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Abstract

As causal ground truth is incredibly rare,
causal discovery algorithms are commonly
only evaluated on simulated data. This
is concerning, given that simulations reflect
preconceptions about generating processes
regarding noise distributions, model classes,
and more. In this work, we propose a novel
method for falsifying the output of a causal
discovery algorithm in the absence of ground
truth. Our key insight is that while statisti-
cal learning seeks stability across subsets of
data points, causal learning should seek sta-
bility across subsets of variables. Motivated
by this insight, our method relies on a no-
tion of compatibility between causal graphs
learned on different subsets of variables. We
prove that detecting incompatibilities can fal-
sify wrongly inferred causal relations due to
violation of assumptions or errors from finite
sample effects. Although passing such com-
patibility tests is only a necessary criterion
for good performance, we argue that it pro-
vides strong evidence for the causal models
whenever compatibility entails strong impli-
cations for the joint distribution. We also
demonstrate experimentally that detection of
incompatibilities can aid in causal model se-
lection.
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1 INTRODUCTION

Causal relationships are often formalized as directed
acyclic graphs (DAGs) (Pearl, 2009), or more gen-
eral graphical models which also account for hidden
confounders (Spirtes et al., 2000) and cycles (Bongers
et al., 2021). Discovering causal relations is an impor-
tant problem in science, which has led to the devel-
opment of a diverse range of methods to infer causal
graphs from passive observations. These methods are
based on various approaches, such as Bayesian pri-
ors (Heckerman, 1995), independence testing (Spirtes
et al., 2000; Lam et al., 2022), additive noise assump-
tions (Shimizu et al., 2006; Hoyer et al., 2008a), gener-
alizations thereof (Zhang and Hyvärinen, 2009; Strobl
et al., 2016), or various implementations of the so-
called Independence of Mechanism assumption (Da-
niusis et al., 2010; Marx and Vreeken, 2017).

Causal discovery algorithms are typically evaluated
primarily on simulated data. This is because causal
ground truth is incredibly rare as it often necessitates
real-world experiments. These experiments can be not
only expensive and potentially unethical, but also fre-
quently infeasible or even ill-defined from the outset
(Spirtes and Scheines, 2004). Despite promising per-
formance on simulated data, and in spite of numerous
results on the identifiability of causal DAGs or parts
thereof from passive observations, skepticism about
the applicability of these algorithms on real data is
warranted. This is because these algorithms are built
on assumptions such as faithfulness, additive noise,
post-nonlinear models, or independence principles, all
of which can be violated in practice. Indeed, recent
studies on causal discovery methods reveal a discon-
certing reality about their applicability to real-world
datasets (Huang et al., 2021; Reisach et al., 2021). Ac-
cordingly, the value of existing algorithms for down-
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stream causal inference tasks is unclear and debated
(Imbens, 2020).

In this paper we propose a novel methodology for the
falsification of the outputs of causal discovery algo-
rithms on real data without access to causal ground
truth. The key idea involves testing the compatibility
of the causal models inferred by the algorithm when
applied to different subsets of variables. In essence,
while statistical learning aims for stability across dif-
ferent subsets of data points, we argue that causal dis-
covery should aim to achieve stability across different
subsets of variables. We prove that checking for incom-
patibilities provides a means of falsifying the outputs
of causal discovery, as these incompatibilities indicate
either violated causal discovery assumptions or finite
sample effects that lead to non-negligible changes in
the algorithm’s output.

It is natural to ask if one can trust an algorithm if
it satisfies such compatibility constraints. To address
this question, we align with the theory of science by
Popper (1959), according to which a hypothesis gath-
ers evidence when numerous attempts to falsify it fail.
We argue that, under a sufficiently strong notion of
compatibility, the algorithm’s outputs on various sub-
sets of variables can entail strong implications for the
joint distribution, thereby offering numerous opportu-
nities for falsification.

Our contributions. In this work we present a novel
framework to evaluate causal graphs in the absence of
ground truth. Specifically,

• we introduce two different notions of compatibility:
interventional and graphical (Section 2.1). Under
these definitions, we prove that if the assumptions
of a causal discovery algorithm are met, its outputs
are compatible in the population limit. Further-
more, we show for existing algorithms that they ad-
mit falsification using this approach (Section 2.2).

• We connect compatibility to the causal marginal
problem and argue that compatibility can entail
strong implications for potential joint distributions
of given marginals, which can then be falsified sta-
tistically (Section 2.3).

• We introduce the incompatibility score for causal
discovery which quantifies the level of incompat-
ibility of the outputs of causal discovery. We
argue based on stability arguments from learning-
theory that the incompatibility score could serve as
a proxy for measures like structural Hamming dis-
tance (SHD) which require access to ground truth
(Section 3).

• We demonstrate that our score can potentially be
used for model selection in simulation studies and

on real-world data where ground truth knowledge is
available. Our results show a significant correlation
between the score and SHD (Section 4).

1.1 Motivational Example
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(a) Compatible DAGs over S and T that admit a joint
DAG over S ∪ T .
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(b) Incompatible DAGs over S and T

Figure 1: Each marginal causal models over S and T
graphical implies a constraint for the edge X−Y as it
can only be directed in one way.

To illustrate our key ideas, we describe a simple exam-
ple where a causal discovery algorithm results in causal
graphs on different subsets of variables which are in-
compatible in a sense that we will explain now. Con-
sider the directed acyclic graph (DAG) in figure 1a.
Assume we are given the two subsets S = {X,Y, Z1}
and T = {X,Y, Z2}. We will call a causal model
that represents only a subset of all relevant variables a
marginal causal model in analogy to the marginal dis-
tribution. Assume the PC algorithm1 (Spirtes et al.,
2000) is applied to samples from the marginal distribu-
tions over S and T . Suppose the observed distribution
violates faithfulness by satisfying Y ⊥⊥ Z2 but other-
wise only (conditional) independences hold if they are
required by the Markov condition. PC then outputs
the two DAGs in figure 1b, which entail the interven-
tional statements: p(y|do(x)) = p(y|x) (for S) versus
p(y|do(x)) = p(y) (for T ). This is a contradiction un-
less Y ⊥⊥ X, which would be an additional violation
of faithfulness in contrast to our assumption. Hence,

1For simplicity, we use the popular PC algorithm in
this example and therefore implicitly assume that S and
T are causally sufficient (Pearl, 2009) sets of variables. A
similar construction can be made for the FCI algorithm
(Spirtes et al., 2000), which does not assume sufficiency
(see section A8 in the appendix).
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the outputs of PC cannot both be correct given the
observed joint distribution. Perhaps more strikingly,
the marginal models in figure 1b have different orien-
tations for the edge between X and Y . Accordingly,
section 2.1 defines an interventional and a graphical
notion of compatibility. Note, that an ordinary sta-
tistical cross-validation would not have discovered this
inconsistency since we assumed Y ⊥⊥ Z2 to hold in the
population case, rather than assuming that a statisti-
cal test accepted independence due to a type II error.

2 COMPATIBILITY OF CAUSAL
GRAPHS

Notation. Throughout this paper we will use [n] :=
{1, . . . , n} for n ∈ N, and for i ∈ [n] we denote ran-
dom variables with Xi and values of a variable with
the respective lower case letter xi. By slight abuse of
notation we denote a vector of random variables in a
set S by XS and a vector of values of these variables
with xS . We denote the matrix containing m ∈ N val-
ues of all variables in a set S with Xm

S . We sometimes
omit m. X denotes the matrix containing vectors of
values for all variables Xi for i ∈ [n]. For a probability
distribution P over a set of variables V and S ⊂ V we
denote with PS the marginal distribution over S and p
be the probability density function of P where we as-
sume for simplicity that there always exists a density
with respect to a product measure.

Causal models. Although our proposed
compatibility-based evaluation is in principle not
restricted to any kind of causal model, we will focus
our exposition on graphical models. Precisely, we
will use acyclic directed mixed graphs (ADMGs)
(Richardson, 2003; Evans and Richardson, 2014),
partial ancestral graphs (PAGs) (Zhang, 2008) and
completed partially directed acyclic graphs (CPDAGs)
(Spirtes et al., 2000). In the main paper we focus
on ADMGs, which include DAGs as special cases.
Formal definitions of the remaining graphical models
and of the causal semantics of graphical models can
be found in section A7. Sections with the prefix A
are in the appendix.

Definition 1 (ADMG) A mixed graph G consists of
a finite set of nodes V and a set of directed edges
E ⊆ V × V as well as a set of bidirected edges B ⊆
{{Xi, Xj} : Xi, Xj ∈ V }. If (Xi, Xj) ∈ E we say
there is a directed edge between Xi and Xj and we
write Xi → Xj . If {Xi, Xj} ∈ B we say there is
a bidirected edge and write Xi ↔ Xj . Directed and
bidirected edges can occur together. A sequence of
l ∈ N nodes Xi1 , . . . , Xil ∈ V l with any edge between
Xij and Xij+1

for j ∈ [l] is called an undirected path
and it is called a directed path if all edges are in E and

point towards the same direction. A mixed graph is
called acyclic directed mixed graph (ADMG) if there
is no directed path from Xi to itself for all Xi ∈ V .
An ADMG with no bidirected edges is called directed
acyclic graph (DAG).

Definition 2 (causal discovery algorithm) For
the purpose of this paper, a causal discovery algorithm
A takes i.i.d. data as input, i.e. a matrix XS with
S ⊆ V containing samples from PS , and outputs a
ADMG, CPDAG or PAG over nodes in S, denoted
by GS or a special symbol ⊥ to indicate that the
algorithm itself detected a violation of assumptions.2

Throughout our work, we assume that all data has
been generated by a single causal model.

Assumption 1 (existence of joint model)
Whenever we consider k ∈ N sets of variables Si

with i ∈ [k] and distributions PSi
we assume there

is set V and a DAG G = (V,E) such that there is a
distribution PV where G is the causal graph3 of PV

and for all i ∈ [k] we have Si ⊆ V and PV has PSi
as

marginal distributions over Si.

2.1 Notions of Compatibility

We now introduce the concept of compatibility between
causal graphs. We will discuss later how we can use
compatibility of the outputs of a causal discovery algo-
rithm (i.e. the self-compatibility) to falsify these out-
puts.

Definition 3 (compatibility notion) Let (GV ∪
{⊥})∗ be the space of tuples4 of the special token ⊥
or graphs of some type (DAGs, CPDAGs, ADMGs,
MAGs, PAGs) over subsets of a set V . Let PV de-
note the space of probability distributions over V . A
compatibility notion is a function

c : (GV ∪ {⊥})∗ × PV → {0, 1}.

For k ∈ N and S1, . . . , Sk ⊆ V , the graphs
GS1

, . . . , GSk
are called compatible with respect to c

and PV if c(GS1
, . . . , GSk

, PV ) = 1.

In this work we will discuss two compatibility notions.
We define an interventional compatibility notion, as

2In fact there are few algorithms that can output such
a token. E.g. Ramsey et al. (2012) proposed an algorithm
that can detect some violated assumptions itself. We will
use the token in the proof of theorem 8.

3Note that the requirement that this data generation is
formalized as a DAG is not a hard restriction, as CPDAGs,
ADMGs, MAGs and PAGs naturally correspond to DAGs
(when some variables of the DAG are unobserved).

4I.e. for any set A define A1 = A,Ai+1 = Ai × A for
i ∈ N and A∗ = ∪i∈NA

i.
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we consider it a natural requirement of a causal dis-
covery algorithm to make contradiction-free interven-
tional statements. We also define a graphical notion
of compatibility that has the advantage that it does
not involve statistical decisions (as it does not directly
depend on the distribution), but it raises conceptual
problems due to implicit genericity assumptions that
we discuss in section A9.2. We want to emphasize
that other notions of compatibility (both, interven-
tional and graphical) are conceivable and might be
more appropriate in some situations.

Definition 4 (interventional compatibility)
Let S1, . . . Sk be sets of variables for some k ∈ N
and denote S :=

⋃
i∈[k] Si. Let GS1 , . . . , GSk

be

causal models (DAGs, CPDAGs, ADMGs, MAGs,
PAGs) and PS be a probability distribution over
S. Define the interventional compatibility via
c(GS1 , . . . , GSk

, PS) = 1 iff there exists a superset of
nodes V ⊇ S, a DAG GV over the variables in V and
a distribution PV such that

1. PV has PS as marginal over S,
2. PV is Markovian w.r.t. to GV and
3. for any Xi, Xj ∈ Sl with l ∈ [k] and any iden-

tification formula5 in GSl
holds: if the interven-

tion p(xi|do(xj)) is identifiable in GSl
, then the

interventional probabilities coincide with the inter-
ventional probabilities pGV (xi|do(xj)) derived from
GV .

Further set c(. . . ,⊥, . . . ) = 0 regardless of the other
arguments.

Interventional compatibility requires that the different
causal graphs entail interventional probabilities that
could come from a single joint causal model. Espe-
cially, this compatibility is with respect to a specific
distribution. The second notion of compatibility we
discuss in this work is the notion of graphical com-
patibility. For simplicity, we will only define graphical
compatibility for ADMGs in the main paper, but in
section A9 we will propose detailed definitions for the
other graphical models mentioned in this work.

To define graphical compatibility, we first discuss what
Pearl and Verma (1995) called the latent projection of
a graphical model. Precisely, we will define the la-
tent projection of an ADMG like Richardson et al.
(2023).

5As we will describe in more detail in section A7, an
interventional probability can often be expressed by dif-
ferent observational terms. These symbolic terms are a
priori only related to the graph, but map a distribution
to a probability. E.g. in figure 1a p(y|do(x)) can be iden-
tified by the backdoor formula either using ∅ and there-
fore p 7→ p(y|x) or with adjustment set {Z1} we get
p 7→

∫
p(y|x, z1)p(z1) dz1 .

Definition 5 (latent ADMG) Let G be an ADMG
with variables V and S ⊂ V . The latent ADMG
L(G,S) is the ADMG that contains all nodes in S,
all edges between nodes in S and additionally

1. a directed edge between X,Y ∈ S if there is a di-
rected path from X to Y where all intermediate
nodes are in V \ S

2. a bidirected edge between X,Y if there is a (undi-
rected) path such that every non-endpoint is a non-
collider in V \ S and there are arrowheads towards
X and Y on the incident edges on the path.

Definition 6 (graphical compatibility) Let
GS1 , . . . , GSk

be ADMGs over the k ∈ N sets
of nodes S1, . . . , Sk respectively. Then we define
graphical compatibility via c(GS1

, . . . , GSk
) = 1 iff

there exists a set V ⊇ ∪ki=1Si, and a DAG GV

such that L(GV , Si) = GSi for all i ∈ [k]. Again,
c(. . . ,⊥, . . . ) = 0 regardless of the other arguments.

Note, that neither interventional compatibility implies
graphical compatibility nor vice versa. E.g. the empty
graph is graphically compatible with its subgraphs, as
graphical compatibility only depends on the distribu-
tion via the algorithm. But they are only intervention-
ally compatible if the nodes have no causal effect onto
each other in one Markovian joint graph. On the con-
trary, in section A10 we present an example where a
non-generic distribution leads to interventionally com-
patible results that are not graphically compatible.

2.2 Falsifiability via Compatibility

In this section we demonstrate how compatibility be-
tween the outputs of an algorithm on different vari-
ables can be used to detect that either the assumptions
of the algorithm are violated or there are finite sam-
ple effects in a way that actually change the output
of an algorithm. We will start by defining the terms
observational falsifiability and self-compatibility.

Definition 7 (observational falsifiability) The
output of an algorithm A is observationally falsifiable
with respect to a compatibility notion c if there exists
a set of variables V , a distribution PV and k ≥ 2
subsets S1, . . . , Sk ⊆ V such that for all ϵ > 0 there is
an m ∈ N such that for all m′ ≥ m we have

c(A(Xm′

S1
), . . . ,A(Xm′

Sk
), PV ) = 0 (1)

with probability at least 1 − ϵ, where Xm′

V (and all
submatrices) is drawn from6 PV . We call the left hand

6Note, that we now used finite sample versions of the

graphs A(Xm′
Si

) but still the population version of the dis-
tribution PV as last argument in c(. . . , PV ). With the for-
mer, we want to emphasize that the graphs can be subject
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side of equation (1) the self-compatibility7 of A w.r.t.
c, S1, . . . , Sk, PV and Xm′

V .

In words, falsifiability means that there exists a joint
distribution for which A’s outputs on the subsets is in-
compatible according to c. Note, that c does not neces-
sarily have to depend on PV as the last parameter, like
e.g. in definition 6. To illustrate this definition, recall
that in section 1.1 we have constructed a distribution
such that the PC algorithm produces interventionally
incompatible results on {Z1, X, Y } and {X,Y, Z2} in
the limit of infinite data. Therefore the output of PC
is observationally falsifiable.

Remark 1 One might wonder whether the existence
of a single incompatible distribution in definition 7
might be a too weak condition. In example 1 we will
see, that we can nonetheless find algorithms that are
not falsifiable in this sense at all. We expect algorithms
that are in principle falsifiable to also be practically
falsifiable. Quantifying how many distributions admit
falsification is a difficult problem and would drastically
increase the scope of this paper.

The following result, while not surprising, ensures that
there are no incompatibilities in the limit of infinite
data if all assumptions are met. Accordingly, if G is
the causal DAG for a distribution PV over variables in
V , we require that for any S ⊂ V for which PS meets
the assumptions of A, and all ϵ > 0, there exists an
m ∈ N such that A(Xm′

S ) = L(G,S) with probability
at least 1− ϵ for all m′ ≥ m.

Lemma 1 Let S1 . . . , Sk be k ∈ N sets of variables
and PV be a probability distribution over V ⊇

⋃
i∈[k] Si

such that all PSi with i ∈ [k] fulfil the assumptions of
A. Then for every ϵ > 0 there is an m ∈ N such that
A(Xm

S1
), . . . ,A(Xm

Sk
) are interventionally and graphi-

cally compatible (w.r.t. to P ) w.p. at least 1− ϵ.

All proofs are in section A8. Most causal discovery
algorithms come with theoretical guarantees that
their output is correct under some assumptions. But
still, the following theorem shows for two exemplary
algorithms that they are falsifiable (see section A8 for
other algorithms).

Theorem 1 The FCI algorithm and the Repetitive
Causal Discovery8 (RCD) algorithm are falsifiable
w.r.t. interventional compatibility.

to finite sample effects. With the latter we want express
that the statistical difficulties with testing the equivalence
of the interventional distributions are beyond the scope of
this work.

7Note that compatibility refers to graphical models
while self-compatibility is a property of algorithms.

8RCD (Maeda and Shimizu, 2020) relies on linear mod-
els with non-Gaussian noise like LiNGAM (Shimizu et al.,
2006) but does not assume causal sufficiency.

The proof basically consists of constructing two dis-
tributions that have the same marginal distribution
over two variables but would lead the algorithms to
different causal models, similarly as in figure 1.

Now we have established that the algorithms in theo-
rem 1 indeed have falsifiable outputs. But when all of
their assumptions are met we can only “accidentally”
falsify their output because of finite-sample effects, as
lemma 1 shows. To illustrate that falsifiability is a
non-trivial property, consider the following example.

Example 1 (Entropy Ordering) Define an algo-
rithm A that orders nodes according to a simple crite-
rion (e.g. starting from variables with lowest entropy9)
and outputs an ADMG containing the complete DAG
with respect to that order for directed edges and addi-
tionally bidirected edges between all nodes. The out-
puts of this algorithm on any subset will be graphically
compatible, as the marginal models are the latent pro-
jection of the models on supersets and also interven-
tionally compatible, as no interventional distribution
is identifiable in any of the graphs.

This raises the question if there are properties that
already imply the falsifiability of an algorithm. Indeed,
in section A11 we will show that all causal discovery
algorithms that are not “too simple” or “indecisive”
can produce incompatible outputs on different sets of
variables and hence, are falsifiable.

Remark 2 Note that our approach does not falsify
particular causal graphs. Especially, an algorithm A
may well output the ground truth graph on X but
we can still find incompatible models on some subset.
Due to lemma 1 we know that incompatibility of the
outputs indicates that some assumptions are violated
or there are errors due to finite sample effects. In this
sense we would argue, that we cannot trust the causal
discovery algorithm in this case even if A(X) happens
to be the ground truth graph.10

2.3 Is Self-Compatibility a Strong Condition?

We will now show that even though typically more
than one joint distribution can have the same marginal
distributions over some sets S and T , there are cases
where the assumptions of an algorithm A render the
joint distribution unique, as otherwise the outputs of
A on S, T and S∪T would be incompatible. If the out-
puts of an algorithm on the marginals predict a unique

9Indeed, suggestions like this have been made, moti-
vated by misconceptions on thermodynamics, as criticised
by Janzing (2019).

10This situation bears similarity to the Gettier problem
in epistemology. Gettier (1963) argues that a person does
not know a fact A even if A is true but the person based
her belief in A on false assumptions.
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joint distribution, any other potential joint distribu-
tion falsifies the outputs. On the other hand, if the
joint data points do not contradict this unique joint,
we count this, in the spirit of Popper (1959), as strong
evidence in favor.

Definition 8 (merging-enabling algorithms) An
algorithm A is said to enable merging distributions
with respect to a notion of compatibility c if for
some set of variables V and k ≥ 2 there exist sets
S1, . . . , Sk ⊂ V and distributions PS1

, . . . , PSk
such

that

1. there is exactly one joint distribution PV such
that for any ϵ > 0 there is an m ∈
N such that for all m′ ≥ m we get
c(A(Xm′

V ),A(Xm′

S1
), . . . ,A(Xm′

Sk
), PV ) = 1, with

probability at least 1− ϵ and
2. there exists a second distribution P̃V whose

marginals coincide with all PSi
for i ∈ [k],

where Xm′

Sj
is drawn from PSj

for j ∈ [k].

Condition 1 states that there is only one joint distribu-
tion PV for which A’s output on V does not contradict
A’s outputs on the subsets. Condition 2 states that
there would be more than one possible extension of
the marginal probabilities without the graphical infor-
mation provided byA. In other words, the condition of
compatibility of causal models implies constraints for
the joint distributions that result in a unique solution
of the causal marginal problem, although the solution
to the probabilistic marginal problem (Vorob’ev, 1962)
is not unique in this case.

Theorem 2 (FCI enables merging) The FCI al-
gorithm enables merging w.r.t. graphical compatibility
on PAGs.

In section A13 we provide a similar statement for an
idealized version of RCD11. In the proof we construct
an example where the algorithms output the existence
of an unconfounded edge. This edge rules out the ex-
istence of a confounding path and therefore implies
a conditional independence that is not observable in
the marginals. In the example of the proof, this inde-
pendence together with the given marginals suffices to
identify the joint distribution.

Although these statements only ensure the existence
of cases where merging is possible, we think they illus-
trate the strength of the self-compatibility condition.
In addition, we demonstrate empirically that the con-
dition is often violated in section 4.

11The idealized version can output ⊥ if it detects that
the given distribution has not been generated by a linear
additive noise model. As we defined this token to be in-
compatible with all ADMGs, condition 1 of definition 8
allows us to rule out such distributions.

Relationship to interventions. Note, that there
is a close relationship between enabling merging and
being able to predict the impact of interventions: let
the node Xi describes a coin flip, triggering the inter-
vention do(Xk = xk) on another node Xk in a set S
when Xi = 1. When A allows the unique reconstruc-
tion of P{Xi,Xj} after being applied to S ∪ {Xi} and
S∪{Xj}, it implicitly provides an interventional prob-
ability via p(xj |do(xk)) = p(xj |xi = 1) for an observer
who knows that Xi controls the intervention on Xk.

3 INCOMPATIBILITY SCORE

In this section we propose a practical score, that quan-
tifies “how incompatible” the outputs of an algorithm
applied to different subsets of variables are. This score
can be seen as a continuous relaxation of the binary
notion of compatibility in definition 3. We propose
to use this relaxation, as we showed in theorem 2
that self-compatibility can be a strong criterion and
in practice it is often violated. This score is defined
such that a perfect score indicates self-compatibility
and in this sense the score can be used to falsify the
outputs of a causal discover algorithm as we described
before. But moreover, our experimental results in sec-
tion 4 suggest that the continuous score could be used
to evaluate causal discovery algorithms in the sense
that it could be used as a “proxy” for the structural
Hamming distance, which cannot be evaluated with-
out ground truth knowledge. The first score in this
section is based on the interventional compatibility no-
tion (definition 4). We also present an incompatibility
score based on graphical compatibility (definition 6)
and in section A14 we discuss further details of the
scores.

Su and Henckel (2022) proposed a parametric test for
whether the interventional distributions of different
adjustment sets agree. We use this to test whether
the parent-adjustment sets derived from the marginal
models A(XS1), . . . ,A(XSk

) yield the same causal ef-
fect as the joint one in A(X).

Definition 9 (interventional score) For k ∈ N, let
S1, . . . , Sk ⊆ V . We define the interventional incom-
patibility score κI of A via

κI(A,X) := C−1
∑

X,Y ∈V
X ̸=Y

T (X,Y,G(A,X)) (2)

where G(A,X) := {A(X),A(XS1
), . . . ,A(XSk

)} and
we define T (X,Y,G(A,X)) = 1 if

1. there are (at least two) different valid parent-
adjustment sets for X and Y in G(A,X) and the
test from Su and Henckel (2022) rejects the hypoth-
esis that they all entail the same causal effect, or



Faller, Vankadara, Mastakouri, Locatello, Janzing

2. there is an i ∈ [k] such that the parent-adjustment
for X and Y is valid in L(A(X), Si) but not in
A(XSi

) or vice versa,

else T (X,Y,G(A,X)) = 0 and C is the number of pairs
X,Y such that there is at least one graph in G(A) with
a valid parent-adjustment set for X and Y (except for
the cases where this graph is A(X) and the effect is
not identifiable in any L(A(X), Si) for i ∈ [k]).

This definition counts the cases where the algorithm
makes incompatible statements about any pairwise
causal effect on different subsets, normalized by the
number of cases where the algorithm does commit to
any falsifiable statement on any subset at all.

The score defined in definition 9 is only applicable
to linear models, as we build on the test of Su and
Henckel (2022). As non-linear models are ubiquitous
in practice, we also want to propose a score that can
be applied in these settings. Graphical compatibil-
ity notions do not require any statistical test, thus
we chose to build on them for this purpose. Defini-
tion 6 always refers to the existence of a joint model.
Therefore we found it natural to check the compati-
bility of each marginal causal graph with the causal
graph A(X) that an algorithm outputs on all avail-
able variables (even though, if we do not assume that
the observed variables are causally sufficient, A can at
most output a latent projection of the joint graph in
assumption 1). Further, definition 6 requires that the
latent projection and the marginal graph are identical.
We relax this notion by taking the SHD between the
joint model A(X) and a marginal model. The SHD is
zero iff the graphs are identical.

Definition 10 (graphical incompatibility score)
Let k ∈ N and S1, . . . , Sk ⊆ V . We define the graphical
incompatibility score κG of A via

κG(A,X) :=
1

k

∑
i∈[k]

SHD (L(A(X), Si),A(XSi
)) . (3)

Relationship to stability. While, as previously
discussed, it is not possible to guarantee that a causal
discovery algorithm that achieves a low incompatibil-
ity score will accurately predict system behavior under
interventions, we argue that the resulting models are
at least useful due to their ability to predict statisti-
cal properties of unobserved joint distributions. This
perspective is influenced by Janzing et al. (2023), who
reconceptualizes causal discovery as a statistical learn-
ing problem. The key principle underlying this recon-
ceptualization posits that causal models offer predic-
tive value beyond predicting system behavior under
interventions; they can also predict statistical proper-
ties of unobserved joint distributions. See section A12

for the formal setup and description of this idea and
the associated learning problem.

Observe that, for a causal discovery method to achieve
a low incompatibility score, it’s output must remain
largely unchanged under small modifications to the
variable sets it is applied to. Following this idea, in
section A12 we define a notion of stability of a causal
discovery algorithm. Under this definition, we pro-
vide high-probability generalization bounds for causal
models generated by stable causal discovery methods.
The result demonstrates that stable algorithms, prov-
ably, generate useful causal models due to their abil-
ity to generalize statistical predictions across variable
sets. Informally, it provides evidence that a low incom-
patibility constitutes a useful inductive bias for causal
discovery. This is notably distinct from the standard
setting in statistical learning, where algorithms that
exhibit stability under small modifications to the data
are known to generalize across data points.

4 EXPERIMENTS

We now explore the efficacy of the methods described
in section 3 on real and simulated data. The de-
tails of the experiments can be found in section A15
and the source code under https://github.com/

amazon-science/causal-self-compatibility. In
the main paper we present results for the RCD al-
gorithm, as it is one of the few available algorithms
that does not assume causal sufficiency and its outputs
are close12 to the presented formalism based on AD-
MGs. Additional experiments with other algorithms
are shown in section A16.

Model evaluation. As a first experiment we focus
on a setting where we would expect a causal discovery
algorithm to work reasonably well. We therefore gen-
erate 100 datasets with a linear model, uniform noise
and potentially hidden variables. We use the incom-
patibility score κI from definition 9. The first insight
from the plot in figure 2 is that interventional compat-
ibility indeed is a strong condition, in the sense that
even in this scenario we find many interventionally in-
compatible marginal graphs. Further, the plot in
figure 2 shows a significant correlation between κI and
the structural Hamming distance of the joint graph
to the true graph. We suspected the density of the
ground truth graph to influence both, the incompat-
ibility score as well as the SHD. We also present the
partial correlation between SHD and κI , adjusted for
the average node degree of the ground truth graph,

12Note however, that the output of RCD does not strictly
describe ADMGs, as the the algorithm does not differenti-
ate between purely confounded relationships and confound-
ing with an additional direct edge.
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which stands at 0.52 with a p-value of 3× 10−8. This
suggests that κI might be a useful proxy for SHD,
which we cannot calculate in the absence of ground
truth.
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Figure 2: RCD on 100 datasets that fulfill its assump-
tions. The plot shows structural Hamming distance
of estimated graphs Ĝ to the respective true graph G
versus the interventional incompatibility score κI . As
both are influenced by the degree of the true graph, we
also calculated the partial correlation given the aver-
age node degree of the true graph, which is 0.52 with
p-value 3 · 10−8.

Model selection. As we have seen that the incom-
patibility score is correlated with the SHD of the joint
model to the ground truth, we now want to inves-
tigate whether the score could potentially be used
to guide model selection and parameter tuning. We
used the interventional score to select hyperparame-
ters for the RCD algorithm. RCD has three thresh-
old values for different independence tests. For sim-
plicity we only checked the two configurations, where
all of them are set to either 0.1 or 0.001 respec-
tively.13

In figure 3 we plot the difference in SHD between
the estimated graphs and the ground truth graph,
respectively, on the y-axis, where we always sub-
tract the SHD of the algorithm with better κI from
the SHD of the algorithm with worse κI . Analo-
gously for κI on the x-axis. If the incompatibility
score κI was a “perfect” selection criterion we would
hope to see all points on or above the horizontal
line. In fact, 68% are strictly above the line and
28% are below the line. Moreover, we can see, that
in most cases where the incompatibility score picked
the hyperparameters that produce a worse SHD, the

13Indeed this is overly simplistic, as in actual applica-
tions one would pick the parameters from a grid.

scores of the hyperparameters were close14 to each
other.

Real data. Finally, we also used the score on the bi-
ological dataset presented by Sachs et al. (2005). We
noted that all causal discovery algorithms that we tried
performed quite poorly on this datasets compared to
the algorithm’s performance on simulated data. Our
incompatibility score reflects this in the sense that in
two out of four cases we get medium to bad incompat-
ibility scores compared to the simulated experiments.
The cases where the incompatibility score was good
were the ones with the best results in terms of SHD and
F1 score. More details can be found in section A16.4.
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Figure 3: We chose between the hyperparameters
α = 0.1 and α = 0.001 of RCD according to the incom-
patibility κI for 100 datasets. For 72% of datasets we
picked the better model or an equally good model. In
most cases where we picked the worse model in terms
of SHD the difference in κI is small.

5 RELATED WORK

To the best of our knowledge we are the first to lever-
age compatibility constraints of marginal causal mod-
els to falsify the output of causal discovery algorithms.

Robustness of causal effects. While we proposed
a method to falsify the underlying assumptions of
causal discovery algorithms, there exists several meth-
ods for scenarios where causal directions are given and
the goal is to estimate the strength of the treatment ef-
fect. E.g. Walter and Tiemeier (2009); Lu and White

14This, of course, raises the question which differences
should be considered significant. The answer may depend
on the particular downstream task—just as e.g. for SHD
itself. Further, bootstrapping or permutation methods like
the one proposed by Eulig et al. (2023) might be helpful to
derive a meaningful baseline. We defer this to future work.
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(2014); Oster (2019) propose to test whether a regres-
sion model is causal by dropping parts of the potential
covariates and testing robustness. Similarly, Su and
Henckel (2022) present the aforementioned parametric
test for the case where a hypothetical graph is given.

Evaluating causal models. The gold standard of
evaluating the quality of a causal model would be to
conduct a randomized control trial. In contrast, our
method allows for falsification in settings where ex-
periments are infeasible. There are other methods to
judge the quality of causal models that do not rely on
ground truth data as well, but they are limited to spe-
cial cases, such as falsification via Verma-constraints
(Verma and Pearl, 2022) for instrument variables,
tests that require parametric assumptions (Bollen and
Ting, 1993; Daley et al., 2022) or the derivation of
Bayesian uncertainty estimates (Claassen and Heskes,
2012). A common approach is to count the number
of d-separation statements that are not reflected in
the data (Textor et al., 2017; Reynolds et al., 2022),
although this either requires ground truth again or
is also subject to assumptions such as faithfulness.
Eulig et al. (2023) propose to reject causal graphs
that do not reflect the conditional independences in
the data significantly better than a random baseline.

Causal marginal problem. Tsamardinos et al.
(2012) use causal models on sets of variables S, T
to predict conditional (in)dependences in PS∪T . For
the toy scenario of a collider structure with three
binaries, Gresele et al. (2022) studied compatibility
of structural equations for the bivariate marginals,
which amounts to falsifiability of causal statements
of rung 3 in Pearl’s ladder of causation (Pearl
and Mackenzie, 2018). In a scenario where causal
directions are known, Guo et al. (2023) define
out-of-variable generalization as the capability of a
machine learning algorithm to perform well across
environments with different causal features, and use
marginal observations to predict joint distributions.
Janzing et al. (2023) infers a DAG G on S :=

⋃
j Sj

in order to predict properties of PS from the set of
all PSj

, which admits falsifying the DAG without
interventions via “test marginal distributions” PSj+1

.
Despite the connections, the key difference of these
approaches to our method is, that we do not use
marginal distributions to reconstruct an unobservable
joint distribution. Instead, we propose to learn a
causal model on the joint distribution but to falsify the
output of the algorithm by learning marginal models.

6 CONCLUSION

We have proposed a method to falsify the output of
causal discovery algorithms which does not rely on
causal ground truth. It is based on compatibility of the
output of an algorithm on different sets of variables.
While this compatibility seems, at first glance, just as
a weak sanity check, i.e. a weak necessary condition
for providing good causal models, we have argued that
there are cases where the compatibility requirement
results in strong predictions for the joint distribution
of variables which can be falsified from passive obser-
vations (and thus provide strong evidence in favor of
causal models if all attempts of falsification fail).

This approach is limited as we can only falsify the
outputs of causal discovery. Even though we argue
in section 4 that our incompatibility score could be
used as a proxy for SHD, we have no hard theoreti-
cal guarantees that ensure good performance for good
scores (and we do not think that such guarantees can
be proven without further assumptions). Further, our
work provides no guidance as to which degree of self-
compatibility is “good enough” or when the outputs
of an algorithm should definitely be rejected.

Acknowledgements

Part of this work was done while Philipp M. Faller was
an intern at Amazon Research Tübingen. Philipp M.
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Appendix

A7 FORMAL DEFINITIONS

With our formalism we mainly follow Peters et al. (2017) and Pearl (2009).

Structural causal models Causality can be formalized mathematically by saying that all relationships be-
tween variables are governed by some deterministic functions except for some genuine, independent sources of
randomness. We define structural models like Pearl (2009).

Definition 11 (structural causal model) Let n ∈ N and V be a set of random variables X1, . . . , Xn, U be
the a set of variables N1, . . . , Nn and PU be a probability distribution over N1, . . . , Nn such that all N1, . . . , Nn

are jointly independent. Let there be a set of (measurable) functions F such that for all i ∈ [n] we have

Xi := fi(PAi, Ni),

where PAi is some subset of V \ {Xi} such that there are no cyclic dependencies between variables and fi
depends on all variables in PAi. Then we call (V,U, F, PU ) a structural causal model (SCM).

Due to the acyclicity, the distribution PU also entails a unique joint distribution over V , as each value xi can be
solved recursively until it only depends on noise terms. Accordingly, we define interventions as Pearl (2009).

Definition 12 (intervention) Let S = (V,U, F, PU ) be an SCM. The intervention do(Xi = x∗
i ) for some i ∈ [n]

is defined by inserting the fixed value x∗
i in all equations in F that depend on Xi, regardless of other variables in

the model. Denote with Sdo(Xi=xi) the modified model with these equations. The interventional distribution is
defined as the distribution that canonically arises from Sdo(Xi=xi) and we denote it with P (XS = xS | do(Xi =
xi)) for any S ⊆ V .

Graphical models Some of the causal aspects of a SCM can be represented graphically. We will first define
the graphical structures and then discuss their connection to the causal semantics defined via SCMs. There are
several popular graphical models for causality. We mostly follow Zhang (2008) and Perković et al. (2015) with
our formalism. First recall the definitions of DAGs, mixed graphs and ADMGs from definition 1. We say there
is an arrowhead towards Xj if there is an edge Xj → Xi ∈ E or Xi ← Xj ∈ B and a tail towards Xj if there is
an edge Xi ← Xj ∈ E. We further say Xi and Xj are adjacent if Xi → Xj ∈ E,Xj → Xi ∈ E or Xi ↔ Xj ∈ B.

Definition 13 (maximal ancestral graphs) An undirected path is a sequence of nodesX0, . . . , Xk with k ∈ N
such that either Xi → Xi+1 ∈ E, Xi+1 → Xi ∈ E or Xi ↔ Xi+1 ∈ B for i ∈ [k− 1]. A node Xi is called collider
on an undirected path p if there are two edges with a head towards Xi on p. We say there is an almost directed
cycle if there is a directed cycle from Xi to Xj and there is a bidirected edge Xi ↔ Xj . Let L ⊂ V and call the
first and the last nodes on a path the endpoints of a path. An inducing path relative to L is an undirected path
p, such that every node on p that is in V \ L except for the endpoints is a collider on p and an ancestor of one
of the endpoints. A mixed graph G is called a maximal ancestral graph (MAG) if it contains no almost directed
cycles and there is no inducing path between non-adjacent nodes.

Definition 14 (m-separation) Let G = (V,E,B) be a mixed graph. An undirected path p between Xi and
Xj in G is called m-connecting given a set Z ⊂ V \ {Xi, Xj} if every non-collider on p is not in Z and every
collider on p is an ancestor of a node (or is itself) in Z. If no undirected path between Xi and Xj is m-connecting
given Z we say Xi and Xj are m-separated by Z and write Xi ⊥G Xj | Z. In a DAG m-separation reduces to
well-known d-separation.
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Graphical models and causality We will now connect the graphical models with causal semantics.

Definition 15 (causal DAG) Let P be a probability distribution over variables in V that has been generated
by an SCM S as described above. We call a DAG G a causal graph of P if G contains a node for each variable
in V and an edge from Xi to Xj ∈ V iff Xi ∈ PAj in S.

Definition 16 (Global Markov condition) We say a probability distribution P over V fulfils the global
Markov condition w.r.t. the DAG (MAG) G if for every two nodes Xi, Xj ∈ V and set Z ⊆ V \ {Xi, Xj}
we have that Xi ⊥G Xj | Z implies Xi ⊥⊥ Xj | Z. We also say P is Markovian w.r.t. G. If Xi ⊥⊥ Xj | Z also
implies Xi ⊥G Xj | Z we say P is faithful to G.

A distribution that has been generated by an SCM is always Markovian w.r.t. its causal DAG.

Definition 17 (Markov equivalence) Two DAGs (MAGs) G1, G2 are Markov equivalent if for all nodes
Xi, Xj ∈ V and sets of nodes Z ⊆ V \ {Xi, Xj} we have Xi ⊥G1 Xj | Z iff Xi ⊥G2 Xj | Z. We call

[G] := {G′ : G and G′ are Markov equivalent}

the Markov equivalence class of G.

Definition 18 (CPDAG) Let G be a DAG. The completed partially directed graph C of [G] is a mixed graph
that contains a directed edge Xi → Xj iff this edge exists in all DAGs in [G] and a bidirected edge Xi ↔ Xj iff
there is a DAG in [G] with the edge Xi → Xj and a DAG in [G] with the edge Xi ← Xj . We call C a causal
CPDAG if G is a causal DAG.

The partial ancestral graph that we now introduce can also represent the presence of selection bias. In this paper
we omit this part of the formalism (similarly to Zhang (2008)).

Definition 19 (PAG) Let G be a MAG over variables in a set V . The partial ancestral graph of [G] is a graph
H = (V,E) with a symmetric set of edges E ⊆ V × V and a map end : E → {>,−, ◦} such that for Xi, Xj ∈ V

• (Xi, Xj) ∈ E and (Xj , Xi) ∈ E if Xi, Xj are adjacent in any graph in [G]
• end(Xi, Xj) =“>” iff there is an arrowhead from Xi to Xj in every graph in [G]
• end(Xi, Xj) =“−” iff there is no arrowhead from Xi to Xj in every graph in [G]
• end(Xi, Xj) =“◦” else.

Xi and Xj are called adjacent if (Xi, Xj) ∈ E. We say there is a directed edge from Xi to Xj if end(Xi, Xj) =“>”
and end(Xj , Xi) =“−” and then define directed paths if there are paths of directed edges. We say there is a
possibly directed path from X1 to Xk if there are nodes X1, . . . , Xk such that Xi is adjacent to Xi+1 and there is
no arrowhead towards Xi for i ∈ [k− 1]. A node Xj is a possible descendant of Xi if there is a possibly directed
path from Xi to Xj . A node Xi is a collider on a path if there are two arrowheads towards Xi on that path. A
collider path is a path, such that every non-endpoint is a collider. A direct edge is also a (trivial) collider path.
A definite non-collider on a path is a node Xi that has at least one tail towards Xi on the path and a definite
status path is path such that every node on the path is either a collider or a definite non-collider on this path.

Definition 20 (visible edge) Every edge in a DAG or CPDAG is visible. A directed edge Xi → Xj in a MAG
(PAG) G is visible if there is a node Xk not adjacent to Xi and there is a collider path from Xk to Xi such that
every non-endpoint of the path is a parent of Xj and the last edge towards Xi has an arrowhead at Xi.

Intuitively, a visible edge indicates an unconfounded edge, i.e. that there is no hidden confounder between the
start and the endpoint of the edge.

Identification We now want to define what we mean with identifiability. The following definition is from Tian
and Pearl (2002).

Definition 21 (identifiability) Let S be a set of SCMs and S, S′ ∈ S be SCMs with the same causal graph.
Any quantity of Q(S) is identifiable in S if Q(S) = Q(S′) whenever PS coincides with PS′ , where PS denotes
the probability distribution entailed by S.

Often one assumes that the causal graph G is known and then tries to derive the property Q(S) from G and the
distribution PS . We want to make the distinction between the graphical properties of G and the distribution
PS a bit more explicit, as in our self-compatibility framework we deal with estimated graphs that might not
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correctly represent the underlying data generation. In such a case, the identification formulae derived from such
a graph may be incorrect and different identification formulae may even lead to contradicting results for the
quantities of interest. Note, that the following formalism assumes for an interventional probability p(xj |do(xi))
that xi, xj are fixed.

Definition 22 (identification formula) Let S be an SCM with causal graph G and identifiable quantity
Q(S). A identification formula in G is a map g : P → R, such that for a probability distribution PS of S we
have g(P ) = Q(S), where P denotes the space of probability distributions.

Note that if we have two different graphs G,G′, we may have identification formulae g, g′ for Q in G and in G′

respectively but for a distribution P we get g(P ) ̸= g′(P ), as G and G′ may be different graphs.

Latent projection In definition 5 we have already defined how to project ADMGs (and therefore also DAGs,
as they are ADMGs without hidden confounders) to an ADMG that represent only a subset of variables. We
will now define similar projections for MAGs, PAGs and CPDAGs, and start be defining a projection of a DAG
to a MAG (see also (Zhang, 2008)). We mainly do this to connect MAGs and PAGs to the SCM formalism.

Definition 23 (latent MAG) Let G be a DAG with variables in V and S ⊆ V . The latent MAG LMAG(G,S)
is the MAG that contains all nodes in S and and for Xi, Xj ∈ S

1. an edge between Xi and Xj iff there is an inducing path in G between them
2. an arrowhead at Xi (or Xj) iff the last edge of the inducing path has an arrowhead at Xi (Xj).

When no confusion with definition 5 can arise, we also just write L(G,S). We call a MAG M a causal MAG if
it is the latent projection of a causal DAG G.

Definition 24 (latent PAG) Let H be a PAG with variables in V , S ⊆ V and M be some MAG in the
equivalence class described by H. The latent PAG LPAG(H,S) is the PAG of [LMAG(M,S)]. We call a PAG H
a causal PAG if it is the latent projection of a causal MAG.

The latent PAG is well-defined, as all MAGs in the same equivalence class also have the same independence
statements in S. Therefore, these independences are represented by the same PAG, i.e. defining the latent PAG
via some MAG does not introduce arbitrariness.

It is not possible to define a projection operator for CPDAGs without assumptions about the subset S, as this
model class cannot represent the presence of latent confounders. Nonetheless, we wanted to include them in our
framework as popular causal discovery algorithms like PC and GES output CPDAGs. We chose to only define
the projection operator for sets S that fulfil the causal sufficiency assumption, i.e. sets that do not contain two
nodes Xi, Xj ∈ S with common ancestor L ∈ V \ S such that any intermediate nodes on paths from L to Xi or
Xj are also in V \ S. In other words, the latent ADMG does not contain birected edges:

Definition 25 (latent CPDAG) Let G be a DAG with variables V and S ⊂ V be a subset such that the latent
ADMG L(G,S) contains no bidirected edges. Then the latent CPDAG L(G,S) is the CPDAG that represents
the equivalence class [L(G,S)].

Adjustment criteria The following theorems from the literature provide graphical criteria to identify inter-
ventional probabilities. The first one is Theorem 1 in (Tian and Pearl, 2002).

Theorem 3 (parent adjustment in ADMGs) Let G be a causal ADMG over discrete variables in V and
Xi, Xj ∈ V . If there is no bidirected edge connected to Xj, we have

p(xi|do(xj)) =
∑
pai

p(xi|xj , paj)p(paj).

The sum can easily be replaced by an integral for continuous variables with positive densities. Tian and Pearl
(2002) also show the more general result in their Theorem 3:

Theorem 4 (generalised identifiability in ADMGs) Let G be a causal ADMG over discrete variables in
V and Xi, Xj ∈ V . The probability p(xi|do(xj)) is identifiable iff there is no bidirected path between Xj and any
of Xj’s children.
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For the other graphical models we considered, Perković et al. (2015) provided the following result in their Theorem
3.4, where we restrict ourselves to the case of adjustment between single variables. First we define the forbidden
set.

Definition 26 (forbidden set) Let G be a causal DAG, CPDAG, MAG or PAG for the probability distribution
P over V , Xi, Xj ∈ V . Denote with Forb(X,Y,G) the set of possible descendant in G of any W ∈ V \ {Xj} that
lies on a possibly directed path from Xj to Xi and call this set the forbidden set.

Theorem 5 (generalised adjustment criterion) Let G be a causal DAG, CPDAG, MAG or PAG for the
probability distribution P over V , Xi, Xj ∈ V and Z ⊆ V \ {Xi, Xj}. Then we have

p(xi|do(xj)) =

{
p(xi|xj), if Z = ∅∫
p(xi|xj , xZ)p(xZ)dxZ , else

if and only if

1. every possibly directed path in G from Xj to Xi starts with a visible edge (see definition 20)
2. Z ∩ Forb(X,Y,G) = ∅
3. all definite status paths that are not directed are m-separated by Z.

Perković et al. (2015) also give a definition for a set that is a valid adjustment set, iff there is a valid adjustment
set.

Definition 27 (canonical adjustment set) Let G be a causal DAG, CPDAG, MAG or PAG for the proba-
bility distribution P over V , Xi, Xj ∈ V . We call the set

Adjust(X,Y,G) = PossAnc({X,Y }, G) \ (Forb(X,Y,G) ∪ {X,Y })

the canonical adjustment set, where PossAnc({X,Y }, G) is the set of possible ancestors of X and Y .

A8 PROOFS FOR THE MAIN PAPER

A8.1 For Lemma 1

Proof Let S1 . . . , Sk be k ∈ N sets of variables and PV be a probability distribution over V ⊇
⋃

i∈[k] Si such

that all PSi with i ∈ [k] fulfil the assumptions of A. Further, let ϵ > 0. Set

δ := 1− k
√
1− ϵ.

As every marginal distribution fulfils the assumptions of A, we know that for every i ∈ [k] there is a mi ∈ N
such that for all m′ > mi we get A(Xm′

Si
) = L(G,Si) with probability at least 1 − δ, where again G is the true

causal DAG. Set m∗ = maxi∈[k] mi. Then we get

P (∃i ∈ [k] : A(Xm∗
Si

) ̸= L(G,Si)) = 1−
∏
i∈[k]

P (A(Xm∗
Si

) = L(G,Si)) ≤ 1− (1− δ)k = ϵ.

The graphical compatibility follows directly from definition 6. Similarly, the interventional compatibility follows
from the fact that the algorithms find the latent projections of G. This renders them causal in the sense of
theorems 4 and 5 and therefore the interventional probabilities coincide with the ones in G if they are identifiable.

A8.2 For Theorem 1

Proof We will prove the statement separately for the different algorithms. For FCI we explicitly construct a
joint distribution such that the algorithms make contradicting interventional statements on different subsets, as
our motivating example from section 1.1 almost suffices to show the statement. For RCD we show an example
where two LiNGAM models with different linear coefficient between Xi and Xj generate the same marginal for
Xi and Xj . In section section A11 we will show that this suffices to render RCD falsifiable. Precisely, in this
proof we will show that RCD is non-bivariate (definition 32) and therefore theorem 6 implies that it is falsifiable.
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For FCI we have to slightly modify the example from section 1.1 to render the edge X → Y visible (and therefore
the interventional probability identifiable). To this end, assume we have the graph G shown in figure 4a. Assume
that as before, all independences are given by d-separation in G except for the additional independence Y ⊥⊥ Z2.
On the set S′ = {X,Y, Z1, Z3, Z4}, FCI will find all edges between nodes in S′ that are in G as shown in figure 4b
(except for some circle marks). In this subgraph, the edge X → Y is visible as Z3 (or Z4) has an edge towards
X but is not adjacent to X. Further, there are no non-causal paths (i.e. backdoor-paths) between X and Y .
Then the empty set is a valid adjustment set according to theorem 5. On T , FCI will find the marginal model
as in figure 4c for the same reason as in section 1.1. As there is an arrowhead towards X, the there is no effect
from X to Y . Now we get the same interventional probabilities pS

′
(y|do(x)) = p(y|x) ̸= p(y) = pT (y|do(x)) as

in section 1.1, where S′ = S ∪{Z3, Z4}. Therefore we have constructed a joint distribution such that we can find
incompatible results on some subsets in the limit of infinite data.

S′ T

X

Y

Z1 Z2

Z3

Z4

(a) True Graph G

S′

X

Y

Z1

Z3

Z4

(b) Graph GS′

T

X

Y

Z2

(c) Graph GT

Figure 4: This modification of figure 1b renders the edge X → Y visible if FCI is applied to S′ and thus shows
that FCI is falsifiable.

For RCD we modify an example from Hoyer et al. (2008b). Precisely, their example V consists of a linear SCM
with three nodes defined via

X3 := N3, X1 := βX3 +N1, X2 := αX1 + γX3 +N2,

where N1, N2, N3 are jointly independent non-Gaussian noise variables. Figure 5 shows two such models. Hoyer
et al. (2008b) show that there are two models that cannot be distinguished on the marginal over {X1, X2}, one
with structural coefficient α and one with (αβ+γ)/β between X1 andX2. For example, we can set α = β = γ = 1
and assume all noise variables to have the same distribution with zero mean and unit variance as visualized in
figure 5a. This model generates the distribution P . Analogously, we define another distribution P̃ via a model
with α = 2, β = 1, γ = −1 (we require the noise terms to have the same distributions as in the previous model)
shown in figure 5b. Then the joint behaviour between X1 and X2 can be described via the vector(

X1

X2

)
=

(
1 0 1
1 1 2

)
·

N1

N2

N3

 =

(
N1 +N3

N1 +N2 + 2N3

)

for P , while for P̃ we get (
X1

X2

)
=

(
1 0 1
2 1 −1

)
·

N1

N2

N3

 =

(
N1 +N3

2N1 +N2 +N3

)
.

Since all noise terms have the same distribution, the vector (X1, X2)
T has the same distribution in both cases.

Further, RCD will identify the respective model when all three nodes are observed. In other words, there are two
distributions P, P̃ over X1, X2, X3 (generated by the SCMs described above) that have identical marginals over
X1, X2 but RCD results in different interventional probabilities p(x2|do(x1)) ̸= p′(x2|do(x1)). Therefore RCD is
non-bivariate (definition 32) and via theorem 6 it is falsifiable.
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X1

X3

X2
1

1 1

(a) Graph G1 with structural coefficient 1 between X1

and X2.

X1

X3

X2
2

1 -1

(b) Graph G2 with structural coefficient 2 between X1

and X2.

Figure 5: Two causal models that fulfil the LiNGAM assumption, have the same marginal over X1 and X2 and
different coefficient from X1 to X2.

A8.3 For Theorem 2

Proof The idea is that we apply FCI to data generated from the DAG in figure 6a on S ∪ {i} and S ∪ {j}.
In the first case, FCI identifies the direction i → k. Likewise, FCI infers that k → j is visible, i.e. that k is an
unconfounded cause of j in the second case. This unconfoundedness excludes a direct link between i and j, as
otherwise i would be a confounder for k and j. Further, S also contains no common child of i and j. Consequently,
S m-separates i and j. From these independences, we can reconstruct the entire joint distribution.

S ∪ {i}

S ∪ {j}

p1

p2

i

k

j

(a) True Graph G

S ∪ {i}

p1

p2

i

k

(b) Graph GS∪{i}

S ∪ {j}

p1

p2

k

j

(c) Graph GS∪{j}

Figure 6: True DAG G and PAGs G1 and G2 over S ∪ {i} and S ∪ {j} respectively. The red edge indicate a
visible edge. There cannot be any edge between i and j due to the visible edge between k and j.

More precisely, let S := {k, p1, p2} be a set of nodes with i, j ̸∈ S. Let G1 and G2 denote the PAGs given by
the asymptotic outputs when FCI is applied to S ∪ {i} and S ∪ {j}, respectively, where we assume that the
distribution is Markovian to the joint PAG in figure 6a. As visualized in figure 6b, G1 consists of the edges
p1 → i, p2 → i (with circle marks) and i → k (without circle, since this link is recognized as visible). Likewise,
G2 consists of the edges p1 → j, p2 → j (with circle marks) and k → j (without circle), where the latter is a
visible edge, as e.g. the edge between p1 and k has an arrow head towards k and p1 is not adjacent to j. This
graph is shown in figure 6c. We now conclude that there cannot be a direct link between i and j as follows: i→ j
and i→ k would create an inducing path w.r.t. i between k and j (which is ruled out by the visible edge), while
j → i would be a directed cycle. We thus obtain Xi ⊥⊥ Xj |XS , which enables constructing the joint distribution
from the two marginals. Precisely, we get

p(i, k, j, p1, p2) = p(i|k, p1, p2)p(j|k, p1, p2)p(k, p1, p2),

where every factor on the right hand side is already given by the marginal distributions.

We now need to show that there is another distribution P̃ that has the same marginals, but is ruled out by the
self-compatibility constraint. We start by restricting the example from figure 6a further to the linear Gaussian
case. If we assume that all noise terms adhere to independent standard normal distributions and all structural
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coefficients are one, we get a distribution that is Markovian and faithful to P and its covariance matrix is given via

Σ = ((I −A)(I −A)T )−1 =


1 0 1 1 1
0 1 1 1 1
1 1 3 3 3
1 1 3 4 4
1 1 3 4 5

 ,

where A is the adjacency matrix of the graph G. The marginal covariance matrices follow directly form this:

Σ{p1,p2,i,k} =


1 0 1 1
0 1 1 1
1 1 3 3
1 1 3 4

 Σ{p1,p2,k,j} =


1 0 1 1
0 1 1 1
1 1 4 4
1 1 4 5


Finally, we define the matrix

Σ̃ =


1 0 1 1 1
0 1 1 1 1
1 1 3 3 7/2
1 1 3 4 4
1 1 7/2 4 5

 .

Σ̃ is also a symmetric, positive definite matrix and is therefore a valid covariance matrix. Further, it has the
same marginal covariances over {p1, p2, i, k} and {p1, p2, k, j} as Σ. Therefore, the normal distribution with zero

means and covariance matrix Σ̃ is an example for a distribution P̃ that we were looking for.

A9 GRAPHICAL COMPATIBILITY

A9.1 Definitions for Further Graphical Models

Now we want to define graphical notions for the remaining types of graphical models.

Definition 28 (purely graphical compatibility) A compatibility notion c is called purely graphical if it does
not depend on PV , that is, it can also be written as a function

c : G∗V → {0, 1}.

We will present several purely graphical compatibility notions for different classes of graphical models respectively.
In definition 6 we have already defined graphical compatibility for ADMGs. We will now define graphical
compatibility for the other graphical models that we considered.

Definition 29 (graphical compatibility of MAGs) Let S1, . . . , Sk be k ∈ N sets of nodes and GS1
, . . . , GSk

be MAGs. Then we define graphical compatibility by the function c with c(GS1 , . . . , GSk
) = 1 iff there exists a

set V ⊇ ∪kj=1Sj , and an DAG GV such that L(GV , Sj) = GSj , where L is the latent projection from DAGs to
MAGs as defined in definition 23.

Definition 30 (graphical compatibility of PAGs) Let S1, . . . , Sk be k ∈ N sets of nodes and GS1
, . . . , GSk

be PAGs. Then we define graphical compatibility by the function c with c(GS1 , . . . , GSk
) = 1 iff there exists a

set V ⊇ ∪kj=1Sj , and a DAG GV such that LPAG(LMAG(GV , V ), Sj) = GSj , i.e. if GSj represents the conditional
independences of the DAG GV over Sj .

The definition of latent PAGs is centered around conditional independences and the causal semantics is not as
obvious as for ADMGs. Note, that this is due to the fact that PAGs represent the causal statements that are
consistent for all models that entail the same independence structure (via theorem 5). Therefore we can also
“safely” marginalise PAGs by only referencing the independence structure.

Definition 31 (graphical compatibility of CPDAGs) Let S1, . . . , Sk be k ∈ N sets of nodes and
GS1

, . . . , GSk
be CPDAGs. Then we define graphical compatibility by the function c with c(GS1

, . . . , GSk
) = 1

iff there exists a set V ⊇ ∪kj=1Sj , and an DAG GV such that L(GV , Sj) = GSj
, where L is the latent CPDAG

as defined in definition 25.
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A9.2 Critical Discussion of Graphical Compatibility

Here we show that a purely graphical criterion implicitly relies on a genericity condition which is close to
faithfulness in spirit. Consider, the causal model Y → Z and recall that ADMG compatibility excludes that
an additional variable X influences both Y and Z. This conclusion can be criticised, depending on the precise
interpretation of Y → Z. Assume our interpretation of Y → Z reads: “Y is an unconfounded cause of Z in
the sense that p(z|do(y)) = p(z|y)”. One can then construct a causal model with the complete DAG on X,Y, Z
in which the relation between X and Z is confounded by a hidden variable W . In a linear Gaussian model,
we can easily tune parameters such that the confounding bias that W induces on P (Y,Z) cancels out with the
confounding bias induced by Z. This way, we still have p(z|do(y)) = p(z|y) despite the confounding paths.
Excluding such a non-generic choice of parameters follows from faithfulness in a DAG with X,Y, Z,W,FY where
FY controls randomized interventions on Y (the so-called ‘regime-indicator variable’ of Dawid (2021)). In our
example, vanishing confounding bias corresponds to

FY ⊥⊥ Z |Y,

without d-separation. In other words, the conclusion that X → Y together with the unconfounded causal relation
Y → Z is incompatible with the complete DAG on X,Y, Z relies on a genericity condition against which one may
raise doubts. After all, it is problematic to benchmark causal discovery algorithms via methods that implicitly
rely on principles close to faithfulness, if we on the other hand argue that assumptions like faithfulness are often
violated. We cannot resolve this counter argument entirely. It may be reassuring, however, that also model
classes that do not rely on faithfulness come to the same conclusion, that is, also exclude the direct link from X
to Z. This will be shown in the proof of theorem 8.

A10 Relationship between Interventional and Graphical Compatibility

The next example shows a case, where interventional compatibility does not imply graphical compatibility.

Example 2 (Non-generic confounder) Let there be an ADMG G1 with variables X,Y, Z. Let X consist of
two components15 X1, X2 with X1 ⊥⊥ X2 as in figure 7a. If Y only depends on X1 and Z only on X2 we get

p(z | do(y)) =
∑
x

p(x)p(z | y, x)

=
∑
x1,x2

p(x1)p(x2)p(z | y, x2)

=
∑
x2

p(x2)p(z | y, x2)

=
∑
x2

p(x2 | y)p(z | y, x2) = p(z | y).

Now assume we have an ADMG G2 that only contains X → Y , i.e. implicity rules out confounding. Especially,
G2 implies

p(z | do(y)) = p(z | y).
Therefore, the two models entail the same interventional statements and are interventionally compatible. Yet,
G1 and G2 are not graphically compatible, as G2 is different from the latent projection L(G1, {X,Y }).

In the main paper we already mentioned that graphical compatibility also does not imply interventional com-
patibility. In the following example we want to illustrate this in more detail.

Example 3 (Empty graphs) Let G from figure 8a be the true underlying DAG for some distribution. Assume
the distribution is faithful to the DAG. Further, let Ĝ and ĜX,Y be the DAGs in figures 8b and 8c, respectively.

Clearly, Ĝ and ĜX,Y are graphically compatible. They imply

p(y|do(x)) = p(y).

15One might ask, whether it makes more sense to treat X1 and X2 as separate variables, instead of a single variables
with two components. Indeed, summarizing X1 and X2 as a single variable may seem a bit artificial. Though we want
to note, that this is merely an illustrative example. The same phenomenon would e.g. also occur for a scalar variable,
where Y only depends on the first bit of the binary encoding and Z only depends on the second bit.
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X1 X2

Y Z

(a) Graph G1

Y Z

(b) Graph G2

Y Z

(c) Graph L(G1, {X,Y }

Figure 7: Non-generic case where interventional compatibility does not imply graphical compatibility.

But further, Ĝ also entails (as Z is a valid conditioning set)

p(y|do(x)) =
∑
z

p(y|x, z)p(z),

which is not equal to p(y) for any distribution that is Markovian and faithful to G. Thus, Ĝ and ĜX,Y are not
interventionally compatible.

X

Y

Z

(a) True DAG G

X

Y

Z

(b) Graph Ĝ

X Y

(c) Marginal graph ĜX,Y

Figure 8: The graphical compatibility only depends indirectly on the data. For non-Markovian graphs, their
graphical compatibility does not necessarily imply interventional compatibility.

Indeed, if we require that the graphs are Markovian w.r.t. to the distribution at hand, we get that graphical
compatibility implies interventional compatibility.

Lemma 2 Let S1, . . . Sk be sets of variables for some k ∈ N and denote S :=
⋃

i∈[k] Si. Let GS1
, . . . , GSk

be an
ADMGs or PAGs and PS be a probability distribution over S. Let further GSi

be Markovian w.r.t. PSi
for all

i ∈ [k]. Then, if GS1 , . . . , GSk
are graphically compatible, they are also interventionally compatible w.r.t. PS.

This follows directly from the construction of the latent projection in definitions 5 and 24.

In definition 4 we did not require the marginal graphs to be Markovian w.r.t. the distribution. With the following
example we want to show why.

Example 4 (Non-Markovian model) Consider the linear Gaussian model with variables X,Y, Z and struc-
tural coefficients as in figure 9a. The graph Ĝ in figure 9b is clearly not the latent projection of G to {X,Z}.
Yet, both, G (with the structural coefficients) and Ĝ imply

p(z|do(x)) = p(z).
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Therefore they are interventionally compatible. With definition 4 we want to allow such non-generic cases, as
long as the marginal model gets the interventional distributions “right” in the sense that they could have been
created by a single joint model. As we have mentioned before, this might not be the only appropriate choice,
depending on the downstream task of the causal model.

X Y Z
1 -1

1

(a) True DAG G

X Z

(b) Graph Ĝ

Figure 9: A marginal model that is not Markovian w.r.t. to the distribution might still be interventionally
compatible.

A11 WHICH ALGORITHMS ARE FALSIFIABLE?

In theorem 1 we have seen that FCI and RCD are observationally falsifiable. Other popular causal discovery
algorithms that do not assume causal sufficiency are falsifiable as well. We deferred the following lemma to the
appendix to keep the presentation in the main paper more concise.

Lemma 3 The algorithms PC, GES (Chickering, 2002) and DirectLiNGAM (Shimizu et al., 2011) are falsifiable.

Proof Recall the graph from figure 1a and assume that this is the ground truth graph G. Also recall that we
constructed a distribution that is Markovian and faithful to G except for the additional independence Y ⊥⊥ Z2.
We have already discussed that the PC algorithm will find the graphs in figure 1b in the population limit, as
these are the only graphs that capture the conditional independences on the the subsets X,Y, Z1 and X,Y, Z2

under the assumption of no hidden confounder.

Similarly, GES will find the same graphs in the limit of infinite data, as a graph that reflects exactly the
independences in the distribution will have an optimal score16 (Proposition 8 (Chickering, 2002)). Denote the
graph that PC and GES find on S with GS and the one over T with GT . In these graphs we get pS(y|do(x)) =
p(y|x) ̸= p(y) = pT (y|do(x)) where pS(y|do(x)) denotes the causal effect derived from GS using the identification
formula from theorem 5 and analogously for T . The inequality follows since we had Y ⊥⊥ X otherwise, in
contradiction to the assumption that Y ⊥⊥ Z2 is the only independence that is not entailed by the true DAG.17

For DirectLiNGAM, the same argument as in the previous proof for RCD (visualized in figure 5) suffices.

As the unfalsifiable algorithm in example 1 showed, falsifiability is not a trivial property. This raises the question
if the falsifiable algorithms can be characterised differently. With the following definition we want to exclude
algorithms like the aforementioned ordering by entropy and indeed show that this is a sufficient criterion for
falsifiability. The definition has two aspects: 1) a non-bivariate algorithm must be able to produce an output
that allows identification of a causal effect 2) this output does not only depend on bivariate properties of Xi and
Xj but also depends on the distribution of the other nodes.

Definition 32 (non-bivariate causal discovery) A causal discovery algorithm A is non-bivariate if there

exists a set of variables V with |V | > 2, as well as probability distributions PV and P̃V over V whose marginali-

sations to a subset of two variables {Xi, Xj} ⊆ V coincide (i.e. P{Xi,Xj} = P̃{Xi,Xj}) such that for every ϵ > 0
there is a m ∈ N where for all m′ ≥ m the following conditions hold with probability at least 1− ϵ:

1. p(xi|do(xj)) is identifiable in the estimated graphs A(Xm′
) and A(X̃m′

) and

2. there are identification formulae in A(Xm′
) and A(X̃m′

) respectively such that pA(Xm′
)(xi|do(xj)) ̸=

pA(X̃m′
)(xi|do(xj)),

16For simplicity we assume that the greedy search procedure always finds the optimal score.
17In this case we showed the falsifiability directly by constructing a joint distribution. But the example also shows

that PC and GES are non-bivariate (as the marginal distribution over S and T could be interpreted as P and P̃ from
definition 32) and then theorem 6 could be applied.
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where Xm′
denotes a data matrix with m′ samples drawn from PV and X̃m′

contains samples from P̃V and
pG(xi | do(xj)) denotes the identification formula from G applied to probability distribution P .

Note that we did not require the distributions to fulfil the causal discovery assumptions of A.

The following theorem asserts that for every non-bivariate causal discovery algorithm A there is at least one
distribution P for which we can detect that P does not fulfil the causal discovery assumptions of A by applying
A to a subset of variables. We observe:

Theorem 6 (non-bivariate implies falsifiable) If A is non-bivariate, it is observationally falsifiable with
respect to interventional compatibility.

Proof Let the set of variables S and the distributions P, P̃ be like in 32. Let S̃ with S∩ S̃ = {i, j} be such that
S̃ \ {Xi, Xj} are variables of the same type as S \ {Xi, Xj} with canonical one-to-one correspondence. We will

assign different distributions to them now: define P ′ to be such that P̃ is “copied” to S̃, i.e. Xi and Xj have

the same distribution like in P̃ and all nodes in S̃ \ {Xi, Xj} have the same distributions as their corresponding

node in S has in P̃ . Then define the joint distribution via

P (XS∪S̃) := P (XS\{i,j}|Xi, Xj)P (Xi, Xj)P
′(XS̃\{i,j}|Xi, Xj). (4)

One checks easily that its restrictions to S and S̃ coincide with P (XS) and P̃ (XS), respectively. By construction,
the algorithm A will result on contradictory statements about the interventional distribution p(xi|do(xj)) when
applied toXS , versus when applied toXS̃ in the limit of infinite data. Thus we have c(A(XS),A(XS̃), PS∪S̃) = 0.

We now want to consider an example that is similar to the one in example 1 but with very different conclusions.

Example 5 (DAG Entropy Ordering) Define an algorithm A that orders nodes according to their entropy
and outputs the complete DAG with respect to that order.

This example is interesting for multiple reason. First, note that the algorithm in this example is non-bivariate
in the sense of our definition. This illustrates that we refer to the non-bivariateness of interventional statements
and not e.g. the resulting edges. Second, it highlights the importance of condition 1) of definition 32, as this is
basically the only difference between the example above and example 1. Third, the following lemma shows that
this näıve algorithm is indeed falsified for almost all distributions.

Lemma 4 (DAG via entropy order is almost always falsified) Let T := {1, 2, 3} and P{1,2,3} be generic
in the sense that the entropies of all variables are different. Assume H(X1) < H(X2) < H(X3), without loss of
generality, and assume the further genericity condition∑

x1

p(x3|x2, x1)p(x1) ̸= p(x3|x2). (5)

Then the complete DAGs G{1,2} and G{1,2,3}, obtained by entropy ordering of nodes, are interventionally incom-
patible.

Proof The left hand side of (5) is p(x3|do(x2)) inA(P{1,2,3}), while the right hand side is the same interventional
probability in A(P{2,3}).

Note that PT in lemma 4 is always Markovian to A(P{1,2,3}) because this is a complete DAG. It is thus notable
that the algorithm falsifies itself although PT is a distribution that is allowed by A(P{1,2,3}).

A12 FURTHER DISCUSSION OF THE RELATIONSHIP TO STABILITY

In this section, we motivate our incompatibility score using stability arguments from learning theory (Shalev-
Shwartz et al., 2010). Observe that, for a causal discovery method to achieve a low incompatibility score, it’s
output must remain largely unchanged under small modifications to the variable sets it is applied to. Following
this idea, under some notion of stability of a causal discovery algorithm, we now show that stable algorithms,
provably, generate useful causal models in the sense described below.

While, it is not possible to guarantee that a causal discovery algorithm that achieves a low incompatibility score
will accurately predict system behavior under interventions, we argue that the resulting models are at least
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useful due to their ability to predict statistical properties of unobserved joint distributions. This perspective
is influenced by Janzing et al. (2023), who reconceptualizes causal discovery as a statistical learning problem.
The key principle underlying this reconceptualization posits that causal models offer predictive value beyond
predicting system behavior under interventions; they can also predict statistical properties of unobserved joint
distributions. To illustrate the main idea, consider the following example.

Consider a set of variables X = {X1, X2, · · ·Xn}, and let S represent a collection of subsets of X . A statistical
property Q can be defined as a mapping from S to R. For a given tuple Si = (Xl1 , Xl2 , · · ·Xlk), Q might
indicate whether the conditional independence Xl1 ⊥⊥ Xl2 |Xl3 , · · ·Xlk holds, represented as Q(Si) = 1 (if true)
or Q(Si) = 0 (if false).18

Causal models such as Directed Acyclic Graphs (DAGs) can thus be viewed as predictors of statistical properties,

like conditional independences. The statistical property predicted by a causal modelM is denoted as Q̂M : S →
R. 19

The statistical prediction problem can now be outlined as follows: Given a set of m observations S =
{S1, S2, · · ·Sm)} ∈ Sm, and a loss function l : Q(S) × Q(S) → [0, 1], the goal of causal discovery is to learn

a joint causal model over X that minimizes the loss l(Q̂M(S), Q(S)) on unobserved subsets S ∈ S. As an
illustrative example, the PC algorithm constructs a joint causal model across all variables—encoding conditional
independences for any subset of X—by evaluating conditional independences within a selected set of smaller
subsets.

If we assume that the subsets are drawn according to a distribution over S, we can invoke stability arguments from
learning theory to guarantee generalization from observed to unobserved sets of variables for causal discovery
algorithms that demonstrate stability under small modifications to variable sets. This is different from the
standard setting in statistical learning, where algorithms that exhibit stability under small modifications to the
data are known to generalize across data points (Shalev-Shwartz et al., 2010).

In order to formalize our discussion, let’s define the concept of ’stability’ in the context of causal discovery.
While there are many related notions of stability in statistical learning theory, their relevance varies depending
on the context. In our case, Leave-one-out (LOO) stability (Mukherjee et al., 2006), which requires stability
of the loss when a single data point (or a subset of data points) is included or excluded from the training
set, is particularly applicable. Nonetheless, to maintain a high-level perspective, we will introduce a strong,
distribution-independent form of stability: uniform stability (Bousquet and Elisseeff, 2002), which encompasses
other weaker forms of stability like LOO stability.

Definition 33 (Uniform Stability) A causal discovery algorithm A is said to be γ−uniformly stable with
respect to the loss function l if, for any S ∈ S, any subset S = {S1, S2, · · ·Sm} ⊂ Sm, and for any index i ∈ [m],
the following inequality holds:

|l(Q̂AS(S), Q(S))− l(Q̂AS/i
(S), Q(S))| ≤ γ,

where S/i denotes the set S replacing the element Si by some S′
i ∈ S.

With this definition, we can formally prove that stable causal discovery algorithms generate useful causal hy-
potheses in the sense of their ability to generalize statistical predictions across variable sets. To this end, we first
introduce the notions of empirical and true risks and state the key result in Theorem 7.

Definition 34 (Empirical and Expected Risks) Under the reconceptualization of causal discovery as a
learning problem, assuming that the subsets are drawn according to a distribution L over S, the empirical
(R̂(M)) and expected risks (R(M)) incurred by a causal modelM are defined as:

R̂(M) :=
1

n

m∑
i=1

l(QM(Si), Q(Si)), R(M) := EL[l(QM(Si), Q(Si))].

Under this definition, one can leverage recent results from Bousquet et al. (2020) to derive the following high
probability generalization bounds for uniformly stable causal discovery algorithms.

18Empirically, it can also indicate whether a given test T detects the conditional independence under consideration
based on datasets of observations corresponding to the variable set.

19For a more detailed discussion, formalism, and justification of this problem we refer the reader to Janzing et al. (2023).
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Theorem 7 (Generalization bounds for uniformly stable causal discovery) Let A denote a causal dis-
covery algorithm that is γ−uniformly stable with respect to the loss function l in the sense described above. Then
there exists a constant c such that for any probability distribution L over S and for any δ ∈ (0, 1), the following
holds with probability at least 1− δ over the draw of m subsets S1, S2, . . . , Sm according to L:

R(A(S))− R̂(A(S)) ≤ c
(
γ log(n) log(1/δ) +

√
log(1/δ)√

n

)
,

where A(S) denotes the causal model output by the causal discovery algorithm A applied on the set S =
{S1, S2, · · · , Sm}.

The result demonstrates that stable algorithms, provably, generate useful causal models due to their ability to
generalize statistical predictions across variable sets. Informally, it provides evidence that a low incompatibility
constitutes a useful inductive bias for causal discovery. This is notably distinct from the standard setting in
statistical learning, where algorithms that exhibit stability under small modifications to the data are known to
generalize across data points.

A13 ADDITIONAL RESULTS ABOUT MERGING

In theorem 2 we have seen that FCI enables what we have called merging in definition 8. We now want to show
that an idealized version of RCD also has this property. Repetitive Causal Discovery (RCD) (Maeda and Shimizu,
2020) is a based on the LiNGAM-assumptions and is able to also infer the presence of latent confounders. It
assumes a linear model with independent non-Gaussian noise, where confounding is modelled by some shared
noise-variables. Explicitly, it reads:

Xi =
∑
j

βijXj +
∑
j

ϵijWj +Ni, (6)

where all Ni,Wj are independent noise variables (with non-zero variance). The variables Wj , which are shared
by at least two Xi, describe the confounding.

Definition 35 (idealized RCD) We define idealized RCD to be a causal discovery algorithm that has an
additional output token ⊥, that indicates that idealized RCD ’abstain from a decision’, i.e. it indicates that
(idealized RCD estimated20 that) the distribution cannot be generated via equation (6). Otherwise, it draws an
arrow Xi → Xj whenever βij ̸= 0, and a bidirected link whenever they share a variable Wk, that is, there exists
a k such that ϵik ̸= 0 and ϵjk ̸= 0 according to the usual RCD algorithm.

Theorem 8 (idealized RCD enables merging) Idealized RCD enables merging with respect to graphical con-
sistency.

Proof For the variables X1, X2, X3, assume that idealized RCD outputs X1 → X2 (without confounding)
asymptotically when applied to data from P{1,2}. Assume further, that it outputs X2 → X3 (without confound-
ing) when applied to data from P{2,3}. We now show that applying RCD to all three variables can only yield
compatible results if X1 ⊥⊥ X3 |X2 and thus

P (X1, X2, X3) = P (X1, X2)P (X3|X2).

Consequently, the joint distribution follows uniquely from the two marginal distributions. The proof builds
heavily on the theorem of Darmoir-Skitovic (Darmois, 1953; Skitovic, 1962), which entails that for any set of
independent non-Gaussian variables Y1, . . . , Yd with non-zero variance, we have(∑

j

ajYj

)
⊥⊥

(∑
j

bjYj

)
⇒ aj · bj = 0 ∀j.

In other words, two linear combinations can only be independent if they share none of the variables.

20We assume that the idealized algorithm estimates this in an “oracle”-fashion, i.e. we do not discuss how this could
be estimated.
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If the output of RCD on the joint distribution P{1,2,3} is compatible with the two marginal models, it needs to
be described by a model of the form (6) with causal ordering 1, 2, 3. For any different order, causal directions
would not be compatible with the marginal models. Further, RCD would output ⊥ if the joint model was not of
the form (6), which we also count as incompatibility. Hence, compatibility entails a joint model of the following
form:

X1 =
∑
j

ϵ1jWj +N1 (7)

X2 = β21X1 +
∑
j

ϵ2jWj +N2 (8)

X3 = β31X1 + β32X2 +
∑
j

ϵ3jWj +N3. (9)

For all j we have ϵ1jϵ2j = 0 otherwise the causal relation X1 → X2 would be confounded and RCD could not
output an unconfounded link as bivariate model. This can be seen as follows. RCD only outputs an unconfounded
link X1 → X2 if X2 − αX1 is independent of X1 for some α. This can only be true for α = β21, otherwise both
expressions contain N1. Further, X2−β21X1 =

∑
j ϵ2jWj +N2 can only be independent of

∑
j ϵ1jWj +N1 if the

linear combinations share no Wj . In a similar way we conclude that ϵ2jϵ3j = 0: We first check that X3 − αX2

can only be independent of X2 for α = β32, otherwise N2 appears in both expressions. Further, X3 − β32X2 can
only be independent from X2 if they share none of the variables Wj .

The variables Wj thus fall into three classes: those that appear in only one of the variables X1, X2, X3 and those
that are shared by X1 and X3. The former ones can be absorbed into the noise variables Nj . We thus simplify
(7) to (9) to

X1 =
∑
j

ϵ1jWj +N1 (10)

X2 = β21X1 +N2 (11)

X3 = β31X1 + β32X2 +
∑
j

ϵ3jWj +N3. (12)

In a similar way as we have repeatedly argued, X3 − αX2 can only be independent of X2 if α = β31. We obtain

X3 − β32X2 = β31

∑
j

ϵ1jWj +
∑
j

ϵ31Wj + β31N1 +N3. (13)

This expression can only be independent of X1 if β31 = 0, otherwise N1 appears in both expressions. The
remaining term

∑
j ϵ31Wj + N3 can only be independent of X1 if there is no Wj shared by X1 and X2, i.e.,

ϵ1jϵ3j = 0 for all j. However, then the respective linear combination of all Wj that appear only in X1 can be
merged with N1, and the others with N3. Thus, we end up with the structural equations

X1 = N1 (14)

X2 = β21X1 +N2 (15)

X3 = β32X2 +N3, (16)

which implies X1 ⊥⊥ X3 |X2.

We now want to construct a different distribution P̃ that has the same marginals as P , to show that without the
self-compatibility constraint the solution to the statistical marginal problem is not unique. We will construct an
SCM with the edges X1 ← X2 → X3 and X1 → X3 and violate the assumption of a linear model with additive
noise.

We first reconstruct the marginal P1,2 using a construction from proposition 4.1 by Peters et al. (2017). Define
the conditional cumulative distribution function

FY |x(y) := P (Y ≤ |y | X = x)

and further define
F−1
Y |x(nY ) := inf{y ∈ R : FY |x(y) ≥ nY }.
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Now set X1 via the structural equation
X1 = f(X2, Ñ1),

where f(x2, n1) = F−1
Y |x(n1) and Ñ1 is uniformly distributed over [0, 1] and independent from X2 and P2 = P̃2.

By construction we get P̃1,2 = P1,2.

We now set X3 via the structural equation

X3 = β32X2 + F−1
N3

(Ñ1),

where β32 is the underlying structural coefficient between X2 and X3 from P and F−1
N3

is the quantile function

of the noise term N3. Again, by construction we get the same marginal as in P . But clearly, in P̃ we do not
have X1 ⊥⊥ X3|X2, as the noise term of X3 is a deterministic function of the noise term of X1.

A14 PRACTICAL EVALUATION OF COMPATIBILITY

A14.1 Details of Interventional Incompatibility Score

We have already introduced our interventional compatibility score in definition 9. In this section we want to
shortly elaborate on this score to avoid confusion.

Su and Henckel (2022) propose to falsify interventional statements of a linear causal model by comparing the
interventional distributions entailed by different adjustment sets. More precisely: in many cases a causal DAG
G implies several sets C1, . . . , Ck for k > 2 satisfying the backdoor criterion Pearl (2009) such that

p(y | do(x)) =
∑
ci

p(y | x, ci)p(ci),

for all i ∈ [k]. Figure 1a is a (rather trivial) example, as we could use ∅ and {Z1}. The set of parents of X is
always such an adjustment set if the effect is identifiable (Tian and Pearl, 2002) in an ADMG. If G is the true
causal model, we can decide whether a set C is a valid adjustment set by graphical criteria (see theorem 5). Su
and Henckel (2022) now propose a statistical test to reject the null hypothesis H0 that all sets under consideration
yield the same interventional distribution. Precisely, for sets of variables C1, . . . , Ck the hypothesis reads

H0 : βXi,Xj ·C1
= · · · = βXi,Xj ·Ck

,

where βXi,Xj ·Cl
denotes the partial regression coefficient for Xi regressed on Xj and all variables in Cl for some

l ∈ [k]. Their test assumes linear causal models and Gaussian noise.

We build on their work in the following sense: instead of using one causal model G to derive multiple adjustment
sets, we use adjustment sets of different causal models, learned on different subsets of variables. Just as in their
work, they should all yield the same interventional distributions. For simplicity, we use parent-adjustment for
each marginal model in the case of RCD and the canonical adjustment set for FCI. Note, that in the case where
all models are correct, each adjustment set in a marginal model will be a valid adjustment set in the joint model.
But that the marginal parent sets are valid adjustment sets in the joint model is neither sufficient nor necessary
for the test to accept.

A14.2 Further Practical Considerations

In the following we want to specify some aspects of definitions 9 and 10 that have not been discussed in detail
and also slightly modify definition 10 further to tackle some practical issues.

Sampling of subsets. In definitions 9 and 10 we have assumed the subsets are given. In practice, we sample
them randomly. But we did not sample from the set of all possible substes for the following reason: if a subset
is very small, some algorithms like the FCI algorithm often give uninformative outputs in the sense that most
edges are unoriented. On the other hand, if subsets are large and differ only by few nodes, the resulting marginal
models usually do not differ much. Therefore, in all experiments, we uniformly drew subsets Si from the set of
subsets with |Si| = ⌈|V |/2⌉ for i = 1, . . . , l for some l ∈ N.
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Canonical adjustment and false positives In our experiments with FCI we noted that many tests indicated
a difference in the interventional distributions, despite the fact that the graphical models seemed to be Markovian
and graphically compatible. This seemed to be due to the fact that the canonical adjustment set is usually quite
large, rendering the problem statistically hard. In cases where there was no possibly directed causal path (and
therefore the model graphically implied no dependence for any adjustment set) we chose to replace the canonical
adjustment set with a randomly chosen subset of size one.

Marginalisation of RCD outputs As we have noted before, the outputs of RCD are not ADMGs, as RCD
cannot differentiate between the case, where a node X has a direct edge to Y and they have an unobserved hidden
confounder or where they are confounded without any directed edge between them. During marginalisation we
treated these bidirected edges accordingly, and drew additional edges if one node is a potential ancestor or an
additional bidirected edge if two nodes are potentially confounded.

Causal sufficiency. In practice, many algorithms like the PC algorithm or GES rely on the assumption that all
causally relevant variables are observed, i.e. that there is no common cause between two observed variables that is
itself unobserved and all directed paths from this common cause to the observed nodes only contains unobserved
nodes. Clearly, if we sample the subsets uniformly from all subsets with the same size, causal sufficiency will often
be violated for these subsets, even if it holds for V . Consequently, if we detect an incompatibility between A(X)
and A(XS) we cannot know whether this indicates an actual error or it is simply due to the newly introduced
hidden confounder. Still, in section 4 we will show experiments with PC and GES that indicate that the graphical
incompatibility score might help in model selection for these algorithms. The interventional criterion seems to
be more sensitive to these violations of sufficiency.

CPDAGs and hidden confounders. In definition 25 we have only defined the latent projection of DAG
to a CPDAG on causally sufficient subsets. But as we have just discussed, we will not only look at causally
sufficient subsets. In the experiments, we simply calculated the latent ADMG and deleted its bidirected edges.
The resulting graph is a DAG again and we proceeded with its respective CPDAG.

A14.3 Runtime of the Incompatibility Scores

Let A be an algorithm, k be the number of considered subsets, m be the number of samples, f(n,m) be the
worst-case run time of A on n nodes and m samples, g(k, n,m) be the time of the test by Su and Henckel (2022)
and h(n) be the time to calculate the latent projection from a graph with n nodes. We then get a run time in

O(f(n,m) + k · f(⌈n/2⌉,m) + n2 · (g(k, n,m) + k · h(n))), O(f(n,m) + k · (f(⌈n/2⌉,m) + n2 + h(n))),

for κI and κG respectively. With our simple implementation, h(n) ∈ O(n3). As g is polynomial in k, n and m,
the run time in our main experimental setting is dominated by f which is exponential in n for FCI and RCD.

A15 EXPERIMENTAL DETAILS

A15.1 Data Generation

For our first experiments, we generated synthetic data. We first sampled a random ground truth graph using
the Erdos-Renyi model (with number of nodes n+ h and expected degree d, where h is the number of potential
hidden confounders). For each node X we then define a functional model from the class of linear models. For
the linear model we drew the parameters uniformly from [−1,−0.1] ∪ [0.1, 1]. We then apply an additive noise
term which is either drawn from a standard normal distribution or a uniform distribution with zero mean and
unit variance. We then randomly pick d nodes as observed nodes and marginalise out the others.

In all experiments we used graphs with 10 nodes and expected degree 2, as well as linear Gaussian and linear
uniform structural equations. For all incompatibility scores we drew 40 subsets uniformly from the set of all
subsets of size 5. For experiments with RCD and FCI we set h = 3, otherwise h = 0. For all experiments we
draw 1000 samples from the SCM.
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Figure 10: (Left) A histogram of κI values for RCD on 100 linear uniform datasets. (Right) The incompatibility
score κI as metric for model selection with RCD and α = 0.1 or α = 0.001. We picked strictly better parameters
for 68% of datasets and for 28% we picked strictly worse parameters. Overall, in 72% of datasets we picked
better or equally good parameters.

A15.2 Other Details

We evaluated the SHD of CPDAGs and PAGs with respect to the respective CPDAG and PAG of the ground
truth graph and for PAGs, according to the definition of Triantafillou and Tsamardinos (2016). For the test of
Su and Henckel (2022) in the interventional compatibility score we always chose the confidence level 0.001. For
RCD and FCI we also set all confidence thresholds to 0.001, unless stated otherwise. Similarly, for PC and GES
we set the parameters of the algorithms to α = 0.01 and λ = 0.01, respectively, unless stated otherwise. For all
algorithms, we used the implementation from the causal-learn python package (Zheng et al., 2023).

The computations were done on an Intel Core i5-5200U CPU with 8 GB RAM or an Apple M1 Pro with 32 GB
of RAM. All experiments can be run in less than a day.

A16 ADDITIONAL EXPERIMENTS

A16.1 Additional Plots

In the experiments in figures 2 and 3 we have studied the behaviour of the RCD algorithm and the interventional
incompatibility score κI . The plots in figure 10 do not contain novel insights about the experiments. Yet,
the visualization emphasises slightly different aspects. For comparability, we also report them for the following
experiments. The “Winners” in the right plot are determined as follows:

Winner = argmaxA∈{RCDα=0.1,RCDα=0.001} κ
I(A,X).

The loser are the respective other parameters. The defenitions of “Winners” and “Losers” in the following plots
is analogous.

A16.2 Model Evaluation

In section 4 we have already seen that κI is correlated with the SHD to the ground truth graph for RCD on
linear non-Gaussian data. As a next step, we repeated this experiment with the FCI algorithm, where we used
linear Gaussian data and the Fisher Z test for conditional independence. In figure 12 we can see that this also
yields a significant partial correlation (given the average node degree of the ground truth graph), albeit not as
strong as for RCD. Recall, that we considered the partial correlation given the average node degree of the ground
truth graph, as we suspect the density of the ground truth graph to affect both, the SHD and the incompatibility
score.

We also repeated the experiments with the graphical score κG. Figures 14 and 15 show that we also get a
significant correlation for the graphical criterion.
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Example graphs for RCD

Ground Truth Joint Marginal 21
Marginal 16

Marginal 17
Dataset Nr. 68 with κI = 0.47

Ground Truth Joint Marginal 27 Marginal 2 Marginal 30
Dataset Nr. 64 with κI = 0.82

Ground Truth
Joint Marginal 23 Marginal 0

Marginal 35

Dataset Nr. 49 with κI = 0.60

Figure 11: Randomly drawn example graphs from the experiment shown in figure 2. The figure shows for three
randomly picked datasets the ground truth graph (including hidden variables), the joint graph found be the
algorithm on all variables and some randomly drawn marginal graphs, i.e. graphs that the algorithm found on
subsets of variables. Dotted edges indicate that RCD could not infer the direction of the edge.
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Figure 12: (Left) A histogram of κI values for FCI on 100 linear Gaussian datasets. (Right) The structural
Hamming distance of estimated graphs Ĝ to the respective true graph G is on the x-axis and on the y-axis the
incompatibility score κI . The figure shows a significant correlation between κI and the SHD.
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Example graphs for FCI

Ground Truth Joint Marginal 34

Marginal 16
Marginal 1

Dataset Nr. 64 with κI = 0.29

Ground Truth Joint

Marginal 25
Marginal 23

Marginal 21

Dataset Nr. 35 with κI = 0.12

Ground Truth
Joint

Marginal 26 Marginal 3 Marginal 35

Dataset Nr. 12 with κI = 0.21

Figure 13: Randomly drawn example graphs from the experiment shown in figure 12. The figure shows for three
randomly picked datasets the ground truth graph (including hidden variables), the joint graph found by the
algorithm on all variables and some randomly drawn marginal graphs, i.e. graphs that the algorithm found on
subsets of variables.
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Figure 14: (Left) A histogram of κG values for RCD on 100 datasets with linear models and uniform noise.
(Right) The structural Hamming distance of estimated graphs Ĝ to the respective true graph G is on the x-axis
and on the y-axis the incompatibility score κG. The figure shows a significant correlation between κG and the
SHD.



Self-Compatibility: Evaluating Causal Discovery without Ground Truth

0 1 2 3 4 5
Incompatibility score κG

0

10

20

30

40

Nu
m

be
r o

f d
at

as
et

s

FCI: Histogram

0 10 20 30
SHD

0

1

2

3

4

5

In
co

m
pa

tib
ilit

y 
sc

or
e 
κ
G

FCI: partial correlation=0.48, p=4e-07

Figure 15: (Left) A histogram of κG values for FCI on 100 datasets with linear models and Gaussian noise.
(Right) The structural Hamming distance of estimated graphs Ĝ to the respective true graph G is on the x-axis
and on the y-axis the incompatibility score κG. The figure shows a significant correlation between κG and the
SHD.
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Figure 16: The structural Hamming distance of estimated graphs Ĝ to the respective true graph G is on the
x-axis and on the y-axis the incompatibility score κG for PC.

In the next line of experiments we wanted to see whether this correlation also occurs in the setting where
algorithms assume causal sufficiency and with the graphical criterion κG. We therefore generated 100 datasets
(as described above) and estimated graphs Ĝ with two different causal discovery methods, namely PC and GES.
In figures 16 and 17 we see again that this yields a significant partial correlation. In figures 18 and 19 we can
see that also the correlation between κG and the bounds in the structural Interventional distance (SID) (Peters
and Bühlmann, 2015) is significant. (Recall that SID is only defined for DAGs and Peters and Bühlmann (2015)
proposed to calculate the bounds on the SID over all DAGs in the equivalence class described by a CPDAG).
Yet, figure 20 shows no correlation between SHD and κI (in contrast to our experiments with RCD and FCI in
figures 2 and 12). This seems to suggest that κI might not be suitable to be used with algorithms that assume
causal sufficiency without further modifications.

A16.3 Model Selection

We repeated the experiment from figure 3 with the FCI algorithm. The FCI algorithm has exactly one hyper-
parameter, namely the threshold α below which the p-values of the conditional independence tests lead to a
rejection of the null hypothesis. Again, we chose between α = 0.1 and α = 0.001. Figure 23 shows that we
picked the better (or equally good) parameter in 76 % of the datasets. Precisely, 62% are strictly better, while
24% are strictly worse.

Figure 24 shows the same experiment as in figure 3 but this time with the graphical score κG. In this setting we
pick the strictly better parameters in 69% of the datasets and a strictly worse parameters in 27%.
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Figure 17: (Left) A histogram of κG values for GES on 100 datasets with linear models and Gaussian noise.
(Right) The structural Hamming distance of estimated graphs Ĝ to the respective true graph G is on the x-axis
and on the y-axis the incompatibility score κG.
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Figure 18: The bounds on the structural interventional distance of estimated CPDAGs Ĝ to the respective true
graph G is on the x-axis and on the y-axis the incompatibility score κG for PC. The plot shows a significant
correlation between SID and κG.
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Figure 19: The bounds on the structural interventional distance of estimated CPDAGs Ĝ to the respective true
graph G is on the x-axis and on the y-axis the incompatibility score κG for GES. The plot shows a significant
correlation between SHD and κG.
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Figure 20: The structural Hamming distance of estimated graphs Ĝ to the respective true graph G is on the
x-axis and on the y-axis the incompatibility score κI for PC and GES. In contrast to e.g. figures 2 and 12 we
do not see a positive correlation.

Example graphs for PC

Ground Truth Joint
Marginal 3 Marginal 32 Marginal 20

Dataset Nr. 20 with κG = 3.35

Ground Truth Joint Marginal 3 Marginal 23 Marginal 22
Dataset Nr. 35 with κG = 1.73

Ground Truth Joint Marginal 25
Marginal 3 Marginal 7

Dataset Nr. 45 with κG = 3.25

Figure 21: Randomly drawn example graphs from the experiment shown in figure 16. The figure shows for three
randomly picked datasets the ground truth graph, the joint graph found by the algorithm on all variables and
some randomly drawn marginal graphs, i.e. graphs that the algorithm found on subsets of variables.
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Example graphs for GES

Ground Truth Joint Marginal 32

Marginal 31 Marginal 21

Dataset Nr. 75 with κG = 2.55

Ground Truth Joint
Marginal 35 Marginal 4 Marginal 15

Dataset Nr. 30 with κG = 1.05

Ground Truth
Joint

Marginal 1

Marginal 14

Marginal 8

Dataset Nr. 3 with κG = 0.97

Figure 22: Randomly drawn example graphs from the experiment shown in figure 16. The figure shows for three
randomly picked datasets the ground truth graph, the joint graph found by the algorithm on all variables and
some randomly drawn marginal graphs, i.e. graphs that the algorithm found on subsets of variables.
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Figure 23: The incompatibility score κI as metric for model selection FCI with α = 0.1 and α = 0.001 analogously
to the main paper. We picked the model with the better κI score as winner and report the SHD of the winner
and of the loser on x-axis and y-axis respectively. In 62% of datasets we picked the strictly better model, while
24% are strictly worse.



Self-Compatibility: Evaluating Causal Discovery without Ground Truth

0 10 20 30 40
SHD of Winner

0

10

20

30

40

SH
D 

 o
f L

os
er

Model Selection: 73% correct decisions

0 2 4 6 8
Difference in κG

−30

−20

−10

0

10

20

Di
ffe

re
nc

e 
in

 S
HD

Differences in compatibility and SHD

Figure 24: The incompatibility score κG as metric for model selection RCD with α = 0.1 and α = 0.001
analogously to the main paper. We picked the model with the better κG score as winner and report the SHD of
the winner and of the loser on x-axis and y-axis respectively. In 69% of datasets we picked the strictly better
model, while 27% are strictly worse.
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Figure 25: The incompatibility score κG as metric for model selection FCI with α = 0.1 and α = 0.001 analogously
to the main paper. We picked the model with the better κG score as winner and report the SHD of the winner
and of the loser on x-axis and y-axis respectively. In 68% of datasets we picked the strictly better model, while
18% are strictly worse. The dot size indicates that several points overlap.

In figure 25 we can see the same experiment with FCI and κG. Here we got the strictly better parameter in 68%
of datasets and the strictly worse parameter in 18%.

Again, we also used PC and GES as algorithms that assume causal sufficiency. Analogously to FCI, PC has
only the α-threshold as parameter. We repeated an analogous experiment as above with the PC algorithm with
α = 0.1 and α = 0.001. The plots in figure 26 suggest that again, the incompatibility score is an effective
selection criterion and here we even make correct decisions 73% of the cases.

Eventually, we used the graphical score κG to select between different algorithms, in contrast to the previous
experiments where we picked hyperparameters. Note, that such a comparison would not be possible between
FCI and RCD, as the scores of PAGs and ADMGs are not a priori comparable. But PC and GES both
output CPDAGs, which is why we chose them for these experiments. Figure 29 does not show a similarly good
performance as before, as we chose the strictly better or algorithm in 43% of datasets, while we picked the worse
algorithm in 25%. Analogously, figure 30 shows that we picked the strictly better model w.r.t. the lower bound
on the SID given by the CPDAG in 34% of the cases and the strictly worse model in 27% of the cases. Although
w.r.t. to the upper bound on the SID we picked a worse model in 31% of the cases and the better model only
in 28% of the datasets. Figure 32 seems to suggest that κI cannot be used for model selection with algorithms
that assume causal sufficiency (without further modifications): 60% of the points are on or above the line, but
only 28% are strictly above the line and 40% are strictly below the line. This is in line with what we expected
after the experiment shown in figure 20.
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Figure 26: We used the incompatibility score κG for model selection of the PC algorithm with α = 0.1 and
α = 0.001. We picked the strictly better parameter in 58% of datasets and the strictly worse in 27%. The dot
size indicates that several points overlap.
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Figure 27: We used the incompatibility score κG for model selection of the PC algorithm with α = 0.1 and
α = 0.001. We picked the strictly better parameter w.r.t. the lower bound on the SID in 33% of datasets and
the strictly worse in 34%.
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Figure 28: We used the incompatibility score κG for model selection of the PC algorithm with α = 0.1 and
α = 0.001. We picked the strictly better parameter w.r.t. the upper bound on the SID in 32% of datasets and
the strictly worse in 33%.
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Figure 29: The incompatibility score κG as metric for model selection between PC and GES analogously to the
main paper. We picked the model with the better κG score as winner and report the SHD of the winner and
of the loser on x-axis and y-axis respectively. We picked the strictly better parameter w.r.t. SHD in 43% of
datasets and the strictly worse in 25%. The dot size indicates that several points overlap.
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Figure 30: The incompatibility score κG as metric for model selection between PC and GES analogously to the
main paper. We picked the model with the better κG score as winner and report the lower bound for the SID of
the winner CPDAG and of the loser on x-axis and y-axis respectively. We picked the strictly better parameter
w.r.t. the lower bound on the SID in 34% of datasets and the strictly worse in 27%. The dot size indicates that
several points overlap.
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Figure 31: The incompatibility score κG as metric for model selection between PC and GES analogously to the
main paper. We picked the model with the better κG score as winner and report the upper bound for the SID of
the winner CPDAG and of the loser on x-axis and y-axis respectively. We picked the strictly better parameter
w.r.t. the upper bound on the SID in 28% of datasets and the strictly worse in 31%. The dot size indicates that
several points overlap.
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Figure 32: The incompatibility score κI as metric for model selection between PC and GES analogously to the
main paper. We picked the strictly better parameter w.r.t. to SHD in 28% of datasets and the strictly worse in
40%. The dot size indicates that several points overlap.

A16.4 Additional Real Data

We applied our incompatibility scores to the dataset presented by Sachs et al. (2005).

We compared the SHD of A(X) for all algorithms A and also the F1 score with respect to the existence of an
edge in the skeleton of the resulting graph. It is worth noting that the SHD (and also the incompatibility scores)
of different model types like ADMGs, PAGs and CPDAGs are not directly comparable and can only give an
intuition about the relative performance of the algorithms. For the algorithms using the kernel independence
test (KCI), we also randomly subsampled 1000 datapoints to speed up the computation. For all algorithms we
picked α = 0.01.

We suspected the real dataset might contain confounding. Therefore we started by using an algorithm that does
not assume causal sufficiency. As the LiNGAM-based method does not merely return a Markov equivalence class,
we picked the RCD algorithm first. We used both incompatibility scores κI and κG. As we can see in table 1, the
graphical incompatibility score is in a medium to high range, compared to the results in figure 14 (i.e. compared
to the setting where we know the true SHD). This lead us to the conclusion that possibly either linearity or the
non-Gaussian additive noise assumption are violated. (Note, that the interventional score is 0, i.e. the best score
possible. Looking at figure 33, this is probably as in the joint graph, no interventional probability is identifiable.
This shows that compatibility alone does not suffice as criterion, but one also needs to account for how much
an algorithm “commits” to falsifiable statements.) We therefore tried FCI with the correlation-based Fisher Z
test and used again the interventional score κI and the graphical score κG. Again, the graphical score is not
really low and now additionally the interventional score seems to be quite high, compared to the histograms in
figures 10 and 15. So as a third attempt, we tried FCI with the kernel-based independence test proposed by
Zhang et al. (2011) and (as we cannot use κI in a non-linear setting21) we only report κG. This yielded an
incompatibility score of zero. We additionally wanted to try the PC algorithm, despite the fact that it assumes
causal sufficiency. This again led to a good score, although not as good as the result of FCI with KCI. So in
this case, the incompatibility scores would have directed us towards the models with the best F1 score and the
one with the second best SHD. But as the best SHD of 20 (which is still comparably high) shows, the good
incompatibility score is not enough to guarantee a good performance.

21The goal of our self-compatibility is to find out if the assumptions of a causal discovery algorithm are violated to the
extent that the output of the algorithm is changed non-negligibly. So if we already use an algorithm that does not assume
linear dependencies, it is not clear what information we would gain from conducting a test that relies on linearity.
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Table 1: Comparison of causal discovery algorithms on cell dataset

RCD FCI + Fisher Z FCI + KCI PC + KCI

κI 0.0 0.82 - -
κG 6.65 6.5 0.0 0.68
SHD 84 62 24 20
Skeleton F1 0.5 0.49 0.62 0.62

Example graphs for RCD

Ground Truth Joint Marginal 4 Marginal 0 Marginal 21
Dataset Nr. 0 with κI = 0.00

Example graphs for FCI

Ground Truth Joint Marginal 4 Marginal 0 Marginal 21
Dataset Nr. 0 with κI = 0.82

Example graphs for FCI

Ground Truth
Joint

Marginal 4 Marginal 0 Marginal 21

Dataset Nr. 0 with κG = 0.00

Example graphs for PC

Ground Truth
Joint

Marginal 4 Marginal 0 Marginal 21

Dataset Nr. 0 with κG = 0.68

Figure 33: Randomly drawn example graphs from the experiment on the cell dataset. The figure shows the
ground truth graph, the joint graph found by the algorithm on all variables and some randomly drawn marginal
graphs, i.e. graphs that the algorithm found on subsets of variables. The algorithms are (from top to bottom)
RCD, FCI with Fisher Z test, FCI with kernel independence test and PC with kernel independence test.


