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ABSTRACT

The problem of estimating the gradient of an expectation in discrete random vari-
ables arises in many applications: learning with discrete latent representations,
training neural networks with quantized weights, activations, conditional blocks,
etc. This work is motivated by the development of the Gumbel-Softmax fam-
ily of estimators, which are based on approximating argmax with a temperature-
parametrized softmax. The state-of-the art in this family, the Gumbel-Rao esti-
mator uses internal MC samples to reduce the variance and appars to improve
with lower temperatures. We show that it possesses a zero temperature limit with
a surprisingly simple closed form defining our new estimator called ZGR. It has
favorable bias and variance properties, is easy to implement, computationally in-
expensive and is obviously free of the temperature hyperparameter. Furthermore,
it decomposed as the average of the straight through estimator and the DARN
estimator – two basic but not very well performing on their own estimators. Un-
like them, ZGR is shown to be unbiased for the class of quadratic functions of
categorical variables. Experiments thoroughly validate the method.

1 INTRODUCTION

Discrete variables and discrete structures are important in machine learning. For example, the se-
mantic hashing idea (Salakhutdinov & Hinton, 2009) is to learn a binary vector representation such
that semantically similar instances (e.g. images or text documents) would have similar bit repre-
sentations. This allows for a quick retrieval via a lookup table or via nearest neighbor search with
respect to the Hamming distance of binary encodings. Recent work employs variational autoen-
coders (VAEs) with binary latent states (Shen et al., 2018; Dadaneh et al., 2020; Ñanculef et al.,
2020). Another example is neural networks with discrete (binary or quantized) weights and activa-
tions. They allow for a low-latency and energy efficient inference, particularly important for edge
devices. Recent results indicate that quantized networks can achieve competitive accuracy with a
better efficiency in various applications (Nie et al., 2022).

VAEs and quantized networks are two diverse examples that motivate our development and the
experimental benchmarks. Other potential applications include conditional computation (Bengio
et al., 2013a; Yang et al., 2019; Bulat et al., 2021) reinforcement learning (Yin et al., 2019), learning
task-specific tree structures for agglomerative neural networks (Choi et al., 2018), neural architecture
search (Chang et al., 2019) and more.

The learning problem in the presence of stochastic variables is usually formulated as minimization
of the expected loss. The gradient-based optimization requires a gradient of the expectation in the
probabilities of random variables (or parameters of networks inferring those probabilities). Unbiased
gradient estimators have been developed (Williams, 1992; Grathwohl et al., 2018; Tucker et al.,
2017; Gu et al., 2016). These estimators work even for non-differentiable losses, however their
high variance is the main limitation. More recent advances (Yin et al., 2019; Kool et al., 2020;
Dong et al., 2020; 2021; Dimitriev & Zhou, 2021b;a) reduce the variance by using several cleverly
coupled samples. However, the hierarchical (or deep) case is not addressed satisfactory. There is
experimental evidence that the variance grows substantially with the depth of the network leading
to very poor performance in training (e.g., Shekhovtsov et al. 2020, Fig.C.6, C.7). Furthermore,
existing extensions of coupled sampling methods to networks with L dependent layers (Dong et al.,
2020; Yin et al., 2019) apply their base method in every layer, requiring several complete forward
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Table 1: Computation complexity of estimators in a hierarchical network with L dependency layers
of K-way categorical variables. All methods require a backward pass. ∗ – educated guess.

Method Unbiased Forward passes Cost per cat. variable per pass

ST, GS, GS-ST, ZGR X 1 O(K)
GR-MC(M ) X 1 O(MK)
REINFORCE X 1 O(K)
RF(M ) (Kool et al., 2019) X M ≥ 2 O(K)
ARSM (Yin et al., 2019) X O(K2L2) O(1)
DisARM-* (Dong et al., 2020; 2021) X O(2L2) O(K)
CARMS(M ) Dimitriev & Zhou (2021b;a) X O(ML2)∗ O(M2K2)∗

samples per layer. The computation complexity thus grows quadratically with the number of layers,
as summarized in Table 1.

A different family of methods, fitting practical needs for deep models better, exploits continuation
arguments. It includes ST variants (Bengio et al., 2013b; Shekhovtsov & Yanush, 2021; Pervez
et al., 2020) and Gumbel-Softmax variants (to be discussed below). These methods assume the loss
function to be differentiable and try to estimate the derivative with respect to parameters of a discrete
distribution from the derivative of the loss function. Such estimators can be easily incorporated into
back-propagation by adjusting the forward and backward passes locally for every discrete variable.
They are, in general, biased because the derivative of the loss need not be relevant for the discrete
expectation. The rationale though is that it may be possible to obtain a low variance estimate at a
price of small bias, e.g. for a sufficiently smooth loss function (Shekhovtsov & Yanush, 2021).

Gumbel Softmax (Jang et al., 2017) and the concurrently developed Concrete relaxation (Maddi-
son et al., 2017) enable differentiability through discrete variables by relaxing them to real-valued
variables with a distribution approximating the original discrete distribution. The tightness of the
relaxation is controlled by the temperature parameter t > 0. The bias can be reduced by decreasing
the temperature, but the variance grows as O(1/t) (Shekhovtsov, 2021). Gumbel-Softmax Straight-
Through (GS-ST) heuristic (Jang et al., 2017) uses discrete samples on the forward pass, but relaxed
ones on the backward, reducing side biases (see below). The Gumbel-Rao (GR) estimator (Paulus
et al., 2021) is a recent improvement of GS-ST, which can substantially reduce its variance by a
local expectation. However the local expectation results in an intractable integration in multiple
variables, which is approximated by sampling. The experiments (Paulus et al., 2021) suggest that
this estimator performs better at lower temperatures, which requires more MC samples. Therefore
the computation cost appears to be a major limitation.

Inspired by the performance of GR at low temperatures, we analyze its behavior for temperatures
close to and in the limit of the absolute zero. Note that because the underlying relaxation becomes
discrete in the cold limit, leading to explosion of variance in both GS and GS-ST, they do not have
a zero temperature limit. It is not obvious therefore that GR would have one. We prove that it does
and denote this limit estimator as ZGR. In the case of binary variables we give an asymptotic se-
ries expansion of GR around t = 0 and show that ZGR has a simple analytic expression, matching
the already known DARN( 1

2 ) estimator by Gregor et al. (2014) (also re-discovered as importance
reweighed ST by Pervez et al. 2020). In the general categorical case, we obtain the analytic expres-
sion of ZGR and show that it is a new estimator with a simple formula 1

2 (ST+DARN). We show that
ZGR is unbiased for all quadratic functions of categorical variables and experimentally show that it
achieves a useful bias-variance tradeoff. We also contribute a refined experimental comparison of
GS family with unbiased estimators.

2 BACKGROUND

Let x be a categorical random variable taking values in K = {0, . . .K − 1} with probabilities
p(x; η) parametrized by η. Let φ(x) ∈ Rd be an embedding of the discrete state x in the vector
space. Categorical variables are usually represented using 1-hot embedding, in this case d = K.
The value of x itself will still be used as an index. For binary and quantized variables we will adopt
the embedding φ(x) = x, in this case d = 1.
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Let L : Rd → R be a differentiable loss function. We will denote the Jacobian of L with respect
to an input φ as Jφ = dL

dφ . It is the transposed gradient of L with respect to φ, nevertheless,
we will informally refer to such Jacobians as gradients. For brevity, let us also use a shorthand
L(x) = L(φ(x)). The goal is to estimate the gradient of the expected loss

Jη = d
dηE[L(x)] = d

dη

∑
x L(x)p(x; η). (1)

In a network with many (dependent) categorical variables it has proven efficient (e.g., Bengio et al.
2013a; Jang et al. 2017; Paulus et al. 2021; Shekhovtsov & Yanush 2021; Pervez et al. 2020) to con-
sider estimators that make an estimate of Jη based on the gradient Jφ = dL(φ(x))

dφ at a sample x from
p(x; η) in (1). Such estimators can be easily extended to losses in multiple discrete variables (e.g.
defined by a stochastic computation graph) by simply applying the elementary estimator whenever
the respective Jacobian is needed in backpropagation. In this case Jη is the gradient in a specific
variable or intermediate activation η at a joint sample.

Let us review the basic estimators with which we will work theoretically.

REINFORCE We can use the log-derivative trick to rewrite

d
dη

∑
x L(x)p(x; η) =

∑
x L(x)dp(x;η)

dη =
∑
x L(x)p(x; η)d log p(x;η)

dη = E
[
L(x)d log p(x;η)

dη

]
(2)

and define the REINFORCE estimate (Williams, 1992) to be JRF
η = L(x)d log p(x;η)

dη , where x ∼
p(x; η). This estimator is clearly unbiased as E[JRF

η ] = Jη , but may have a high variance.

ST Let φ̄(η) = E[φ(x)] =
∑
x φ(x)p(x; η) – the mean embedding in Rd under the current distri-

bution of x. The Straight-Through estimator is

JST
η = Jφ

dφ̄(η)
dη . (3)

Note, ST estimators of different empirical forms exist. The present definition for categorical vari-
ables is the same as, e.g., by Gu et al. (2016) and is consistent with Hinton (2012) and Shekhovtsov
& Yanush (2021) in the binary case.

DARN Gregor et al. (2014) use LR with a baseline b(x) = L(x) + Jφ(φ̄ − φ(x)), which is a first
order Taylor approximation of L about φ(x) evaluated at some point φ̄. This results in the estimator

J
DARN(φ̄)
η = Jφ(φ(x)− φ̄)d log p(x;η)

dη . (4)

When x is binary, the choice φ̄ = 1
2

∑
x φ(x) – the mean embedding under the uniform distribution,

ensures that the estimator is unbiased for any quadratic function. However, for categorical variables
no φ̄ with such property exist. Gu et al. (2016) have experimentally tested several heuristic choices
for φ̄, including φ̄ = φ̄(η), and found that none performed well in the categorical case.

GS The Gumbel-Softmax (GS) estimator (Jang et al., 2017) is a relaxation of the Gumbel-argmax
sampling scheme. Let θk = log p(x=k; η). Let Gk ∼ Gumbel(0, 1), k ∈ K, where Gumbel(0, 1)

is Gumbel distribution with cdf F (u) = e−e
−u

. Then

x = arg maxk(θk +Gk) (5)

is a sample from p(x; η). The relaxation is obtained by using a softmax instead of arg max. This
construction assumes one-hot embedding φ and creates relaxed (continuous) samples in the simplex
∆K . Formally, introducing temperature hyperparameter t, it can be written as

φ̃ = softmax((θ +G)/t) =: softmaxt(θ +G); (6a)

JGS
θ = dL(φ̃)

dθ = dL(φ̃)

dφ̃

dφ̃
dη . (6b)

There are two practical concerns. First, the loss function is evaluated at a relaxed sample, which in
a large computation graph can offset estimates of all other gradients even not related to the discrete
variable we relax. This effect can be mitigated by using a smaller temperature, causing relaxed
samples φ̃ to concentrate in a corner of the simplex. However, and this is the second concern, the
variance of the estimator grows as O( 1

t ) if t is decreased towards zero (Shekhovtsov, 2021).
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GS-ST The Straight-Through Gumbel-Softmax estimator (Jang et al., 2017) is an empirical modi-
fication of GS, addressing the first concern above. It uses discrete samples in the forward pass but
swaps in the Jacobian of the continuous relaxation in the backward pass:

Gk ∼ Gumbel(0, 1), k ∈ K; (7a)
x = arg maxk(θk +Gk); (7b)

φ̃ = softmaxt(θ +G); (7c)

JGS-ST
θ = dL(φ(x))

dφ
dφ̃
dθ . (7d)

Notice that the hard sample φ(x) and the relaxed sample φ̃ are entangled throughG. Although, x has
the law of p(x; η) as desired, not biasing other variables, there is still bias in estimating the gradient
in θ, which is typically larger than that of GS (see Fig. 1). To make the bias smaller the temperature
t should be decreased, however, the variance still grows as O(1/t) (Shekhovtsov, 2021). Values of
t between 0.1 and 1 are used in practice (Jang et al., 2017).

GR Notice that the forward pass in GS-ST is fully determined by x alone and the value of G
that generated that x is needed only in the backward pass. Paulus et al. (2021) proposed that the
variance of GS-St can be reduced by computing the conditional expectation in G|x, leading to the
Gumbel-Rao estimator:

JGR
θ = EG|x

[
JST-GS
θ (G)

]
= dL(φ(x))

dφ EG|x
[

dφ̃
dθ

]
. (8)

Because the value of the loss L(x) and its gradient do not depend on the specific realization of G|x,
enabling the equality above, the expectation is localized and can be computed in the backward pass.
However, this expectation is in multiple variables and is not analytically tractable. Paulus et al.
(2021) use Monte Carlo integration with M samples from G|x. In their experiments they report
improvement of the mean squared error of the estimator when the temperature was decreasing from
1 down to 0.1. The trend suggests that it would improve even further below t = 0.1 provided that
the conditional expectation is approximated accurately enough, indicating that the variance does not
grow with the decrease of temperature in contrast to O(1/t) asymptote for GS and GS-ST and so
there might be a meaningful cold limit.

3 METHOD

Given the experimental evidence about the GR estimator, we took the challenge to study its
cold asymptotic behavior, i.e. for t → 0. The temperatured softmax in (7c) approaches a non-
differentiable arg max indicator in this limit and we have to handle the limit of the GR estimator
with care to obtain correct results. We first analyze the binary case, where derivations are substan-
tially simpler. Proofs of all formal claims can be found in Appendix A.

3.1 BINARY CASE

In the case with two categories we can simplify the initial ST-GS estimator as follows. We assume
x ∈ {0, 1} and φ(x) = x. The argmax trick can be expressed as x = [[θ1 +G1 ≥ θ0 +G0]], where
[[·]] is the Iverson bracket. It is convenient to assume that the distribution of x is parametrized so
that p(x=1; η) = σ(η), the logistic sigmoid function. This is without loss of generality, because
any other parametrization will result in just an extra deterministic Jacobian. Recalling that θk =
log p(x= k; η), we have θ1 − θ0 = η. Next, denoting Z = G1 −G0, we can write the argmax trick
compactly as x = [[η + Z ≥ 0]]. Being the difference of two Gumbel(0,1) variables Z follows the
standard logistic distribution (with cdf σ(z)). The GR estimator of gradient in η simplifies as

Z ∼ Logistic(0,1); x = [[η + Z ≥ 0]]; x̃ = σt(η + Z); JGR
η = dL(x)

dx EZ|x
[

dx̃
dη

]
, (9)

where σt(u) = σ(u/t) is the temperatured logistic sigmoid function. Although there is no closed
form, we can compute, with a careful limit-integral exchange, the series expansion around t = 0.

Proposition 1.

JGR
η = L′(x)

p(x) pZ(η)
(

1
2 + (2x− 1)c1 log(2)t

)
+O(t2), (10)

where pZ is the logistic density: pZ(η) = σ(η)σ(−η) and c1 = 2p− 1.
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Corollary 1. In the limit t→ 0 the GR estimator becomes the DARN( 1
2 ) estimator.

This establishes an interesting theoretical link, but discovers no new method for practical appli-
cations, as the DARN estimator is already known. Using the same expansion, we can study the
asymptotic bias and variance of GR around t = 0.

Corollary 2. The mean and variance of the GR estimator (9) in the asymptote t→ 0 are:

E[JGR
η ] = p(1− p)

(
1
2 (L′(1) + L′(0)) + (L′(1)− L′(0))c̃1t

)
+O(t2), (11a)

V[JGR
η ] = (p(1− p))3

(
1
4 (a− b)2 + 1

2 (a2 − b2)c̃1t
)

+O(t2), (11b)

where p = σ(η), a = L′(1)
p , b = L′(0)

1−p and c̃1 = (2p− 1) log(2).

This allows to make some predictions, in particular in the case of a linear objective L. In this case
the bias is O(t2) and the squared bias is O(t4). Therefore the MSE is determined by the variance
alone up toO(t4). The dependence of variance on t for a linear objective is negative in the first order
term. Therefore the temperature corresponding to the minimum MSE will be non-zero.

3.2 GENERAL CATEGORICAL CASE

In the general categorical case, the analysis is more complicated (exchange of the limit and multi-
variate integral over G|x) but gives a novel result:

Theorem 1 (ZGR). The Gumbel-Rao estimator for one-hot embedding φ in the limit of zero tem-
perature is given by

JZGR
θi

=

{
1
2 (Jφi − Jφx)p(x=i; η) if i 6= x;

− 1
2

∑
j 6=x(Jφj − Jφx)p(x=j; η) if i = x.

(12)

Proposition 2. ZGR estimator decomposes as

JZGR = 1
2 (JST + JDARN(φ̄(η))), (13)

i.e., with the choice φ̄ = φ̄(η) in DARN.

This is consistent with the expression for the binary case given by Corollary 1 by noting that in this
case (ST + DARN(φ̄(η)))/2 is exactly DARN(1/2). As we have defined ST and DARN estimators
for a general embedding, the form (2) is a valid expression of ZGR for any embedding (a change
of the embedding is just a linear transform). This form shows a surprising connection. Neither ST
nor DARN estimators perform particularly well in categorical VAEs on their own (Gu et al., 2016;
Paulus et al., 2021). However ZGR, being effectively their average, appears superior. It has the
following property, truly extending the design principle of binary DARN( 1

2 ) to the categorical case:

Theorem 2. ZGR is unbiased for quadratic loss functions L with arbitrary coefficients.

Both ST and DARN(φ̄(η)) are unbiased for linear functions and the theorem shows their biases for
quadratic functions are exactly opposite and cancel in the average. Because the bias of ST-GS, GR
and GR-MC is the same and we have shown that ZGR is the limit of GR at t → 0, the following is
straightforward.

Corollary 3. ST-GS and GR are asymptotically unbiased for quadratic functions with t→ 0.

These results extend to multiple independent discrete variables as follows.

Corollary 4. Let x1, . . . , xn be independent categorical variables and L(x1, . . . , xn) be such that
for all i and all configurations x the restriction L(xi) is a quadratic function. Then ZGR is unbiased.

The unbiased property for quadratic function gives us some intuition about applicability limits of
ZGR. Namely, if the loss function is reasonably smooth, such that it can be approximated well by a
quadratic function, we expect gradient estimates to be accurate. Compared to ST, which is unbiased
for multilinear functions only, we hypothesize that ZGR can capture interactions more accurately.
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4 EXPERIMENTS

We will compare ZGR with Gumbel-Softmax (GS), Straight-through Gumbel-Softmax (GS-
ST) (Jang et al., 2017), Gumbel-Rao with MC samples (GR-MC) (Paulus et al., 2021) and the
ST estimator (3). We also compare to the REINFORCE with the leave-one-out baseline (Kool et al.,
2019) using M ≥ 2 inner samples, denoted RF(M), which is a strong baseline amongst unbiased
estimators. In some tests we include ARSM (Yin et al., 2019), which requires more computation
than RF(4) but performs worse. See Appendix B.2 for details of implementations.

4.1 DISCRETE VARIATIONAL AUTOENCODERS

We follow established benchmarks for evaluating gradient estimators in discrete VAEs. We use a
MNIST data with a fixed binarization (Yin et al., 2019) and Omniglot data with dynamic binariza-
tion (Burda et al., 2016; Dong et al., 2021). We use the encoder-decoder networks same as (Yin
et al., 2019; Dong et al., 2021) up to the following difference. We embed categorical variables with
2b states as {−1, 1}b vectors. This allows to vary the number of categorical variables and categories
while keeping the decoder size the same. Please see full details in Appendix B.

4.1.1 ZERO TEMPERATURE LIMIT AND ESTIMATION ACCURACY IN VAE

First, we measure the gradient estimation accuracy at a particular point of VAE training, comparing
GS family of estimators at different temperatures as in (Paulus et al., 2021, Fig 2b.). This referenced
plot shows a steady decrease of MSE with the decrease of temperature down to 0.1 and we were
expecting ZGR to achieve the lowest MSE.

As an evaluation point we take a VAE model after 100 epochs of training with RF(4). We then
measure the bias and variance of all gradient estimators as follows. The loss function is the average
ELBO of a fixed random mini-batch of size 200. Let X ∈ Rd be the reference unbiased estimator
and Y ∈ Rd be the tested estimator. We want to measure the average over parameters (= dimensions
of the gradient) squared bias, which can be written as b2 = 1

d‖E[X]−E[Y ]‖2. We obtain n1 = 104

independent samplesXi from RF(4) and n2 = 104 independent samples Yi from the tested estimator
and compute an unbiased estimate of b2:

b̂2 = 1
d‖µ̂1 − µ̂2‖2 − V1

n1
− V2

n2
, (14)

where µ̂1 is the sample mean of X and V1 is the average (over dimensions) sample variance of X
and µ̂2 and V2 are likewise for Y . The variance of the evaluated estimator is just V2.

The results are shown in Fig. 1. All of ST-GS and GR estimators share the same bias according to
the theory but differ in variance. GS estimator is asymptotically unbiased but the variance grows as
O(1/t). We observe that the variance is by several orders larger than the squared bias. Respectively,
the mean squared error, which is the sum of the variance and the squared bias, is dominated by the
variance alone for all methods. This is in high contradiction with MSE analysis in (Paulus et al.,
2021, Fig 2b.), which we deem incorrect.

Note however, that the effect of the bias-variance trade-off in learning is not straightforward: com-
mon optimization methods use momentum as an effective way of variance reduction while the bias
can be correlated across iterations and may potentially accumulate. Therefore MSE is not necessar-
ily indicative of performance and ZGR still fulfills our expectations of the zero limit estimator: it
has the limiting bias, which is the lowest in the GR/GS-ST family, and the limiting variance which
is moderate. In particular the variance is better than that of GR for temperatures below about 0.1
and is comparable to the variance of RF(4). More tests at different stages of training are provided
in Appendix B.4.

4.1.2 TRAINING PERFORMANCE IN VAE

Next we compare training performance of several methods, in the same setting as prior work. In
particular we use the same Adam optimizer, batch size, learning rate and training duration as (Dong
et al., 2021; Dimitriev & Zhou, 2021b). Full details are given in Appendix B.3.

Table 2 presents results for two datasets and different splitting of latent bits into discrete variables
(from binary to 64-way categorical). We observe the following: 1) ST performs the worst and we
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Table 2: VAE training negative ELBO for binary MNIST > 0.5 and the down-sampled and dy-
namically binarized Omniglot. Each value is the mean over 3 random initializations and confidence
intervals are ±(max−min)/2 of the 3 runs. Bold results are the three best ones per configuration.

Number of Categories & Categorical Variables

Method C2 V192 C4 V96 C16 V48 C64 V32

M
N

IS
T-

B
GS(t=0.1) 91.2±0.1 84.4±0.5 82.8±0.5 86.9±0.9

GS-ST(t=0.1) 92.0±0.4 85.4±0.2 84.1±0.5 90.0±0.5
GR-MC(t=0.1,M=10) 88.8±0.2 82.7±0.1 81.0±0.1 82.4±0.1

GR-MC(t=0.1,M=100) 88.0±0.5 82.4±0.2 80.5±0.3 81.7±0.5
ZGR 88.6±0.2 83.0±0.1 80.6±0.4 81.9±0.1

ST 105.0±0.2 105.4±0.1 106.0±0.1 106.7±0.1
RF(M=2) 92.1±0.4 86.3±0.5 88.6±0.5 96.7±0.1
RF(M=4) 88.2±0.3 82.7±0.1 82.2±0.5 87.2±0.7

O
m

ni
gl

ot
-2

8-
D

GS(t=0.1) 117.6±0.2 116.0±0.2 117.0±0.1 120.6±0.2
GS-ST(t=0.1) 119.4±0.1 116.7±0.2 118.5±0.1 123.2±0.3

GR-MC(t=0.1,M=10) 116.6±0.2 114.6±0.1 115.7±0.1 117.8±0.2
GR-MC(t=0.1,M=100) 116.5±0.1 114.4±0.1 115.2±0.1 116.9±0.3

ZGR 116.6±0.4 114.5±0.1 115.4±0.1 117.0±0.2
ST 130.2±0.1 130.5±0.1 131.5±0.2 132.0±0.1

RF(M=2) 120.5±0.4 118.8±0.1 122.0±0.3 127.5±0.4
RF(M=4) 117.1±0.1 115.8±0.2 117.9±0.1 120.7±0.1

10 2 10 1 100

t

10 7

10 6

10 5

10 4

Av
er

ag
e 

Sq
ua

re
d 

Bi
as

GS
ST-GS
GR-MC10
GR-MC100
ZGR
ST

10 2 10 1 100

t

10 4

10 3

10 2

10 1

Av
er

ag
e 

Va
ria

nc
e

GS
ST-GS
GR-MC10
GR-MC100
RF(M=2)
RF(M=4)
ZGR
ST
ARSM

Figure 1: Gradient estimation accuracy in VAE on MNIST-B. Average (per parameter) squared bias
(left) and variance (right) of gradient estimators versus temperature at a model snapshot after 100
epochs of training with RF(4). Confidence intervals are 95% empirical intervals of 100 bootstrap
samples of the estimates (very narrow for variances).
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Figure 2: Left: time [ms] of a forward-backward pass on GPU (16 variables, 16 categories, single
batch of size 200, MNIST-B). GS and GS-ST estimators are shipped with Pytorch while other esti-
mators are implemented by us using tensor operations in Pytorch (no loops). ZGR is significantly
faster than GR-MC and one of the fastest methods overall. Right: Training ELBO after 500 epochs
of training with different choices of temperature (MNIST-B, 32 variables 64 categories). The regret
of ZGR w.r.t. GR-MC at the optimal temperature is insignificant. The plot shows the mean from 5
random initializations with confidence intervals ±(max−min)/2 of the 5 runs.
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blame its high bias (c.f . Fig. 1) 2) ZGR performs no worse than GR-MC variants. In Fig. 2 we
additionally verify that at no other temperature GR-MC can achieve significantly better results; 3)
ZGR outperforms RF(2) and RF(4), significantly so with more categories. Finally, we measure the
(orientational) computation time in Fig. 2 and observe that ZGR is faster than both GR-MC and
RF(2), consistently with theoretical expectations in Table 1.

Finally, according to the published results in a similar setup, the recent unbiased methods (Dong
et al., 2021; Dimitriev & Zhou, 2021b) appear to improve only marginally over RF with an equal
number of samples, i.e. the difference is much smaller than between ZGR and RF(2). We leave a
peer-to-peer comparison to future work.

4.2 QUANTIZED NEURAL NETWORKS

The mainstream progress in training quantized and binary neural networks, following Hubara et al.
(2017), has been achieved so far using empirical variants of ST estimator (with different clamping
rules, etc.) applied to deterministically quantized models, where there is no gradient to be estimated
in the first place. A sound training approach is to consider a stochastic relaxation, replacing all
discrete weights and activations by discrete random variables, leading in the binary case to stochastic
binary networks (Peters & Welling, 2018; Roth et al., 2019; Shekhovtsov & Yanush, 2021).

We will consider a parameter-efficient stochastic relaxation for quantization of Louizos et al. (2019).
In this model the distribution of a quantized weight or activation x is defined by a single real-valued
input η via: x = bη + zeK, where b·e rounds to the nearest integer in K and z is an injected noise,
such as logistic noise. Therefore x is a discrete integer variable with a distribution determined by
η. In Appendix B.5 we give an comprehensive evaluation of bias and variance of estimators for a
single such quantization unit. In a deep network, the pre-activation input η depends on the weights
of the current layer as well as on the preceding activations (both stochastically quantized), causing
a hierarchical dependence.

We train a convolutional network, closely following Louizos et al. (2019) and test on MNIST and
FashionMNIST. We do not quantize the input (it has 8 bit resolution in the dataset), the first and last
weight matrices are quantized to 4 bits. All inner layer weights and activations are quantized to 2 bits
or below. We form two real-valued baselines applying ReLU or Clamp (x 7→ min(max(x, 0),K −
1)) as activations instead of quantization. We expect that with enough bits, quantized training should
achieve performance of at least the Clamp variant. We evaluate training with logistic injected noise
(as in Louizos et al. (2019)) and triangular noise with the density p(z) = max(0, 1 − |z|). For
GS-ST variants we enable high temperatures (0.5, 1, 2) as recommended by Louizos et al. (2019).
See Appendix B.5 for details of the experimental setup.

The results are presented in Table 3. We see that the best results for are obtained with estimators hav-
ing the least variance, prominently ST and GS-ST(t=2). It suggests that the bias is less detrimental
in this application. In Fig. 3 we measured bias and variance along the training trajectory of ZGR
following the same methodology as in Section 4.1.1 with 104 samples from the reference RF(4)
estimator and 103 samples from candidate estimators. The two methods with the lowest variance are
exactly ST and GS-ST(t=2) while the bias was hard to measure accurately to draw any conclusions.
More generally, the ranking of results in Table 3 is quite similar to the ranking of variance in Fig. 3.
In particular, variance of RF(4) is several orders larger than that of biased estimators and its test
accuracy is completely out of the competition.

Regarding performance of ZGR we observe the following: 1) it outperforms GR-MC with temper-
ature 0.1, more clearly so on Fashion-MNIST (Table B.2), while being cheaper and simpler; 2) It is
close in performance to the best results obtained with more biased estimators.

5 DISCUSSION / CONCLUSION

On the theoretical side, we showed that GR estimator has a zero temperature limit, computed this
limit, studied its properties and connected to the existing estimators. Despite we derived ZGR from
the Gumbel-Softmax family, we do not consider it to be a proper member of this family. The straight-
through heuristic in GS-ST disposes of relaxed samples on the forward pass. The zero temperature
limit disposes of them also on the backward pass, leaving essentially nothing form the Gumbel-

8
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Table 3: MNIST classification test error[%] in deterministic mode (no injected noises at test time)
for different bit-width per weigh and activation (T denotes ternary). Hyperparameters are selected
on the validation set. Reference test errors: ReLU 0.69% , Clamp 0.64%.

Weights [bits] / Activations [bits]

Method 2/2 T/T T/1 1/1
L

og
is

tic
N

oi
se

GS-ST(t=2) 0.75± 0.03 0.73± 0.05 0.74± 0.04 0.83± 0.05
GS-ST(t=1) 0.75± 0.03 0.78± 0.08 0.88± 0.11 0.86± 0.04
GS-ST(t=0.5) 0.84± 0.05 0.86± 0.04 0.91± 0.11 1.02± 0.08
GR-MC(t=0.5,M=10) 0.71± 0.06 0.78± 0.06 0.88± 0.10 0.95± 0.09
GR-MC(t=0.1,M=10) 0.82± 0.04 0.85± 0.07 0.96± 0.04 1.14± 0.04
ZGR 0.84± 0.09 0.86± 0.07 0.95± 0.06 1.07± 0.06
ST 0.76± 0.04 0.77± 0.05 0.76± 0.01 0.81± 0.02
RF(M=2) L 38.9 35.9 51.0 52.3
RF(M=4) L 31.6 39.8 35.6 55.4

Tr
ia

ng
ul

ar
N

oi
se

GS-ST(t=2) 0.73± 0.05 0.72± 0.07 0.76± 0.05 0.85± 0.06
GS-ST(t=1) 0.71± 0.06 0.77± 0.03 0.74± 0.03 0.90± 0.07
GS-ST(t=0.5) 0.73± 0.04 0.84± 0.07 0.81± 0.04 0.88± 0.11
GR-MC(t=0.5,M=10) 0.70± 0.06 0.76± 0.06 0.71± 0.05 0.83± 0.05
GR-MC(t=0.1,M=10) 0.78± 0.01 0.75± 0.07 0.80± 0.03 0.98± 0.02
ZGR 0.75± 0.05 0.78± 0.04 0.80± 0.06 0.90± 0.08
ST 0.70± 0.10 0.73± 0.05 0.71± 0.04 0.76± 0.06
RF(M=2) T 37.8 43.2 68.3 69.7
RF(M=4) T 31.2 41.8 56.5 63.9
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Figure 3: MNIST classification gradient estimation accuracy and computation cost. Left, middle:
average (per parameter) squared bias (rsp. variance) in the first layer of the network of different
estimators along the training trajectory of ZGR (ternary weights/activations, triangular noise). Right:
Time of gradient estimate per batch (of size 128) in our implementation. ∗ Our RF implementation
is apparently not efficient.

softmax relaxation design. On the other side, we showed that it is unbiased for quadratic functions,
generalizing the key property of DARN( 1

2 ) to the categorical case. We believe that such rationale
can be put forward for obtaining improved biased estimators.

On the practical side, ZGR is extremely simple, versatile and computationally inexpensive. In VAE
it can replace GR-MC family completely, reducing the computational burden and hyperparameter
tuning. It outperforms state-of-the-art unbiased estimators of comparable computation complexity
and ST by a large margin. In quantized training it performs close to ST and can fairly replace
low-temperature GR-MC variants, while unbiased estimators are completely out of the competition.
Thus, across the two corner applications, ZGR is the only estimator which is computationally cheap
and well-performing. While in VAE unbiased estimators performs well (and we do not need to
worry about the bias) and in quantization simple ST performs well, the above results suggest that
there should be cases where ZGR would perform significantly better than both RF and ST. This may
be the case for example when considering a different learning formulation such as Bayesian learning
of quantized weights or learning with the multi-sample objective Raiko et al. (2015).
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REPRODUCIBILITY STATEMENT

Proofs of all formal claims are presented in Appendix A. Details of the experiments are described
in Appendix B. The source code of our implementation will be made publicly available upon pub-
lication. During the review period, we will be happy to answer questions and share the code with
reviewers confidentially through the OpenReview platform.
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A PROOFS

A.1 BINARY CASE

Proposition 1.

JGR
η = L′(x)

p(x) pZ(η)
(

1
2 + (2x− 1)c1 log(2)t

)
+O(t2), (10)

where pZ is the logistic density: pZ(η) = σ(η)σ(−η) and c1 = 2p− 1.

Proof. The conditional density p(z|x) is

p(z|x) =

{
pZ(z)[[η + z ≥ 0]]/p(x=1), if x = 1;

pZ(z)[[η + z < 0]]/p(x=0), if x = 0.
(15)

Let us denote p(x=1) as just p. The GR estimator expands as

JGR
η =

{
L′(1)
p

∫ η
−∞ σ′t(η + z)p(z)dz, if x = 1;

L′(0)
1−p

∫∞
η
σ′t(η + z)p(z)dz, if x = 0.

(16)

Using the change of variables v = σt(η + z), with the inverse z = tlogit(v)− η, we have

dv = σ′t(η + z)dz (17)

and can write the estimator as

JGR
η = L′(x)

p(x)

(
x
∫ 1

1
2
pZ(η − tlogitv)dv + (1− x)

∫ 1
2

0
pZ(η − tlogitv)dv

)
. (18)

Note that pZ(η− tlogitv) is bounded above by a constant supz pZ(z) = 1
4 . A constant is integrable

on [0, 1]. By dominated convergence theorem we can take the limits t → 0 under the integral. In
particular we can use

lim
t→0

pZ(η − tlogit(v)) = 1
2pZ(η) (19)

under the integral. In order to get a more detailed view, we make the Taylor series expansion of
pZ(η − tlogit(v)) and substitute it under the integral. With the help of Mathematica (Wolfram Re-
search, 2021) we obtain:

JGR
η = L′(x)

p(x) pZ(η)
(

1
2 + (2x− 1)c1 log(2)t+ c2

π2

6 t
2
)

+O(t3), (20)

where c1 = tanh(η/2) = 2p− 1 and c2 = 1
2 (1− 3/(cosh(η) + 1)).

Corollary 1. In the limit t→ 0 the GR estimator becomes the DARN( 1
2 ) estimator.

Proof. From the series expansion, the limit t− → 0 is

JGR
η = 1

2
L′(x)
p(x) pZ(η) = 1

2
L′(x)
p(x) p(1− p), (21)

where p = σ(η). It remains to show that it matches DARN as defined in (4). Note that
d log p(x=1;η)

dη = σ(η)(1 − σ(η)) = p(1 − p) and d log p(x=0;η)
dη = −p(1 − p). By expanding the

cases for x = 1 and x = 0 we verify that

(x− x̄)d log p(x=1;η)
dη = 1

2p(1− p), (22)

where x̄ = 1
2 .

Corollary 2. The mean and variance of the GR estimator (9) in the asymptote t→ 0 are:

E[JGR
η ] = p(1− p)

(
1
2 (L′(1) + L′(0)) + (L′(1)− L′(0))c̃1t

)
+O(t2), (11a)

V[JGR
η ] = (p(1− p))3

(
1
4 (a− b)2 + 1

2 (a2 − b2)c̃1t
)

+O(t2), (11b)

where p = σ(η), a = L′(1)
p , b = L′(0)

1−p and c̃1 = (2p− 1) log(2).
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Proof. The mean of the estimator is computed from the series expansion up to the first order as

pL
′(1)
p pZ(η)

(
1
2 + c̃1t

)
+O(t2)

+(1− p)L
′(0)

1−p pZ(η)
(

1
2 +−1c̃1t

)
+O(t2)

=pZ(η)
(

1
2 (L′(1) + L′(1)) + c̃1(L′(1)− L′(0))t

)
+O(t2). (23)

Since the GR estimator JGR
η (x) is a Bernoulli variable with values JGR

η (0) and JGR
η (1) with proba-

bilities p and 1− p, respectively, we can compute is variance simply as(
JGR
η (1)− JGR

η (0)
)2
p(1− p). (24)

Using that pZ(η) = p(1− p), the asymptotic expansion of variance up to first order in t is

(p(1− p))3
((
a( 1

2 + c̃1t)− b( 1
2 − c̃1t)

))2

+O(t2) (25a)

=(p(1− p))3
(

1
2 (a− b) + (a+ b)c̃1t

)2

+O(t2), (25b)

where a = f ′(1)
p , b = f ′(0)

1−p , c̃1 = log(2)c1. The first order term is
1
2 (p(1− p))3(a2 − b2)c̃1t. (26)

It could be positive or negative depending on the values of the derivatives and of p. Let us expand
a,b and c1 = tanh(η/2) = 2p− 1. We obtain, up to positive constants,

p(1− p)(f ′(1)2(1− p)2 − f ′(0)2p2)(2p− 1)t. (27)

We see that for the corner points, where p approaches either 0 or 1, this linear term is negative. In
particular for a linear objective we have f ′(1) = f ′(0) and the linear term becomes

−p(1− p)f ′(1)2(2p− 1)2t, (28)

which is non-positive for any p and is zero for p = 1
2 .

A.2 GENERAL CATEGORICAL CASE

This case is significantly more difficult, as we are dealing with multivariate integration inK Gumbel
variables. We will make use of the following statistical relationship.

Lemma A.1. Let G1, . . . GK be independent standard Gumbel random variables. Then Z with
components Zi = Gi −GK for i = 1 . . .K − 1 has the multivariate logistic distribution (Malik &
Abraham, 1973) with cdf

FZ(z) = 1
1+

∑K−1
i=1 e−zi

. (29)

Proof. The cdf and density of Gumbel(0, 1) distribution are given respectively by

FG(x) = e−e
−x

; pG(x) = e−(x+e−x). (30)

The conditional distribution of Zi given GK is FZi|GK (zi|y) = e−e
−(zi+y) . The conditional joint

distribution of Z given GK is respectively

FZ|GK (z|y) =
K−1∏
i=1

e−e
−(zi+y)

= exp(
K−1∑
i=1

−e−(zi+y)) = exp(−e−y
K−1∑
i=1

e−zi) = e−e
−yS , (31)

where S =
∑K−1
i=1 e−zi . The cdf of Z is obtained by computing the expectation of FZ|GK in GK :

FZ(z) =
∞∫
−∞

e−e
−ySe−(y+e−y)dy =

∞∫
−∞

e−y−e
−y(1+S)dy

= 1
1+S

∞∫
−∞

(1 + S)e−y−(1+S)e−ydy = 1
1+S

∞∫
−∞

e−v−e
−v

dv = 1
1+S , (32)

where v = y − log(S + 1) and the last equality is by recognizing the Gumbel density under the
integral.
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Theorem 1 (ZGR). The Gumbel-Rao estimator for one-hot embedding φ in the limit of zero tem-
perature is given by

JZGR
θi

=

{
1
2 (Jφi − Jφx)p(x=i; η) if i 6= x;

− 1
2

∑
j 6=x(Jφj − Jφx)p(x=j; η) if i = x.

(12)

Proof. We can take Jφ = dL(φ(x))
dφ out of the conditional expectation since it does not depend on

G for fixed x. Furthermore, X is distributed as p(x) by the sampling procedure and therefore
PG(X=x) = p(x). We can thus rewrite the conditional expectation (8) as

Jφ
∫

[[X(u) = x]]dφ̃(u)
dθ dFG(u)/PG(X=x) = 1

p(x)Jφ
∫

arg max(θ+u)=x

dφ̃(u)
dθ dFG(u), (33)

where FG is the joint cdf of G. The condition arg maxk(θk +Gk) = x can be expressed as

θj +Gj − (θx +Gx) ≤ 0, ∀j 6= x. (34)

Let us define βj = θj − θx and Zj = Gj − Gx for j = 1 . . .K. Note that βx = Zx = 0 by this
definition. Then the constraint can be written as

Z ≤ −β. (35)

The integrand φ̃ expresses in variables β, Z as

φ̃ = softmaxt(θ +G) = softmaxt(β + Z). (36)

Let us denote Z¬x = (Zj |j 6= x). The joint distribution of Z¬x is the (K − 1)-variate multivariate
logistic distribution (Malik & Abraham, 1973), as detailed in Lemma A.1, with cdf:

FZ¬x(z¬x) = 1
1+

∑
i6=x e

−zi . (37)

To simplify notation, we let Zx have the discrete law with mass 1 at a single point zx = 0 = −βx
and extend FZ¬x to the full joint FZ accordingly. We then can rewrite the integral as( ∫

z≤−β

∂
∂β softmaxt(β + z)dFZ(z)

)
∂β
∂θ . (38)

The Jacobian ∂
∂β softmaxt(β + z) is a K ×K matrix with indices (k, j) where the column j = x

is zero by definition. Let us consider one component of the above integral for j 6= x:

Ik,j =
∫

z≤−β

∂
∂βj

softmaxt(β + z)kdFZ(z). (39)

We want to evaluating its limit for t → 0. We cannot push the limit under the integral in this form,
we need to transform it first. To shorten the notation, let us denote ai = e(zi+βi)/t. We change the
variable zj by the mapping

T : zj 7→ vj = (2 + Sj)
aj

1+aj+Sj
. (40)

where Sj =
∑
i6=x,j aj . This mapping is monotone increasing and one-to one from (−∞,−β) to

(0, 1), therefore the constraint zj ≤ −βj will trivialize.

Let Ak = softmaxt(β + z)k. We can rewrite the integrand ∂
∂βj

Akdzj as follows:

dAk
dβj

dzj = dAk
dzj

dzj (Ak depends on βj in the same way as on zj)

=dAk
dzj

dzj
dv dv = dAk

dvj
dv. (41)

We will thus need to evaluate Cj := dAk
dvj

= dAk
daj

daj
dvj

= dAk
daj

(
dvj
daj

)−1. For j = k we simply have

Ak =
aj

1+aj+Sj
= 1

2+Sj
vj ; Cj = 1

2+Sj
. (42)
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For j 6= k we have
dAk
daj

= d
daj

ak
1+aj+Sj

= −ak
(1+aj+Sj)2

(43a)

dvj
daj

= (2 + Sj)
(

1
1+aj+Sj

− aj
(1+aj+Sj)2

)
=

(2+Sj)(1+Sj)
(1+aj+Sj)2

(43b)

Cj = −ak
(2+Sj)(1+Sj)

. (43c)

The integral Ik,j with the change of variable zj 7→ vj expresses as∫
zi≤−βi ∀i 6=j

∫ 1

0
Cjft(vj |z¬j)dvjdFZ¬j (z¬j), (44)

where z¬j = (zi|i 6= j) and

ft(vj |z¬j) = pZj |Z¬j (T
−1(vj)|z¬j). (45)

The dependance of ft on t is through T , while Cj depends on t and z¬j . Note that f is a squashed
density and is itself not a density.

Next we show dominated convergence of ht(vj , z¬j) = Cjft(vj |z¬j) in t → 0. If ht(vj , z¬j)
converges point-wise and bounded above by an integrable function, then the limit t → 0 can be
taken under the integral.

We show a constant bound on ht(vj , z¬j) as follows. Note that |Cj | ≤ 1. We then have

|ht(vj , z¬j)| ≤ sup
v∈(0,1),z¬j

f(vj |z¬j) = sup
z
pZj |Z¬j (zj |z¬j), (46)

which is the supremum of the conditional density of the standard multivariate distribution and is
equal to some constant c independent of t. The integral of a constant function c over (0, 1)×RK−1

with respect to the measure dvjdFZ¬j (z¬j) is c.

The point-wise limit is as follows. For z satisfying the constraints zi + βi ≤ 0 strictly for i 6= j, x,
we have

lim
t→0

ai = lim
t→0

e(βi+zi)/t = 0 and lim
t→0

Sj = 0. (47)

Therefore we have

lim
t→0

Cj =


1
2 if j = k;

0 if j 6= k ∧ k 6= x;

− 1
2 if j 6= k ∧ k = x.

(48)

The inverse of mapping T is given by the relations

aj =
vj(1+Sj)
2+Sj−vj ; zj = −βj + t log(aj). (49)

It is seen that the limit of log(aj) is finite and therefore

lim
t→0

T−1(vj) = −βj . (50)

and

lim
t→0

ft(vj |z¬j) = lim
t→0

pZj |Z¬j (T
−1(vj)|z¬j) = pZj |Z¬j (lim

t→0
T−1(vj)|z¬j)

= pZj |Z¬j (−βj |z¬j). (51)

By dominated convergence theorem, we can now claim

limt→0 Ik,j = 0 if j 6= k and k 6= x. (52)

And elsewise, if j = k or k = x,

limt→0 Ik,j =
∫

zi≤−βi ∀i 6=j
± 1

2pZj |Z¬j (−βj |z¬j)dFZ¬j (z¬j) = ± 1
2
∂
∂zj

FZ(z)
∣∣∣
z=−β

(53)

= ∓ 1
2
∂
∂βj

1
1+

∑
i6=x e

βi
= ∓ 1

2
∂
∂βj

eβx∑
i e
βi

= ∓ 1
2
∂
∂βj

softmax(β)x (54)

= ± 1
2p(x)p(j), (55)
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where the upper sign corresponds to the case j = k and the lower to k = x.

Let us denote Î = limt→0 I . Multiplying it with the incoming derivative Jφ on the left, we obtain:

(JφÎ)j = 1
2 (Jφj − Jφx)p(x)p(j). (56)

And finally, multiplying (56) with the Jacobian ∂β
∂θ on the right per (38) and with the factor 1

p(x)

per (33), we obtain

JZGR
θi

=

{
1
2 (Jφi − Jφx)p(i) if i 6= x;

− 1
2

∑
j 6=x(Jφj − Jφx)p(j) if i = x.

(57)

Proposition 2. ZGR estimator decomposes as

JZGR = 1
2 (JST + JDARN(φ̄(η))), (13)

i.e., with the choice φ̄ = φ̄(η) in DARN.

Proof. Let p denote the vector of probabilities (p(x=k; η)|k = 0, . . . ,K − 1). Recall that we
have derived ZGR under the assumption of on-hot embedding φ, inherited from GS. In this case
Jφφ(i) = Jφi and φ̄k =

∑
i φ(i)kpi = pk.

Note that ZGR (57) defines the gradient in the parametrization θ used in Gumbel Rao and initially
in Gumbel-Softmax, while ST and DARN estimators are given by us with respect to η. We need to
bring these two to a common basis. We chose to reconstruct JZGR

p because both JST
p and JDARN

p are
particularly simple:

JST
pi = Jφφ(i) = Jφi , (58)

JDARN
pi = Jφ(φi − φ̄)[[x=i]]/p(x) = (Jφi − Jφp)[[x=i]]/p(x). (59)

Note, because p lies in the simplex, gradients in p are defined up to an additive constant to all
coordinates. In other words any such additive constant is irrelevant and will not affect the gradient
in η.

In order to reconstruct JZGR
p we represent JZGR

θ = JZGR
p P , where P is the Jacobian of softmax,

given by
P = diag(p)− ppT = diag(p)(I − 1pT). (60)

We first note that JZGR
θ satisfies

∑
i J

ZGR
θi

= 0 (as any gradient should, but not necessarily a stochas-
tic estimator) and therefore

JZGR
θ = JZGR

θ (I − 1pT) = JZGR
θ diag(p)−1P. (61)

We obtained:

JZGR
pi =

{
1
2 (Jφi − Jφx) if i 6= x;

− 1
2

∑
j 6=x(Jφj − Jφx)p(j)/p(x) if i = x,

(62)

up to a constant, i.e. adding the same number c to all components. We further add the constant 1
2Jφx

and obtain

JZGR
pi =

{
1
2Jφi if i 6= x;
1
2Jφx −

1
2

∑
j 6=x(Jφj − Jφx)p(j)/p(x) if i = x,

(63)

Subtracting 1
2J

ST
p , the reminder is 1

2J
RE
p with

JRE
pi = [[i=x]] 1

p(x)

∑
j 6=x(Jφx − Jφj )p(j). (64)

Simplifying ∑
j 6=x(Jφx − Jφj )p(j) =

∑
j(Jφx − Jφj )p(j) = Jφx −

∑
j Jφjp(j) (65)

we obtain

JRE
pi = [[i=x]] 1

p(x)

(
Jφx −

∑
j Jφjp(j)

)
. (66)

and we see that JRE
p = JDARN

p with φ̄ = p = φ̄(η).
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Theorem 2. ZGR is unbiased for quadratic loss functions L with arbitrary coefficients.

Proof. Since ZGR estimator is linear in L (estimate for a linear combination of two loss functions is
the linear combination of estimates), it is sufficient to prove the claim for one-hot embedding φ and
some elementary functions forming a basis for all quadratic functions. With one-hot embedding we
have φ̄(η)i = p(x=i; η) = pi.

Let us start with a linear monomial L(x) = φ(x)i. The expected loss is E[L(x)] = p(x=i; η). The
true gradient is

Jη = d
dηp(x=i; η). (67)

Substituting Jφk = [[k=i]] in ST we have

JST
η = dL(φ(x))

dφ
dφ̄(η)

dη = dφ̄(η)i
dη = Jη. (68)

This may come as a surprise for someone, but ST for a single categorical variable is exact (zero
bias and zero variance). The expectation of JDARN simplifies as follows for any φ̄ and a linear loss
function, ensuring that Jφ is constant in x:

E[JDARN
η ] =

∑
x p(x)Jφ(φ(x)− φ̄) 1

p(x)
dp(x;η)

dη = Jφ
∑
x(φ(x)− φ̄)dp(x;η)

dη

= Jφ
∑
x φ(x)dp(x;η)

dη − Jφφ̄ d
dη

∑
x p(x; η) = Jφ

dφ̄(η)
dη . (69)

Substituting Jφk = [[k=i]] and φ̄(η) = p we obtain

E[JDARN
η ] = dp(x=i;η)

dη = Jη, (70)

reconfirming that DARN is unbiased for linear function of categorical variables as expected. It
follows that 1

2 (JST
η + JDARN

η ) is also unbiased.

Let us now consider the elementary quadratic function L(φ(x)) = φ(x)2
i − φ(x)i. For all discrete

assignments it is zero, therefore the true gradient of its expected value is zero. We have

Jφk(x) =

{
2φ(x)i − 1 k = i

0 k 6= i.
(71)

Therefore JST
pk

= 0 for k 6= i and

E[JST
pi ] = E[2φ(x)i − 1] = 2pi − 1. (72)

For JDARN
pi we have

JDARN
pi = (Jφi(x)− Jφ(x)p) 1

p(x) [[x=i]] (73)

= (1− pi)(2φ(x)i − 1) 1
p(x) [[x=i]]. (74)

Its expectation is

(1− pi)(2φi(i)− 1) = 1− pi. (75)

For JDARN
pk

= 0 for k 6= i we have

JDARN
pk

= (Jφk(x)− Jφ(x)p) 1
p(x) [[x=k]] (76a)

= −Jφ(x)p 1
p(x) [[x=k]] (76b)

= −pi(2φ(x)i − 1) 1
p(x) [[x=k]]. (76c)

Its expectation is

− pi(2φi(k)− 1) = pi. (77)

By subtracting pi from all ordinates of JDARN
p , we obtain an equivalent (having identical derivative

in η) form where E[JDARN
pk

] = 0 for all k 6= i and E[JDARN
pi ] = 1−2pi, which cancels with E[JST

pi ].
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Next we consider a bilinear monomial in φ: L(φ(x)) = φ(x)1φ(x)2, where we have taken indices
1 and 2, without loss of generality. Its is zero for all discrete assignments and therefore the gradient
of its expectation is zero. We have

Jphi1 = φ2(x) = [[x=2]] (78a)
Jphi2 = φ1(x) = [[x=1]]. (78b)

For ST we have JST
p = Jφ and

E[JST
p1 ] = p2, (79a)

E[JST
p2 ] = p1, (79b)

E[JST
pk

] = 0, k 6= 1, 2. (79c)

For DARN part we have:

JDARN
p1 = [[x=1]] 1

p1
(Jφ1

− Jφ1
p1 − Jφ2

p2), (80a)

JDARN
p2 = [[x=2]] 1

p2
(Jφ2 − Jφ1p1 − Jφ2p2), (80b)

JDARN
pk

= [[x=k]] 1
pk

(−Jφ1
p1 − Jφ2

p2), k 6= 1, 2. (80c)

In the expectation, substituting Jφ:

E[JDARN
p1 ] = [[x=1]] 1

p1
(φ2(1)− φ2(1)p1 − φ1(1)p2) = −p2, (81a)

E[JDARN
p2 ] = [[x=2]] 1

p2
(φ1(2)− φ2(2)p1 − φ1(2)p2) = −p1, (81b)

E[JDARN
pk

] = [[x=k]] 1
pk

(−φ2(k)p1 − φ1(k)p2) = 0, k 6= 1, 2. (81c)

This exactly cancels with ST.

The elementary functions we have considered form a basis in the space of all quadratic functions.
By linearity argument, JZGR = 1

2 (JST + JDARN ) is unbiased for all quadratic functions.

B DETAILS OF EXPERIMENTS

Here we give detailed specifications of our experiments. The implementation of all experiments will
be made publicly available upon publication. During the review period, we will be happy to answer
questions and share the code with reviewers confidentially through the OpenReview platform.

B.1 DATASET

In quantized training we use MNIST1 and FashionMNIST2 datasets. Each contains 60000 training
and 10000 test images. We used 54000 images for training and 6000 for validation.

In VAE training, following the prior work, we use a decoder with Bernoulli output layer, which
requires binary datasets. MNIST-B is a binarized MNIST with a fixed threshold of 0.5, same as
in Yin et al. (2019). The original Omniglot dataset is of the size 105 × 105 and contains binary
images. However the established benchmarks use its down-sampled version (to size 28×28), which
is then dynamically sampled: binary pixel values are generated with probabilities proportional to
the original pixel values (Burda et al., 2016; Dong et al., 2021), which we denote as Omniglot-
28-D. The down-scaled dataset published by Burda et al. (2016)3 was used, same as in the public
implementation of Dong et al. (2021). It contains about 24000 training images, which were split
into training (90%) and validation (10%) parts and currently we are not using the validation part.

1http://yann.lecun.com/exdb/mnist/
2https://github.com/zalandoresearch/fashion-mnist
3https://github.com/yburda/iwae/raw/master/datasets/OMNIGLOT/chardata.

mat
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def ZGR(p:Tensor)->Tensor:
"""Returns a categorical sample from p [*,C] (over axis=-1) as

one-hot vector, with ZGR gradient.
"""
index = Categorical(probs=p).sample()
x = F.one_hot(index, num_classes=p.shape[-1]).to(p)
logpx = p.log().gather(-1, index.unsqueeze(-1))# log p(x)
dx_ST = p
dx_RE = (x - p.detach()) * logpx
dx = (dx_ST + dx_RE) / 2
return x + (dx - dx.detach()) # value of x with backprop through dx

Figure B.1: ZGR implementation in Pytorch for a general categorical variable.

B.2 METHODS

ZGR for categorical variables can be implemented as shown in Fig. B.1. It is a plug-in estimator,
meaning that it is sufficient to use it for every tensor of categorical variables in a hierarchical model
and the gradient in all parameters will be computed by back-propagation automatically.

Gumbel-Softmax (GS) and Straight-through Gumbel-Softmax (GS-ST) (Jang et al., 2017) are
shipped with pytorch4.

For Gumbel-Rao with MC samples (GR) we adopted the public reimplementation by nshepperd 5.

RF(M ) we implemented according to (Kool et al., 2019, Eq. 8). The part of the computation
relevant to the encoder is propagated forward and backward only once. In the decoder we perform
as many backward passes as forward, as this reduces variance of the gradient in decoder parameters.
In quantization our implementation performs a backward pass for each forward pass, and is not well
organized.

For ARSM (Yin et al., 2019) we made own reimplementation, cross-checked with the authors tensor-
flow implementation 6. As with RF(M ), we also performed a backward pass for each forward pass.

B.3 VAE

Model In our model each categorical variable is encoded as a vector of ±1, corresponding to the
bit representation of x, similar to Paulus et al. (2021). There is a fixed number of total hidden bits
(192), which are split into several categorical variables. For example 192 1b variables or 32 6-bit
variables. This way the number of weights in the network stays constant. The network architecture
is adopted from Yin et al. (2019):

Linear(784,512)→ LReLU→ Linear(512,256)→ LReLU→ Linear(256, D*K),

where in the last layer we have D of K-way categorical units and LReLU has a leaky coefficient of
0.2 (same as in Dong et al. (2021), default in tensorflow). The output of the encoder defines logits
of the encoder Bernoulli model q(zi=1|x), where x is the input binary image and z is the latent
discrete state.

The decoder has exactly the reverse Linear-LReLU architecture and outputs logits of conditionally
independent Bernoulli generative model p(xi=1|z). We optimize the standard evidence lower bound
(ELBO) Kingma & Welling (2013) with prior distribution p(z) uniform and not learned.

We do not perform any special data-based initializations like subtracting data mean in the encoder
in Dong et al. (2021).

Optimization In the forward pass all methods produce a sample, from which a stochastic esti-
mate of the gradient with respect to the decoder parameters is readily computed by backpropagation
through decoder. We compute the KL term in ELBO analytically for a mini-batch and use its exact

4Pytorch function torch.functional.gumbel_softmax
5https://github.com/nshepperd/gumbel-rao-pytorch
6https://github.com/ARM-gradient/ARSM
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gradient. The estimation problem (1) occurs for the gradient of the data term with respect to the
encoder parameters, where the estimators through discrete variables are applied.

All methods, including GS that optimizes ELBO with relaxed samples, are evaluated by the correct
ELBO with discrete samples.

In the VAE experiments we measure the gradient accuracy and the training performance and do not
make use of validation or test sets. First, this is reasonable when comparing quality of gradient
estimators, regardless generalization. Second, the prior work Dong et al. (2021) has verified that
improvement in the training ELBO translates into improvement of the test ELBO and IWAE bounds.

Following Dong et al. (2021) we train with Adam with learning rate 10−4 using batch size 50.
Furthermore we tried to match the training time that of Dong et al. (2021). For MNIST we perform
500 epochs, and for Omniglot-28-D we perform 1000 epochs, roughly equivalent in booth cases to
their 500K iterations with batch size 50.

B.4 ADDITIONAL VAE EXPERIMENTS

We include some extended results.

Bias-variance analysis We conducted the bias-variance analysis for VAE at different training
stages. Namely, we trained the model using RF(4) for 1, 10, 100, and 200 epochs and at each stage
evaluated bias and variance of all gradient estimators. The model used 16 categorical variables of
16 categories (64 total latent bits). The results are displayed in Fig. B.2. At the very beginning of
training, the picture looks substantially different in that there is some bias reversal in GS-ST and
derived estimators. However from epoch 10 and on the trends and relative ordering of methods
stabilizes, with only RF(4) slightly overtaking ZGR in variance. The different picture after 1 epoch
suggests that it would be beneficial in practice to warm-up the training with a few epochs of GS-ST
at t = 1 or ST. We left such tuning to future work.

B.5 QUANTIZED NEURAL NETWORKS

Experimental Setup In this experiment we train a convolutional network 32C5-MP2-64C5-MP2-
512FC-10FC, closely replicating the model evaluated by Louizos et al. (2019) for MNIST. Each
activation quantization is preceded by batch normalization (Ioffe & Szegedy, 2015).

All gradient estimators are working with the same network, parametrization and initialization. In the
case of logistic noise the noise standard deviation is learnable and is initialized to 1/3. All methods
are applied with Adam optimizer for 200 epochs. For every method we select the bast validation
performance with the grid search for the learning rate from {10−3, 3.3 ∗ 10−4, 10−4}. We used the
step-wise learning rate schedule decreasing the learning rate 10 times at epochs 100 and 150. The
whole procedure is repeated for 3 different initialization seeds and we report the mean test error over
seeds and ±(max−min)/2 over seeds.

For validation and testing, we evaluate the network in the ’deterministic’ mode, turning off all in-
jected noises. This corresponds to a simple deterministic quantized model to be deployed.

Single Unit Quantization We include the following toy experiment that well illustrates properties
of different estimators. We evaluate bias and variance of all estimators on a simple function of a
single quantized variable. Let η be a real-valued parameter. Let p(x; η) be given by the stochastic
quantization model with K = 4 states and a particular noise type. Given a test function L(x) we
can compute the true gradient of E[L(x)]. For each estimator we draw 104 samples to compute its
mean and standard deviation for each value of η. The results are presented in Fig. B.3. In this plot
we show several combinations of loss functions and noises. The test functions are: linear L(x) = x;
quadratic L(x) = 1

2 (x − c)2 and sigmoid L(x) = σ(2(x − c)), where c = (K − 1)/2 is chosen
for centering. The noises shown refer to the logistic noise with std = 1/3 as used at initialization
by Louizos et al. 2019 and the triangular noise with the density p(z) = max(0, 1− |z|).

The bias of the GS family quickly decreases with the temperature. ZRG estimator achieves the
same expected value as GS-ST in the limit of small temperature illustrated by GS-ST(t=0.1) and
the variance comparable to that of GR(t=0.1, M=100). We also verify that ZGR has zero bias for
quadratic objectives as we have shown theoretically.
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After 10 epoch of training
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After 100 epochs of training
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After 200 epochs of training
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Figure B.2: Gradient estimation accuracy in VAE on MNIST-B. Average (per parameter) squared
bias (left) and variance (right) of gradient estimators versus temperature for a model snapshot at
a particular iteration of training with RF(4). VAE network with 16 categorical variables with 16
categories.

Additional Comparisons In Table 3 we left out GS method after preliminary testing. These results
(without confidence bounds) are available in Table B.1. A we also performed a full comparison on
FMNIST dataset in Table B.2, which qualitatively agrees with the results for MNIST Table 3 and
confirms that ZGR improves over GR-MC(t=0.1, M=10).
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Figure B.3: Performance of estimators in stochastic quantization with selected combinations of test functions and injected noise for varied input η of the stochastic
quantizer. The dashed blue line is the exact gradient. Red line is the mean of the estimator and the red shaded area shows ±1 std. GR with 100 is able to reduce
the variance of GS-ST substantially. ZGR reduces the variance by an edge further while keeping the bias equal to the theoretical bias of GR with zero temperature.
The variance of ARSM is substantially higher. Plain ST estimator has a yet smaller variance but a larger bias, which may accumulate during taring.
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Table B.1: MNIST test error[%] complementing Table 3 with GS variants, which are found to be
inferior.

Logistic Noise Relaxation
Weights [bits] / Activations [bits]

method 2/2 T/T T/1 1/1

GS(t=2) 0.80 0.78 0.87 1.11
GS(t=1) 0.86 0.72 0.98 0.86
GS(t=0.5) 0.94 0.82 0.99 1.18

Table B.2: FMNIST test error[%] in deterministic mode (no injected noises at test time) for dif-
ferent bit-width per weigh and activation (T denotes ternary). Hyperparameters are selected on the
validation set. Reference test errors: ReLU 9.73% , Clamp 9.6%.

Weights [bits] / Activations [bits]

Method 2/2 T/T T/1 1/1

L
og

is
tic

N
oi

se

GS-ST(t=2) 8.15± 0.30 8.32± 0.13 8.58± 0.18 8.92± 0.08
GS-ST(t=1) 8.56± 0.23 8.59± 0.30 8.99± 0.22 9.07± 0.05
GS-ST(t=0.5) 9.11± 0.32 9.60± 0.19 9.85± 0.04 10.99± 0.26
GR-MC(t=0.5,M=10) 9.04± 0.23 8.84± 0.10 9.41± 0.10 9.97± 0.08
GR-MC(t=0.1,M=10) 9.35± 0.12 10.10± 0.19 10.63± 0.16 11.61± 0.35
ZGR 9.12± 0.33 9.33± 0.22 9.85± 0.25 10.67± 0.13
ST 8.55± 0.11 8.79± 0.10 9.62± 0.09 9.28± 0.17

Tr
ia

ng
ul

ar
N

oi
se GS-ST(t=2) 8.57± 0.13 8.76± 0.14 10.19± 0.09 10.92± 0.30

GS-ST(t=1) 8.59± 0.01 8.94± 0.21 9.95± 0.09 10.56± 0.26
GS-ST(t=0.5) 9.35± 0.29 9.63± 0.20 10.70± 0.13 11.34± 0.07
GR-MC(t=0.5,M=10) 8.61± 0.10 8.62± 0.07 9.34± 0.10 9.76± 0.21
GR-MC(t=0.1,M=10) 8.85± 0.13 9.32± 0.04 10.16± 0.06 10.83± 0.19
ZGR 8.67± 0.25 8.96± 0.25 9.73± 0.19 10.09± 0.38
ST 8.59± 0.20 8.61± 0.17 9.15± 0.18 9.98± 0.19
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