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Abstract

Conformal prediction (CP) is an uncertainty quan-
tification framework that allows for constructing
statistically valid prediction sets. Key to the con-
struction of these sets is the notion of a nonconfor-
mity function, which assigns a real-valued score
to individual data points: only those (hypothetical)
data points contribute to a prediction set that suffi-
ciently conform to the data. The point of departure
of this work is the observation that CP predictions
are invariant against (strictly) monotone transfor-
mations of the nonconformity function. In other
words, it is only the ordering of the scores that mat-
ters, not their quantitative values. Consequently,
instead of scoring individual data points, a confor-
mal predictor only needs to be able to compare
pairs of data points, deciding which of them is the
more conforming one. This suggests an interesting
connection between CP and preference learning,
in particular learning-to-rank methods, and makes
CP amenable to training data in the form of (quali-
tative) preferences. Elaborating on this connection,
we propose methods for preference-based CP and
show their usefulness in real-world classification
tasks.

1 INTRODUCTION

Conformal prediction (CP) (Vovk, Gammerman, and Shafer,
2022) has recently emerged as a prominent tool for uncer-
tainty quantification in machine learning, offering formal
statistical guarantees (Angelopoulos and Bates, 2022). In-
stead of point predictions, which do not account for potential
uncertainty, conformal prediction provides set-valued pre-
dictions (e.g., subsets of class labels in classification or inter-
vals in regression). A key advantage over other uncertainty

* indicates equal contribution.

quantification methods is its ability to provide coverage
guarantees without relying on distributional assumptions,
making it applicable to any predictive model. At the core of
conformal prediction is the notion of a nonconformity score,
a real-valued function that quantifies how atypical a (hypo-
thetical) data point is compared to previously observed data.
During inference, given a new input as a query, each possi-
ble outcome is evaluated by comparing its nonconformity
to those in a reference set, determining how well it aligns
with past observations. Specifically, if the nonconformity
score of the new input with a given outcome ranks before a
certain quantile, that outcome is included in the prediction
set.

An important observation here is that the exact values of
the scores do not matter; rather, it is the relative ordering of
the data points in terms of their nonconformities that ulti-
mately determines the prediction set. Indeed, any monotonic
transformation of the nonconformity function that preserves
the ranking of the scores will leave the prediction set un-
changed (Vovk, Gammerman, and Shafer, 2022). In this
paper, we leverage this observation to make CP amenable
to preference learning (Fürnkranz and Hüllermeier, 2011).
Rather than assigning a numerical score to each data point
independently, one can instead focus on pairwise compar-
isons to determine which data points are more conforming
and which are less. In other words, a conformal predictor
essentially requires the ability to learn a ranking over the
data, thereby establishing a natural connection to preference
learning and learning-to-rank frameworks.

More concretely, we propose novel methods for learning
latent nonconformity functions directly from qualitative
preference data. Our approach replaces the conventional
pointwise scoring mechanism with a strategy that utilizes
pairwise comparisons, making it well-suited for scenarios
where training data are available in the form of relative judg-
ments. This is particularly useful in fields where human
judgment is the primary source of information, often col-
lected through comparative assessments (Yannakakis and
Martínez, 2015). Analysis on data of this type has a long-
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standing tradition in economics and psychology, where pref-
erence information is used to analyze consumer behavior
and decision making. More recently, pairwise comparisons
have become integral to machine learning, too, especially
for fine-tuning large language models and aligning them
with human preferences (Ouyang et al., 2022). This type of
feedback is also promising for eliciting the human percep-
tion of nonconformity. Indeed, humans often struggle with
quantitative assessments, such as assigning precise probabil-
ities to events (Tversky and Kahneman, 1974). Comparing
two events and deciding which one is more probable, or like-
wise comparing two data points and saying which of them
is more conforming to the data, is arguably easier. Thus,
the connection between CP and preference learning pro-
vides a means of harnessing human implicit understanding
of nonconformity, making it accessible for the construction
of prediction sets.

In Section 2, we first review the (theoretical) foundations
that underpin the relationship between conformal prediction
and preference learning. In Section 3, we then introduce our
method for learning nonconformity relations represented by
latent nonconformity functions from preference data. After-
ward, we discuss the experiments we conducted to validate
the proposed method, showing that it indeed manages to in-
duce meaningful nonconformity scores and is applicable in
the context of conformal classification. Through extensive
evaluations, we confirm that our approach not only preserves
the formal statistical guarantees of conformal prediction but
also enhances its applicability in settings where qualitative
preference data are more readily available.

2 REINTERPRETING CP VIA
PREFERENCE RELATIONS

Consider a set of data points D = {(Xi, Yi)}ni=1 ⊂ X × Y
drawn from an unknown distribution P . Let (Xn+1, Yn+1)
be a future test point, also drawn from P , such that the
combined collection D ∪ {(Xn+1, Yn+1)} is exchangeable.
Assuming that the outcome Yn+1 for the instance Xn+1

is unobserved, conformal prediction seeks to construct a
prediction set C(Xn+1) ⊆ Y such that

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α, (1)

where α ∈ (0, 1) is a user-specified error rate and the prob-
ability is taken over all samples D ∪ {(Xn+1, Yn+1)}.

In essence, conformal prediction tests the hypothesis
Yn+1 = y for each possible label y ∈ Y . To compute
p-values for this hypothesis test, CP relies on a nonconfor-
mity score s : X × Y −→ R that quantifies how atypical a
new pair (x, y) is relative to the previously observed data,
with higher values indicating less conformity. This score
can be predefined, but is normally derived from a model
fitted onD. For example, in classification, a common choice

for the nonconformity score is sLAC(x, y) := 1 − p̂(y | x)
(Sadinle, Lei, and Wasserman, 2019), where p̂(y | x) is the
predicted probability assigned to the class y.

There are two main variants of CP: full and split conformal
prediction (Papadopoulos et al., 2002; Lei et al., 2018). In
full CP, the entire dataset D is used for model training.
Specifically, for each candidate y ∈ Y , a model My is
trained on the augmented dataset D ∪ (Xn+1, y), and the
nonconformity scores for all n+1 data points are computed
based on the fitted model My. Finally, the p-value for the
hypothesis Yn+1 = y is calculated as

pyfull =
1 +

∑n
i=1 1{sMy

(Xi, Yi) ≥ sMy
(Xn+1, y)}

n+ 1
,

(2)
where sMy

is the nonconformity score defined based on My .
One immediate drawback of full conformal prediction is the
need to train |Y| models, which makes it computationally
expensive. In contrast, split conformal prediction requires
only a single model training step, at the cost of partitioning
the data D into separate training set Dtrain and calibration
set Dcalib. Specifically, split CP trains a single model M on
Dtrain and then uses this model to compute nonconformity
scores on the calibration set. The p-value for the hypothesis
Yn+1 = y is then calculated as:

pysplit =
1 +

∑
i∈Dcalib

1{sM (Xi, Yi) ≥ sM (Xn+1, y)}
|Dcalib|+ 1

,

(3)
where sM is the score defined based on M .

Given the p-values for each label in Y calculated using (2)
or (3), the conformal prediction set is constructed as:

C(Xn+1) = {y ∈ Y : py ≥ α}. (4)

Regardless of the variant of conformal prediction—full or
split—and the choice of the nonconformity score, an im-
portant observation is the one we already highlighted in the
introduction: what ultimately matters in the calculation of
p-values and the construction of the prediction set is the rel-
ative ranking of the data points, rather than the exact values
of the scores. This invariance to scale is formally stated in
the following lemma.

Lemma 2.1 ((Vovk, Gammerman, and Shafer, 2022)). Let
s : X × Y −→ R be a nonconformity score and let T :
R −→ R be a strictly increasing function. For any α ∈
(0, 1), the conformal prediction set constructed from s is
identical to that constructed from T (s).

According to this observation, one may ask whether, instead
of defining a nonconformity score based on a model (e.g., a
probabilistic classifier) that is ultimately used to rank data
points, it would be sufficient to directly learn a relation over
pairs that ranks them without explicitly defining a score. As



Algorithm 1 Full Preference-based Conformal Prediction

Input: data D, error rate α, test instance Xn+1

for each y ∈ Y do
Use data D ∪ (Xn+1, y) to infer relation ≿sy

Calculate py according to (5) given ≿sy

end for
Return prediction set C(Xn+1) = {y ∈ Y : py ≥ α}

Algorithm 2 Split Preference-based Conformal Prediction

Input: data D, error rate α, test instance Xn+1

Partition D into Dtrain and Dcalib
Use Dtrain to infer preference relation ≿s

For each y ∈ Y , calculate py according to (6) givenDcalib
Return prediction set C(Xn+1) = {y ∈ Y : py ≥ α}

already said, this is closely related to the concept of prefer-
ence learning in machine learning, where the objective is
to learn a ranking over data points (Fürnkranz and Hüller-
meier, 2011). More specifically, learning-to-rank methods
construct a (weak) preference relation≿ that, given a pair of
objects Zi and Zj , determines which one is preferred over
(or ranked before) the other. For example, Zi ≿ Zj sug-
gests that object Zi is preferred to or as good as Zj . More
specifically, if objects are data points Z = (X,Y ), then
(Xi, Yi) ≿ (Xj , Yj) implies that instance Xi with label Yi

is (weakly) preferred to instance Xj with label Yj . We will
return to the learning of preferences later in Section 3.

Having access to such a relation, we can modify the confor-
mal prediction framework as follows: in the case of full CP,
for each candidate y ∈ Y , we use the augmented datasets
D ∪ (Xn+1, y) to infer a preference relation ≿sy . This al-
lows us to redefine the notion of a p-value in (2) as follows:

pyfull =
1 +

∑n
i=1 1{(Xn+1, y) ≿sy (Xi, Yi)}

n+ 1
. (5)

Accordingly, for the split CP, we use the training data Dtrain
to learn a single relation ≿s and modify (3) to have

pysplit =
1 +

∑
i∈Dcalib

1{(Xn+1, y) ≿s (Xi, Yi)}
|Dcalib|+ 1

. (6)

The pseudo-code of the proposed methods, which we refer
to as preference-based conformal prediction, is presented in
Algorithms 1 and 2, respectively.

Beyond the natural connection to the notion of noncon-
formity, an additional advantage of this approach is its
ability to learn such a ranking relation using weaker su-
pervision, in particular, pairwise comparisons of the form
{(Xi1 , Yi1) ≿ (Xi2 , Yi2)}ni=1. This highlights the benefit of
our approach compared to standard CP in scenarios where a
large amount of pairwise comparisons is available, but su-
pervision in the form of labeled data is limited, as outlined
empirically in Section 4.3.

2.1 VALIDITY OF THE PROPOSED METHOD

As mentioned earlier, the desirable property of CP lies in its
marginal coverage, as stated in (1). Hence, it is necessary
to provide sufficient conditions under which the proposed
method in the previous section still preserves this guarantee.
We begin with the following definitions on a relation ≿.

Definition 2.2. Consider a relation ≿ defined on X × Y .

1. Transitivity: ≿ is transitive if and only if for all
(X1, Y1), (X2, Y2), (X3, Y3) ∈ X × Y ,

(X1, Y1) ≿ (X2, Y2)

and
(X2, Y2) ≿ (X3, Y3)

⇒ (X1, Y1) ≿ (X3, Y3).

2. Completeness: ≿ is complete if and only if for all
(X1, Y1), (X2, Y2) ∈ X × Y , either

(X1, Y1) ≿ (X2, Y2) or (X2, Y2) ≿ (X1, Y1)

holds.

3. Continuity: ≿ is continuous if and only if for every
(X,Y ) ∈ X × Y , the sets

{(W,V ) ∈ X × Y | (X,Y ) ≿ (W,V )}

and

{(W,V ) ∈ X × Y | (W,V ) ≿ (X,Y )}

are closed.

The following theorem states that a relation, under certain
assumptions, can be represented by a real-valued (unknown)
utility function, where the preference of one point over
another can be translated into a numerical comparison of
their latent utilities.

Theorem 2.3 ((Debreu, 1954)). Let ≿ be a binary relation
on X ×Y that is transitive, complete, and continuous. Then
there exists a utility function u : X × Y −→ R such that,
for all (X1, Y1), (X2, Y2) ∈ X × Y ,

(X1, Y1) ≿ (X2, Y2) ⇐⇒ u(X1, Y1) ≥ u(X2, Y2). (7)

Next, we show that if there exists more than one utility func-
tion that represents a relation, they must all be comonotonic,
meaning that they must agree on the relative comparisons.

Lemma 2.4 (Comonotonicity). Let U be the set of utility
functions representing a transitive, complete, and contin-
uous relation ≿. Then for every u, u′ ∈ U and every pair
(X1, Y1), (X2, Y2) ∈ X × Y

u(X1, Y1) ≥ u(X2, Y2) ⇐⇒ u′(X1, Y1) ≥ u′(X2, Y2).



Proof. By (7), we have for each u, u′ ∈ U and all
(X1, Y1), (X2, Y2) ∈ X × Y

u(X1, Y1) ≥ u(X2, Y2) ⇐⇒ (X1, Y1) ≿ (X2, Y2)

⇐⇒ u′(X1, Y1) ≥ u′(X2, Y2).

Now, we are ready to present our main theorems.

Theorem 2.5. Let D ∪ {(Xn+1, Yn+1)} be a set of ex-
changeable data points, and let {≿sy : y ∈ Y} be the set
of relations as in Algorithm 1. If every ≿sy is transitive,
complete, and continuous, and the algorithm used to derive
them is invariant to data permutation, then the conformal
prediction sets constructed using Algorithm 1 are valid.

Proof. Consider y ∈ Y . According to Theorem 2.3, let uy

be a utility function that represents ≿sy . We can therefore
rewrite (5) as follows:

pyfull =
1 +

∑n
i=1 1{uy(Xn+1, y) ≥ uy(Xi, Yi)}

n+ 1
.

Hence, the conformal prediction procedure provided in Al-
gorithm 1 can be seen as the standard full CP with the
conformity function uy for each y ∈ Y , which is a valid set
predictor as long as ≿sy does not depend on the ordering
of the data points (see Angelopoulos, Foygel Barber, and
Bates, 2025, Proposition 3.8 for more details). Also, note
that in the case where more than one utility function can
represent the relation ≿sy , Lemma 2.4 ensures that p-values
remain the same.

Theorem 2.6. Let Dcalib ∪ {(Xn+1, Yn+1)} be a set of ex-
changeable data points, and let ≿s be the relation as in
Algorithm 2 that is transitive, complete, and continuous.
The conformal prediction sets constructed using Algorithm
2 are valid.

We omit the proof for this case, as it follows the same rea-
soning as in the previous theorem. Our results show that the
preference-based CP is valid when the three conditions in
Definition 2.2 are met for the preference relation. What our
theorem does not account for is the case where the relation
does not satisfy some of these properties. Indeed, although
such a relation is easy to obtain from a preference learning
perspective, it is not clear whether one can achieve valid
prediction sets with it.

3 LEARNING RELATIONS FROM
PREFERENCE DATA

There are two main approaches to modeling preferences
on a set of objects Z , namely in terms of (binary) prefer-
ence relations R ⊆ Z ×Z and in terms of utility functions

u : Z −→ R— informally speaking, these approaches cor-
respond, respectively, to comparing pairs of objects and
evaluating individual objects (Hüllermeier and Słowiński,
2024a; Hüllermeier and Słowiński, 2024b). Mathematically,
the relational approach is more general: while a utility func-
tion induces a preference relation in a straightforward way,
not every preference relation can be represented in terms
of a utility function. This is also the reason why we pre-
sented our extension of CP in the previous section in terms
of preference relations.

From a machine learning perspective, the relational ap-
proach is closely related to binary classification, as it comes
down to learning a binary preference predicate (Rigutini
et al., 2011). For example, this predicate could be realized
in the form of a binary classifier Z × Z −→ {−1,+1},
which accepts a tuple (Z,Z ′) as input and returns +1 if
Z ≿ Z ′ and −1 otherwise. As one disadvantage of this
approach, note that a (binary) predicate trained in this way
does not necessarily guarantee any specific properties (such
as transitivity) of the induced preference relation. As ex-
plained before, such properties are naturally required in the
context of ranking. The alternative of learning a (latent) util-
ity, which in our case corresponds to a conformity function
u : X × Y −→ R, is appealing because the preference re-
lation ≿ induced by such a function guarantees desirable
properties right away. Therefore, although the relational
approach would be even more in line with the idea of CP
without nonconformity scores (see the discussion in Sec-
tion 5), we focus on learning latent utility functions in the
following.

Among the various alternatives for learning a latent util-
ity function from preference data, we opt for a generalized
Bradley-Terry (BT) model (Bradley and Terry, 1952). Un-
der this model, the probability of a pairwise preference is
modeled as

P(Zi ≻ Zj) =
exp(u(Zi))

exp(u(Zi)) + exp(u(Zj))
. (8)

Having access to training data Dtrain = {(Xi1 , Yi1) ≻
(Xi2 , Yi2)}ni=1 of pairwise comparisons, model parameters
of u can be learned via maximum likelihood estimation,
where the negative log-likelihood function is given as

l(i1, i2) = log
(
exp(u(Zi1)) + exp(u(Zi2))

)
− u(Zi1),

(9)
where Zj = (Xj , Yj). This can be used as a loss function for
training models of u with standard gradient-based methods.
Due to its probabilistic nature, the BT model deals gracefully
with noisy preference labels and is an appropriate choice
for the task of learning a preference relation for CP. It is
worth mentioning that one can also incorporate standard
labeled data into the BT model training by converting it into
preference data. To that end, for a given labeled instance
(Xi, Yi), |Y|−1 pairwise comparisons between the instance
with its true label and the same instance with other incorrect



Algorithm 3 Bradley-Terry Neural Network Training

Input: Training data Dtrain, number of epochs N , learn-
ing rate η
Initialize parameters
for epoch = 1 to N do

for each (Xi1 , Yi1) ≻ (Xi2 , Yi2) ∈ Dtrain do
u(Zi1)← u(Xi1 , Yi1) ▷ First forward pass
u(Zi2)← u(Xi2 , Yi2) ▷ Second forward pass
Loss← l(i1, i2) ▷ Compute loss from (9)
Gradients← BackwardPropagation(Loss)
UpdateParameters(Gradients, η)

end for
end for

labels, i.e., {(Xi, Yi) ≻ (Xi, y), ∀y ̸= Yi}, can be added to
the training set. For datasets with a large number of classes,
this can be done more efficiently, for example, by sampling.

There exist numerous alternatives to BT that are worth dis-
cussing. Note that the BT model assumes a clear winner
for each comparison (≻ instead of ≿). There exist exten-
sions that explicitly incorporate the possibility of ties, like
the Davidson model (Davidson, 1970) and the extension
by Rao and Kupper (Rao and Kupper, 1967). We adhere to
the original BT model within this work due to its simplic-
ity and robustness in situations with limited data. Another
interesting alternative is the Plackett-Luce model (Plack-
ett, 1975; Luce, 1959) for scenarios where preference data
can be obtained in the form of full or partial rankings in-
stead of only pairwise comparisons. In fact, the BT model
is a special case of the Plackett-Luce model for rankings of
length 2. While the Plackett-Luce model is more appealing
from a data efficiency perspective, pairwise comparisons
are typically easier to collect.

In this work, we focus on conformal classification and model
u in terms of a neural network. The architecture comprises
one output neuron per class label y ∈ Y . Given a training
example (Xi1 , Yi1) ≻ (Xi2 , Yi2), we perform two forward
passes, one for Xi1 and the other for Xi2 . The negative
log-likelihood of the BT model is then computed between
the output of the neuron corresponding to Yi1 for input
Xi1 in the first forward pass and the output of the neuron
corresponding to Yi2 for input Xi2 in the second forward
pass. An illustration of this procedure is depicted in Figure
1. Note that neither Xi1 ̸= Xi2 nor Yi1 ̸= Yi2 is required.
Consequently, we can learn from preferences with varying
class labels for the same instance as well as preferences (for
potentially the same class label) across varying instances.
A description of BT neural network training in terms of
pseudocode is given in Algorithm 3.

Hidden LayersInput Layer Output Layer

First forward
pass

Second
forward pass

Figure 1: Illustration of the neural network architecture and
loss computation. Only the outputs for the labels of the
pair in the training examples (highlighted in magenta) are
contributing to the loss.

4 EXPERIMENTAL RESULTS

In this section, we will experimentally examine the
proposed method, focusing on split conformal pre-
diction as outlined in Algorithm 2 for the sake of
computational efficiency. After discussing the exper-
imental setup and baselines, we are specifically in-
terested in answering the following research ques-
tions:

(A) Can existing nonconformity functions be replicated by
the BT model from preference feedback? (⇝ Section
4.2.)

(B) Since our method is able to exploit preference data,
does it bring any benefit in cases where both preference
and standard labelled data are available for training?
(⇝ Section 4.3)

(C) How does preference-based conformal prediction per-
form in real-world classification tasks? (⇝ Section
4.4.)

Setup. All of the following experiments are conducted
with neural networks as the model class. The models are im-
plemented in PyTorch and conformalized with TorchCP
(Huang, Song, et al., 2024). Whenever our method is com-
pared against a classification baseline (i.e., standard CP),
both models share the same architecture, optimizer, and
learning rate, and are just trained with different loss func-
tions and a different type of data. The code that was used
for carrying out the following experiments is made publicly
available 1.

1https://github.com/JonasHanselle/
preference-based-cp

https://github.com/JonasHanselle/preference-based-cp
https://github.com/JonasHanselle/preference-based-cp


4.1 BASELINE NONCONFORMITY SCORES

There are many nonconformity scores in the literature de-
signed for the classification problem (Sadinle, Lei, and
Wasserman, 2019; Romano, Sesia, and Candes, 2020; An-
gelopoulos, Bates, et al., 2021; Huang, Xi, et al., 2024). For
the sake of comparison, we consider as baselines the two
most commonly used ones, namely the least ambiguous
set-valued classifier (LAC) (Sadinle, Lei, and Wasserman,
2019) and the adaptive prediction set (APS) (Romano, Sesia,
and Candes, 2020). Let p̂(·|x) denote the predicted condi-
tional probability distribution over labels. The LAC score
directly relates the nonconformity of a class label y to its
negated (estimated) probability:

sLAC(x, y) = 1− p̂(y | x). (10)

The APS score, on the other hand, computes as noncon-
formity the cumulative probability of class labels that are
equally or more likely than the label y:

sAPS(x, y) =
∑
y′∈Y

p̂(y′ | x) · 1{p̂(y′ | x) ≥ p̂(y | x)}.

(11)
However, this score, in its current format, can result in many
ties, deviating the distribution of p-values from uniformity.
This, in turn, makes the CP framework more conservative,
leading to coverage higher than the desired level. To address
this, the randomized version of APS, aka smoothed APS,
was introduced by modifying (11) as follows:

sAPS(x, y, ξ) =
∑
y′∈Y

p̂(y′ | x) · 1{p̂(y′ | x) > p̂(y | x)}

+ ξ · p̂(y | x),

with ξ ∼ Unif[0, 1]. An illustration of the behavior of these
scores is given in Figure 2 for a simple binary classifica-
tion problem with a one-dimensional feature. Here, the true
probability of each class, as well as the scores for each class
given these probabilities, are plotted accordingly.

4.2 REPLICATING NONCONFORMITY SCORES
FROM ORACLE FEEDBACK

Before evaluating preference-based conformal prediction,
we will assess our method’s capability of replicating the
discussed nonconformity scores from oracle feedback. By
oracle feedback, we mean that a preference relation be-
tween two pairs results from comparing their nonconformity
scores. The nonconformity scores under consideration pose
different challenges. As illustrated in Figure 2, the LAC
score corresponds (in the binary case) to the probability of
the opposite class. The APS score in its non-randomized
version is simply a cumulative probability. Consequently, it
exhibits plateaus in the regions where the label y is the least
probable class. This poses a challenge for learning the score

from pairwise data, as all comparisons within these regions
result in ties (because the scores are all one). Additionally,
this score has discontinuities at the decision boundaries. Due
to the inherent stochasticity and global lack of smoothness,
learning to replicate the randomized version of APS is con-
ceptually intractable. Thus, we restrict ourselves to the cases
of LAC and non-randomized APS.

In order to assess whether the proposed method can indeed
replicate the LAC and APS nonconformity scores, we gen-
erate synthetic data with two features and two classes drawn
from two multivariate Gaussian distributions for which the
ground truth conditional distributions p(·|x) are known. This
is done in a two-stage process: First, the class label c is
sampled according to a prior distribution p(y). Then, the
features are sampled from corresponding multivariate nor-
mal distributions X ∼ N (mc,Σc), fully defined by a mean
vector mc and a covariance matrix Σc. The overall poste-
rior probability of observing a class label c given a feature
vector X is thus given by

p(y = c | X) =
p(X | y = c)p(y = c)∑
c′ p(X | y = c′)p(y = c′)

,

where the denominator serves for normalization. Figure 3 de-
picts an example of data sampled from this data-generating
process.

We construct preference training data Dtrain by drawing n
instances from the data-generating process and pairing them
with each of the k = 2 possible class labels. We compute
nonconformity scores s(x, y) for each of these observations
and build all

(
n·k
2

)
ordered pairs in agreement with the cor-

responding scores.2 In case two observations have the same
nonconformity score s(Xi, Yi) = s(Xj , Yj), we include
both possible pairs, that is, (Xi, Yi) ≿ (Xj , Yj) and its sym-
metric counterpart (Xj , Yj) ≿ (Xi, Yi) in the training data.
This is particularly relevant for APS, because of the presence
of ties. To assess how well the learned preference relation
reflects the original nonconformity score, we generate addi-
tional 100 data points from the data generating process and
sort them according to s and ≿s, resulting in rankings σs

and σ≿s
. We compute the Kendall’s Tau-b rank correlation

coefficient (Kendall, 1945) between said rankings:

τb(σs, σ≿s
) =

C −D√
((C +D + T1) · (C +D + T2)

(12)

where C is the number of concordant pairs, D the number
of discordant pairs and T1 and T2 are the number of ties in
σs and σ≿s

respectively. Figure 4 shows the rank correlation
as a function of the number of training instances n averaged
over 5 runs.

We observe that the ranker quickly learns to replicate LAC,
while it takes more training instances in order to replicate

2Note that we assume a noiseless oracle here, which returns
the pair strictly ordered according to the nonconformity scores.
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Figure 3: Example data drawn from the data-generating
process described in Section 4.2.

APS. We attribute this behavior to the presence of ties in the
APS training data. When two data points of the least prob-
able class are compared, it is a tie in APS as both exhibit
an APS score of 1 (see the plateaus in Figure 2). LAC, in
contrast, almost always generates a strict ordering with its
scores. As a result, the training data for LAC can be lever-
aged more effectively as each pairwise comparison contains
strict order information. This structural difference is impor-
tant, as the BT model assumes a winner for each comparison
and does not natively handle ties. The ranking induced by
APS, with its inherent ties, is therefore a poor match for the
model. Hence, because Kendall’s Tau-b formula accounts
for ties in its denominator (see (12)), the score’s theoretical
maximum for the APS ranker is strictly less than 1, even if
all non-tied pairs are ordered perfectly.

4.3 MIXED SETUP: EXISTENCE OF
CLASSIFICATION AND PREFERENCE DATA

In the following, we demonstrate the advantage that
preference-based CP has over standard CP in cases where
qualitative preference data is also available that can be used
by the former but not by the latter. To this end, we con-
duct a 3-class classification experiment involving a mix-
ture of 100 pairwise comparison data points and a vary-
ing number of n labeled data points, with n ranging from
10 to 150. The data-generating process follows the setup
used in Section 4.2. The pairwise comparisons are con-
structed by drawing two samples and the preference is
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Figure 4: Rank correlation between Dval sorted according
to the ground truth conformity score s and the preference
relation≿s learned from pairwise annotations averaged over
5 runs. The shaded region indicates the 95% confidence
interval.

determined based on their conditional probabilities, i.e.
(X1, Y1) ≻ (X2, Y2) ⇐⇒ p(Y1 | X1) > p(Y2 | X2).
We also generate 100 labeled data points for calibration and
another 100 for testing. While the classifier is trained solely
on the n labeled data points, our ranker is trained using
both the 100 pairwise comparisons and the same n labeled
data transformed into pairwise comparisons as described in
Section 3. We repeated the experiment with varying n and
20 different random seeds and report the results in Figure 5.

We observe that the ranker initially has an advantage, which
diminishes as more classification data becomes available.
This highlights the usefulness of our approach in scenarios
where a large amount of weakly supervised preference data
is available, but supervision in the form of labeled classi-
fication data is limited. This, of course, comes at an extra
computational cost. More specifically, in the case where
we have access to m pairwise comparisons and n labeled
instances, we can construct (k − 1) · n pairwise compar-
isons between the correct and incorrect class labels from
the labeled instances, where k is the number of classes. The
overall number of forward passes required for BT model
training is then in O(m + k · n), compared to classifier
training, which is O(n).
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Figure 5: Average prediction set sizes of a classifier using
the LAC and randomized APS nonconformity scores and
a ranker for a varying number of available classification
training data and different α. The results are averaged over
20 runs and the shaded region indicates the 95% confidence
interval.

4.4 PREFERENCE-BASED CONFORMAL
PREDICTION IN CLASSIFICATION

In the following, we will examine the applicability of our
method for the task of tabular classification. To this end,
we utilize benchmark datasets from the OpenML database
(Vanschoren et al., 2013), which are summarized in Table 1.
For all experiments, we learn a feed-forward neural network
with two hidden layers of 20 units each. For each dataset,
we train a classifier model with cross-entropy loss on the
original training data as a baseline. In order to learn a rank-
ing model, we transfer the classification data into preference
data by deriving all pairs between the true and wrong la-
bels for each observation in the training set, as described in
Section 3. This yields a preference dataset consisting of all
(k − 1) · n pairwise comparisons, where k is the number of
classes and n the number of instances in the original dataset.

We employ a 10-times Monte Carlo cross-validation, in
which we reserve a fraction of 1

5 of the original dataset as
test data. From the remaining data, we reserve 1

4 of the data
points as calibration data for split conformal prediction and
use the rest for training the classifier and ranker. Results
for various calibration set sizes are given in Appendix A.
We employ the LAC and the randomized APS nonconfor-
mity scores for building conformal prediction sets with the
classifier.

The results for the tabular classification are summarized in
Figure 6, and a detailed tabular representation is given in
Appendix B. We report the empirical coverage rate

1

|Dtest|
∑

i∈Dtest

1{Yi ∈ C(Xi)}

Table 1: Overview of OpenML Datasets.

ID Name # Feat. # Classes # Inst.
15 breast-w 10 2 699
31 credit-g 21 2 1000
4534 PhishingWebsites 31 2 11055
61 iris 5 3 150
187 wine 14 3 178
54 vehicle 19 4 846
35 dermatology 35 6 366

and average set size

1

|Dtest|
∑

i∈Dtest

|C(Xi)|

averaged over the 10 cross-validation folds for different error
rates α ∈ {0.02, 0.05, 0.1, 0.2}, where Dtest denote the test
set. Additionally, we report the accuracy of the model in
a non-conformalized context, where class predictions are
given by the argmax of the probabilities returned by the
classifier. For computing the accuracy of the ranker, the
class that has the lowest latent nonconformity is predicted.

For the datasets under consideration, we observe a similar
performance between the conventional CP methods using
a classifier equipped with a nonconformity score and the
preference-based CP using the ranker. Interestingly, even
the accuracies coincide for breast-w, credit-g, and
PhishingWebsites datasets. While this may be surpris-
ing at first glance, note that the BT model can be seen as
a special case of logistic regression, and in the case of bi-
nary classification, its negative log-likelihood corresponds
to the cross-entropy loss. Additionally, both the classifier
and ranker share the same neural architecture and optimiza-
tion procedure. Albeit the ranker receives more training data
(at least in the multi-class case), the information is also
identical to the classification data: The decomposition of
one classification data point into k− 1 preferences uniquely
identifies the true class label but carries no further informa-
tion.

For the CP-specific evaluation metrics, we see that the
preference-based CP achieves comparable performance to
the conventional CP. The ranker fulfills the specified cover-
age rates while not producing larger prediction sets than the
other approaches within acceptable statistical fluctuations.
We conclude that for tabular classification tasks, a ranker
that inferred a nonconformity relation achieves compara-
ble performance to the conventional approach of learning a
probabilistic classifier and conformalizing it via a specific
nonconformity function.

5 DISCUSSION

In this work, we established a connection between confor-
mal prediction and preference learning. We have shown



Figure 6: Accuracy, coverage rate, and average set size of the baselines APS and LAC as well as the ranking method.

that nonconformity functions can be equivalently replaced
with preference relations, suggesting the use of PL methods
to construct valid prediction sets without nonconformity
scores. Building upon this observation, we proposed a con-
crete method for directly inferring nonconformity functions
from preference data based on the Bradley-Terry model. The
experiments carried out empirically validate that

1. established nonconformity functions can be replicated
by our method, given appropriate data;

2. when preference data is abundant but classification data
is scarce, preference-based CP is advantageous over
standard CP;

3. preference-based CP attains a level of performance
on par with standard CP on downstream classification
tasks.

These results highlight the potential for deriving valid con-
formal prediction sets solely from preferential feedback.

Limitations and future work. While our proposed meth-
ods are promising, they are not without limitations. First, the
calibration data must still consist of observations (X,Y ) ∈
X × Y , which restricts the approach to datasets where such
structured inputs and labels are available. Another (poten-
tial) limitation is that our current work has been confined
to (multi-class) classification problems, so one immediate
extension would be to adapt it to the regression setting. Ad-
ditionally, incorporating dyad-ranking techniques (Schäfer
and Hüllermeier, 2018) appears to be a promising future
direction, as this could enable zero-shot predictions.

Last but not least, it would be interesting to explore the “gen-
uinely relational” approach to preference learning, which is
even more in the spirit of doing CP without nonconformity
scores. Thus, instead of expressing a preference relation R

through a latent utility (nonconformity) function, this rela-
tion could be learned more directly, essentially by training a
classifier to predict pairwise preferences. There are (at least)
two ways in which this problem could be tackled. First, the
learning procedure could assure that R fulfills all desired
mathematical properties (completeness, transitivity, continu-
ity), so that Theorems 2.5 and 2.6 apply. This is challenging
from a (preference) learning point of view, as it means, for
example, that individual pairwise comparisons cannot be
predicted independently of each other. Second, one may
allow the learning procedure to produce relations R of more
general nature, which may violate some of the properties.
While this simplifies the learning part, CP cannot be done in
the standard way anymore, so this approach requires a gener-
alization of conformal prediction (e.g., making it amenable
to partial order relations on data points).
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A INFLUENCE OF CALIBRATION SET SIZE

In order to assess the influence of the calibration set size on the performance of preference-based conformal prediction, we
conducted a small experimental study using the binary classification dataset PhishingWebsites and the multi-class
dataset vehicle. We reserved varying portions of the original training data for calibration, ranging from 10% to 50%,
and used the remainder for training the ranking model. Apart from this, the experimental setup is identical to the one used
for the classification experiments in Section 4.4. We report our results in Table 2. Overall, there is no clear tendency that
increasing the calibration set size is beneficial. Using smaller portions of calibration data allows the learner to use more data
for training, which typically results in a better classification performance.

Table 2: Performance of Preference-based Conformal Prediction on Classification Tasks with a Varying Percentage of
Training Data Reserved for Calibration, Ranging from 10% to 50%.

Dataset α Calibration Data Accuracy Coverage Rate Avg. Set Size

P
h
i
s
h
i
n
g
W
e
b
s
i
t
e
s

(2
)

0.02

10% 0.962 ± 0.003 0.983 ± 0.004 1.055 ± 0.010
20% 0.960 ± 0.007 0.981 ± 0.006 1.055 ± 0.010
30% 0.958 ± 0.006 0.982 ± 0.004 1.062 ± 0.011
40% 0.957 ± 0.004 0.983 ± 0.003 1.071 ± 0.011
50% 0.955 ± 0.007 0.981 ± 0.004 1.068 ± 0.009

0.05

10% 0.962 ± 0.003 0.953 ± 0.009 0.984 ± 0.013
20% 0.960 ± 0.007 0.953 ± 0.007 0.987 ± 0.010
30% 0.958 ± 0.006 0.953 ± 0.006 0.990 ± 0.008
40% 0.957 ± 0.004 0.954 ± 0.005 0.995 ± 0.009
50% 0.955 ± 0.007 0.952 ± 0.007 0.995 ± 0.006

0.1

10% 0.962 ± 0.003 0.902 ± 0.013 0.912 ± 0.016
20% 0.960 ± 0.007 0.903 ± 0.010 0.915 ± 0.012
30% 0.958 ± 0.006 0.903 ± 0.009 0.916 ± 0.009
40% 0.957 ± 0.004 0.904 ± 0.009 0.919 ± 0.009
50% 0.955 ± 0.007 0.903 ± 0.007 0.919 ± 0.008

0.2

10% 0.962 ± 0.003 0.808 ± 0.014 0.810 ± 0.015
20% 0.960 ± 0.007 0.802 ± 0.012 0.804 ± 0.012
30% 0.958 ± 0.006 0.802 ± 0.009 0.805 ± 0.009
40% 0.957 ± 0.004 0.804 ± 0.015 0.808 ± 0.015
50% 0.955 ± 0.007 0.804 ± 0.010 0.808 ± 0.010

v
e
h
i
c
l
e

(4
)

0.02

10% 0.594 ± 0.045 0.989 ± 0.007 3.018 ± 0.159
20% 0.599 ± 0.043 0.991 ± 0.008 3.069 ± 0.229
30% 0.574 ± 0.032 0.982 ± 0.013 2.902 ± 0.143
40% 0.555 ± 0.047 0.986 ± 0.013 2.994 ± 0.172
50% 0.571 ± 0.050 0.987 ± 0.011 3.045 ± 0.178

0.05

10% 0.594 ± 0.045 0.958 ± 0.031 2.497 ± 0.225
20% 0.599 ± 0.043 0.960 ± 0.021 2.588 ± 0.236
30% 0.574 ± 0.032 0.943 ± 0.030 2.542 ± 0.163
40% 0.555 ± 0.047 0.963 ± 0.018 2.672 ± 0.199
50% 0.571 ± 0.050 0.964 ± 0.018 2.692 ± 0.140

0.1

10% 0.594 ± 0.045 0.901 ± 0.027 2.085 ± 0.161
20% 0.599 ± 0.043 0.902 ± 0.024 2.074 ± 0.231
30% 0.574 ± 0.032 0.893 ± 0.030 2.184 ± 0.107
40% 0.555 ± 0.047 0.907 ± 0.023 2.233 ± 0.179
50% 0.571 ± 0.050 0.911 ± 0.019 2.266 ± 0.135

0.2

10% 0.594 ± 0.045 0.786 ± 0.042 1.605 ± 0.113
20% 0.599 ± 0.043 0.804 ± 0.047 1.595 ± 0.163
30% 0.574 ± 0.032 0.776 ± 0.052 1.680 ± 0.102
40% 0.555 ± 0.047 0.805 ± 0.036 1.793 ± 0.186
50% 0.571 ± 0.050 0.819 ± 0.027 1.779 ± 0.102

B DETAILED CLASSIFICATION RESULTS

In the following, we present the classification results of Section 4.4 that were summarized in Figure 6 in detail in Table 3
and Table 4.



Table 3: Detailed Classification Results

Dataset α Method Accuracy Coverage Rate Avg. Set Size

d
e
r
m
a
t
o
l
o
g
y

(6
)

0.02

Classifier APS 0.968 ± 0.023 0.985 ± 0.025 2.383 ± 1.356
Classifier APS (rand) 0.968 ± 0.023 0.993 ± 0.010 1.889 ± 1.352
Classifier LAC 0.968 ± 0.023 0.992 ± 0.022 1.811 ± 1.388
Ranker 0.965 ± 0.026 0.986 ± 0.030 2.055 ± 1.476

0.05

Classifier APS 0.968 ± 0.023 0.967 ± 0.033 1.845 ± 0.243
Classifier APS (rand) 0.968 ± 0.023 0.970 ± 0.026 1.068 ± 0.081
Classifier LAC 0.968 ± 0.023 0.969 ± 0.031 1.016 ± 0.059
Ranker 0.965 ± 0.026 0.974 ± 0.032 1.197 ± 0.486

0.1

Classifier APS 0.968 ± 0.023 0.910 ± 0.059 1.778 ± 0.253
Classifier APS (rand) 0.968 ± 0.023 0.915 ± 0.038 0.968 ± 0.057
Classifier LAC 0.968 ± 0.023 0.919 ± 0.047 0.928 ± 0.048
Ranker 0.965 ± 0.026 0.925 ± 0.044 0.931 ± 0.046

0.2

Classifier APS 0.968 ± 0.023 0.816 ± 0.092 1.624 ± 0.333
Classifier APS (rand) 0.968 ± 0.023 0.824 ± 0.078 0.862 ± 0.088
Classifier LAC 0.968 ± 0.023 0.832 ± 0.067 0.832 ± 0.067
Ranker 0.965 ± 0.026 0.831 ± 0.071 0.833 ± 0.071

i
r
i
s

(3
)

0.02

Classifier APS 0.948 ± 0.034 1.000 ± 0.000 3.000 ± 0.000
Classifier APS (rand) 0.948 ± 0.034 1.000 ± 0.000 3.000 ± 0.000
Classifier LAC 0.948 ± 0.034 1.000 ± 0.000 3.000 ± 0.000
Ranker 0.940 ± 0.037 1.000 ± 0.000 3.000 ± 0.000

0.05

Classifier APS 0.948 ± 0.034 0.945 ± 0.052 1.160 ± 0.113
Classifier APS (rand) 0.948 ± 0.034 0.957 ± 0.067 1.133 ± 0.189
Classifier LAC 0.948 ± 0.034 0.950 ± 0.041 1.043 ± 0.128
Ranker 0.940 ± 0.037 0.955 ± 0.046 1.169 ± 0.253

0.1

Classifier APS 0.948 ± 0.034 0.848 ± 0.076 0.967 ± 0.137
Classifier APS (rand) 0.948 ± 0.034 0.914 ± 0.080 1.007 ± 0.106
Classifier LAC 0.948 ± 0.034 0.888 ± 0.066 0.905 ± 0.086
Ranker 0.940 ± 0.037 0.857 ± 0.110 0.881 ± 0.123

0.2

Classifier APS 0.948 ± 0.034 0.764 ± 0.097 0.845 ± 0.132
Classifier APS (rand) 0.948 ± 0.034 0.793 ± 0.119 0.855 ± 0.141
Classifier LAC 0.948 ± 0.034 0.781 ± 0.111 0.783 ± 0.115
Ranker 0.940 ± 0.037 0.781 ± 0.134 0.788 ± 0.138

v
e
h
i
c
l
e

(4
)

0.02

Classifier APS 0.579 ± 0.054 0.995 ± 0.009 3.784 ± 0.314
Classifier APS (rand) 0.579 ± 0.054 0.978 ± 0.017 2.989 ± 0.185
Classifier LAC 0.579 ± 0.054 0.982 ± 0.019 2.910 ± 0.199
Ranker 0.565 ± 0.027 0.990 ± 0.010 3.030 ± 0.167

0.05

Classifier APS 0.579 ± 0.054 0.971 ± 0.022 3.097 ± 0.468
Classifier APS (rand) 0.579 ± 0.054 0.951 ± 0.031 2.608 ± 0.229
Classifier LAC 0.579 ± 0.054 0.957 ± 0.023 2.484 ± 0.215
Ranker 0.565 ± 0.027 0.957 ± 0.021 2.608 ± 0.226

0.1

Classifier APS 0.579 ± 0.054 0.909 ± 0.027 2.464 ± 0.122
Classifier APS (rand) 0.579 ± 0.054 0.911 ± 0.025 2.296 ± 0.233
Classifier LAC 0.579 ± 0.054 0.908 ± 0.024 2.072 ± 0.201
Ranker 0.565 ± 0.027 0.900 ± 0.027 2.125 ± 0.149

0.2

Classifier APS 0.579 ± 0.054 0.816 ± 0.042 2.027 ± 0.121
Classifier APS (rand) 0.579 ± 0.054 0.810 ± 0.045 1.803 ± 0.172
Classifier LAC 0.579 ± 0.054 0.800 ± 0.037 1.596 ± 0.169
Ranker 0.565 ± 0.027 0.800 ± 0.051 1.684 ± 0.145



Table 4: Detailed Classification Results

Dataset α Method Accuracy Coverage Rate Avg. Set Size

P
h
i
s
h
i
n
g
W
e
b
s
i
t
e
s

(2
)

0.02

Classifier APS 0.959 ± 0.004 0.999 ± 0.001 1.987 ± 0.002
Classifier APS (rand) 0.959 ± 0.004 0.980 ± 0.005 1.109 ± 0.014
Classifier LAC 0.959 ± 0.004 0.980 ± 0.003 1.057 ± 0.012
Ranker 0.959 ± 0.004 0.981 ± 0.003 1.058 ± 0.011

0.05

Classifier APS 0.959 ± 0.004 0.967 ± 0.018 1.212 ± 0.421
Classifier APS (rand) 0.959 ± 0.004 0.948 ± 0.006 1.042 ± 0.013
Classifier LAC 0.959 ± 0.004 0.951 ± 0.005 0.985 ± 0.006
Ranker 0.959 ± 0.004 0.951 ± 0.005 0.985 ± 0.006

0.1

Classifier APS 0.959 ± 0.004 0.951 ± 0.033 1.196 ± 0.430
Classifier APS (rand) 0.959 ± 0.004 0.900 ± 0.011 0.974 ± 0.013
Classifier LAC 0.959 ± 0.004 0.899 ± 0.008 0.912 ± 0.008
Ranker 0.959 ± 0.004 0.900 ± 0.008 0.912 ± 0.008

0.2

Classifier APS 0.959 ± 0.004 0.895 ± 0.082 1.140 ± 0.463
Classifier APS (rand) 0.959 ± 0.004 0.801 ± 0.011 0.854 ± 0.012
Classifier LAC 0.959 ± 0.004 0.796 ± 0.015 0.799 ± 0.015
Ranker 0.959 ± 0.004 0.796 ± 0.014 0.799 ± 0.015

b
r
e
a
s
t
-
w

(2
)

0.02

Classifier APS 0.967 ± 0.014 0.999 ± 0.003 1.947 ± 0.026
Classifier APS (rand) 0.967 ± 0.014 0.990 ± 0.012 1.245 ± 0.108
Classifier LAC 0.967 ± 0.014 0.991 ± 0.010 1.113 ± 0.077
Ranker 0.967 ± 0.014 0.991 ± 0.010 1.116 ± 0.082

0.05

Classifier APS 0.967 ± 0.014 0.966 ± 0.029 1.216 ± 0.407
Classifier APS (rand) 0.967 ± 0.014 0.953 ± 0.027 1.027 ± 0.043
Classifier LAC 0.967 ± 0.014 0.956 ± 0.027 0.984 ± 0.030
Ranker 0.967 ± 0.014 0.956 ± 0.028 0.984 ± 0.031

0.1

Classifier APS 0.967 ± 0.014 0.922 ± 0.048 0.956 ± 0.040
Classifier APS (rand) 0.967 ± 0.014 0.887 ± 0.034 0.935 ± 0.031
Classifier LAC 0.967 ± 0.014 0.914 ± 0.038 0.927 ± 0.043
Ranker 0.967 ± 0.014 0.915 ± 0.037 0.929 ± 0.042

0.2

Classifier APS 0.967 ± 0.014 0.818 ± 0.071 0.851 ± 0.064
Classifier APS (rand) 0.967 ± 0.014 0.814 ± 0.052 0.851 ± 0.048
Classifier LAC 0.967 ± 0.014 0.808 ± 0.056 0.811 ± 0.056
Ranker 0.967 ± 0.014 0.808 ± 0.057 0.811 ± 0.057

c
r
e
d
i
t
-
g

(2
)

0.02

Classifier APS 0.726 ± 0.029 0.994 ± 0.005 1.969 ± 0.012
Classifier APS (rand) 0.726 ± 0.029 0.978 ± 0.014 1.852 ± 0.084
Classifier LAC 0.726 ± 0.029 0.985 ± 0.010 1.800 ± 0.060
Ranker 0.726 ± 0.029 0.985 ± 0.010 1.799 ± 0.060

0.05

Classifier APS 0.726 ± 0.029 0.994 ± 0.005 1.969 ± 0.012
Classifier APS (rand) 0.726 ± 0.029 0.952 ± 0.012 1.685 ± 0.063
Classifier LAC 0.726 ± 0.029 0.955 ± 0.017 1.611 ± 0.054
Ranker 0.726 ± 0.029 0.955 ± 0.017 1.615 ± 0.054

0.1

Classifier APS 0.726 ± 0.029 0.994 ± 0.005 1.969 ± 0.012
Classifier APS (rand) 0.726 ± 0.029 0.901 ± 0.021 1.487 ± 0.071
Classifier LAC 0.726 ± 0.029 0.906 ± 0.018 1.424 ± 0.045
Ranker 0.726 ± 0.029 0.906 ± 0.021 1.432 ± 0.051

0.2

Classifier APS 0.726 ± 0.029 0.974 ± 0.073 1.909 ± 0.220
Classifier APS (rand) 0.726 ± 0.029 0.800 ± 0.044 1.210 ± 0.059
Classifier LAC 0.726 ± 0.029 0.801 ± 0.032 1.159 ± 0.052
Ranker 0.726 ± 0.029 0.801 ± 0.034 1.161 ± 0.058

w
i
n
e

(3
)

0.02

Classifier APS 0.982 ± 0.021 1.000 ± 0.000 3.000 ± 0.000
Classifier APS (rand) 0.982 ± 0.021 1.000 ± 0.000 3.000 ± 0.000
Classifier LAC 0.982 ± 0.021 1.000 ± 0.000 3.000 ± 0.000
Ranker 0.974 ± 0.023 1.000 ± 0.000 3.000 ± 0.000

0.05

Classifier APS 0.982 ± 0.021 0.954 ± 0.059 1.379 ± 0.494
Classifier APS (rand) 0.982 ± 0.021 0.982 ± 0.026 1.040 ± 0.056
Classifier LAC 0.982 ± 0.021 0.966 ± 0.045 0.988 ± 0.067
Ranker 0.974 ± 0.023 0.974 ± 0.035 1.000 ± 0.052

0.1

Classifier APS 0.982 ± 0.021 0.895 ± 0.077 1.159 ± 0.245
Classifier APS (rand) 0.982 ± 0.021 0.895 ± 0.038 0.923 ± 0.045
Classifier LAC 0.982 ± 0.021 0.915 ± 0.068 0.917 ± 0.069
Ranker 0.974 ± 0.023 0.907 ± 0.075 0.911 ± 0.079

0.2

Classifier APS 0.982 ± 0.021 0.817 ± 0.074 1.038 ± 0.233
Classifier APS (rand) 0.982 ± 0.021 0.819 ± 0.080 0.839 ± 0.086
Classifier LAC 0.982 ± 0.021 0.817 ± 0.097 0.817 ± 0.097
Ranker 0.974 ± 0.023 0.812 ± 0.106 0.812 ± 0.106
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