BAKU: An Efficient Transformer for
Multi-Task Policy Learning

Siddhant Haldar* Zhuoran Peng Lerrel Pinto

New York University

Abstract: Training generalist agents capable of solving diverse tasks is challeng-
ing, often requiring large datasets of expert demonstrations. This is particularly
problematic in robotics, where each data point requires physical execution of ac-
tions in the real world. Thus, there is a pressing need for architectures that can
effectively leverage the available training data. In this work, we present BAKU, a
simple transformer architecture that enables efficient learning of multi-task robot
policies. BAKU builds upon recent advancements in offline imitation learning
and meticulously combines observation trunks, action chunking, multi-sensory
observations, and action heads to substantially improve upon prior work. Our
experiments on 129 simulated tasks across LIBERO, Meta-World suite, and the
Deepmind Control suite exhibit an overall 18% absolute improvement over RT-1
and MT-ACT, with a 36% improvement on the harder LIBERO benchmark. On
30 real-world manipulation tasks, given an average of just 17 demonstrations per
task, BAKU achieves a 91% success rate. Videos of the robot are best viewed at
baku-robot.github.io.

1 Introduction

Learning generalist policies that can solve multiple tasks is a long standing problem in decision
making and robotics. While significant advances have been made in computer vision [1, 2] and
natural language processing [3, 4, 5], algorithms that can effectively do so for physical agents are
far behind. A key reason for this is the scale of available data. While large-scale datasets in vision
and language can readily be amassed from the Internet, robotics presents a unique challenge. Given
its interactive nature, data acquisition requires physical engagement with the world, making robot
data considerably more laborious to obtain in terms of both time and financial costs. A prominent
approach for training multi-task policies is to bite the bullet and collect large amounts of data, often
by contracting teleoperators [6, 7, 8]. However, policies trained on such data are quite inefficient,
often achieving performance far below independently trained single-task policies [9, 10, 11]. The
current best answer to solve this problem is unfortunately to collect even more demonstration data
from experts.

In this work, we present BAKU, a simple architecture for multi-task policy learning that provides
highly efficient training, particularly in data-scarce problems such as robotics. BAKU builds upon
recent work in multitask learning [12, 7] and has three key features. First, a transformer encoder that
fuses information from multiple modalities like vision and language while incorporating temporal
context. Second, a FiLM-conditioned [13] visual encoder helps the model learn task-specific repre-
sentations by adapting the encoder to the task. Third, an action prediction head that is separated from
the observational encoding trunk, enabling BAKU to be easily retrofitted with state-of-the-art action
generation models [14, 15, 16, 17]. The novelty of BAKU hence lies in carefully combining these
ideas to produce a new transformer architecture particularly suited for multitask decision making.

*Correspondence to: siddhanthaldar@nyu.edu

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://baku-robot.github.io/

Instructi Close the door of the oven B k
nstruction
SESEEEESs ;‘ﬂu

Sensory Observation Action
Encoders Trunk Head

Camera Views

Robot State P 11 .J“ X

"~ End effector
o pose

RT-1 MT-ACT

0 H
Success rate

(b) Performance on LIBERO-90 (c) Real-world tasks (8 of 30 shown)

Figure 1: (a) We present BAKU, a simple transformer architecture learning multi-task policies across
a diverse range of tasks. BAKU encodes inputs from different modalities using modality-specific
encoders. The encoded representations are merged in an observation trunk before predicting actions
through an action head. (b) We develop a unified policy for 90 tasks in the LIBERO-90 benchmark,
discussing design choices that impact multi-task performance. (¢) On our xArm robot, BAKU can
learn a single multi-task policy for 30 tasks with an average of 17 demonstrations collected per task.

To demonstrate the effectiveness of BAKU, we run extensive experiments on 129 simulated tasks
across LIBERO [18], Meta-World [19], and DeepMind Control [20], and 30 robotic manipulation
tasks on an xArm robot (see Fig. 1). Our main findings are summarized below:

1. BAKU exhibits an overall 18% absolute performance improvement over prior state-of-the-art
multi-task learning algorithms on 129 tasks across 3 simulated environment suites (Section 3.1).
BAKU sets a state-of-the-art performance on LIBERO with 90% average success rate, a 36%
absolute improvement over prior work (Table 1).

2. On real-world tasks, with an average of 17 demonstrations per task, BAKU achieves an average
success rate of 91% across 30 diverse tasks in a multi-task kitchen environment, with randomized
object initialization. This outperforms prior state-of-the-art algorithms by 35% (Section 3.2).

3. Through an ablation analysis, we study the importance of each component in BAKU (Section G.3),
particularly the role of action chunking [21] and a multimodal action head in boosting performance,
especially in our real-world experiments.

All of our datasets, and training and evaluation code will be made publicly available. Videos of our
trained policies can be seen here: baku-robot.github.io.

2 BAKU

The design of multi-task learning algorithms involves numerous decisions regarding model architec-
ture and component selection. This often results in complex architectures where the importance of
individual components is sometimes unclear. In this work, we perform a systematic and thorough
ablation study across the various multi-task learning architectures proposed by prior works [7, 12, 22]
and introduce BAKU, a simple architecture for multi-task policy learning. To facilitate our analysis,
we divide the overall model architecture into three main components: sensory encoders, an observa-

https://baku-robot.github.io/

tion trunk, and an action head. Below, we describe these three components in detail, with additional
algorithmic details provided in Appendix C.

2.1 Sensory Encoders

In the real-world, robots encounter diverse data modalities, including vision, depth feedback, propri-
oceptive feedback, and task instructions in various forms such as text, goal images, or task videos.
In BAKU, we focus on vision, robot proprioception, and text or goal image based task instructions.
For vision, we use a ResNet-18 [23] visual encoder to process images of the scene, enhanced with
a FiILM [13] layer to integrate task-specific information. Robot proprioception data is processed
through a two-layer multilayer perception (MLP) encoder. For text, we use a 6-layer version of
MiniLLM [24] provided in Sentence Transformers [25]. We project the representations obtained from
all modalities to the same dimensionality through additional MLP layers, to facilitate combining the
encoded information. We have included a description of FiLM conditioning in Appendix C.1.

2.2 Observation Trunk

The encoded inputs from all sensory modalities are combined in the observation trunk. We explore
two variants of the trunk network:

Multilayer Perceptron (MLP) The encoded inputs are concatenated into a single feature vector
and passed through a multilayer perceptron. When using a history of observations, the inputs
corresponding to all time steps are concatenated.

Transformer Each encoded input is treated as an observation token and passed through a trans-
former decoder network [26]. A learnable action token is appended to the list of observation tokens
and used to predict the action. When using a historical observation, a separate action token is added
for each time step to enable predicting actions for all time steps. A causal mask is applied to the
transformer to ensure that actions are predicted solely based on past observations.

Both variants output action feature vectors (corresponding to the action tokens for a transformer),
which are then passed through an action head to predict actions.

2.3 Action Head

The final component of our architecture is the action head, an action prediction module that takes as
input the action feature vectors obtained from the observation trunk and predicts the corresponding
actions. An independent action prediction module enables us to unify several state-of-the-art action
generation models within the same framework. We experiment with five action head variants: vanilla
MLP, Gaussian Mixture Model (GMM) [27], Behavior Transformer (BeT) [15], Vector-Quantized
Behavior Transformer (VQ-BeT) [16], and diffusion policy [28, 17, 29]. Considering the temporal
correlation in robot movements, we follow prior work [21, 12] and include action chunking with
exponential temporal averaging to produce smoother behaviors and counteract the covariate shift
often seen in low-data imitation learning scenarios. In contrast to previous works [21, 12] that decode
actions for each time step separately, we predict the action chunk as a single concatenated vector.
We find that this simplification improves performance (see Table 1). More details about each action
head variant has been provided in Appendix C.2 along with details about the exponential temporal
smoothing technique in Appendix C.3.

The parameter counts are approximately 2.1M for the sensory encoders, 6.5M for the observation
trunk, and 1.4M for the action head, bringing the total model size to approximately 10M parameters.

3 Experiments

Our experiments are designed to answer the following questions: (a) How well does BAKU work for
multi-task learning? (b) How does BAKU perform on real-world tasks? (c) How does BAKU perform

Table 1: Performance of multi-task policies learned using BAKU on 3 simulated benchmarks -
LIBERO-90, Meta-World, and DM Control - and a real XxArm robot. We observe that BAKU
significantly outperforms prior work on both simulated and real world tasks.

LIBERO-90 Meta-World DMC Real Robot

Method (90 tasks) (30 tasks) (9 tasks) (20 tasks)
RT 0.16 0.65 0.66 037
MTACT 0.54 0.13 0.59 0.56
BAKU (Ours) 0.9 0.79 0.7 0.86
BAKU w/ VQ-BeT (Ours) 0.9 0.78 0.7 0.91

on long-horizon tasks?(Appendix G.2) (d) What design decisions affect multi-task policy learning?
(Appendix G.3)

Details about the simulated and real-world task setup have been provided in Appendix D and
Appendix E. We have provided a detailed description of the baselines in Appendix F.

3.1 How well does BAKU work for multi-task learning?

We evaluate the multi-task performance of BAKU on 90 tasks from the LIBERO-90 benchmark, 30
tasks from Meta-World, and 9 tasks from DMC. Table 1 compares the performance of BAKU with our
baselines, RT-1 [7] and MT-ACT [12]. BAKU outperforms the strongest baseline by 36% and 14%
on LIBERO-90 and Meta-World respectively, demonstrating more effective multi-task learning on
complex manipulation tasks. On the simpler DMC locomotion tasks, BAKU outperforms the strongest
baseline by 4%. Overall, these results suggest that BAKU more effectively leverages relationships
between tasks to achieve superior multi-task learning performance compared to prior methods.

3.2 How does BAKU perform on real-world tasks?

We evaluate BAKU on 30 manipulation tasks in our real-world kitchen environment, comparing it
with MT-ACT and RT-1. During evaluations, the xArm was always initialized at the same pose and
the objects being manipulated were placed in a fixed set of positions for all methods. We conducted 5
evaluation runs per task, totaling 150 trials per method. Table 1 includes our results. We observe that
BAKU achieves an 86% success rate across all tasks, outperforming the strongest baseline by 30%.
Replacing the MLP action head with a multimodal VQ-BeT [16] head further improves the success
rate to 91%, outperforming the strongest baseline by 35%. The real-world rollouts have been included
in Appendix E. Appendix G.1 provides the task-wise performance for each method. Overall, these
results indicate BAKU’s promise for deploying multi-task policies on real-world robotic systems.

4 Conclusion and Limitations

In this work, we presented BAKU, a simple transformer architecture that demonstrates improved
multi-task policy learning performance on a variety of simulated and real-world domains compared
to prior state-of-the-art methods. We recognize a few limitations in this work: (a) In our real-world
experiments, while BAKU achieved good performance on most tasks, it struggled on some precise
manipulation tasks, such as opening an oven door or placing a tea bottle in the fridge. This suggests
that data sharing across tasks of varying difficulty may hinder performance on more precise skills.
Developing techniques to learn a single policy for different task complexity levels could help address
this. (b) Currently, we focus on performing a single skill at a time. Developing algorithms capable
of chaining multiple such skills can enable effective long-horizon robot manipulation. (c) In this
work, we primarily studied the policy architecture and did not analyze the generalization benefits of
multi-task learning as the number of tasks increases. A study of the emergence of such generalization
with greater task diversity would be another interesting direction. Overall, we hope that BAKU serves
as an important step towards developing multi-task policies capable of performing precise robotic
manipulation.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

J. Betker, G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang, J. Lee, Y. Guo,
et al. Improving image generation with better captions. Computer Science. https://cdn. openai.
com/papers/dall-e-3. pdf, 2(3):8, 2023.

C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gon-
tijo Lopes, B. Karagol Ayan, T. Salimans, et al. Photorealistic text-to-image diffusion models
with deep language understanding. Advances in neural information processing systems, 35:
36479-36494, 2022.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

M. Reid, N. Savinov, D. Teplyashin, D. Lepikhin, T. Lillicrap, J.-b. Alayrac, R. Soricut,
A. Lazaridou, O. Firat, J. Schrittwieser, et al. Gemini 1.5: Unlocking multimodal understanding
across millions of tokens of context. arXiv preprint arXiv:2403.05530, 2024.

H. Touvron, T. Lavril, G. [zacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Roziere, N. Goyal,
E. Hambro, F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971, 2023.

A. Mandlekar, Y. Zhu, A. Garg, J. Booher, M. Spero, A. Tung, J. Gao, J. Emmons, A. Gupta,
E. Orbay, et al. Roboturk: A crowdsourcing platform for robotic skill learning through imitation.
In Conference on Robot Learning, pages 879-893. PMLR, 2018.

A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, et al. Rt-1: Robotics transformer for real-world control at scale. arXiv
preprint arXiv:2212.06817, 2022.

N. M. M. Shafiullah, A. Rai, H. Etukuru, Y. Liu, I. Misra, S. Chintala, and L. Pinto. On bringing
robots home. arXiv preprint arXiv:2311.16098, 2023.

T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn. Gradient surgery for multi-task
learning. Advances in Neural Information Processing Systems, 33:5824-5836, 2020.

E. Parisotto, J. L. Ba, and R. Salakhutdinov. Actor-mimic: Deep multitask and transfer
reinforcement learning. arXiv preprint arXiv:1511.06342, 2015.

A. A. Rusu, S. G. Colmenarejo, C. Gulcehre, G. Desjardins, J. Kirkpatrick, R. Pascanu, V. Mnih,
K. Kavukcuoglu, and R. Hadsell. Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

H. Bharadhwaj, J. Vakil, M. Sharma, A. Gupta, S. Tulsiani, and V. Kumar. Roboagent:
Generalization and efficiency in robot manipulation via semantic augmentations and action
chunking. arXiv preprint arXiv:2309.01918, 2023.

E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville. Film: Visual reasoning with a
general conditioning layer. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese,
Y. Zhu, and R. Martin-Martin. What matters in learning from offline human demonstrations for
robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

N. M. Shafiullah, Z. Cui, A. A. Altanzaya, and L. Pinto. Behavior transformers: Cloning &
modes with one stone. Advances in neural information processing systems, 35:22955-22968,
2022.

[16] S.Lee, Y. Wang, H. Etukuru, H. J. Kim, N. M. M. Shafiullah, and L. Pinto. Behavior generation
with latent actions. arXiv preprint arXiv:2403.03181, 2024.

[17] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song. Diffusion policy:
Visuomotor policy learning via action diffusion. In Proceedings of Robotics: Science and
Systems (RSS), 2023.

[18] B.Liu, Y. Zhu, C. Gao, Y. Feng, Q. Liu, Y. Zhu, and P. Stone. Libero: Benchmarking knowledge
transfer for lifelong robot learning. Advances in Neural Information Processing Systems, 36,
2024.

[19] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In Conference on
robot learning, pages 1094—1100. PMLR, 2020.

[20] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. d. L. Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[21] T. Z. Zhao, V. Kumar, S. Levine, and C. Finn. Learning fine-grained bimanual manipulation
with low-cost hardware. arXiv preprint arXiv:2304.13705, 2023.

[22] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In Conference on Robot Learning, pages 785-799. PMLR, 2023.

[23] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770—
778, 2016.

[24] W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou. Minilm: Deep self-attention
distillation for task-agnostic compression of pre-trained transformers, 2020.

[25] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.
10084.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[27] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine, and P. Sermanet. Learning
latent plans from play. In Conference on robot learning, pages 1113-1132. PMLR, 2020.

[28] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan,
I. Momennejad, K. Hofmann, et al. Imitating human behaviour with diffusion models. arXiv
preprint arXiv:2301.10677, 2023.

[29] M. Reuss, M. Li, X. Jia, and R. Lioutikov. Goal-conditioned imitation learning using score-based
diffusion policies. arXiv preprint arXiv:2304.02532, 2023.

[30] F. Torabi, G. Warnell, and P. Stone. Recent advances in imitation learning from observation.
arXiv preprint arXiv:1905.13566, 2019.

[31] A.lIyer, Z. Peng, Y. Dai, I. Guzey, S. Haldar, S. Chintala, and L. Pinto. Open teach: A versatile
teleoperation system for robotic manipulation. arXiv preprint arXiv:2403.07870, 2024.

[32] Z.J. Cui, Y. Wang, N. M. M. Shafiullah, and L. Pinto. From play to policy: Conditional behavior
generation from uncurated robot data. arXiv preprint arXiv:2210.10047, 2022.

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084

[33] C. Wang, L. Fan, J. Sun, R. Zhang, L. Fei-Fei, D. Xu, Y. Zhu, and A. Anandkumar. Mimicplay:
Long-horizon imitation learning by watching human play. In 7¢h Annual Conference on Robot
Learning, 2023.

[34] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne. Imitation learning: A survey of learning
methods. ACM Computing Surveys (CSUR), 50(2):1-35, 2017.

[35] D.Pomerleau. An autonomous land vehicle in a neural network. Advances in Neural Information
Processing Systems, 1, 1998.

[36] A.Y.Ng,S.J. Russell, et al. Algorithms for inverse reinforcement learning. In Icml, volume 1,
page 2, 2000.

[37] P. Abbeel and A. Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, page 1, 2004.

[38] S.Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the fourteenth international conference on artifi-
cial intelligence and statistics, pages 627-635. JMLR Workshop and Conference Proceedings,
2011.

[39] S. Haldar, V. Mathur, D. Yarats, and L. Pinto. Watch and match: Supercharging imitation with
regularized optimal transport. In Conference on Robot Learning, pages 32—43. PMLR, 2023.

[40] S. Haldar, J. Pari, A. Rai, and L. Pinto. Teach a robot to fish: Versatile imitation from one
minute of demonstrations. arXiv preprint arXiv:2303.01497, 2023.

[41] P. Florence, C. Lynch, A. Zeng, O. A. Ramirez, A. Wahid, L. Downs, A. Wong, J. Lee,
I. Mordatch, and J. Tompson. Implicit behavioral cloning. In Conference on Robot Learning,
pages 158-168. PMLR, 2022.

[42] L. Chen, S. Bahl, and D. Pathak. Playfusion: Skill acquisition via diffusion from language-
annotated play. In Conference on Robot Learning, pages 2012-2029. PMLR, 2023.

[43] A.Mandlekar, D. Xu, R. Martin-Martin, S. Savarese, and L. Fei-Fei. Learning to generalize
across long-horizon tasks from human demonstrations. arXiv preprint arXiv:2003.06085, 2020.

[44] M. Heo, Y. Lee, D. Lee, and J. J. Lim. Furniturebench: Reproducible real-world benchmark for
long-horizon complex manipulation. arXiv preprint arXiv:2305.12821, 2023.

[45] Y. Chen, C. Wang, L. Fei-Fei, and C. K. Liu. Sequential dexterity: Chaining dexterous policies
for long-horizon manipulation. arXiv preprint arXiv:2309.00987, 2023.

[46] T. Lin, Y. Zhang, Q. Li, H. Qi, B. Yi, S. Levine, and J. Malik. Learning visuotactile skills with
two multifingered hands. arXiv:2404.16823, 2024.

[47] K. Sridhar, S. Dutta, D. Jayaraman, J. Weimer, and 1. Lee. Memory-consistent neural networks
for imitation learning. arXiv preprint arXiv:2310.06171, 2023.

[48] X. Chen, S. Xie, and K. He. An empirical study of training self-supervised vision transformers.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 9640-9649,
2021.

[49] M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, et al. Dinov2: Learning robust visual features without supervision.
arXiv preprint arXiv:2304.07193, 2023.

[50] K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick. Masked autoencoders are scalable
vision learners. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16000-16009, 2022.

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

D. Shah, A. Sridhar, N. Dashora, K. Stachowicz, K. Black, N. Hirose, and S. Levine. Vint: A
foundation model for visual navigation. arXiv preprint arXiv:2306.14846, 2023.

A. Sridhar, D. Shah, C. Glossop, and S. Levine. Nomad: Goal masked diffusion policies for
navigation and exploration. arXiv preprint arXiv:2310.07896, 2023.

I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. The International
Journal of Robotics Research, 34(4-5):705-724, 2015.

L. Pinto and A. Gupta. Supersizing self-supervision: Learning to grasp from 50k tries and 700
robot hours. In 2016 IEEE international conference on robotics and automation (ICRA), pages
3406-3413. IEEE, 2016.

A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto. Robot learning in homes: Improving
generalization and reducing dataset bias. Advances in neural information processing systems,
31, 2018.

U. Viereck, A. Pas, K. Saenko, and R. Platt. Learning a visuomotor controller for real world
robotic grasping using simulated depth images. In Conference on robot learning, pages 291-300.
PMLR, 2017.

H.-S. Fang, C. Wang, H. Fang, M. Gou, J. Liu, H. Yan, W. Liu, Y. Xie, and C. Lu. Anygrasp:
Robust and efficient grasp perception in spatial and temporal domains. IEEE Transactions on
Robotics, 2023.

H. Mei, M. Bansal, and M. Walter. Listen, attend, and walk: Neural mapping of navigational in-
structions to action sequences. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.
arXiv preprint arXiv:2005.07648, 2020.

S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor. Language-
conditioned imitation learning for robot manipulation tasks. Advances in Neural Information
Processing Systems, 33:13139-13150, 2020.

M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn, C. Fu, K. Gopalakr-
ishnan, K. Hausman, et al. Do as i can, not as i say: Grounding language in robotic affordances.
arXiv preprint arXiv:2204.01691, 2022.

A. Raffin, A. Hill, R. Traoré, T. Lesort, N. Diaz-Rodriguez, and D. Filliat. Decoupling feature
extraction from policy learning: assessing benefits of state representation learning in goal based
robotics. arXiv preprint arXiv:1901.08651, 2019.

T. Jurgenson, O. Avner, E. Groshev, and A. Tamar. Sub-goal trees a framework for goal-based
reinforcement learning. In International conference on machine learning, pages 5020-5030.
PMLR, 2020.

D.-A. Huang, Y.-W. Chao, C. Paxton, X. Deng, L. Fei-Fei, J. C. Niebles, A. Garg, and D. Fox.
Motion reasoning for goal-based imitation learning. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 4878-4884. IEEE, 2020.

A. Padalkar, A. Pooley, A. Jain, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky, A. Rai, A. Singh,
A. Brohan, et al. Open x-embodiment: Robotic learning datasets and rt-x models. arXiv preprint
arXiv:2310.08864, 2023.

A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany, M. K.
Srirama, L. Y. Chen, K. Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset.
arXiv preprint arXiv:2403.12945, 2024.

[67] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273—1286, 2021.

[68] A. Gupta, L. Fan, S. Ganguli, and L. Fei-Fei. Metamorph: Learning universal controllers with
transformers. arXiv preprint arXiv:2203.11931, 2022.

[69] 1. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath. Learning humanoid
locomotion with transformers. arXiv e-prints, pages arXiv—-2303, 2023.

[70] 1. Radosavovic, B. Zhang, B. Shi, J. Rajasegaran, S. Kamat, T. Darrell, K. Sreenath, and J. Malik.
Humanoid locomotion as next token prediction. arXiv preprint arXiv:2402.19469, 2024.

[71] B. Zitkovich, T. Yu, S. Xu, P. Xu, T. Xiao, F. Xia, J. Wu, P. Wohlhart, S. Welker, A. Wahid, et al.
Rt-2: Vision-language-action models transfer web knowledge to robotic control. In Conference
on Robot Learning, pages 2165-2183. PMLR, 2023.

[72] S. Haldar and L. Pinto. Polytask: Learning unified policies through behavior distillation. arXiv
preprint arXiv:2310.08573, 2023.

[73] E.Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. Bc-z:
Zero-shot task generalization with robotic imitation learning. In Conference on Robot Learning,
pages 991-1002. PMLR, 2022.

[74] V. Jain, M. Attarian, N. J. Joshi, A. Wahid, D. Driess, Q. Vuong, P. R. Sanketi, P. Sermanet,
S. Welker, C. Chan, 1. Gilitschenski, Y. Bisk, and D. Dwibedi. Vid2robot: End-to-end video-
conditioned policy learning with cross-attention transformers, 2024.

[75] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. arXiv preprint arXiv:2205.06175,
2022.

[76] A. Karpathy. mingpt: A minimal pytorch re-implementation of the openai gpt. https:
//github.com/karpathy/minGPT, 2021.

[77] D. Yarats, R. Fergus, A. Lazaric, and L. Pinto. Mastering visual continuous control: Improved
data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

[78] M. Ryoo, A. Piergiovanni, A. Arnab, M. Dehghani, and A. Angelova. Tokenlearner: Adaptive

space-time tokenization for videos. Advances in neural information processing systems, 34:
12786-12797, 2021.

https://github.com/karpathy/minGPT
https://github.com/karpathy/minGPT

A Background

Imitation Learning: The goal of imitation learning is to learn a behavior policy 7® given access
to either the expert policy 7¢ or trajectories derived from the expert policy 7°¢. While there are a
multitude of settings with differing levels of access to the expert [30], this work operates in the setting
where the agent only has access to observation-based trajectories, i.e. 7¢ = {(os, a;)_o}_,. Here
N and T denote the number of trajectory rollouts and episode timesteps respectively. We choose this
specific setting since obtaining observations and actions from expert or near-expert demonstrators is
feasible in real-world settings [21, 31] and falls in line with recent work in this area [21, 32, 16, 17].

Multi-task Behavior Cloning: Behavior Cloning (BC) corresponds to solving the maximum
likelihood problem shown in Eq. 1. Here 7 ¢ refers to expert demonstrations. When parameterized by
a normal distribution with fixed variance, the objective can be framed as a regression problem where,
given observations o¢, 72¢ needs to output a°.

L = E(pe geynrela® — 77 (0% (D

After training, it enables 72¢ to mimic the actions corresponding to the observations seen in the
demonstrations. In multi-task settings, we use the same formulation for BC but condition the action
prediction on a goal variable g°. Thus, the loss function for multi-task BC becomes the following.

£5€ = Borae ey la” = 77 (0°1g") | @

In this work, we represent goals as either a text description of the task [7, 12] or a goal image [32, 33].

B Related Work

Imitation Learning (IL) IL [34] refers to the setting where agents learn from demonstrations
without access to environment rewards. IL can be broadly categorized into Behavior Cloning
(BC) [35, 30] and Inverse Reinforcement Learning (IRL) [36, 37]. BC solely learns from offline
demonstrations but suffers on out-of-distributions samples [38] whereas IRL focuses on learning
a robust reward function through online interactions but suffers from sample inefficiency [39, 40].
In this work, we focus on using BC to learn multi-task policies. In recent years, there have been
significant advances in single-task behavior cloning with the development of multimodal action
generation models using GMMs [27, 14], EBMs [41], BeT [15, 32, 16], and diffusion [28, 17, 29, 42].
There has also been notable progress in solving long-horizon tasks through imitation learning with
some works relying solely on robot data [43, 44, 45, 21, 46, 47] while others attempt to bootstrap
learning from human data [33]. Further, these advances in policy learning combined with significant
strides in self-supervised representation learning [48, 49, 50] have enabled deploying these policies in
messy and unpredictable environments such as our homes [8] as well as zero-shot deployment in-the-
wild [51, 52]. However, despite the large body of work advancing single-task robotic policy learning,
there still exists a gap between single-task and multi-task performance for policy learning [9, 10, 11].

Multi-task Learning Robotics has a long history of multi-task learning. There is a significant
body of work focusing on learning policies for robotic grasping with the aim of generalizing to
new tasks [53, 54, 55, 56, 57], robotic language understanding [58, 59, 60, 61], and framing multi-
task learning as a goal reaching problem [62, 63, 64]. Additionally, several works have collected
varied multi-task robotics datasets [43, 18, 12, 65, 66]. Recently, there has been an increased use of
transformer-based architectures for multi-task robot learning, spanning across robot navigation [51,
52], locomotion [67, 68, 69, 70], and manipulation [7, 71, 32, 12]. While most of these works
use text conditioning for task specification, some go beyond text to use goal images [32, 72] and
videos [73, 74] as well. Another emerging trend is co-training these robot policies with tasks such
as visual question answering and image captioning [75, 71], to develop more generalizable policies.

10

t t t t t t t

Observation Trunk
T

]] |]] I
Text Image Image Image Image State Action Multi-step
Encoder Encoder Encoder Encoder Encoder Encoder Token Action Prediction
Close the door of ; - %: e, e i)
the oven 4 .
ssEes & | v 10 Hz Control
9 @t St

Figure 2: Overview of BAKU, broken down into modality-specific sensory encoders, an observation
trunk, and an action head predicting a chunk of actions. BAKU takes as input observations from
multiple camera views Oy, robot proprioceptive state s; and a task instruction 7 and enables
performing closed-loop control at 10Hz in our real world experiments on the XxArm.

Overall, multi-task learning has been widely applied in robotics and, more recently, using high-
capacity transformer models to learn robot control policies has become common practice in the field.
Despite their effectiveness, the architectures for these policies often become complicated, with the
necessary components sometimes being unclear. Our proposed model, BAKU, combines key ideas
from prior work into a single architecture to produce a model that is both simple and outperforms
state-of-the-art methods in multi-task policy learning.

C Algorithmic Details

C.1 FiLLM Conditioning

Feature-wise Linear Modulation (FiLM) [13] is a technique used for conditioning neural networks
that allows the network to modulate its behavior based on an external conditioning signal, such as
text instructions or observations. In the context of text conditioning for policy learning, the text
instructions are first encoded into a conditioning vector. This conditioning vector is then used to
modulate the activations of the neural network through FiLM layers. FiILM applies a feature-wise
affine transformation (scaling and shifting) to the activations of the network, conditioned on the text
embedding. In other word, assuming x is a FILM layer’s input, z is a conditioning input, and ~ and
are z-dependent scaling and shifting vectors,

FiLM(x) = v(z) ®x+ ((z) 3

This allows the network to adapt its computation and output based on the given text instructions,
enabling tasks like instruction following or conditioning the policy on language descriptions.

C.2 Action Heads
Having a separate action prediction module allows BAKU to leverage state-of-the-art techniques for

action generation. In this work, we evaluate five different action head variants. Below we briefly
describe each variant. For more details on these methods, please refer to the original publications.

Multilayer Perceptron (MLP) This is a simple neural network comprising multiple dense layers.
We use a two-layer MLP for our experiments.

Gaussian Mixture Model (GMM) [27] A Gaussian mixture model (GMM) action head models
the policy as a mixture of Gaussians, enabling multi-modal action sampling for continuous control

11

problems. The GMM parameters are part of the learned policy network. For our experiments, we
employ a two-layer GMM action head with five action modes and a Softplus activation function.

Behavior Transformer (BeT) [15] The Behavior Transformer (BeT) models continuous action
prediction as a two-part problem. Actions in the training data are first clustered into k bins using
k-means clustering. A discrete action head classifies the cluster an action belongs to, while an offset
action head predicts an offset value added to the corresponding cluster center. The discrete head uses
a focal loss, while the offset head uses L2 loss. For our experiments, we use BeT with 64 action
clusters.

Vector-Quantized Behavior Transformer (VQ-BeT) [16] The Vector-Quantized Behavior Trans-
former (VQ-BeT) extends BeT by replacing k-means clustering with residual VQVAE-based tok-
enization, significantly improving performance over BeT. For our experiments, we employ VQ-BeT
with two residual VQ layers of codebook size and latent dimension 16 and 256, respectively.

Diffusion [28, 17, 29] A diffusion action head models action prediction as a diffusion process
that generates actions over time by iteratively denoising samples from a Gaussian distribution.
While highly effective for multi-modal distributions, the iterative denoising during inference slows
deployment speed. In this work, we use a transformer-based diffusion head introduced by prior
work [28, 17]. We use a two-layer diffusion head for our experiments.

C.3 Temporal smoothing over action chunking

A naive implementation of action chunking, where a new environment observation in incorporated
every k steps can be suboptimal and can result in jerky robot motion. To improve the smoothness
in robot motion, we incorporate an exponential temporal ensembling technique, following prior
work [21, 12]. Instead of querying the policy every k steps, we query it at every timestep. This
results in an overlap in predicted action chunks and at any given timestep, there will be more than one
predicted actions. Instead of using only the current action prediction, we use a temporal ensemble to
combine all the past predictions. This temporal ensemble performs a weighted average over these
predictions with an exponential weighing scheme w; = exp(—m * i), where wy is the weight for the
oldest action. The speed for incorporating a new observation is governed by m, where a smaller m
means faster incorporation. It must be noted that this ensembling incurs no additional training cost,
only extra inference-time computation. In our experiments, similar to prior work [21, 12], we find
both action chunking and temporal ensembling to be important for producing precise and smooth
motion.

C.4 Hyperparameters

The complete list of hyperparameters is provided in Table 2. For RT-1 [7], we use our implementation
with an RT-1 action head that discretizes the continuous action into discrete bins uniformly. For
MT-ACT [12], we use the open-source implementation with the default hyperparameters. We vary the
action chunk length for MT-ACT for different benchmarks, the values for which have been provided
in Table 2.

Training time Below we provide details about the time required to train BAKU on a single NVIDIA
RTX A4000 GPU.

1. LIBERO: Training for 600k steps with a batch size of 64 and 2 camera views and robot proprio-
ception as input requires around 10.5 hours.

2. Meta-World: Training for 600k steps with a batch size of 64 and 1 camera view as input requires
around 8 hours.

3. DM Control: Training for 2M steps with a batch size of 128 and robot state as input requires
around 26 hours.

12

4. xArm Robot: Training for 200k steps with a batch size of 64 and 4 camera views and robot

proprioception as input requires around 6 hours.

Table 2: List of hyperparameters.

Method Parameter Value
Common Learning rate le~*
Image size 128 x 128 (LIBERO-90, xArm)
84 x 84 (Meta-World)
Mini-batch size 64 (LIBERO-90, Meta-World, xArm)
128 (DM Control)
Optimizer Adam
Number of training steps 600000 (LIBERO-90, Meta-World)
2000000 (DM Control)
200000 (xArm)
Number of demonstrations 50 (LIBERO-90)
35 (Meta-World)
500 (DM Control)
15 (xArm)
Transformer architecture minGPT [76] (with 8 layers and 4 heads)
Action chunk length 10 (LIBERO-90, Meta-World)
3 (DMC)
20 (xArm)
BAKU Observation trunk Transformer
Action head MLP (base)
GMM, BeT, VQ-BeT, Diffusion (variants)
Hidden dim 256
Observation history False
Action chunking True
Intermediate goal steps (k) 50 (LIBERO-90)
30 (Meta-World)
RT-1 Observation trunk Transformer
Action head MLP (base)
Hidden dim 512
Observation history True
History length 6
Action chunking False
MT-ACT Observation history False
Action chunking True

13

(a) LIBERO-90 (b) Metaworld (C) DM Control

Figure 3: BAKU is evaluated on 3 simulated benchmarks - LIBERO, Meta-World, and DM Control.

D Simulation Tasks

We experiment with 90 manipulation tasks from the LIBERO-90 benchmark [18], 30 manipulation
tasks from Meta-World suite [19], and 9 locomotion tasks from DeepMind Control Suite (DMC) [20].
Figure 3 depicts the simulated environments. For LIBERO-90, we use 50 demonstrations per task
provided with the benchmark and use images from third-person and gripper camera views, as well as
robot proprioception as input. For Meta-World, we obtain 35 demonstrations per task from an expert
policy trained with demonstration-guided reinforcement learning [39, 40], using only the third-person
view as input. We use images of size 128 x 128 for LIBERO-90 and 84 x 84 for Meta-World. For
DMC, we train state-based locomotion policies using 500 demonstrations per task obtained from
experts trained with DrQ-v2 [77]. All evaluations are conducted using 10 policy rollouts per task.
Table 3 lists the 30 MetaWorld tasks and 9 DM Control tasks used in our experiments. Figure 3
shows a visualization of our simulated benchmarks.

E Robot Tasks

Our real-world experiments are performed on a Ufactory xArm 7 robot with an xArm Gripper in a
multi-task kitchen environment. The policies are trained on RGB images of size 128 x 128 obtained
from four different camera views, including an egocentric camera attached to the robot gripper. The
action space comprises the robot end effector pose and the gripper state. We collect a total of 520
demonstrations across 30 tasks, averaging 17 demonstrations per task. The demonstrations were
collected using a VR-based teleoperation system [31] at a 30Hz frequency. The learned policies are
deployed at 10Hz. We provide the task description along with policy deployment rollouts with BAKU
for each task in Figures 4, 5, 6, 7, and 8. The long-horizon task rollouts have been shown in Figure 9.

Robot control We deploy our learned policies at 10Hz using a high-level controller. To facilitate
smooth motion on the robot, we deploy a low-level Minimum-Jerk Controller at 100Hz.

F Baselines

In this section, we provide a detailed explanation of our baselines and a comparison with BAKU to
highlight their differences.

MT-ACT [12] Multi-task Action-Chunking Transformer (MT-ACT) is a state-of-the-art transformer
encoder-decoder architecture for learning multi-task policies. MT-ACT extends Action-Chunking
Transformer (ACT) [21] to a multi-task setting. MT-ACT takes as input observations from multiple
camera views, robot proprioception, and task instructions. Each input modality passes through
dedicated encoders. The encoded observations are then fused in a transformer encoder, the output of

14

Table 3: List of tasks in Meta-World and DM Control.

Meta-World DM Control
basketball-v2 cartpole swingup
bin-picking-v2 cheetah run
button-press-v2 hopper stand
button-press-topdown-v2 quadruped run
button-press-topdown-wall-v2 quadruped walk
button-press-wall-v2 teacher easy
coffee-button-v2 walker stand
coffee-pull-v2 walker walk
coffee-push-v2 walker run

dial-turn-v2
disassemble-v2
door-lock-v2
door-open-v2
door-unlock-v2
drawer-close-v2
drawer-open-v2
faucet-close-v2
faucet-open-v2
hammer-v2
handle-press-v2
handle-press-side-v2
handle-pull-v2
handle-pull-side-v2
peg-insert-side-v2
peg-unplug-side-v2
plate-slide-v2
plate-slide-back-v2
plate-slide-back-side-v2
plate-slide-side-v2
shelf-place-v2
soccer-v2
stick-push-v2
sweep-v2
sweep-into-v2
window-close-v2
window-open-v2

which conditions a transformer decoder to predict chunks of future actions. Each predicted action
corresponds to a position embedding input to the decoder. In ACT and MT-ACT, a conditional
variational autoencoder (CVAE) is used to learn a multimodal style variable which conditions the
encoder to deal with multimodal action distributions. During inference, the style variable is set to zero,
leading to unimodal behavior. In contrast, BAKU uses a decoder-only transformer architecture that
directly predicts action features corresponding to past observations. This enables us to (1) leverage
recent advances in multimodal action generation by plugging in several unimodal and multimodal
heads for action prediction, and (2) incorporate a history of observations to predict actions for each
time step in the history (see Section G.3 for results on the use of observation history). Further, using
a multimodal action head enables BAKU to exhibit multimodal behavior during inference, improving
real-world performance (see Table 1).

15

= 2z 2

Fetch towel from rack: Fetch the towel from the lower rack.

Fetch th een tea from the lower rack.

e

vitamin water from the lower rack.

1 P~ N8 o Eh !
Pick light blue bowl: Pick up the light blue bowl from the kitchen counter.
; & \‘,\‘:i 2 . i

A 1 , A 99, o @
Pick orange from bowl: Pick up the orange from inside the light blue bowl kept on the kitchen counter.

Figure 4: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

RT-1[7] RT-1 is a transformer-based multi-task policy learning architecture that models actions
as discrete classes by uniformly discretizing them into bins. RT-1 uses a FiLM-conditioned vision
encoder (ResNet-18 in our implementation), but instead of directly using the final 512-dimensional
representation, it splits an intermediate feature map of size k x k x 512 into k2 tokens of 512

16

Pick box of corn starch: Pic up the box of corn starch from the kitchen counter.

8 & M

plate kept on the upper rack.

Figure 5: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

dimensions each. These tokens are passed through a Token Learner [78] module to reduce them to 8
tokens per image. Similar to BAKU, these tokens are then passed through a decoder-only transformer
architecture to predict a discrete action. In contrast, BAKU directly uses the final 512-dimensional
representation from the vision encoder, without summarizing tokens via a token learner. Additionally,

17

Put coke can in basket: Pick up the can of coke and put it in the basket.
: y o

- _SER

Put pear in bowl: Pick up the p:ear and put 1t in the bowl.

Figure 6: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

BAKU predicts a continuous action through an unimodal or multimodal action head. Based on
our experiments (see Table 1), we observe that these design choices in BAKU lead to significant
improvements in performance over RT-1.

18

Put yoghurt bottle in fridge door: Pick up the bottle of yoghurt and place it in the door of the fridge.

3 % - »

> M. e . %
idge: Pick up the bottle of tomato ketchup

: Take the bottle of green tea out from the do

door: Take the bottle

- o N " 4\
Fetch tomato can from fridge: Take the can of tomato soup out of the fridge.

Figure 7: Real-world policy rollouts showing BAKU’s capability in complex manipulation tasks.

19

the bottle of vitamin water out of the fridge.

A

itchen counter.

on the

Put yoghurt inside and take water bottle out of fridge: Put the yoghurt in the door of the fridge and
take out the bottle of water from inside the fridge.

Figure 9: Real-world policy rollouts showing BAKU’s capability on long-horizon manipulation tasks.

20

Table 4: Real task-wise performance

Task Number ?f Successes (out of 5)
Demonstrations
Baku w/
RT-1 MTACT Baku VQ-BeT
Fetch glass from rack 20 5 5 5 5
Fetch towel from rack 28 5 2 5 5
Fetch tea bottle from rack 16 0 3 5 5
Fetch water bottle from rack 16 0 0 5 5
Pick blue mug 16 5 5 5 5
Pick light blue bowl 25 5 5 5 5
Pick orange from bowl 27 0 0 3 4
Pick coffee bag 19 3 5 5 5
Pick box of corn starch 14 0 3 5 5
Lift blue plate from the rack 18 0 4 5 5
Lift white plate from the rack 18 5 5 5 5
Lift black plate from the rack 12 2 3 5 5
Open oven door 17 0 0 0 3
Close oven door 27 0 3 3 4
Place glass on rack 19 5 5 5 5
Wipe towel 17 4 5 5 5
Lift pan lid 18 1 2 4 4
Put coke can in basket 19 0 0 3 3
Put cream cheese in basket 19 0 3 5 5
Put orange into bowl 14 0 0 4 5
Put pear into bowl 17 0 0 3 5
Put tea bottle in fridge door 18 0 0 1 0
Put yoghurt bottle in fridge door 17 3 5 3 5
Put ketchup bottle inside fridge 15 5 4 5 5
Put tomato can inside fridge 11 0 0 5 4
Fetch tea bottle from fridge door 11 5 5 5 5
Fetch tomato can from fridge door 11 0 1 5 5
Fetch yoghurt bottle from fridge door 10 0 3 5 4
Fetch water bottle from fridge 11 2 3 5 5
Fetch knife from organizer 20 0 5 5 5
Mean 17 1.83 2.8 43 4.53
Mean success rate (out of 1) - 0.37 0.56 0.86 0.91

G

G.1 Real-World Task-wise Results

Additional Results and Analysis

Table 4 provides the task-wise performance for all 30 tasks in our real-world multi-task kitchen
environment. We collect an average of 17 demonstrations per task, with a total of 520 demonstrations
across all tasks. Task-wise performance for the real-world long-horizon tasks has been included in

Table 5.

G.2 How does BAKU perform on long-horizon tasks?

We also evaluate BAKU on long-horizon tasks in the simulated LIBERO-10 benchmark and our
real-world multi-task kitchen environment. Table 6 provides the results on 10 tasks in LIBERO-10
and 5 long-horizon tasks in the real kitchen environment, each composed of two shorter tasks chained
sequentially. We use 50 demonstrations per task for LIBERO-10 and an average of 19 demonstrations

21

Table 5: Real task-wise performance for long-horizon tasks

Task Number (.)f Successes (out of 5)
Demonstrations

MTACT Baku
Set up table 34 3 3
Pick broom and sweep 13 4 5
Pick towel and wipe 14 2 4
Take bowl out of the oven 18 5 5
Put yoghurt inside and take water bottle out of fridge 17 2 4
Mean 19 32 4.2
Mean success rate (out of 1) - 0.64 0.84

Table 6: Performance of multi-task policies learned using BAKU on long-horizon tasks in the
LIBERO-10 simulated benchmark and a real xArm robot. We observe that BAKU significantly
outperforms prior work on both simulated and real world tasks.

LIBERO-10 Real Robot

Method (10 tasks) (5 tasks)
MTACT 0.68 0.64
BAKU (Ours) 0.86 0.84

per task for the real robot. We observe that BAKU significantly outperforms our strongest baseline,
MT-ACT, on these long horizon tasks, achieving on average 19% higher success rate. This highlights
BAKU'’s ability to learn policies that can effectively plan and execute sequences of actions over
extended time horizons.

G.3 Additional Analysis

As described in Section 2, our multi-task policy architecture consists of three main components:
sensory encoders, an observation trunk, and an action head. In this section, we analyze the design
choices within each component and their effect on overall multi-task performance. We consider BAKU
with an MLP action head (described in Section ??) as our base model. For ablations, we vary only a
single property at a time while keeping all other aspects identical. This experimental setup allows us
to clearly isolate the impact of individual design decisions. We examine different observation trunks,
model sizes, action heads, goal modalities, and the use of action chunking, observation history, and
task conditioning through FiLM [13]. The results of our ablation study are provided in Table ?? with
more analysis in Appendix G. The results provide insights into which components and properties are
most important for effective multi-task learning with BAKU.

Effect of Observation Trunk: We experiment with two trunk types: an MLP and a transformer
architecture. In Table ??, we observe a slight performance dip when using an MLP trunk on Meta-
World and DMC. For LIBERO-90, our most complex simulated benchmark, an MLP trunk resulted
in a 9% lower success rate than a transformer trunk. This highlights the efficacy of transformers for
modeling complex relationships between observations from multiple sensing modalities and actions.

Effect of Model Size: We study the effect of model size on multi-task performance by evaluating
configurations with 4.4M, 10M, 31M, and 114M parameters. For each variant, we vary the size of
the observation trunk and the action head while keeping the sensory encoders constant. The results in
Table ?? show that the 4.4M, 10M, and 31M parameter models achieve similar performance across
benchmarks. Surprisingly, the largest 114M parameter model severely underperforms on the harder
LIBERO-90 benchmark. We suspect this poor performance may have been due to overfitting on the
training data with a larger capacity. Based on these results, we use the 10M parameter model for
BAKU since it is the smallest model with the best performance on 2 of the 3 simulated benchmarks.

22

Effect of Action Head: We compare the performance of BAKU retrofitted with five different
action heads: MLP, GMM [27], BeT [15], VQ-BeT [16], and diffusion [17]. Having an independent
action head enables us to extend these state-of-the-art action generation models to multi-task settings.
Table ?? shows that on simulated benchmarks, a simple MLP head performs just as well or better
than other multimodal action heads. Among the multimodal variants, VQ-BeT achieves the best
performance. As a result, we also evaluate BAKU with a VQ-BeT action head in our real-world
setup (Table 1). On the real robot, having a multimodal action head proves advantageous with
the VQ-BeT head achieving a success rate of 91%, a 5% improvement over an MLP action head.
Hence, our experiments demonstrate that while multimodal heads may provide benefits for real-world
deployment, a simple MLP head can perform well on simulated data with limited behavioral diversity.

Effect of Action Chunking: We study the effect of action chunking on multi-task policy perfor-
mance. For the image-based LIBERO-90 and Meta-World benchmarks, we predict a chunk of 10
future actions. For the locomotion tasks in DMC, we predicted 3 future actions. Based on the results
in Table ??, we observe the largest difference on LIBERO-90, where removing action chunking and
instead predicting a single action led to a 14% drop in performance. In contrast, there is no perceptible
difference in performance on Meta-World with and without chunking. For the locomotion domains in
DMC, we see a 4% performance increase when removing chunking. Hence, action chunking benefits
manipulation tasks while mildly hindering locomotion tasks from our experiments.

Effect of Observation History: We study the effect of using an observation history on multi-task
performance. As shown in Table ??, naively using an observation history where the action prediction
loss is only computed for the last time step significantly degrades performance. However, since
BAKU uses a transformer observation encoder, it allows predicting actions for all observations in the
history and computing the prediction loss over all time steps. Empirically, we found this multi-step
prediction loss provides richer supervision and improves the single-step loss performance by an
average of 47% across all benchmarks. However, incorporating an observation history with multi-step
action prediction did not noticeably improve overall policy performance compared to using no history.
Therefore, our final architecture only uses the most recent observation as an input.

Effect of Goal Modality: We experiment with 3 different goal modalities: text instruction, goal
image, and intermediate goal image. The text instructions are directly obtained from the task data.
The goal image is obtained by randomly sampling a demonstration from the training dataset and
taking the last frame. For an intermediate goal image, we consider this randomly sampled task
demonstration, and for every time step, treat the frame & steps in the future as the goal image [33].
Table ?? contains the results on LIBERO-90 and Meta-World, as goal images do not apply to the
state-based DMC tasks. We set k to 50 steps for LIBERO-90 and 30 steps for Meta-World. Since
LIBERO-90 has two camera views, we use the third-person view to obtain goal images. We observe
that all three goal modalities show a similar performance with slight variations. Overall, our approach
supports different goal representations with only minor variations in performance.

Effect of FiLM Conditioning: We examine the impact of using a FiLM-conditioned vision encoder
for language-guided multi-task policies. As shown in Table ??, on the image-based LIBERO-90 and
Meta-World benchmarks, a FILM-conditioned vision encoder performs equally well or better than
an unconditional encoder. FiLM conditioning allows modulating the vision encoder’s parameters
conditioned on the language input. This provides an effective way to fuse visual and linguistic
information for solving tasks. Therefore, BAKU employs a FiLM-conditioned vision encoder for our
image-based experiments.

Separate vs. Shared Vision Encoders On the LIBERO-90 benchmark, environment observations
include images from two camera views. Table 7 compares multi-task performance using either a
common encoder for both views or separate view-specific encoders. While separate encoders provide
a 2% boost in performance, this minor gain comes at the cost of a 15% increase in parameter count
per camera view added (since the visual encoders comprise 1.5M parameters in our 10M parameter

23

Table 7: Study of design decisions for the model architecture that affects multi-task performance.

Category Variant LIBERO-90 Meta-World DMC

Separate vs. Shared Vision Encoders Common 0.90 - -
Separate 0.92 - -

Observation Trunk Input Separate 0.90 0.79 0.70
Concatenated 0.87 0.79 0.70

model). For our real-world experiments involving 4 camera views, this parameter increase would be
even more significant. Therefore, in BAKU, we use a shared encoder for all views to keep the model
compact, assisting with faster inference speeds.

Observation trunk input In our proposed architecture (see Section ??), the encoded observations
from different modalities are passed individually as tokens into the observation trunk along with the
action token to output the action feature representation. An alternative approach is to concatenate
all the encoded inputs into a single vector and pass it through the observation trunk. As shown in
Table 7, for Meta-World and DMC, which each have only a single input source, there is no difference
in performance, as expected. However, for LIBERO-90, which uses two camera views and the
robot’s proprioceptive state as inputs, there is a 3% absolute improvement in performance when using
separate observation tokens as compare to a single concatenated vector.

H Broader Impacts

In this work, we present BAKU, a simple and efficient transformer architecture for multi-task policy
learning. This work takes an important step toward enabling more efficient training of generalist
robotic agents capable of performing diverse tasks, reducing the need for large datasets of expert
demonstrations which are costly and time-consuming to collect. Further, BAKU focuses on improving
data efficiency by maximally leveraging available training data, which is particularly valuable in
robotics where data collection is expensive.

24

	Introduction
	Baku
	Sensory Encoders
	Observation Trunk
	Action Head

	Experiments
	How well does Baku work for multi-task learning?
	How does Baku perform on real-world tasks?

	Conclusion and Limitations
	Background
	Related Work
	Algorithmic Details
	FiLM Conditioning
	Action Heads
	Temporal smoothing over action chunking
	Hyperparameters

	Simulation Tasks
	Robot Tasks
	Baselines
	Additional Results and Analysis
	Real-World Task-wise Results
	How does Baku perform on long-horizon tasks?
	Additional Analysis

	Broader Impacts

