different sensitivities toward different linguistic features. Figures 5 & 6 plot
each arm’s average variance and learned regression weights θ across 17 binary linguistic features.
Interestingly, the same linguistic feature can flip from strongly sensitive for one arm to insensitive
for another—for example, the feature (Domain) Specialization is quite sensitive to the arm/strategy
EXPAND but relatively much less to SIMPLIFY. A plausible explanation might be that domain
specific queries inherently require specialized context outside the LLM’s broad-domain priors, so
EXPAND—by injecting explicit entity attributes or ontological qualifiers—reinforces the model’s
semantic grounding, whereas SIMPLIFY risks excising those critical signals. While our association
matrix is interesting, each learned coefficient does not strictly prove a causal mechanism.

Hypothesis 5: Is there a single rewrite strategy that maximizes reward for all types of queries?
Our analysis of the per-arm regression weights (Figure 6) reveals that no single rewrite strategy
dominates across all linguistic profiles. Instead, each arm’s effectiveness hinges on a distinct “feature
footprint”. For example, SIMPLIFY thrives when pragmatic cues (e.g. discourse markers, politeness
markers) are present—these guide safe syntactic pruning—but falters on superlative constructions,
whose removal strips away essential comparative meaning. For our interpretation of these sharp
inversions feature–arm interactions, refer to Appendix Table 4. Therefore, our results demonstrate

9



Figure 5: Contextual Per-Feature Variance by
Arm. For each arm, we compute the variance
of each binary linguistic feature over all queries
on which that arm was chosen. High variance
means the bandit frequently switches the arm on
that feature’s presence.

Figure 6: Contextual Feature Contribution
Strength. These are the averaged θ weights (di-
rect contributions) of each feature to the expected
reward under each arm. Positive weights indicate
features that boost that arm’s reward; negative
weights indicate features that penalize it.

that the diversity of arm selected is correlated with feature variance—and that there is no single
rewrite arm that fits all queries.

6 Conclusion

Large language models are now routinely asked to provide factual answers in high-stakes settings
(e.g., compliance, legal, medical, and policy contexts), where confidently delivered but fabricated
content is not just an accuracy failure but a source of reputational, financial, and legal exposure.
Critically, many such deployments rely on closed, proprietary systems whose weights cannot be
modified and whose decoding behavior cannot be directly controlled. QueryBandits is aimed at
this reality: rather than trying to make the model itself “safe,” we place a decision layer in front of
the model that selectively rewrites the incoming query to reduce hallucination risk before the model
answers. This control surface is lightweight, auditable, and compatible with closed models: for
each user query, we choose among a small set of rewrite strategies, and that choice can be logged,
inspected, and justified to governance and compliance teams. Empirically, this matters. Across
diverse QA settings, selecting the right rewrite per query yields substantially higher factual reliability
than using a single fixed prompting style or issuing the query unchanged. We also observe that
no single rewrite strategy dominates: different queries benefit from different interventions such as
expanding underspecified requests, simplifying syntactically overloaded questions, or clarifying
ambiguous references. Therefore, QueryBandits reframes hallucination risk as not only a property
of the model, but as a property of the interaction. By treating query reformulation itself as a policy
decision rather than a static trick, QueryBandits turns that interaction into an explicit, learnable, and
auditable control knob for governing model behavior in deployment.

Disclaimer. This paper was prepared for informational purposes by the Artificial Intelligence
Research group of JPMorgan Chase & Co. and its affiliates ("JPMorgan”) and is not a product of the
Research Department of JPMorgan. JPMorgan makes no representation and warranty whatsoever and
disclaims all liability, for the completeness, accuracy or reliability of the information contained herein.
This document is not intended as investment research or investment advice, or a recommendation,
offer or solicitation for the purchase or sale of any security, financial instrument, financial product or
service, or to be used in any way for evaluating the merits of participating in any transaction, and
shall not constitute a solicitation under any jurisdiction or to any person, if such solicitation under
such jurisdiction or to such person would be unlawful.
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(a) Arm Diversity for Contextual Bandits, as a Fraction
of Trials.

(b) Arm Diversity for Non-Contextual Bandits, as a
Fraction of Trials.

Figure 7: For Non-Contextual bandits, almost every dataset is dominated by a single arm with the
highest global reward (typically 40%-60% of the trials). The remaining 40-60% is split among the
other four arms as noise, the non-contextual policy has no way to "know" when within a dataset a
different arm might do better. In contrast, Contextual bandits show a more even mix: the top arm
is only ∼25-30%, with two or three other arms contributing sizable shares (15-25% each). The
contextual policy reads the features and diversifies its choices within each dataset.

A Appendix / supplemental material

A.1 Limitations

Current limitations in our work are as follows: our current contextual bandit framework treats each
of the 17 features as independent, but does not capture higher-order interactions. This can provide
an exciting avenue of future research in terms of measuring whether the combination of features
jointly exacerbates hallucination. Likewise, we would like to highlight that the feature-arm regression
weights do not stipulate a causal relationship - highly sophisticated causal relationships are difficult
to formulate within LLMs due to the inherent difficulties of interpreting a neural network’s internal
layers; thus, in this paper, we focus on providing empirical studies and the conclusions we can draw
from them. Finally, even with our rigorous studies to find the ROC-AUC Pareto-frontier, our reward
model leverages LLM-as-judge, which may reflect the LLM’s bias. Overall, these limitations posit
potential directions by which the research community can further pursue - and ultimately help expand
our understanding of these powerful, albeit hallucinatory models.

A.2 Summary of Bandits

▶ Non-Contextual Adversarial
– EXP3 [7] Maintains weights wk, samples at ∝ wk, updates wat

← wat
exp
(

γ rt
K pat

)
.

– FTPL [45, 98] Adds Gumbel noise ξk∼Gumbel(0, 1/η) [33] to cumulative rewards, selects
at = argmax(cum_rewardk + ξk), then increments the chosen arm’s reward.

▶ Contextual Stochastic
– LinUCB [51] Selects at = argmax

k

(
x⊤
t θ̂k+α

√
x⊤
t A

−1
k xt

)
, updates Ak←Ak+xtx

⊤
t , bk←

bk + rtxt.
– KL-UCB (LinUCB-KL) [32] Replaces the UCB term with a KL-divergence-based confidence

bound.
– Thompson Sampling Maintains Gaussian posterior N (µk,Σk); samples θ̃k, picks at =

argmaxx⊤
t θ̃k, updates the posterior.

▶ Contextual Adversarial
– FTRL [71] Selects arm maximizing x⊤

t wk − λ∥wk∥1, with an ℓ1 regularizer.
– ϵ-greedy FTRL ...
– LinearEXP3 [74] Contextual extension of EXP3, sampling arms based on exponentiated linear

scores.
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Algorithm 1 General Bandit + Rewrite Loop

Require: arms A, context xt, algorithm algo ∈ {EXP3, FTPL, LinUCB, KL, FTRL, Thompson},
hyperparameters

1: for t = 1 to T do
2: observe xt

3: for each arm k ∈ A do
4: sk ← Score(algo, k, xt)
5: end for
6: select at = argmaxk∈A sk
7: apply rewrite at to query and observe reward rt
8: Update(algo, at, xt, rt)
9: end for

(a) Soft Rank Heatmap for all Bandits, including arm NO
REWRITE.

(b) Arm Diversity when including NO
REWRITE.

Figure 8: Impact of the No-Rewrite Arm. Note that these experiments are conducted on the original
query "as-is" in the benchmark dataset, with no perturbations. Upon enabling the NO REWRITE
option, our contextual bandit rapidly converges to this arm, which then achieves the highest reward on
several datasets. We attribute this behavior to the LLM’s tendency to memorize benchmark questions.

– LinearFTPL [35] Contextual adaptation of FTPL, applying Gumbel perturbations to linear
reward estimates.

A.3 LinUCB

The estimated parameter is:

θ̂a = A−1
a ba. (2)

Given a query feature vector x, the upper confidence bound (UCB) for arm a is:

UCBa(x) = x⊤θ̂a + α
√
x⊤A−1

a x, (3)

where α controls the exploration–exploitation trade-off. The arm selected is:

a∗ = argmax
a∈A

UCBa(x). (4)

Upon observing reward r, update:

Aa ← Aa + xx⊤, ba ← ba + r x. (5)

A.4 LinUCBKL Bandit Strategy:

The algorithm is initialized with parameters: number of arms narms, dimension d, regularization
parameter λ, exploration parameter α, noise variance σnoise, and KL-bound constant c. Each arm a
maintains a matrix Aa and a vector ba, initialized as λId and 0d, respectively.
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(a) Contextual Model Feature Variance. (b) Non-Contextual Model Feature Variance.

Figure 9: Comparison of Feature Variance between (a) our contextual bandits and (b) its non-
contextual counterparts. Polysemy, Constraints and Entities show the most variation. Presupposition,
Excessive Details, and Grounding have the least.

The select_arm method computes the score for each arm a using the following formulation:
θa = A−1

a ba

µa = x⊤θa

vara = x⊤A−1
a x

na = max(1, counts[a])

raw_bounda =
log(t) + c log(log(t+ 1))

na

bounda = max(raw_bounda, 0.0)

bonusa =
√
2 · vara · bounda

scorea = µa + bonusa
where x is the context vector, t is the time step, and counts[a] is the number of times arm a has been
selected. The arm with the highest score is selected for exploration.

The update method updates the matrix Aa and vector ba for the selected arm a based on the received
reward rt:

Aa ← Aa + xx⊤

ba ← ba + rtx

counts[a]← counts[a] + 1

This strategy leverages the KL-bound to dynamically adjust exploration bonuses, enhancing the
LinUCB algorithm’s ability to balance exploration and exploitation in a contextual setting.

A.5 FTRL

The algorithm is initialized with the following parameters: number of arms narms, dimension d,
learning rate α, exploration parameter β, and regularization parameters l1 and l2. The cumulative
gradient vectors for each arm are stored in za, initialized as zero vectors of dimension d.

The weight vector wa for each arm a is computed as:

wi =

{
− zi−sign(zi)·l1

β+
√

ni
α +l2

if |zi| > l1

0 otherwise
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(a) Contextual Model KL Distance. (b) Non-Contextual Model KL Distance.

Figure 10: Comparison of Inter-Arm Context Distances (Symmetric KL) between (a) our contextual
bandits and (b) its non-contextual counterparts. Arm pairs such as EXPAND and PARAPHRASE in
the non-contextual bandit setting exhibit high KL distances at 1.01. One interpretation is that the
context-clouds barely overlap from dataset to dataset (Figure 7b).

where zi is the cumulative gradient for the i-th feature of arm a, and ni is the cumulative squared
gradient for the i-th feature. The arm with the highest score, calculated as the dot product of the
weight vector w and the context vector, is selected:

at = arg max
a∈{1,...,narms}

(
d∑

i=1

wi · xi

)

Upon receiving a reward rt for the selected arm at, the algorithm updates the cumulative gradient
vector z and the squared gradient sum n for the selected arm:

εerror = ⟨w,x⟩ − rt
g = εerror · x

σ =

√
ni + g2i −

√
ni

α
zi ← zi + gi − σ · wi

ni ← ni + g2i

This formulation allows the FTRL algorithm to adaptively adjust the exploration-exploitation trade-off
by incorporating both the cumulative reward and the uncertainty in the form of regularization terms,
which are scaled by the learning rate α and exploration parameter β.

A.6 Linear EXP3

The algorithm is initialized with parameters: number of arms narms, dimension d, exploration
parameter γ, and learning rate η. Each arm a maintains a parameter vector θa, initialized as 0d.

We compute the probability distribution over arms using the following formulation:

logitsa = θ⊤a x

logits = logits−max(logits)
exp_logitsa = exp(logitsa)

base_probsa =
exp_logitsa∑narms
a=1 exp_logitsa

probsa = (1− γ) · base_probsa +
γ

narms

where x is the context vector. The arm is selected based on the probability distribution probs.
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(a) Contextual Model Raw Feature Strength. (b) Non-Contextual Model Raw Feature Strength.

Figure 11: Comparison of Raw feature-level regression coefficients between (a) our contextual
bandits and (b) its non-contextual counterparts. Each cell shows how enables a raw view into how
specific linguistic feature changes the expected reward under each rewrite strategy.

The update method updates the parameter vector θa for the selected arm a using the estimated
reward r̂t:

r̂t =
rt
pa

θa ← θa + η · r̂t · x

where pa is the probability of selecting arm a, and rt is the received reward. This strategy leverages
exponential weighting and exploration bonuses to balance exploration and exploitation in a linear
contextual setting.

A.7 Linear FTPL

The algorithm is initialized with parameters: number of arms narms, dimension d, and learning rate η.
Each arm a maintains a parameter vector θa, initialized as 0d.

The select_arm method computes the perturbed scores for each arm using the following formula-
tion:

linear_scorea = θ⊤a x

noisea ∼ Gumbel(0,
1

η
)

scorea = linear_scorea + noisea

where x is the context vector. The arm with the highest perturbed score is selected:

at = arg max
a∈{1,...,narms}

scorea

θa ← θa + rt · x

This strategy leverages random perturbations from a Gumbel distribution to balance exploration and
exploitation, allowing the algorithm to explore suboptimal arms while exploiting the accumulated
knowledge of their performance in a linear contextual setting.
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(a) Contextual Model Relative Feature Strength. (b) Non-Contextual Model Relative Feature Strength.

Figure 12: Comparison of Min-Max Normalized feature-level regression coefficients between (a) our
contextual bandits and (b) its non-contextual counterparts. Each cell shows how enables a relative
view into how specific linguistic feature changes the expected reward under each rewrite strategy.
Table 4 highlights contextual bandit trends.

Table 4: Top Drivers (f+
max) and Reducers (f−

max) of Rewrite Strategies per Linguistic Features
For each rewrite arm, we list the feature whose normalized coefficient was highest (100 %) and lowest
(0 %), alongside a brief rationale for its positive or negative impact on downstream reward.

Arm a f+
max Interpretation f−

max Interpretation

DISAMBIGUATE Subordination
(100 %)

Long or nested clauses benefit from
targeted disambiguation, which isolates
and clarifies the core semantic relation.

Polysemy (0 %) Highly polysemous terms lead
disambiguation to pick the wrong sense,
degrading downstream reward.

SIMPLIFY Pragmatics (100 %) Pragmatic cues (e.g. discourse markers,
politeness) guide safe simplification
without loss of meaning.

Superlative (0 %) Stripping superlative constructions
removes essential comparative context,
hurting reward.

EXPAND Constraints (100 %) Queries already rich in constraints
(time, location, numeric bounds) gain
precision when expanded with further
qualifiers.

Ambiguity (0 %) Underspecified queries offer no detail to
expand, so further addition of terms
only introduces noise.

PARAPHRASE Answerability
(100 %)

Paraphrasing queries that are already
answerable refreshes wording while
preserving solvability, boosting LLM
performance.

Presupposition
(0 %)

Altering queries with strong
presuppositions can break implied
assumptions, reducing effective reward.

CLARIFY TERMS Rarity (100 %) Defining rare or domain-specific terms
anchors the LLM’s understanding of
technical queries.

Subordination
(0 %)

Clarifications in convoluted sentences
can introduce further parsing difficulty,
impeding reward.

A.8 Thompson Sampling

For a given x, sample θ̃a ∼ N (µa,Σa) and select the arm maximizing:

a∗ = argmax
a∈A

x⊤θ̃a. (6)

Standard Bayesian linear regression updates are then used to update µa and Σa based on the observed
reward r.

Σ−1
a ← Σ−1

a +
1

σ2
xx⊤,

µa ← Σa

(
Σ−1

a µa +
1

σ2
x r
)
.

(7)
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(a) Contextual Model Feature Uplift. (b) Non-Contextual Model Feature Uplift.

Figure 13: Reward Uplift by Contextual Feature and Strategy. Feature Uplift measures how
much the presence of a binary feature changes the expected reward for a given rewrite arm, formally
∆(fi, a) = E[rt | arm = a, fi = 1] − E[rt | arm = a, fi = 0]. (a) Under the contextual bandit,
the strongest positive uplifts come from Answerability (≈ +17 uniformly) and Grounding (+15–18),
while Ambiguity (≈ –15 to –18) and Subjectivity (≈ –10 to –14) impose the largest hits across all
arms. Mid-range features like Presupposition and Constraints deliver modest boosts (≈ 5), and
Excessive Details and Anaphora slightly hurt performance (≈ –5 to –7). (b) The non-contextual
bandit amplifies these trends: Answerability and Grounding remain the top drivers (≈ +18–20),
but Ambiguity becomes even more detrimental (≈ –17 to –18), and Mismatch drops to nearly –16
under some arms. Notably, the non-contextual model shows a stronger negative effect for Excessive
Details (up to –12) and Entities (≈ –6) than the linear one, suggesting it more sharply penalizes noisy
contexts. Together, these heatmaps reveal which linguistic signals each rewrite strategy leverages (or
struggles with), and how context vs. context-blind policies weigh them differently.
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Figure 14: Pairwise Normalized Coefficient Differences for Contextual Bandits. Each cell shows
the min–max–normalized difference in regression weight for a given linguistic feature (rows) between
two rewrite arms (columns), e.g. “Paraphrase vs Disambiguate,” “Simplify vs Expand,” etc. Cells
labeled “Win” (blue) indicate the feature favors the first arm in the matchup, while “Loss” (red)
indicates it favors the second. Values are expressed as a percentage of the feature’s full coefficient
range.
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Feature Definition Example
St

ru
ct

ur
al Anaphora Presence of pronouns or references re-

quiring external context.
"What about that one?" (Unclear ref-
erence)

Subordination Measures the presence of multiple sub-
ordinate clauses

"While I was walking home, I saw a
cat that looked just like my friend’s."

Sc
en

ar
io

-B
as

ed

Mismatch Mismatch between the query’s intended
output and its actual structure.

"Find me this paragraph in this doc-
ument" (When document isn’t given,
this query cannot be answered)

Presupposition Unstated assumptions embedded in the
query.

"Who is the musician that developed
neural networks?" (Assumes such a
musician exists)

Pragmatics Captures context-dependent meanings
beyond literal interpretation.

"Can you pass the salt?" (A request,
not a literal ability)

L
ex

ic
al

Rarity Use of rare or niche terminology. "What are the ramifications of
quantum decoherence?" (Uses low-
frequency terms)

Negation Presence of negation words (not, never). "Is it not possible to do this?"

Superlatives Detection of superlative expressions
(biggest, fastest).

"What is the fastest algorithm?"

Polysemy Presence of ambiguous words with mul-
tiple related meanings.

"Explain how a bank operates."
(Ambiguity: financial institution vs.
riverbank)

St
yl

is
tic

Answerability Assesses whether the query has a verifi-
able answer.

"What is the exact number of galax-
ies?" (Unanswerable)

Excessive Evaluates whether a query is overloaded
with information, potentially distracting
the model.

"Can you explain how convolutional
neural networks work, including all
mathematical formulas?"

Subjectivity Query requires the degree of opinion or
personal bias

"What is the best programming lan-
guage?"

Ambiguity Highly ambiguous context, task, and
wording

"Tell me about history." (Too broad)

Se
m

an
tic

Grounding Evaluates how clearly the query’s pur-
pose is expressed.

"How does reinforcement learning
optimize control in robotics?" (Clear
intent)

Constraints Identifies explicit constraints (time, loca-
tion, conditions) provided in the query.

"What was the inflation rate in the
US in 2023?"

Entities Checks for the inclusion of verifiable
named entities.

"Who founded OpenAI?"

Specialization Determines whether the query belongs
to a specialized domain (e.g., finance,
law).

"What are the legal implications of
the GDPR ruling?"

Table 5: Detailed Summary and Examples of Feature Categories, Definitions, and Examples (See
Table 1)
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